Advanced Algorithms and Models for Computational Biology

-- a machine learning approach

Systems Biology:

Inferring gene regulatory network using graphical models

Eric Xing Lecture 25, April 19, 2006

Bayesian Network - CPDs

Local Probabilities: **CPD - conditional probability distribution** $P(X_i|Pa_i)$

Discrete variables: Multinomial Distribution (can represent any kind of statistical dependency)

Bayesian Network – CPDs (cont.)

• Continuous variables: e.g. linear Gaussian

$$P(X|Y_1,...,Y_k) \sim N(a_0 + \sum_{i=1}^k a_i y_i, \sigma^2)$$

Learning Bayesian Network

- The goal:
- Given set of independent samples (assignments of random (both DAG and CPDs)

Learning Graphical Models

- Scenarios:
 - completely observed GMs
 - directed
 - undirected
 - partially observed GMs
 - directed
 - undirected (an open research topic)
- Estimation principles:
 - Maximal likelihood estimation (MLE)
 - Bayesian estimation
- We use **learning** as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.

The basic idea underlying MLE

· Likelihood:

$$L(\boldsymbol{\theta} \mid \boldsymbol{X}) = \boldsymbol{p}(\boldsymbol{X} \mid \boldsymbol{\theta}) = \boldsymbol{p}(\boldsymbol{X}_1 \mid \boldsymbol{\theta}_1) \boldsymbol{p}(\boldsymbol{X}_2 \mid \boldsymbol{\theta}_2) \boldsymbol{p}(\boldsymbol{X}_3 \mid \boldsymbol{X}_3, \boldsymbol{X}_3, \boldsymbol{\theta}_3)$$

Log-Likelihood:

$$/(\theta \mid X) = \log p(X \mid \theta) = \log p(X_1 \mid \theta_1) + \log p(X_2 \mid \theta_2) + \log p(X_3 \mid X_3, X_3, \theta_3)$$

Data log-likelihood

$$I(\theta \mid DATA) = \log \prod_{n} p(X^{(n)} \mid \theta)$$

$$= \sum_{n} \log p(X_{1}^{(n)} \mid \theta_{1}) + \sum_{n} \log p(X_{2}^{(n)} \mid \theta_{2}) + \sum_{n} \log p(X_{3}^{(n)} \mid X_{1}^{(n)} X_{2}^{(n)}, \theta_{3})$$

• MLE $\{\theta_1, \theta_2, \theta_3\}_{MLE} = \arg \max / (\theta \mid DATA)$

$$\theta_1^* = \arg\max \sum_{n} \log p(X_1^{(n)} \mid \theta_1), \quad \theta_2^* = \arg\max \sum_{n} \log p(X_2^{(n)} \mid \theta_2), \quad \theta_3^* = \arg\max \sum_{n} \log p(X_3^{(n)} \mid X_1^{(n)} X_2^{(n)}, \theta_3)$$

Learning Bayesian Network

- Learning of best CPDs given DAG is easy
 - collect statistics of values of each node given specific assignment to its parents
- Learning of the graph topology (structure) is NP-hard
 - heuristic search must be applied, generally leads to a **locally** optimal network
- Overfitting
 - It turns out, that richer structures give higher likelihood P(D|G) to the data (adding an edge is always preferable)

 $P(C \mid A) \leq P(C \mid A, B)$

- more parameters to fit => more freedom => always exist more "optimal" CPD(C)
- We prefer simpler (more explanatory) networks
 - Practical scores regularize the likelihood improvement complex networks.

BN Learning Algorithms

- Structural EM (Friedman 1998)
 - The original algorithm

Sparse Candidate Algorithm (Friedman et al.) Discretizing array signals

- of a single edge Feature extraction: Markov relations, order relations
- Re-assemble high-confidence sub-networks from features

Learning Algorithm .

- Module network learning (Segal et al.)
 - Heuristic search of structure in a "module graph"
 - Module assignment
 - Parameter sharing
 - Prior knowledge: possible regulators (TF genes)

Probabilistic inference on Graphical Models

Recap of Basic Prob. Concepts

• Joint probability dist. on multiple variables:

$$\begin{split} &P(X_{1},X_{2},X_{3},X_{4},X_{5},X_{6})\\ &=P(X_{1})P(X_{2}\mid X_{1})P(X_{3}\mid X_{1},X_{2})P(X_{4}\mid X_{1},X_{2},X_{3})P(X_{5}\mid X_{1},X_{2},X_{3},X_{4})P(X_{6}\mid X_{1},X_{2},X_{3},X_{4},X_{5}) \end{split}$$

