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Probabilities on Sequences o

e Let S be the space of DNA or protein sequences of a given
length n. Here are some simple assumptions for assigning
probabilities to sequences:

e Equal frequency assumption: All residues are equally probable at any
position; i.e., AX;,)=AX;,) for any two residues rand g, for all .

this implies that A.X,)=6,=1/|A|, where Ais the residue alphabet (1/20 for
proteins, 1/4 for DNA)

e Independence assumption: whether or not a residue occurs at a
position is independent of what residues are present at other positions.

probability of a sequence
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Failure of Equal Frequency
Assumption for (real) DNA

e For most organisms, the nucleotides composition is significantly
different from 0.25 for each nucleotide, e.g.,

e H,influenza 31A,.19C, 196G, 31T
e P. aeruginosa A7A,.33C,.33G, . 17T
e M. janaschii . 34A, .16C,.16 G, .34 T
e S.cerevisiae 31A,.19C, .19G, 31T
e C.elegans 32A,.18C, .18G, .32 T
e H.sapiens .30A,.20C,.20G, .30T

e Note symmetry: A=T, C=G, even thought we are counting
nucleotides on just one strand. Explanation:

e although individual biological features may have non-symmetric composition,
usually features are distributed ~ randomly w.r.t. strand, so get symmetry.
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General Hypothesis Regarding seoe
[
Unequal Frequency '

e Neutralist hypothesis: mutation bias (e.g., due to
nucleotide pool composition)

e Selectionist hypothesis: natural selection bias




Models for Homogeneous
Sequence Entities

\
e Probabilities models for long "homogeneous" sequence

entities, such as:

e exons (ORFs)

e introns

e inter-genetic background

e protein coiled-coil (other other structural) regions

e Assumptions:
e N0 coNsensus, no recurring string patterns
e have distinct but uniform residue-composition (i.e., same for all sites)
e every site in the entity are iid samples from the same model

e The model:
e a single multinomial: X'~ Mul(1,6)

. . 00
The Multinomial Model for sess
Sequence .o
e For asite i, define its residue identity to be a multinomial random
vector:
Xia X, =[01], and XX, =1
X = Xie where seen
X X, =1wp. 0, Zﬂjzl .
X/r JEACGT]

e The probability of an observation s;=A (i.e, x; ,=1) at site i
plx, = (say, A)) = P{X, ; =1,where j = Aindex the observed nucleotide})
=0,=0,"%x0,"x0,x0,"7 =[16,% =6~
k

e The probability of a sequence (X;, X,,..., Xy):

N N

P(X, Xy X)) = H'D(X/) :H H'gk)w
/=1

=1 Kk
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Parameter Estimation .
e Maximum likelihood estimation: & =argmax (D | 6)
e multinomial parameters: ’
{6.6,..}=argmax 116, st 26, =1
k k
It can be shown that : ;" =”%/
e Bayesian estimation: N Xa,)
e Dirichlet distribution: PO =—F  Tlo=t=c gt
O =TT H p (“)I;I p
k
e Posterior distribution of dunder the Dirichlet prior:
PO X, xy) o T 105 110, = TToptm
k k k
e Posterior mean estimation:
wotin, gy M+ a
0, =[0,P(©1D)a0 =0, I;Iok ! dofm
eo00
Models for Homogeneous sels
Sequence Entities, ctd -

e Limitations
e non-uniform residue composition (e.g., CG rich regions)
e non-coding structural regions (MAR, centromere, telomere)
e di- or tri- nucleotide couplings
e estimation bias
e evolutionary constrains




Site Models

e Probabilities models for short sequences, such as:
e splice sites
e translation start sites
e promoter elements
e protein "motifs"

e Assumptions:

o different examples of sites can be aligned without indels
(insertions/deletions) such that tend to have similar residues in same
positions

e drop equal frequency assumption; instead have position-specific
frequencies

e retain independence assumption (for now)

Site Models ctd.

