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Advanced Algorithms Advanced Algorithms 
and Models for and Models for 

Computational BiologyComputational Biology
---- a machine learning approacha machine learning approach

Systems Biology:Systems Biology:
Inferring gene regulatory network using Inferring gene regulatory network using 

graphical modelsgraphical models

Eric XingEric Xing
Lecture 25, April 19, 2006
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Bayesian Network – CPDs

Local Probabilities:  CPD - conditional probability 
distribution P(Xi|Pai)

Discrete variables: Multinomial Distribution (can represent any kind 
of statistical dependency)



2

X
Y

P(
X 

| Y
)

),(~),...,|( 2

1
01 σ∑

=

+
k

i
iik yaaNYYXP

Bayesian Network – CPDs (cont.)
Continuous variables:   e.g. linear Gaussian
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Learning Bayesian Network
The goal:

Given set of independent samples (assignments of random 
variables), find the best (the most likely?) Bayesian Network 
(both DAG and CPDs)

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

……..
(B,E,A,C,R)=(F,T,T,T,F)
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Learning Graphical Models

Scenarios:
completely observed GMs

directed
undirected 

partially observed GMs
directed
undirected (an open research topic) 

Estimation principles:
Maximal likelihood estimation (MLE)
Bayesian estimation

We use learning as a name for the process of 
estimating the parameters, and in some cases, the 
topology of the network, from data.

Likelihood:

Log-Likelihood:

Data log-likelihood

MLE
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The basic idea underlying MLE



4

• Learning of best CPDs given DAG is easy
– collect statistics of values of each node given specific assignment to its parents

• Learning of the graph topology (structure) is NP-hard
– heuristic search must be applied, generally leads to a locally optimal network

• Overfitting
– It turns out, that richer structures give higher likelihood P(D|G) to the data 

(adding an edge is always preferable)

– more parameters to fit => more freedom => always exist more "optimal" CPD(C)

• We prefer simpler (more explanatory) networks
– Practical scores regularize the likelihood improvement complex networks.
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Learning Algorithm

Expression data

Structural EM (Friedman 1998)
The original algorithm

Sparse Candidate Algorithm (Friedman et al.)
Discretizing array signals
Hill-climbing search using local operators: add/delete/swap 
of a single edge
Feature extraction: Markov relations, order relations
Re-assemble high-confidence sub-networks from features

Module network learning (Segal et al.)
Heuristic search of structure in a "module graph"
Module assignment
Parameter sharing
Prior knowledge: possible regulators (TF genes) 

BN Learning Algorithms
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Bootstrap approach:
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Estimate “Confidence level”:

Confidence Estimates

The initially learned network of 
~800 genes
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The “mating response” substructure

Results from SCA + feature 
extraction (Friedman et al.)
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Nature Genetics 34, 166 - 176 (2003) 

A Module Network

Why? 

Sometimes an UNDIRECTED
association graph makes more 
sense and/or is more 
informative

gene expressions may be 
influenced by unobserved factor 
that are post-transcriptionally
regulated

The unavailability of the state of B 
results in a constrain over A and C

B
A C

B
A C

B
A C

Gaussian Graphical Models
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Probabilistic inference on 
Graphical Models
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p(X6| X2, X5)

p(X1)

p(X5| X4)
p(X4| X1)

p(X2| X1)

p(X3| X2)

P(X1, X2, X3, X4, X5, X6)
= P(X1) P(X2| X1) P(X3| X2) P(X4| X1) P(X5| X4) P(X6| X2, X5)

Recap of Basic Prob. Concepts

Joint probability dist. on multiple variables:

If Xi's are independent: (P(Xi|·)= P(Xi))

If Xi's are conditionally independent (as described by a 
GM), the joint can be factored to simpler products, e.g., 
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Probabilistic Inference
We now have compact representations of probability 
distributions:  Graphical Models

A GM M describes a unique probability distribution P

How do we answer queries about P?

We use inference as a name for the process of 
computing answers to such queries

Most of the queries one may ask involve evidence
Evidence e is an assignment of values to a set E variables in the 
domain
Without loss of generality E = { Xk+1, …, Xn }

Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  e

∑ ∑=
1

1
x x

k
k

,e),x,P(xP(e) KK

Query 1: Likelihood
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Often we are interested in the conditional probability 
distribution of a variable given the evidence

this is the a posteriori belief in X, given evidence e

We usually query a subset Y of all domain variables 
X={Y,Z} and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called marginalization, and 
the resulting P(y|e) is called a marginal prob.