• If X_i 's are independent: $(P(X_i|\cdot) = P(X_i))$

$$P(X_1, X_2, X_3, X_4, X_5, X_6)$$

$$= P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6) = \prod P(X_i)$$

If X_i's are conditionally independent (as described by a GM), the joint can be factored to simpler products, e.g.,

Probabilistic Inference

- We now have compact representations of probability distributions: Graphical Models
- A GM M describes a unique probability distribution P
- How do we answer queries about *P*?
- We use inference as a name for the process of computing answers to such queries

Query 1: Likelihood

- Most of the queries one may ask involve evidence
 - Evidence e is an assignment of values to a set E variables in the domain
 - Without loss of generality $\boldsymbol{\mathcal{E}} = \{X_{k+1}, ..., X_n\}$
- Simplest query: compute probability of evidence

$$P(e) = \sum_{x_1} \dots \sum_{x_k} P(x_1, \dots, x_k, e)$$

• this is often referred to as computing the likelihood of e

Query 2: Conditional Probability

 Often we are interested in the conditional probability distribution of a variable given the evidence

$$P(X | e) = \frac{P(X,e)}{P(e)} = \frac{P(X,e)}{\sum_{x} P(X = x,e)}$$

- this is the *a posteriori* belief in *X*, given evidence *e*
- We usually query a subset Y of all domain variables
 X={Y,Z} and "don't care" about the remaining, Z:

$$P(Y | e) = \sum_{z} P(Y,Z = z | e)$$

 the process of summing out the "don't care" variables z is called marginalization, and the resulting P(y|z) is called a marginal prob.

Applications of a posteriori Belief

- Prediction: what is the probability of an outcome given the starting condition
 - the query node is a descendent of the evidence
- **Diagnosis**: what is the probability of disease/fault given symptoms

- the query node an ancestor of the evidence
- Learning under partial observation
 - fill in the unobserved values under an "EM" setting (more later)
- The directionality of information flow between variables is not restricted by the directionality of the edges in a GM
 - probabilistic inference can combine evidence form all parts of the network

Query 3: Most Probable Assignment

- In this query we want to find the most probable joint assignment (MPA) for some variables of interest
- Such reasoning is usually performed under some given evidence e, and ignoring (the values of) other variables
 z:

$$MPA(Y | e) = arg \max_{y} P(y | e) = arg \max_{y} \sum_{z} P(y, z | e)$$

• this is the **maximum** a **posteriori** configuration of **y**.

Applications of MPA

- Classification
 - find most likely label, given the evidence
- Explanation
 - what is the most likely scenario, given the evidence

Cautionary note:

- The MPA of a variable depends on its "context"---the set of variables been jointly queried
- Example:
 - MPA of X?
 - MPA of (X, Y)?

X	y	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Complexity of Inference

Thm:

Computing $P(X = x \mid e)$ in a GM is NP-hard

- Hardness does not mean we cannot solve inference
 - It implies that we cannot find a general procedure that works efficiently for arbitrary GMs
 - For particular families of GMs, we can have provably efficient procedures

Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - The junction tree algorithms √ (but will not cover in detail here)
- Approximate inference techniques
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Variational algorithms (later lectures)

Marginalization and Elimination

A signal transduction pathway:

What is the likelihood that protein E is active?

• Query: *P(e)*

$$P(e) = \sum_{\substack{d \in C \\ b = a}} \sum_{\substack{b \in A \\ e \text{ numerate over an} \\ exponential number of terms}} a \text{ na\"ive summation needs to}$$

• By chain decomposition, we get

$$= \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b \mid a)P(c \mid b)P(d \mid c)P(e \mid d)$$

Elimination on Chains

• Rearranging terms ...

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$

$$= \sum_{d} \sum_{c} \sum_{b} P(c|b)P(d|c)P(e|d) \sum_{a} P(a)P(b|a)$$

Elimination on Chains

• Now we can perform innermost summation

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) \sum_{a} P(a) P(b \mid a)$$
$$= \sum_{d} \sum_{c} \sum_{b} P(c \mid b) P(d \mid c) P(e \mid d) p(b)$$

• This summation "eliminates" one variable from our summation argument at a "local cost".