e Applies to short segments (<30 residues) where precise
residue spacing is structurally or functionally important, and
certain positions are highly conserved

e DNA/RNA sequence binding sites for a single protein or RNA molecule

e Protein internal regions structurally constrained due to folding
requirements; or surface regions functionally constrained because bind
certain ligands

e Example: C. elegans splice sites

Transcription direction
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Nucleotide Counts for 8192 C. 4
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elegans 3' Splice Sites &
3’ g8
Intron | Exon
A Fs 3B/l 2513 476 67 757 240 8192 0 F3/9 2401 2514
C 90 48 epd 236 129 1109 6830 8] O 1277 1533 1847
G 593 575 5lo 144 39 555 1 0 819 2539 1301 1567
T F353 2453 4699 7336 7EY 5731 110 0] 0 1017 2957 2264
CONSENSUS W W W T £ i A % g W W
A0.400 0,429 0,282 0.058 0.008 0,092 0,029 1.000 0,000 0.410 0.293 0,307
C 0.8 0.079 0.081 0.02%9 0.016 0,135 0.831 0.000 0,000 0,156 0.187 0.225
G 0.C72 0.070 0.063 0,018 0,005 0.073 0.00L 0.000 1,000 0,310 0.159 0191
T 0.409 0.422 0.574 0.8% 0.5971 0.700 0.125 0.000 0.000 0.124 0.361 0.276
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5' Splice Sites - C. elegans e
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Limitation of Homogeneous Site | 322:
Models H

e Failure to allow indels means variably spaced subelements

are "smeared", e.g.:
e branch site, for 3' splice sites;
e coding sequences, for both 3' and 5' sites

e Independence assumption

e usually OK for protein sequences (after correcting for evolutionary

relatedness)
e often fails for nucleotide sequences; examples:
5' sites (Burge-Karlin observation);
background (dinucleotide correlation, e.g., GC repeats).




Why Correlation?

\
e Splicing involves pairing of a small RNA with the transcription

at the 5' splice site.

e The RNA is complementary to the 5' sTRNA consensus
sequence.

e A mismatch at position -1 tends to destabilize the pairing, and
makes it more important for other positions to be correctly
paired.

e Analogy can be easily drew for other DNA and protein motifs.

Comparing Alternative
Probability Models

e We will want to consider more than one model at a time, in the
following situations:
e To differentiate between two or more hypothesis about a sequence

e To generate increasingly refined probability models that are progressively
more accurate

e First situation arises in testing biological assertion, e.g., "is this a
coding sequence?" Would compare two models:

1. one associated with a hypothesis Hq,, Which attaches to a sequence the
probability of observing it under experiment of drawing a random coding
sequence from the genome

2. one associate with a hypothesis H,.oqing Which attaches to a sequence the
probability of observing it under experiment of drawing a random non-coding
sequence from the genome.




Likelihood Ratio Test

e The posterior probability of a model given data is:
AM D) = ADIMAMIAD)

e Given that all models are equally probable a priori, the
posterior probability ratio of two models given the same data
reduce to a likelihood ratio:

LRWM, My | D) =2 1M

P(OIM)

e the numerator and the denominator may both be very small!

e The log likelihood ratio (LLR) is the logarithm of the likelihood
ratio:

LLR(M,, My |D)=10gP(D| M,)-log P(D| M)

The Hidden Markov Models
for sequence parsing

Start codon :odon/ 5 Donor site

=== ATGCCCTTCTCCAACAG 1 (7.l

Transcription
start
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Stop codon
\
\\ ATCCCCATGCCTGAGGGCCOCTC
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Gene Finding

¢ Given un-annotated sequences,

e delineate:

PATACACAGCGCACACAT

e transcription initiation site,
e exon-intron boundaries,

CCCTGCTGCGCCTC

. . . . . GCGTGCACAATTTGCGCCAATTTCCCCC! T

e transcription termination site, TTCAACCCAGCACCGCTCGTCTCTTCCTCTT
AGCATTCGTACGAGGAACAGTGCTGTCA
- . 'AGCTAAAAAGCGTAATTATTCATT
e avariety of other motifs: promoters, polyA TTCGGATATTATTGTCATTTGOCTTTAATCTTGTGTAT |
) . . | TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
[AGAACTGAAGAGTTTCAAMACCTAAMAATAATTGGAATAT |

sites, branchi ng sites, etc. wc'rrrceﬂ'rrACAAﬂ'rgATw CT CT.IA-'Ir'I'GTAAGT

GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
|CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA |

ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
. AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
e The hidden Markov model (HMM) T
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTA(

GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

Hidden Markov Models

The underlying source: e @ @ e
genomic entities,

dice,

The sequence: @ @ @ @

Ploy NT,
sequence of rolls,
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Example: The Dishonest Casino

A casino has two dice:

e Fair die

P@1) =P(2) =P(3) =P(5) = P(6) = 1/6
e Loaded die

P(1) =P(2) =P(3) = P(5) = 1/10

P(6) = 1/2

Casino player switches back-&-forth
between fair and loaded die once every
20 turns

Game:
1.You bet $1
2.You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2

Puzzles Regarding the Dishonest
Casino s

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e This is the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e This is the DECODING question in HMMs

e How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?
e This is the LEARNING question in HMMs




A Stochastic Generative Model

e Observed sequence:

OO

B

e Hidden sequence (a parse or segmentation):

O—O—O—O—@—

Definition (of HMM)

e Observation space

Alphabetic set: C:{Cl,cz,n-,c,(} @ @ @ : @
Euclidean space: RY

e Index set of hidden states @ @ @ @

1={12,--, M} Granhi
. o raphical model
e Transition probabilities between any two states
P(Yrj=1|}’f';1=1)=a,',j, /->
or  ply, |yl =1)~Multinomial(g, ,,a,,.....a, , )} Vi el. 1 A2

e Start probabilities N
p(y1) ~ Multinomial(z;, 7,,..., 7, ).

e Emission probabilities associated with each state AT
p(x; | yi =1) ~ Multinomial(b,,, 4, ,,....5, ) Vi €.
or in general:

px, |yl =1)~f(|6,)Viel

State automata

12



Probability of a Parse

!
e Given asequence x = xj...... Xt
and aparsey =y, ...... . Voo @ @ @ G
e To find how likely is the parse:

(given our HMM and the sequence) @ @ @ @

PXY) =P X Vi s o) (Joint probability)
= py) P |y Pya |y PO | Yo) - POy | s PO | ys)
=p) PO | ) - Pyvr | ) X px | ) PO | o) oo Pl | )
=PV s Yo PXp o X Y ¥r)
def M i def M 7Y M K 7
et 5, [1l=] a0, 1] o] e g, “TTTI6]

i /=1 k=1

k
def

- 7[)’1 a}’l v a}’rfx YT b)ﬂ x b)/r XT

T T
e Marginal probability: p(x)=3" p(x,y)= Zh ZYZ ...Zm 7,114, 11, 1%)
) t=2 =1
e Posterior probability: p(y|x) = p(x,y)/ p(x)

00
0000
o000
. . ::o
The Dishonest Casino Model .
0.05
0.95 0.95
'e. LOADED
P(1|F) = 1/6 P(1]L) = 1710
P(2|F) = 1/6 P(2|L) = 1710
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) =1/6 P(4]L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6]F) = 1/6 P(6IL) = 1/2

13



Example: the Dishonest Casino

e Let the sequence of rolls be:
e x=1,2,1,56,2,1,6,2,4

e

e Then, what is the likelihood of
e y= Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
= 1/2)

(say initial probs age,; = %2, 8y, gaded

Y% x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

1 x (1/6)10 x (0.95) = .00000000521158647211 = 5.21 x 10

Example: the Dishonest Casino

e S0, the likelihood the die is fair in all this run
is just 5.21 x 10°

=

e OK, but what is the likelihood of

e = =Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

% x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

12 x (1/10)8 x (1/2)2 (0.95)° = .00000000078781176215 = 0.79 x 107

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way

14



Example: the Dishonest Casino

e Let the sequence of rolls be:
e x=1,6,6,56,2,6,6,3,6

e

e Now, what is the likelihood n = F, F, ..., F?
e 1 x (1/6)10 x (0.95)° = 0.5 x 109, same as before

e What is the likelihood y=1L, L, ..., L?
Vs x (1/10)* x (1/2)6 (0.95)° = .00000049238235134735 = 5 x 107

e S0, itis 100 times more likely the die is loaded

X
o000
0000
[
H H [ X ]
Three Main Questions on HMMs e
1. Evaluation
GIVEN an HMM M, and a sequence Jx,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y| x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 0 = (7, g, m) that maximize P(x| 0)
ALGO. Baum-Welch (EM)