∑ =
==|

x
x,e)P(X

P(X,e)
P(e)

P(X,e)e)P(X

∑ |==|
z

e)zP(Y,Ze)P(Y

Query 2: Conditional Probability

Prediction: what is the probability of an outcome given the starting 
condition

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

Learning under partial observation

fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not restricted 
by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network

A CB

A CB

?

?

Applications of a posteriori Belief
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In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Such reasoning is usually performed under some given 
evidence e, and ignoring (the values of) other variables 
z :

this is the maximum a posteriori configuration of y.

∑ )|,(maxarg=)|(maxarg=)|(MPA
z

yy ezyPeyPeY

Query 3: Most Probable 
Assignment

Classification 
find most likely label, given the evidence

Explanation 
what is the most likely scenario, given the evidence

Cautionary note:

The MPA of a variable depends on its "context"---the set 
of variables been jointly queried
Example:

MPA of X ?
MPA of (X, Y) ?

x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Applications of MPA
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Thm:
Computing P(X = x | e) in a GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that works efficiently 
for arbitrary GMs
For particular families of GMs, we can have provably efficient 
procedures

Complexity of Inference

√

√

√

√

Approaches to inference

Exact inference algorithms

The elimination algorithm
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (later lectures)
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Query: P(e)

By chain decomposition, we get

A B C ED
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edcbaPeP
a naïve summation needs to 
enumerate over an 
exponential number of  terms

A signal transduction pathway:

What is the likelihood that protein E is active?

Marginalization and Elimination

Rearranging terms ...
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Elimination on Chains
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Elimination on Chains

Now we can perform innermost summation

This summation "eliminates" one variable from our 
summation argument at a "local cost".

A B C ED

Rearranging and then summing again, we get
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X X

Elimination in Chains
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A B C ED

Eliminate nodes one by one all the way to the end, we 
get

∑ )()|(=)(
d

dpdePeP

X X X X

Complexity:
• Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(kn2)
• Compare to naïve evaluation that sums over joint values of n-1

variables O(nk)

Elimination in Chains

General idea:
Write query in the form

this suggests an "elimination order" of latent variables to be 
marginalized

Iteratively

Move all irrelevant terms outside of innermost sum
Perform innermost sum, getting a new term
Insert the new term into the product

wrap-up
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Inference on General GM via 
Variable Elimination
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A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network
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A regulatory network

Example: Variable Elimination
Query: P(A |h)

Need to eliminate: B,C,D,E,F,G,H

Initial factors:

Choose an elimination order: H,G,F,E,D,C,B

Step 1: 
Conditioning (fix the evidence node (i.e., h) to its observed 
value (i.e.,   )):

This step is isomorphic to a marginalization step:
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C,D,E,F,G

Initial factors:

Step 2: Eliminate G
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C,D,E,F

Initial factors:

Step 3: Eliminate F
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C,D,E

Initial factors:

Step 4: Eliminate E
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C,D

Initial factors:

Step 5: Eliminate D
compute



18

B A

DC

E F

G H

∑ ),()|(=),(
c

dc cambcpbam
),()()(    ⇒ bambPaP c

),()|()()( ⇒
),,()|()|()()( ⇒

),(),|()|()|()()( ⇒
),()|(),|()|()|()()(⇒

),()|()|(),|()|()|()()(⇒

),|()|()|(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP
femafPdcePadPdcPbPaP

femegPafPdcePadPdcPbPaP
fehPegPafPdcePadPdcPbPaP

d

e

f

h

h

B A

Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B,C

Initial factors:

Step 6: Eliminate C
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: B

Initial factors:

Step 7: Eliminate B
compute
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Example: Variable Elimination
Query: P(B |h)

Need to eliminate: { }

Initial factors:

Step 8: Wrap-up

Suppose in one elimination step we compute

This requires 
multiplications

For each value for x, y1, …, yk, we do k multiplications

additions

For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables 
in the intermediate factor
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Complexity of variable 
elimination
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moralization
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graph elimination

Understanding Variable 
Elimination

A graph elimination algorithm

Intermediate terms correspond to the cliques resulted 
from elimination

“good” elimination orderings lead to small cliques and hence reduce 
complexity (what will happen if we eliminate "e" first in the above graph?)

finding the optimum ordering is NP-hard, but for many graph optimum or 
near-optimum can often be heuristically found 

Applies to undirected GMs
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From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

Elimination ≡ message passing on a clique tree

Messages can be reused
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From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do we 
need to do a complete elimination for every such query? 

Elimination ≡ message passing on a clique tree
Another query ...

Messages mf and mh are reused, others need to be recomputed

The algorithm
Construction of junction trees --- a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves 
all queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal 
clique --- a good elimination order often leads to small 
maximal clique, and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...