Elimination in Chains

• Rearranging and then summing again, we get

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c|b) P(d|c) P(e|d) p(b)$$

$$= \sum_{d} \sum_{c} P(d|c) P(e|d) \sum_{b} P(c|b) p(b)$$

$$= \sum_{d} \sum_{c} P(d|c) P(e|d) p(c)$$

Elimination in Chains

Eliminate nodes one by one all the way to the end, we get

$$P(e) = \sum_{d} P(e \mid d) p(d)$$

Complexity:

- Each step costs $O(|Val(X_i)|^*|Val(X_{i+1})|)$ operations: $O(kn^2)$
- Compare to naïve evaluation that sums over joint values of n-1 variables O(n^k)

Inference on General GM via Variable Elimination

General idea:

• Write query in the form

$$P(X_1, e) = \sum_{x_n} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- this suggests an "elimination order" of latent variables to be marginalized
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product
- wrap-up

$$P(X_1 | \boldsymbol{e}) = \frac{P(X_1, \boldsymbol{e})}{P(\boldsymbol{e})}$$

A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

Example: Variable Elimination

- Query: *P(A | h)*
 - Need to eliminate: B,C,D,E,F,G,H
- Initial factors:

 $P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$

• Choose an elimination order: H,G,F,E,D,C,B

• Step 1:

- A regulatory network
- Conditioning (fix the evidence node (i.e., h) to its observed value (i.e., \widetilde{h})):

 $m_h(e,f) = p(h = \widetilde{h} \mid e,f)$

• This step is isomorphic to a marginalization step:

$$m_h(e,f) = \sum_h p(h|e,f)\delta(h=\tilde{h})$$

- Query: P(B | h)
 - Need to eliminate: B,C,D,E,F,G
- Initial factors:

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$

- Step 2: Eliminate 6
 - compute

$$m_q(e) = \sum p(g|e) = 1$$

 $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_g(e)m_h(e,f)$ $= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$

Example: Variable Elimination

- Query: *P(B | h)*
 - Need to eliminate: B,C,D,E,F
- Initial factors:

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$ $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$

- Step 3: Eliminate F
 - compute $m_f(e,a) = \sum_{f} p(f \mid a) m_h(e,f)$
 - $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)m_f(a,e)$

- Query: *P(B | h)*
 - Need to eliminate: B,C,D,E
- Initial factors:

P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$ $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$ $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(a,e)$

- Step 4: Eliminate E
 - compute $m_e(a,c,d) = \sum_e p(e \mid c,d) m_f(a,e)$

 $\Rightarrow P(a)P(b)P(c|b)P(d|a)m_e(a,c,d)$

Example: Variable Elimination

- Query: *P(B | h)*
 - Need to eliminate: B,C,D
- Initial factors:

$$\begin{split} &P(a)P(b)P(c\,|\,b)P(d\,|\,a)P(e\,|\,c,d)P(f\,|\,a)P(g\,|\,e)P(h\,|\,e,f)\\ \Rightarrow &P(a)P(b)P(c\,|\,b)P(d\,|\,a)P(e\,|\,c,d)P(f\,|\,a)P(g\,|\,e)m_h(e,f)\\ \Rightarrow &P(a)P(b)P(c\,|\,b)P(d\,|\,a)P(e\,|\,c,d)P(f\,|\,a)m_h(e,f)\\ \Rightarrow &P(a)P(b)P(c\,|\,b)P(d\,|\,a)P(e\,|\,c,d)m_f(a,e)\\ \Rightarrow &P(a)P(b)P(c\,|\,b)P(d\,|\,a)m_e(a,c,d) \end{split}$$

- Step 5: Eliminate D
 - compute $m_d(a,c) = \sum_{d} p(d \mid a) m_e(a,c,d)$
 - $\Rightarrow P(a)P(b)P(c|d)\underline{m_d(a,c)}$

- Query: *P(B | h)*
 - Need to eliminate: B,C
- Initial factors:

$$\begin{split} &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)m_f(a, e) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)m_e(a, c, d) \\ \Rightarrow &P(a)P(b)P(c \mid d)m_g(a, c) \end{split}$$

- Step 6: Eliminate C
 - compute $m_c(a,b) = \sum_c p(c \mid b) m_d(a,c)$
 - $\Rightarrow P(a)P(b)m_c(a,b)$

Example: Variable Elimination

- Query: *P(B | h)*
 - Need to eliminate: B
- Initial factors:

$$\begin{split} &P(a)P(b)P(c\mid d)P(d\mid a)P(e\mid c,d)P(f\mid a)P(g\mid e)P(h\mid e,f)\\ \Rightarrow &P(a)P(b)P(c\mid d)P(d\mid a)P(e\mid c,d)P(f\mid a)P(g\mid e)m_h(e,f)\\ \Rightarrow &P(a)P(b)P(c\mid d)P(d\mid a)P(e\mid c,d)P(f\mid a)m_h(e,f)\\ \Rightarrow &P(a)P(b)P(c\mid d)P(d\mid a)P(e\mid c,d)m_f(a,e) \end{split}$$

- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)M_e(a,c,d)$ $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)M_e(a,c,d)$
- $\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$
- Step 7: Eliminate B
 - compute $m_b(a) = \sum_b p(b) m_c(a,b)$
 - $\Rightarrow P(a)m_b(a)$

- Query: P(B | h)
 - Need to eliminate: { }
- Initial factors:

$$\begin{split} &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)m_h(e,f) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)P(f \mid a)m_h(e,f) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)m_f(a,e) \\ \Rightarrow &P(a)P(b)P(c \mid d)P(d \mid a)m_e(a,c,d) \end{split}$$

- $\Rightarrow P(a)P(b)P(c|d)m_{d}(a,c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$
- $\rightarrow P(a)P(D)M_c(a,D)$
- $\Rightarrow P(a)m_b(a)$
- Step 8: Wrap-up $P(a, \tilde{h}) = p(a)m_b(a), \ p(\tilde{h}) = \sum_a p(a)m_b(a)$ $\Rightarrow P(a | \tilde{h}) = \frac{p(a)m_b(a)}{\sum p(a)m_b(a)}$

Complexity of variable elimination

• Suppose in one elimination step we compute

$$m_{x}(y_{1},...,y_{k}) = \sum_{x} m'_{x}(x,y_{1},...,y_{k})$$

 $m'_{x}(x,y_{1},...,y_{k}) = \prod_{i=1}^{k} m_{i}(x,y_{c_{i}})$

This requires

- $k \cdot |Val(X)| \cdot \prod_{i} |Val(Y_{C_i})|$ multiplications
 - For each value for x, y_1 , ..., y_k we do k multiplications
- $|Val(X)| \cdot \prod_{i} |Val(Y_{C_i})|$ additions
 - For each value of y_1 , ..., y_k , we do |Val(X)| additions

Complexity is exponential in number of variables in the intermediate factor

Understanding Variable Elimination

A graph elimination algorithm

moralization

graph elimination

- Intermediate terms correspond to the cliques resulted from elimination
 - "good" elimination orderings lead to small cliques and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
 - finding the optimum ordering is NP-hard, but for many graph optimum or near-optimum can often be heuristically found
- Applies to undirected GMs

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree

Messages can be reused

From Elimination to Message Passing

- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree
 - Another query ...

• Messages m_f and m_h are reused, others need to be recomputed

A Sketch of the Junction Tree Algorithm

- The algorithm
 - Construction of junction trees --- a special clique tree
 - Propagation of probabilities --- a message-passing protocol
- Results in marginal probabilities of all cliques --- solves all queries in a single run
- A generic exact inference algorithm for any GM
- Complexity: exponential in the size of the maximal clique --- a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JT
- Many well-known algorithms are special cases of JT
 - Forward-backward, Kalman filter, Peeling, Sum-Product ...

Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - The junction tree algorithms √ (but will not cover in detail here)
- Approximate inference techniques
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Variational algorithms (later lectures)

Monte Carlo methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
 - marginals and other expections can be approximated using samplebased averages

$$E[f(x)] = \frac{1}{N} \sum_{t=1}^{N} f(x^{(t)})$$

- Asymptotically exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or eqally useful, see an example later)?
 - how to know we've sampled enough?

Example: naive sampling

 Sampling: Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose it is false...

2) Frequency counting: In the samples right, P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E0	B0	A0	MO	J1
E0	B0	A0	MO	J0
E0	В0	A0	MO	J0
E0	B0	A0	MO	J0
E1	B0	A1	M1	J1
E0	B0	A0	MO	J0
E0	В0	A0	MO	J0
E0	B0	A0	MO	J0

Example: naive sampling

Sampling: Construct samples according to probabilities given in a

RN

<u>Alarm example</u>: (Choose the right sampling sequence)

3) what if we want to compute P(J|A1)? we have only one sample ... P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1)?
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner evough samples even after a long time or sampling ...

E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E0	B0	A0	MO	J1
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E1	В0	A1	M1	J1
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0

Monte Carlo methods (cond.)

- Direct Sampling
 - We have seen it.
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.
-
- Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo

- Samples are obtained from a Markov chain (of sequentially evolving distributions) whose stationary distribution is the desired p(x)
- Gibbs sampling
 - we have variable set to $X=\{x_1, x_2, x_3, ... x_N\}$
 - at each step one of the variables X_i is selected (at random or according to some fixed sequences)
 - the conditional distribution $p(X_i | X_j)$ is computed
 - a value x_i is sampled from this distribution
 - the sample x_i replaces the previous of X_i in X.

MCMC

- Markov-Blanket
 - A variable is independent from others, given its parents, children and children's parents. d-separation.