15



Applications of HMMs

e Some early applications of HMMs

° finance, but we never saw them
° speech recognition
° modelling ion channels

e In the mid-late 1980s HMMs entered genetics and molecular

biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes

° aligning biological sequences

° predicting sequence structure

° inferring evolutionary relationships
° finding genes in DNA sequence

Typical structure of a gene

Startcodon  codons  ponor site

Stop codon

GATCCCCATGCCTGAGGGCCCCTC

16



GENSCAN (Burge & Karlin)

R

CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

pPATACACAGCGCACACAT

CCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCC T¢

TTTCAACCCAGCACCGCTCGTCTCTT(

EEEEE

AGCATTCGTACGAGGAACAGTGCTGT(

ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATG

TTTCGGATATTATTGTCATTTGCCTTT,

GTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC |
AATC

[TGTGTAT |

[ATATGGATGAAACGTGCTATAATAAC

ATGCAGAATGA

\CCTAAAAATAATTY

AATTCGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT

GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
|CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA

ATGAGCAAAGCGCCTA GGATAATAT
AAGGGGAACATATTCATAA CAGGTT
| TATGTAGGCGTAAAGAAATAGCTA

ATTT

TTTGCTGTTTAC
TTAGGTTACGCA
GTAGAAGTGCA

| TATGCACTTTATAAAAAATTATCCTACA

TTAACGTA

ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA

ACTAAATACGTAAACAATAATGTA(

GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

Some Facts About Human Genes

e Comprise about 3% of the genome
e Average gene length: ~ 8,000 bp

e Average of 5-6 exons/gene

e Average exon length: ~200 bp

e Average intron length: ~2,000 bp

e ~8% genes have a single exon

e Some exons can be as small as 1 or 3 bp.
e HUMFMRL1S is not atypical: 17 exons 40-60 bp long, comprising 3% of a

67,000 bp gene

17
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The Idea Behind a GHMM sels
GeneFinder '
\
e States represent standard gene
features: intergenic region, exon, intron,
perhaps more (promotor, 5UTR, Il |
3'UTR, Poly-A,..). @
1 i
° embody state-dependent q‘
base composition, dependence, and
signal features. -
\ /
e Ina GHMM, duration must be included G\ ﬁ
as We” ard Ch) stand intergeni ard Ch) Sug
Reverse (-) strand ’eggi"\ Reverse (-) strand
e Finally, and both d O
strands must be dealt with. / \
[ X X ]
0000
H
The HMM Algorithms '

Questions:

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk, given the observed sequence? Forward-
Backward

e Decoding: What is the most likely die sequence? Viterbi

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)

18



The Forward Algorithm

|
e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:
T T
ID(X) = ZyP(X:Y) = ZYI Zyz .“Zy,\, ”Y1Ha)/r lv)/rHP(Xf |y7')
+=2 =1

e To avoid summing over an exponential number of paths y, define

def
alyf =l)=af =P(x,,..x,, v\ =1) (the forward probability)

e The recursion:
k k /
o =p(x; |y = l)za;—la/,k
-
P(x)=>af
k

The Forward Algorithm — §§:
derivation HH

e Compute the forward probability:

v
a,k:/’()q ----- Xr71va’yfk:1) \®@ @

:ZMP(XI """ Xr—lr)’r—l)’p(}’fk =1y 0 Xy X )P (X |Yfk =1, X0, Vi)

Chainrule: P(A,B,C)=P(AP(B|IC)P(C|A B)

19



The Forward Algorithm

\
e We can compute af for all &, #, using dynamic programming!

