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Probabilities on Sequences
Let S be the space of DNA or protein sequences of a given 
length n. Here are some simple assumptions for assigning 
probabilities to sequences:

Equal frequency assumption: All residues are equally probable at any 
position; i.e., P(Xi,r)=P(Xi,q) for any two residues r and q, for all i. 

this implies that P(Xi,r)=θr=1/|A|, where A is the residue alphabet (1/20 for 
proteins, 1/4 for DNA)

Independence assumption: whether or not a residue occurs at a 
position is independent of what residues are present at other positions. 

probability of a sequence

P(X1, X2, ..., XN) = θr ·θr· , ..., · θr= θr
N
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Failure of Equal Frequency 
Assumption for (real) DNA

For most organisms, the nucleotides composition is significantly
different from 0.25 for each nucleotide, e.g., 

H, influenza .31 A, .19 C, .19 G, .31 T
P. aeruginosa .17 A, .33 C, .33 G, .17 T
M. janaschii . 34 A, .16 C, .16 G, .34 T
S. cerevisiae .31 A, .19 C, .19 G, .31 T
C. elegans .32 A, .18 C, .18 G, .32 T
H. sapiens .30 A, .20 C, .20 G, .30 T

Note symmetry: A≅T, C≅G, even thought we are counting 
nucleotides on just one strand. Explanation:

although individual biological features may have non-symmetric composition, 
usually features are distributed ~ randomly w.r.t. strand, so get symmetry. 

General Hypothesis Regarding 
Unequal Frequency

Neutralist hypothesis: mutation bias (e.g., due to 
nucleotide pool composition)

Selectionist hypothesis: natural selection bias
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Models for Homogeneous 
Sequence Entities

Probabilities models for long "homogeneous" sequence 
entities, such as:

exons (ORFs)
introns
inter-genetic background
protein coiled-coil  (other other structural) regions

Assumptions:
no consensus, no recurring string patterns 
have distinct but uniform residue-composition (i.e., same for all sites)
every site in the entity are iid samples from the same model

The model: 
a single multinomial: X ~ Mul(1,θ)

The Multinomial Model for 
Sequence

For a site i, define its residue identity to be a multinomial random 
vector:

The probability of an observation si=A (i.e, xi,A=1) at site i:  

The probability of a sequence (x1, x2,..., xN):
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Maximum likelihood estimation: 
multinomial parameters:

Bayesian estimation:
Dirichlet distribution:  

Posterior distribution of θ under the Dirichlet prior:

Posterior mean estimation:
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Parameter Estimation

Limitations
non-uniform residue composition (e.g., CG rich regions) 
non-coding structural regions (MAR, centromere, telomere)
di- or tri- nucleotide couplings
estimation bias
evolutionary constrains 

Models for Homogeneous 
Sequence Entities, ctd
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Site Models
Probabilities models for short sequences, such as:

splice sites
translation start sites
promoter elements
protein "motifs"

Assumptions:
different examples of sites can be aligned without indels
(insertions/deletions) such that tend to have similar residues in same 
positions
drop equal frequency assumption; instead have position-specific 
frequencies
retain independence assumption (for now)   

Site Models ctd.
Applies to short segments (<30 residues) where precise 
residue spacing is structurally or functionally important, and 
certain positions are highly conserved

DNA/RNA sequence binding sites for a single protein or RNA molecule
Protein internal regions structurally constrained due to folding
requirements; or surface regions functionally constrained because bind 
certain ligands

Example: C. elegans splice sites

5' ss
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Nucleotide Counts for 8192 C. 
elegans 3' Splice Sites

3' Splice Site - C. elegans
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5' Splice Sites - C. elegans

Limitation of Homogeneous Site 
Models

Failure to allow indels means variably spaced subelements
are "smeared", e.g.:

branch site, for 3' splice sites;
coding sequences, for both 3' and 5' sites

Independence assumption
usually OK for protein sequences (after correcting for evolutionary 
relatedness) 
often fails for nucleotide sequences; examples:

5' sites (Burge-Karlin observation);
background (dinucleotide correlation, e.g., GC repeats).
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Why Correlation?
Splicing involves pairing of a small RNA with the transcription 
at the 5' splice site.
The RNA is complementary to the 5' srRNA consensus 
sequence.
A mismatch at position -1 tends to destabilize the pairing, and 
makes it more important for other positions to be correctly 
paired.
Analogy can be easily drew for other DNA and protein motifs.   