 $\Rightarrow p(X_i \mid X_j) = p(X_i \mid MB(X_j))$

- Gibbs sampling
 - Create a random sample.
 Every step, choose one
 variable and sample it by
 P(X|MB(X)) based on previous sample.

 $MB(A)=\{B, E, J, M\}$ $MB(E)=\{A, B\}$

MCMC

- To calculate P(J|B1,M1)
- Choose (B1,E0,A1,M1,J1) as a start
- Evidences are B1, M1, variables are A, E, J.
- Choose next variable as A
- Sample A by P(A|MB(A))=P(A|B1, E0, M1, J1) suppose to be false.
- (B1, E0, A0, M1, J1)
- Choose next random variable as E, sample E~P(E|B1,A0)
- .

Complexity for Approximate Inference

- Inference problem is NPhard.
- Approximate Inference will not reach the exact probability distribution in finite time, but only close to the value.
- Often much faster than exact inference when BN is big and complex enough. In MCMC, only consider P(X|MB(X)) but not the whole network.

Covariance Selection

Multivariate Gaussian over all continuous expressions

$$p([x_1,...,x_n]) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(\vec{x} - \mu)^T \Sigma^{-1}(\vec{x} - \mu)\}$$

• The precision matrix $K=\Sigma^{-1}$ reveals the topology of the (undirected) network

$$E(x_i \mid x_{-i}) = \sum_j (K_{ij} / K_{ii}) x_j$$

- Edge ~ |K_{ii}| > 0
- Learning Algorithm: Covariance selection
 - Want a sparse matrix
 - Regression for each node with degree constraint (Dobra et al.)
 - Regression for each node with hierarchical Bayesian prior (Li, et al)

Gene modules from identified using GGM (Li, Yang and Xing)

Table 1: modules with multiple regulators and more than 5 regulated genes.					
regulator set	annotated/ALL	reference of co-regulators	common processes or function of regulated genes		
ACE2,SW15	6/6		4/6 cell proliferation, p=0.023		
ASH1,SWI4	11/12		4/11 cell wall organization and biogenesis, p=0.003		
CIN5,MET4	6/6		2/6 copper ion import, p=0.0002		
DIG1,STE12	14/14	functional and physical interaction(Tedford et al 1997)	10/14 conjugation, p=1.75e-14		
FHL1,RAP1	25/25	share motif(Davide et al)	24/25 protein biosynthesis, p=7.26e-21		
FKH2,MCM1,NDD1	12/12	co-TFs(CYGD)	6/12 cell proliferation, p=0.01		
GAT3,MAL13,RGM1	5/16	·	5/5 telomerase-independent telomere maintenance, p=1.84e-13		
GAT3,RAP1,YAP5	34/45		25/34 protein biosynthesis, p=1.12e-15		
GCR1,GCR2,RAP1	6/6		6/6 energy pathways, p=1.65e-08		
HIR1,HIR2	6/6	co-TPs(Spector et al 1997)	6/6 chromatin assembly or disassembly, p=1.23e-14		
HIR2,STP2	6/6		6/6 regulation of transcription, mating-type specific, p=7.35e-12		
HSF1,MSN4	8/8	co-TFs(Jeffrey et al, 2002)	3/8 protein folding, p=9.83e-4		
MAL13,MSN4,RGM1	5/7		3/5 telomerase-independent telomere maintenance, p=1.05e-6		
MBP1,SWI4	8/8		3/8 microtubule cytoskeleton organization and biogenesis, p=0.005		
MBP1,SWI4,SWI6	10/10	functional and physical interaction(CYGD)	6/10 mitotic cell cycle, p=7.7e-06		
MBP1,SWI6	24/24	functional and physical interaction(CYGD)	10/24 cell cycle, p=5.0e-04		
MET31,MET4	8/8	in the same complex(Pierre-Louis et al 1998)	6/8 sulfur metabolism, 9.78e-11		
NDD1 SWI6	6/6		5/6 cell organization and biogenesis n=0.02		

A comparison of BN and GGM:

2: Protein-DNA Interaction Network

- Expression networks are not necessarily causal
 - BNs are indefinable only up to Markov equivalence:

and

can give the same optimal score, but not further distinguishable under a likelihood score unless further experiment from perturbation is performed

- GGM have yields functional modules, but no causal semantics
- TF-motif interactions provide direct evidence of casual, regulatory dependencies among genes
 - stronger evidence than expression correlations
 - indicating presence of binding sites on target gene -- more easily verifiable
 - disadvantage: often very noisy, only applies to cell-cultures, restricted to known TFs ...