Initialization: 051/( :P(Xv}ﬁk =1)
=P I =DP(y{ =1

af =P(x | y{ =Dr, =P(x, |y =D,

af =P(x |yt =D o ,a;,

Termination:

P(x)=>af
k

The Backward Algorithm

e We want to compute A(y// =1]x) , MO D=0

the posterior probability distribution on the

#t position, given x @ Q

e We start by computing
Pyl =1,x)=P(X;, X0 v =1, X, 1000 X7)
= P(Xpsor X, VE = DP(Xs g X | X X,y =1)
= P(X; X, Y = DP (X g xr |y =1)

L

Forward, e/ Backward, SF =P(X, ... X |y =1)

Lo k / '
e The recursion: 187‘ — Zak’/.p(xﬂl |y;+1 = l)ﬂ;ﬂ
/.

20



The Backward Algorithm —
derivation

o

e Define the backward probability: @,@
,Brk =P(Xy 10 Xr |Yrk =1 @ @

= zm P(Xtres X1 Y |Yrk =1)

~

= Z;P()’rjq =1yl =0)pe |V =Ly =DP(X e X | Xy Vi =Ly =1)
:z/’p(}’ffu :1|Yrk =Dp | ¥ =DP(X s Xr | Vg = 1)
= Zl. a,,pX;. | yr/+1 = 1),3;;1

Chainrule: P(A,B,C|a)=P(A a)P(B|C,a)P(C| A B,a)

The Backward Algorithm

e We can compute ﬂfk for all &, #, using dynamic programming!

Initialization:
k
Bl =1, vk
lteration:

ﬂ,k = Z,. a, PX.4 |}’r/+1 :l)ﬂffﬂ

Termination:

P(x) = Zalkﬂ1k
k

21
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Posterior decoding :
e We can now calculate
k P(yszl,x) Offﬂfk
Pyl =1|x)= =
P(x) P(x)
e Then, we can ask
e What is the most likely state at position t of sequence x:
* k
k" =argmax, Py} =1|x)
e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?
e Posterior Decoding: {}’,k; =1:#=1.--T }
e This is different from MPA of a whole sequence x  y | Plx.y)
of hidden states o o 035
hi b d d bi Example: o| 7 Q.95
e This can be understood as bit error rate =TS 7 o o3
vs. word error rate MPA of (X, Y) ? 7 7 0.3
(XY
o000
o000
o000
. . . -
Viterbi decoding o

e GIVENXx =X, .., xswewanttofindy =y, .., y4, such that
Aylx) is maximized:

y' = argmax, Ay|x) = argmax, Ay,x)
o Let
k k
Vi =max, s P(Xie Xogs Yiven Ve X Yr =1)
= Probability of most likely sequence of states ending at state y; = &
e The recursion: Xy Xa Xg evrevevenresnesensarseresssese e X

[/fk = p(Xf | Yrk = 1) maX/‘ a/‘,kl/fil

State 1 M

e Underflows are a significant problem = 7

Pty Xy Vi V) =7y, .“a)/fflv)/fb)/lvxl "'byfvxf
These numbers become extremely small — underflow
Solution: Take the logs of all values: I/* =log p(x, | y/ =1) + max,(log(a,vk)Jr I/,’l)

22



(X X J
0000
0000
. : . . ooe
The Viterbi Algorithm — derivation |2
|
e Define the viterbi probability:
fol = maX{yl,...y,}P(Xl'---,Xrlyli---erer)’fﬁl =1)
:max{yl,...y,}P(an,)’rku =10 X V1o YIP (Ko X Y1 V)
:max{yl,...y,}P(an,Yrkﬂ =1|}’f)P(Xly---,XHlYu---y)’rm/\’r’)’r)
=max; 'D(Xm)’rkq =1ly/ =1) max{yl_‘.y,,l}P(/\/l ----- Xo i Vv Yo Xpo Vs =1)
=max, P(x,.; | yf =Da W'
=P, |y =1y max, a.y
(X X ]
0000
e000
The Viterbi Algorithm o