A Sketch of the Junction Tree 
Algorithm 
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√

√

√

√

Approaches to inference

Exact inference algorithms

The elimination algorithm
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (later lectures)

Monte Carlo methods
Draw random samples from the desired distribution 

Yield a stochastic representation of a complex distribution
marginals and other expections can be approximated using sample-
based averages

Asymptotically exact and easy to apply to arbitrary models

Challenges:
how to draw samples from a given dist. (not all distributions can be 
trivially sampled)?

how to make better use of the samples (not all sample are useful, or 
eqally useful, see an example later)?

how to know we've sampled enough?
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Example: naive sampling
Sampling: Construct samples according to probabilities given in a 
BN.

Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose 
it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

J1M1A1B0E1
J0M0A0B0E0
J0M0A0B0E0
J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0
J0M0A0B0E0
J0M0A0B0E0

J1M0A0B0E0

J0M0A0B0E0

Example: naive sampling
Sampling: Construct samples according to probabilities given in a 
BN.

J1M1A1B0E1
J0M0A0B0E0
J0M0A0B0E0
J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0
J0M0A0B0E0
J0M0A0B0E0

J1M0A0B0E0

J0M0A0B0E0Alarm example: (Choose the right sampling 
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, 
rare events will be very hard to garner evough 
samples even after a long time or sampling ...
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Direct Sampling 
We have seen it.
Very difficult to populate a high-dimensional state space 

Rejection Sampling
Create samples like direct sampling, only count samples which is
consistent with given evidences.

....

Markov chain Monte Carlo (MCMC)

Monte Carlo methods (cond.)

Samples are obtained from a Markov chain (of 
sequentially evolving distributions) whose stationary 
distribution is the desired p(x) 

Gibbs sampling
we have variable set to X={x1, x2, x3,... xN}

at each step one of the variables Xi is selected (at random or according 
to some fixed sequences)

the conditonal distribution p(Xi| X-i) is computed

a value xi is sampled from this distribution

the sample xi replaces the previous of Xi in  X.

Markov chain Monte Carlo
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MCMC

Markov-Blanket
A variable is independent from 
others, given its parents, 
children and children‘s parents. 
d-separation.

⇒ p(Xi| X-i)= p(Xi| MB(Xi))

Gibbs sampling
Create a random sample. 
Every step, choose one 
variable and sample it by 
P(X|MB(X)) based on previous 
sample.

MB(A)={B, E, J, M}
MB(E)={A, B}

MCMC
To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a 
start

Evidences are B1, M1, 
variables are A, E, J.

Choose next variable as A

Sample A by 
P(A|MB(A))=P(A|B1, E0, M1, 
J1) suppose to be false.

(B1, E0, A0, M1, J1)

Choose next random variable 
as E, sample E~P(E|B1,A0) 

...
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Complexity for Approximate 
Inference

Inference problem is NP-
hard.
Approximate Inference 
will not reach the exact 
probability distribution in 
finite time, but only close 
to the value.
Often much faster than 
exact inference when BN 
is big and complex
enough. In MCMC, only 
consider P(X|MB(X)) but 
not the whole network.

Multivariate Gaussian over all continuous expressions 

The precision matrix K=Σ−1 reveals the topology of the 
(undirected) network

Edge ~ |Kij| > 0

Learning Algorithm: Covariance selection
Want a sparse matrix

Regression for each node with degree constraint (Dobra et al.)
Regression for each node with hierarchical Bayesian prior (Li, et al)
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A comparison of BN and GGM:

G
G

M

BN

Gene modules from identified 
using GGM (Li, Yang and Xing)

B
A C

B
A Cand

2: Protein-DNA Interaction 
Network

Expression networks are not necessarily causal
BNs are indefinable only up to Markov equivalence:

can give the same optimal score, but not further distinguishable under a likelihood 
score unless further experiment from perturbation is performed 

GGM have yields functional modules, but no causal semantics

TF-motif interactions provide direct evidence of casual, 
regulatory dependencies among genes

stronger evidence than expression correlations
indicating presence of binding sites on target gene -- more easily verifiable
disadvantage: often very noisy, only applies to cell-cultures, restricted to known 
TFs ... 
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Simon I et al (Young RA) Cell 2001(106):697-708
Ren B et al (Young RA) Science 2000 (290):2306-2309

Advantages:
- Identifies “all” the sites where a TF 

binds “in vivo” under the experimental 
condition.

Limitations:
- Expense: Only 1 TF per experiment
- Feasibility: need an antibody for the TF.
- Prior knowledge: need to know what TF 

to test.

ChIP-chip analysis


