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Advanced Algorithms Advanced Algorithms 
and Models for and Models for 

Computational BiologyComputational Biology
---- a machine learning approacha machine learning approach

Computational Genomics I: Computational Genomics I: 
Sequence AlignmentSequence Alignment

Eric XingEric Xing

Lecture 3, January 25, 2005

Reading: Chap. 2,6 DEKM book

Modeling biological sequences 
Kinds of questions we want to ask

How to align two sequence to reveal conserved regions?
Is this sequence a motif (e.g., binding site, splice site)?
is this sequence part of the coding region of a gene?
Are these two sequences evolutionarily related?
...

What we will not address (covered last semester)
How multiple sequences can be optimally aligned
how sequencing results of a clone library can be assembled 
What is the most parsimonious phylogeny of a set of sequences

Machine learning : extracting useful information from a 
corpus of data D by building good (predictive, evaluative or 
decision) models
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Modeling biological sequences, 
ctd

We will use probabilistic models of sequences -- not the only 
approach, but usually the most powerful, because

sequences are the product of an evolutionary process which is stochastic in nature,
want to detect biological "signal" against "random noise" of background mutations, 
data may be missing due to experimental reasons or intrinsically unobservable, and
we want to integrate multiple (heterogeneous) data and incorporate prior knowledge 
in a flexible and principled way,
....

Computational analysis only generate hypothesis, which must be 
tested by experiments

Site-directed mutagenesis (to alter the sequence content)
Knockouts/insertions of genes/sites (deletion/addition of elements)  
Functional perturbations (pathway inhibitors, drugs, ...)

From one-way learning to close-loop learning: 
Active learning: can a machine design smart experiments? 

TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

Hierarchical structure of the 
genome
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The DNA strand has a chemical 
polarity

Writing DNA sequence
One strand is written by listing its bases in 5' to 3' order

5' ACCGTTACT 3'

Each strand uniquely determines the complementary strand, 
which runs in the opposite direction:

5' ACCGTTACT 3'
3' TGGCAATGA 5'

So the reverse complement of ACCGTTACT is written 
TGGCAATGA
In general people write one strand and in 5' to 3' order 

This is the ordering that a polymerase or a ribosome scan the sequence
Establishes a common standard for genome nomenclatures 
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Gene structure in prokaryotes

Gene structure in prokaryotes
A protein-coding gene consists of the following, in 5’ to 3’
order

An upstream regulatory region, generally < 50 bp, which turns transcription on 
and off.
A transcription start site where RNA polymerase incorporates 1st nucleotide 
into nascent mRNA.
A 5’ untranslated region, generally < 30bp, that is transcribed into mRNA but not 
translated.
The translation start site marking the start of the coding region. Consists of a 
start codon, which causes the start of translation
The coding region of the gene (typically=1000bp), consisting of a sequence of 
codons.
The translation stop site marking the end of coding region. Consists of a stop 
codon, which causes the release of the polypeptide at conclusion of translation. 
A 3’ untranslated region, transcribed into RNA but not translated.
The transcription stop site marking where the RNA polymerase concludes 
transcription.
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The E. coli chromosome

The bacterial genome

Gene structure in eukaryotes



6

Gene structure in eukaryotes
A typical gene consist of the following, in 5’ to 3’ order

An upstream regulatory region, often larger and more complex than in 
prokaryotes, parts of which may be several thousand bases or more upstream of 
transcription start site.
A transcription start site.
A 5’ untranslated region, often larger than in prokaryotes, and which may 
include sequences playing a role in translation regulation.
The coding sequence, which unlike the case with prokaryotes, may be 
interrupted by non—coding regions called introns. These are spliced out of the 
transcript to form the mature mRNA (and sometimes the splicing can occur in 
more than one way).
The translation stop site.
A 3’ untranslated region, which may contain sequences involved in translational 
regulation.
A polyadenylation (playA) signal, which indicates to the cell’s RNA processing 
machinery that the RNA transcript is to be cleaved and a poly-adenine sequence 
(AAAAAA…) tail appended to it

The transcription stop site.