(] Input X = X], ey XT’
Initialization:
Vlk =P(x |)’1k =)z,
lteration:
ka = P(Xr |Yrk = 1) max/ a/'./(Vflvl
Ptr(k 1) =argmax; g, ,//,
* k
P(x.y") = max, Iy
TraceBack:
y; = argmax, 1

Vi1 =Ptr(y; 1)

23
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Computational Complexity and sels
implementation details '

\
e What is the running time, and space required, for Forward,
and Backward? _
af = plx; |yt =0 ol .,
161'/( = Zak,/'p(xfﬂ |yf/+1 = l)ﬂrlﬁ
V= px |y =hmax; a W',
Time: O(KN); Space: O(KN).
e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a
constant
[ X X ]
0000
[ X XX
. . ::o
Learning HMM: two scenarios :

e Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region x = X;...X; g90,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize
A X6 --- Maximal likelihood (ML) estimation

24



Supervised ML estimation

|
e Given x= x;...x), for which the true state path y = y,...yyis

known,

e Define:
A = # times state transition /—j occurs in'y
B, = # times state /7in y emits kin x

e We can show that the maximum likelihood parameters fare:

. . T ; i
att - #(— ) _ anrzz)’n,Hyn{r 7 A/j

LR XY e XA

b_ML _ #(/ - k) _ anzﬂyl;fxrfr - B/k

Tk

GOV W

e What ify is continuous? We can treat {(x,,,y,,):#=1:T,n=1:Njas Ak T
observations of, e.g., a Gaussian, and apply learning rules for
Gaussian ... (Homework!)

(Homework!)

Supervised ML estimation, ctd.

e Intuition:

e When we know the underlying states, the best estimate of @is the
average frequency of transitions & emissions that occur in the training
data

e Drawback:
e Given little data, there may be overfitting:
P(x|6) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6,1, 2, 3, 6, 2, 3
y=F, F, F, F, F, F, F, F, F, F
e Then: agr=1, ag =0
Bry = bey = .2;
Dry = .3; bpy = 0; bes = beg = .1
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Pseudocounts :
e Solution for small training sets:
e Add pseudocounts
A = # times state transition /—joccurs iny + R;;
By = # times state 7in y emits Ainx+ S,
° A’,j, S,J. are pseudocounts representing our prior belief
e Total pseudocounts: R;=%R;, 5;= 3,5y,
--- "strength" of prior belief,
--- total number of imaginary instances in the prior
e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities ---
smoothing
e00
0000
[ X XX
[ X0
. . . e
Unsupervised ML estimation :

e Given x= x;...xy for which the true state path y= y,...yy/is
unknown,

o EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters 6
1. Estimate A;;, B, in the training data
How? 4, :Zn‘ﬁiy;‘,,lyj,:h 8 =Zﬂ,<yn’f>Xf, ,  How? (homework)
2. Update @according to A, B,
Now a "supervised learning" problem
3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set @ each iteration
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The Baum Welch algorithm

e The complete log likelihood

;
4(91 X, y) = |Og P(Xa y) = |09H[P(Yn1)np()’nf | yn,f—l)
n =2
e The expected complete log likelihood
(€.Oxy)= ;(Wﬁm oo ﬂ/]+ ;é@yn’myf.r)

e EM
e The E step

T

px,, | Xn,f)J

=

T .
|Oga,‘/j+22[xnfr<yg‘r>p(ym‘xn) IOgbﬁkj

P(Ynp1:Yntlxn) praleuy

7;,7 = <yr/r‘,f> = P(y';’,r =1]x,)
5,# = <ler‘,r71ynj,.r> = p(yr:,f—l = ler{r =1]x,)
e The M step ("symbolically" identical to MLE)

a_ML _ Zﬂ Z:—:Z é:’:z bZ,ML _ Zn Z::l y’l’v’X"/Tf
f 71, 7 71 ;
’ Zn Zrzl 74” Zn Zle 7//”

Mo_ Zn 7;‘1
7 N

The Baum-Welch algorithm -- §§:
comments o

Time Complexity:

# iterations x O(K2N)

Guaranteed to increase the log likelihood of the model

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overt-fitting
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