Comparing Alternative 
Probability Models

We will want to consider more than one model at a time, in the 
following situations:

To differentiate between two or more hypothesis about a sequence
To generate increasingly refined probability models that are progressively 
more accurate

First situation arises in testing biological assertion, e.g., "is this a 
coding sequence?" Would compare two models:

1. one associated with a hypothesis Hcoding which attaches to a sequence the 
probability of observing it under experiment of drawing a random coding 
sequence from the genome

2. one associate with a hypothesis Hnoncoding which attaches to a sequence the 
probability of observing it under experiment of drawing a random non-coding 
sequence from the genome.  
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Likelihood Ratio Test
The posterior probability of a model given data is:

P(M|D) = P(D|M)P(M)/P(D)

Given that all models are equally probable a priori, the 
posterior probability ratio of two models given the same data 
reduce to a likelihood ratio:

the numerator and the denominator may both be very small! 

The log likelihood ratio (LLR) is the logarithm of the likelihood 
ratio:

The Hidden Markov Models The Hidden Markov Models 
for sequence parsingfor sequence parsing
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Given un-annotated sequences, 
delineate:

transcription initiation site,
exon-intron boundaries,
transcription termination site,
a variety of other motifs: promoters, polyA
sites, branching sites, etc.

The hidden Markov model (HMM)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

Gene Finding

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying source:

Ploy NT, 

genomic entities, 

sequence of rolls, 

dice,

Hidden Markov Models
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Example: The Dishonest Casino

A casino has two dice:
Fair die
P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
Loaded die
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once every 
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2

Puzzles Regarding the Dishonest 
Casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
How likely is this sequence, given our model of how the casino 
works?

This is the EVALUATION problem in HMMs

What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?

This is the DECODING question in HMMs

How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs
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A Stochastic Generative Model
Observed sequence:

Hidden sequence (a parse or segmentation):

A

B

1 4 3 6 6 4

BA A ABB

Definition (of HMM)
Observation spaceObservation space

Alphabetic set:
Euclidean space:

Index set of hidden statesIndex set of hidden states

Transition probabilitiesTransition probabilities between any two statesbetween any two states

or

Start probabilitiesStart probabilities

Emission probabilitiesEmission probabilities associated with each stateassociated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Probability of a Parse
Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

=

Marginal probability:

Posterior probability:
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... 

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The Dishonest Casino Model
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of
y = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs a0Fair = ½, aoLoaded = ½)

½ × P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ × (1/6)10 × (0.95)9 = .00000000521158647211 = 5.21 × 10-9

Example: the Dishonest Casino
So, the likelihood the die is fair in all this run
is just 5.21 × 10-9

OK, but what is the likelihood of
π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) … P(4 | Loaded) =

½ × (1/10)8 × (1/2)2 (0.95)9 = .00000000078781176215 = 0.79 × 10-9

Therefore, it is after all 6.59 times more likely that the die is fair 
all the way, than that it is loaded all the way
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Example: the Dishonest Casino
Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, …, F?
½ × (1/6)10 × (0.95)9 = 0.5 × 10-9, same as before

What is the likelihood y = L, L, …, L?

½ × (1/10)4 × (1/2)6 (0.95)9 = .00000049238235134735 = 5 × 10-7

So, it is 100 times more likely the die is loaded

Three Main Questions on HMMs
1.1. EvaluationEvaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x | M)
ALGO. ForwardForward

2.2. DecodingDecoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. ViterbiViterbi, Forward, Forward--backward backward 

3.3. LearningLearning
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters θ = (πi, aij, ηik) that maximize P(x | θ)
ALGO. BaumBaum--Welch (EM)Welch (EM)
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Applications of HMMs
Some early applications of HMMs

finance, but we never saw them  
speech recognition  
modelling ion channels 

In the mid-late 1980s HMMs entered genetics and molecular 
biology, and they are now firmly entrenched.

Some current applications of HMMs to biology
mapping chromosomes
aligning biological sequences
predicting sequence structure
inferring evolutionary relationships
finding genes in DNA sequence

Typical structure of a gene
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E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC
CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT
GGTCATGCAAACAACGCACAGAACAAATTAATTTTCAAAT
TGTTCAATAAATGTCCCACTTGCTTCTGTTGTTCCCCCCT
TTCCGCTAGCGGAATTTTTTATATTCTTTTGGGGGCGCTC
TTTCGTTGACTTTTCGAGCACTTTTTCGATTTTCGCGCGC
TGTCGAACGGCAGCGTATTTATTTACAATTTTTTTTGTTA
GCGGCCGCCGTTGTTTGTTGCAGATACACAGCGCACACAT
ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC
ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATGTGGGTGCAAGCGAGATACCGCGATCAAGACTCGA
ACGAGACGGGTCAGCGAGTGATACCGATTCTCTCTCTTTT
GCGATTGGGAATAATGCCCGACTTTTTACACTACATGCGT
TGGATCTGGTTATTTAATTATGCCATTTTTCTCAGTATAT
CGGCAATTGGTTGCATTAATTTTGCCGCAAAGTAAGGAAC
ACAAACCGATAGTTAAGATCCAACGTCCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TTAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
TGTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC
TTTTCGGATATTATTGTCATTTGCCTTTAATCTTGTGTAT
TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTAGAAGTCCGGCTGAAAG
CCCCAGCAGCTATAGCCGATATCTATATGATTTAAACTCT
TGTCTGCAACGTTCTAATAAATAAATAAAATGCAAAATAT
AACCTATTGAGACAATACATTTATTTTATTTTTTTATATC
ATCAATCATCTACTGATTTCTTTCGGTGTATCGCCTAATC
CATCTGTGAAATAGAAATGGCGCCACCTAGGTTAAGAAAA
GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT
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GENSCAN (Burge & Karlin)