Alternative splicing
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Eukaryotic genome structure
Genes may be transcribed in either direction, and can overlap

Sequence alignment:Sequence alignment:
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Complete DNA Sequences

nearly 200 complete 
genomes have been 

sequenced

Evolution
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Evolution at the DNA level

…ACGGTGCAGTTACCA…

…AC----CAGTCCACCA…

Mutation

SEQUENCE EDITS

REARRANGEMENTS

Deletion

Inversion
Translocation
Duplication

Evolutionary outcome

OK

OK

OK

X
X

Still OK?

next generation
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Alignment is the key to
• Finding important regions
• Determining function
• Uncovering the evolutionary forces

Sequence conservation implies 
functional conservation

Sequence similarity is useful in predicting the function of a 
new sequence…
… assuming that sequence similarity implies structural and 
functional similarity.

Sequence
Database

Query

New Sequence

List of 
similar 
matches

Response

Sequence-based functional 
prediction
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Sequence Alignment

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Definition
Given two strings x = x1x2...xM, y = y1y2…yN,

An alignment of two sequences x and y is an arrangement of x and y by 
position, where a and b can be padded with gap symbols to achieve the 
same length.

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

Editing Distance
Sequence edits: AGGCCTC

Mutations AGGACTC
Insertions AGGGCCTC
Deletions AGG_CTC

We can turn the edit protocol into a measure of distance by 
assigning a “cost” or “weight” S to each operation.  

For example, for arbitrary characters u,v from set A we may define
S(u,u) = 0;  S(u,v) = 1 for u ≠ v;  S(u,-) = S(-,v) = 1.  (Unit Cost)

This scheme is known as the Levenshtein distance, also called unit 
cost model.  Its predominant virtue is its simplicity.

In general, more sophisticated cost models must be used. 
For example, replacing an amino acid by a biochemically similar one 
should weight less than a replacement by an amino acid with totally 
different properties.  
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Scoring Function
Scoring Function:
Match: +m
Mismatch: -s   (a more sophisticated score matrix can be used for proteins)

Gap: -d

Score  F = (# matches) × m - (# mismatches) × s – (#gaps) × d

The Alignment Score of x and y is the score of an optimal 
alignment of x and y under a score function S.  We denote it 
by F(x,y).

For example, using the score function corresponding to the unit cost 
model in our previous example, we obtain the following score:

a:  AGCACAC-A or AG-CACACA
b:  A-CACACTA ACACACT-A

cost:  -2 cost:  -4
Here it is easily seen that the left-hand assignment is optimal under the 
unit cost model, and hence the alignment score F(a,b) = -2. 

Scoring Matrices
Physical/Chemical similarities

comparing two sequences according to the properties of their residues may 
highlight regions of structural similarity

The matrix that performs best will be the one that best reflects the 
evolutionary separation of the sequences being aligned

The most commonly used mutation matrices: PAM or BLOSUM
C S T P A G N D E Q H R K M I L V F Y W

0 -1 1 0 2 1 1 2 1 2 0 0 2 4 1 5 1 2 -2 5 C

2 0 -2 0 -1 0 0 0 1 0 0 0 1 0 1 -1 1 1 -1 S

C 9 2 -1 -1 -1 0 0 0 0 0 0 -1 0 -1 1 0 1 1 3 T

S -1 4 2 -2 -1 -1 0 0 -1 -1 -1 1 1 0 -1 0 0 2 1 P

T -1 1 5 2 -1 -2 -2 -1 0 0 1 1 0 0 1 0 1 1 2 A

P -3 -1 -1 7 2 0 -1 -2 0 1 1 0 0 -1 0 -1 1 2 4 G

A 0 1 0 -1 4 3 -1 -1 0 0 1 -1 0 -1 0 -1 0 0 0 N

G -3 0 -2 -2 0 6 2 -1 -1 -1 0 -1 0 0 0 0 2 1 3 D

N -3 1 0 -2 -2 0 6 1 0 0 2 2 1 -1 0 0 2 2 4 E

D -3 0 -1 -1 -2 -1 1 6 0 -2 0 1 1 -1 0 0 1 3 3 Q

E -4 0 -1 -1 -1 -2 0 2 5 2 -1 0 1 0 -1 0 1 2 2 H

Q -3 0 -1 -1 -1 -2 0 0 2 5 -1 -1 0 -1 1 0 1 3 -4 R

H -3 -1 -2 -2 -2 -2 1 -1 0 0 8 1 -2 -1 1 1 2 3 1 K

R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 -2 -1 -1 0 1 2 4 M

K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5 -1 1 0 0 1 3 I

M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 -1 0 -1 1 2 L

I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 0 1 2 4 V

L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 -1 -2 1 F

V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 2 Y

F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 -1 W

Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7

W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11

C S T P A G N D E Q H R K M I L V F Y W

Below diagonal:  BLOSUM62 substitution matrix
Above diagonal:  Difference matrix obtained by 

subracting the PAM 160 matrix 
entrywise.

(Henikoff & Henikoff 1992)



13

How do we compute the best 
alignment?

Too many possible 
alignments:

O( 2M+N)

AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA

A
G
T
G
A
C
C
T
G
G
G
A
A
G
A
C
C
C
T
G
A
C
C
C
T
G
G
G
T
C
A
C
A
A
A
A
C
T
C

A alignment corresponds to a path in the alignment matrix

A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

G 2 1 1 2 3 4 5 6 7

C 3 2 1 2 2 3 4 5 6

A 4 3 2 1 2 2 3 4 5

C 5 4 3 2 1 2 2 3 4

A 6 5 4 3 2 1 2 3 3

C 7 6 5 4 3 2 1 2 3

A 8 7 6 5 4 3 2 2 2

y

x
AA

G -

CC

AA

CC

AA

CC

- T

AA

A C A C A C T A

0 1 2 3 4 5 6 7 8

A 1 0 1 2 3 4 5 6 7

G 2 1 1 2 3 4 5 6 7

C 3 2 1 2 2 3 4 5 6

A 4 3 2 1 2 2 3 4 5

C 5 4 3 2 1 2 2 3 4

A 6 5 4 3 2 1 2 3 3

C 7 6 5 4 3 2 1 2 3

A 8 7 6 5 4 3 2 2 2

y

x
AA

G -

CC

AA

CC

AA

CC

- T

AA

Example:

Dynamic Programming
The optimum alignment is obtained by tracing the highest 
scoring path from the top left-hand corner to the bottom right-
hand corner of the matrix (or the lowest editing-distance path 
from bottom right-hand corner to top left-hand corner)

When the alignment steps away from the diagonal this implies 
an insertion or deletion event, the impact of which can be 
assessed by the application of a gap penalty

Dynamic Programming: recursively solve nested problems 
each of a manageable size
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Dynamic Programming
Three possible cases:

1. xi aligns to yj
x1……xi-1 xi
y1……yj-1 yj

2. xi aligns to a gap
x1……xi-1 xi
y1……yj -

3. yj aligns to a gap
x1……xi -
y1……yj-1 yj

m, if xi = yj
F (i,j) = F (i-1, j-1) + 

-s, if not

F (i,j) = F (i-1, j) - d

F (i,j) = F (i, j-1) - d

Dynamic Programming (cont’d)

How do we know which case is correct?

Inductive assumption:
F (i, j-1), F (i-1, j), F (i-1, j-1) are optimal

Then,
F (i-1, j-1) + s (xi, yj)

F (i, j) = max    F (i-1, j) – d
F (i, j-1) – d

Where s (xi, yj) = m, if xi = yj; -s, if not
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Example
x = AGTA m =  1
y = ATA s = -1

d = -1

Optimal Alignment:

F(4,3) = 2

AGTA
A - TA

20-1-1-3A

0100-2T

-2-101-1A

-4-3-2-10

ATGA

F (i,j) i = 0     1      2      3      4

j = 0

1
2

3

Alignment is additive
Observation:
The score of aligning x1……xM

y1……yN

is additive

Say that x1…xi xi+1…xM

aligns to y1…yj yj+1…yN

The two scores add up:

F(x[1:M], y[1:N]) =  F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

F*(x[1:M], y[1:N]) =  Maxij {F*(x[1:i], y[1:j]) + F*(x[i+1:M], y[j+1:N])}
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The Needleman-Wunsch Matrix
x1 ……………………………… xM

y 1
…

…
…

…
…

…
…

…
…

…
…

…
y N Every nondecreasing

path 

from (0,0) to (M, N) 

corresponds to 
an alignment 
of the two sequences

An optimal alignment is composed 
of optimal subalignments

The Needleman-Wunsch 
Algorithm

1. Initialization.
a. F(0, 0)  =  0
b. F(0, j) = - j × d
c. F(i, 0) = - i × d

2. Main Iteration. Filling-in partial alignments
a. For each i = 1……M

For each j = 1……N
F(i-1,j-1) + s(xi, yj)    [case 1]

F(i, j)  =   max F(i-1, j) – d [case 2]
F(i, j-1) – d [case 3]

DIAG,   if  [case 1]
Ptr(i,j) = LEFT, if  [case 2]

UP, if  [case 3]

3. Termination. F(M, N) is the optimal score, and
from Ptr(M, N) can trace back optimal alignment
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Performance
Time:

O(NM)

Space:
O(NM)

Later we will cover more efficient methods

A variant of the basic algorithm:
Maybe it is OK to have an unlimited # of gaps in the beginning 
and end:

Then, we don’t want to penalize gaps in the ends

Different types of overlaps

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------
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The Overlap Detection variant

Changes:

1. Initialization
For all i, j,

F(i, 0) = 0
F(0, j) = 0

2. Termination
maxi F(i, N)

FOPT = max 
maxj F(M, j)

x1 ……………………………… xM

y 1
…

…
…

…
…

…
…

…
…

…
…

…
y N

The local alignment problem
The problem:

Given two strings x = x1……xM, 
y = y1……yN

Find substrings x’, y’ whose similarity (optimal global alignment value) is 
maximum
e.g. x = aaaacccccgggg

y = cccgggaaccaacc

Why
Genes are shuffled between genomes
Portions of proteins (domains) are often conserved
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The Smith-Waterman algorithm
Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: F(0, j) = F(i, 0) = 0

0
Iteration: F(i, j) = max F(i – 1, j) – d

F(i, j – 1) – d
F(i – 1, j – 1) + s(xi, yj)  

The Smith-Waterman algorithm
Termination:

1. If we want the best local alignment…

FOPT = maxi,j F(i, j)

2. If we want all local alignments scoring > t

?? For all i, j find F(i, j) > t, and trace back

Complicated by overlapping local alignments



20

Scoring the gaps more accurately

γ(n)

γ(n)

Current model:

Gap of length n
incurs penalty n×d

However, gaps usually occur in bunches

Convex (saturating) gap penalty function:

γ(n):
for all n, γ(n + 1) - γ(n) ≤ γ(n) - γ(n – 1) 

Convex gap dynamic 
programming

Initialization: same

Iteration:
F(i-1, j-1) + s(xi, yj)

F(i, j) = max maxk=0…i-1F(k,j) – γ(i-k) 
maxk=0…j-1F(i,k) – γ(j-k)

Termination: same

Running Time: O(N2M) (assume N>M)
Space: O(NM)
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Compromise: affine gaps
Simple piece-wise linear gap penalty

γ(n) = d + (n – 1)×e
| |

gap gap
open extend

Fancier Piece-wise linear gap penalty

Think of how you would compute optimal alignment with this gap 
function in O(MN)

d
e

γ(n)

γ(n)

Bounded Dynamic Programming
Assume we know that x and y are very similar

Assumption: # gaps(x, y)  < k(N) ( say N>M )

xi
Then, | implies   | i – j | < k(N)

yj

We can align x and y more efficiently:

Time, Space: O(N × k(N))  << O(N2)
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Bounded Dynamic Programming

Initialization:
F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…M
For j = max(1, i – k)…min(N, i+k)

F(i – 1, j – 1)+ s(xi, yj)
F(i, j) = max F(i, j – 1) – d, if j > i – k(N)

F(i – 1, j) – d, if j < i + k(N)

Termination: same

Easy to extend to the affine gap case

x1 ………………………… xM

y 1
…

…
…

…
…

…
…

…
…

…
y N

k(N)

State of biological databases

http://www.genome.gov/10005141

http://www.cbs.dtu.dk/databases/DOGS/
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State of biological databases
Number of genes in these genomes:

Mammals: ~25,000
Insects: ~14,000
Worms: ~17,000
Fungi: ~6,000-10,000

Small organisms: 100s-1,000s

Each known or predicted gene has one or more associated 
protein sequences

>1,000,000 known / predicted protein sequences

Some useful applications of 
alignments

Given a newly discovered gene,
Does it occur in other species?
How fast does it evolve?