Some Facts About Human Genes 
Comprise about 3% of the genome
Average gene length: ~ 8,000 bp
Average of 5-6 exons/gene
Average exon length: ~200 bp
Average intron length: ~2,000 bp
~8% genes have a single exon

Some exons can be as small as 1 or 3 bp.
HUMFMR1S is not atypical: 17 exons 40-60 bp long, comprising 3% of a 
67,000 bp gene
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The Idea Behind a GHMM 
GeneFinder

States represent standard gene 
features: intergenic region, exon, intron, 
perhaps more (promotor, 5’UTR, 
3’UTR, Poly-A,..).  

Observations embody state-dependent 
base composition, dependence, and 
signal features.

In a GHMM, duration must be included 
as well.

Finally, reading frames and both 
strands must be dealt with.  

E0 E1 E2

E

poly-A

3'UTR5'UTR

tEi

Es

I0 I1 I2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

The HMM Algorithms
Questions:

Evaluation: What is the probability of the observed 
sequence? Forward
Decoding: What is the probability that the state of the 3rd 
position is Bk, given the observed sequence? Forward-
Backward
Decoding: What is the most likely die sequence? Viterbi
Learning: Under what parameterization are the observed 
sequences most probable? Baum-Welch (EM)
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The Forward Algorithm
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:

To avoid summing over an exponential number of paths y, define

(the forward probability)

The recursion:
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The Forward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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The Backward Algorithm
We want to compute                      ,

the posterior probability distribution on the                   
t th position, given x

We start by computing
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The Backward Algorithm –
derivation

Define the backward probability:
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The Backward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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Posterior decoding
We can now calculate

Then, we can ask
What is the most likely state at position t of sequence x:

Note that this is an MPA of a single hidden state, 
what if we want to a MPA of a whole hidden state sequence?

Posterior Decoding: 

This is different from MPA of a whole sequence
of hidden states

This can be understood as bit error rate
vs. word error rate
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Example:
MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Viterbi decoding
GIVEN x = x1, …, xT, we want to find y = y1, …, yT, such that 
P(y|x) is maximized:

y* = argmaxy P(y|x) = argmaxπ P(y,x) 
Let

= Probability of most likely sequence of states ending at state yt = k
The recursion:

Underflows are a significant problem

These numbers become extremely small – underflow
Solution: Take the logs of all values:
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The Viterbi Algorithm – derivation
Define the viterbi probability:
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The Viterbi Algorithm 
Input: x = x1, …, xT, 

Initialization:

Iteration:

Termination:

TraceBack:
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Computational Complexity and 
implementation details

What is the running time, and space required, for Forward, 
and Backward?

Time:   O(K2N); Space: O(KN).

Useful implementation technique to avoid underflows
Viterbi: sum of logs
Forward/Backward:   rescaling at each position by multiplying by a 
constant
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Learning HMM: two scenarios
Supervised learning: estimation when the “right answer” is 
known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize 
P(x|θ) --- Maximal likelihood (ML) estimation 
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(Homework!)

Supervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
known,

Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:

What if y is continuous? We can treat                           as N×T
observations of, e.g., a Gaussian, and apply learning rules for 
Gaussian …
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(Homework!)

Supervised ML estimation, ctd.
Intuition:

When we know the underlying states, the best estimate of θ is the 
average frequency of transitions & emissions that occur in the training 
data

Drawback:
Given little data, there may be overfitting:

P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 



26

Pseudocounts
Solution for small training sets:

Add pseudocounts
Aij = # times state transition i→j occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

Rij, Sij are pseudocounts representing our prior belief
Total pseudocounts: Ri = ΣjRij , Si = ΣkSik , 

--- "strength" of prior belief, 
--- total number of imaginary instances in the prior

Larger total pseudocounts ⇒ strong prior belief

Small total pseudocounts: just to avoid 0 probabilities ---
smoothing

Unsupervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
unknown,

EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ:
1. Estimate Aij , Bik in the training data 

How?                             , ,    How? (homework)

2. Update θ according to Aij , Bik
Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration
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The Baum Welch algorithm
The complete log likelihood

The expected complete log likelihood

EM
The E step

The M step ("symbolically" identical to MLE)
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The Baum-Welch algorithm --
comments

Time Complexity:

# iterations × O(K2N)

Guaranteed to increase the log likelihood of the model

Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model: Overt-fitting
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