Assume we try Smith-Waterman:

The entire genomic database

Our 
new 
gene

104

1010 - 1012
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Some useful applications of 
alignments

Given a newly sequenced organism,
Which subregions align with other organisms?

Potential genes
Other biological characteristics

Assume we try Smith-Waterman:

The entire genomic database

Our newly 
sequenced 
mammal

3×109

1010 - 1012

Indexing-based local alignment
BLAST- Basic Local Alignment Search Tool

Main idea:

1. Construct a dictionary of all the words in the query

2. Initiate a local alignment for each word match 
between query and DB

Running Time: O(MN)
However, orders of magnitude faster than Smith-
Waterman

query

DB
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Multiple alignment
The simultaneous alignment of a number of DNA or protein 
sequences is one of the commonest tasks in bioinformatics.
Useful for:

phylogenetic analysis (inferring a tree, estimating rates of substitution, 
etc.)
detection of homology between a newly sequenced gene and an existing 
gene family
prediction of protein structure
demonstration of homology in multigene families
determination of a consensus sequence (e.g., in assembly)

Can we naively use DP?
need to deal with k-dimensional table for k sequences …

Extending the pairwise alignment 
algorithms

Generally not feasible for more than a small number of 
sequences (~5), as the necessary computer time and space 
quickly becomes prohibitive. 

Computational time grows as Nm, where m = number of sequences.  
For example, for 100 residues from 5 species, 1005 = 10,000,000,000  (i.e., 
the equivalent of two sequences each 100,000 residues in length.)

Nor is it wholly desirable to reduce multiple alignment to a similar 
mathematical problem to that tackled by pairwise alignment 
algorithms.  
Two issues which are important in discussions of multiple 
alignment are:

the treatment of gaps:  position-specific and/or residue-specific gap penalties 
are both desirable and feasible, and
the phylogenetic relationship between the sequences (which must exist if 
they are alignable):  it should be exploited.
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Progressive alignment
Up until about 1987, multiple alignments would typically be 
constructed manually, although a few computer methods did 
exist.  
Around that time, algorithms based on the idea of progressive 
alignment appeared.  

In this approach, a pairwise alignment algorithm is used iteratively, 
first to align the most closely related pair of sequences, 
then the next most similar one to that pair, and so on.

The rule “once a gap, always a gap” was implemented, on the grounds 
that the positions and lengths of gaps introduced between more similar 
pairs of sequences should not be affected by more distantly related 
ones.

The most widely used progressive alignment algorithm is 
currently CLUSTAL W.

Other methods include the profile HMM-based methods

CLUSTAL W
The three basic steps in the CLUSTAL W approach are 
shared by all progressive alignment algorithms:

A.  Calculate a matrix of pairwise distances based on pairwise
alignments between the sequences

B.  Use the result of A to build a guide tree, which is an inferred 
phylogeny for the sequences

C.  Use the tree from B to guide the progressive alignment of the 
sequences

We will omit details
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Web-based multiple sequence 
alignment

ClustalW
www2.ebi.ac.uk/clustalw/
dot.imgen.bcm.tmc.edu:9331/multi-align/Options/clustalw.html
www.clustalw.genome.ad.jp/
bioweb.pasteur.fr/intro-uk.html
pbil.ibcp.fr
transfac.gbf.de/programs.html
www.bionavigator.com

PileUp
helix.nih.gov/newhelix
www.hgmp.mrc.ac.uk/
bcf.arl.arizona.edu/gcg.html
www.bionavigator.com

Dialign
genomatix.gsf.de/
bibiserv.techfak.uni-bielefeld.de/
bioweb.pasteur.fr/intro-uk.html
www.hgmp.mrc.ac.uk/

Match-box
www.fundp.ac.be/sciences/biologie/bms/matchbox_submit.html

For reviews:  G. J. Gaskell, BioTechniques 2000, 29:60, and
www.techfak.uni-bielefeld.de/bcd/Curric/MulAli/welcome.html
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