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Inferring gene regulatory network using | 0@ @
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Bayesian Network — CPDs H

Local Probabilities: CPD - conditional probability
distribution P(X;/Pa,)

e Discrete variables: Multinomial Distribution (can represent any kind
of statistical dependency)
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Bayesian Network — CPDs (cont.)
e Continuous variables: e.g. linear Gaussian |
PX | 2) =M@+ Y, )
TRRA
X y

Learning Bayesian Network

e The goal:

e Given set of independent samples (assignments of random
variables), find the best (the most likely?) Bayesian Network
(both DAG and CPDs)
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Learning Graphical Models &
e Scenarios:
e completely observed GMs
directed
undirected
e partially observed GMs
directed
undirected (an open research topic)
e Estimation principles:
e Maximal likelihood estimation (MLE)
e Bayesian estimation
e We use learning as a name for the process of
estimating the parameters, and in some cases, the
topology of the network, from data.
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The basic idea underlying MLE .

e Likelihood: %}f
LO®]X) = p(X16) = p(X16)p(X; |6;) p(Xs | X3, X5, 65)

e Log-Likelihood:
/(8].X) =log p(X |8) =log p(X;|6,) +1og p(X; | 6,) +log p(X; | X5, X;,65)

e Data log-likelihood
/0| DATA) =log I I p(X | 0)

= 2log p(X," |6,)+ Zlog p(XS" |6,)+ 2log p(X” | X" X", 6,)

e MLE {6,,0,,6,},,- = argmax/(0| DATA)

0; =argmax 2log p(X"6;), 6 =argmax Zlog p(X" |6,), 65 =argmax Zlog p(X,” | X" X", 6,)




Learning Bayesian Network

» Learning of best CPDs given DAG is easy

— collect statistics of values of each node given specific assignment to its parents

» Learning of the graph topology (structure) is NP-hard

— heuristic search must be applied, generally leads to a locally optimal network

Overfitting
— It turns out, that richer structures give higher likelihood P(D|G) to the data
(adding an edge is always preferable)

o
-
P(C|A) <P(C|A B)
— more parameters to fit => more freedom => always exist more "optimal" CPD(C)

We prefer simpler (more explanatory) networks

— Practical scores regularize the likelihood improvement complex networks.

BN Learning Algorithms

e Structural EM (Friedman 1998)

e The original algorithm

Expression data @ Sparse Candidate Algorithm (Friedman et al.)

e Discretizing array signals

e Hill-climbing search using local operators: add/delete/swap
of a single edge
Feature extraction: Markov relations, order relations
Re-assemble high-confidence sub-networks from features

Learning Algorithm o Module network learning (Segal et al.)

e Heuristic search of structure in a "module graph"
B CB e Module assignment
e Parameter sharing
D O e Prior knowledge: possible regulators (TF genes)




Confidence Estimates

Bootstrap approach: >
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Results from SCA + feature sels
extraction (rriedman et al.) -

The initially learned network of The “mating response” substructure
~800 genes




A Module Network
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Gaussian Graphical Models .

e Why?

Sometimes an UNDIRECTED
association graph makes more
sense and/or is more
informative

e gene expressions may be
influenced by unobserved factor
that are post-transcriptionally
regulated

L2 LR @

e The unavailability of the state of B
results in a constrain over A and C




Probabilistic inference on
Graphical Models

Recap of Basic Prob. Concepts

e Joint probability dist. on multiple variables:
P(Xl,XZ,X3,X4,X5,X6)
= P(Xl)P(XZ | Xl)P(X3 | >(lY XZ)P(X4 | Xl' XZY X3)P(X5 ‘ Xl' XZY XS’ XA)P(XG | XlY XZYX3YX4' XS)
e If Xi's are independent: (P(X;|-)= P(X;))
P(leXlealXquvxa)
= P(X,)P(X,)P(X3)P(X,)P(Xs)P(Xs) = TTP(X))

e If Xi's are conditionally independent (as described by a
GM), the joint can be factored to simpler products, e.g.,
X

3

P(Xy1, X5 X, Xy, X5, Xo)
= P(X1) P(Xal X1) P(X3] X3) P(X] Xy) P(Xs] X4) P(Xe| X2, X5)

pXy)

P(Xel Xz Xs)
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Probabilistic Inference &
|
e We now have compact representations of probability
distributions: Graphical Models
e A GM Mdescribes a unique probability distribution 2
e How do we answer queries about P?
e We use inference as a name for the process of
computing answers to such queries
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Query 1: Likelihood o

e Most of the queries one may ask involve evidence

e Evidence eis an assignment of values to a set £ variables in the
domain

e Without loss of generality £ ={ X,, ..., X}
e Simplest query: compute probability of evidence

Ple)= 2. 2P(x,....x, )

e this is often referred to as computing the likelihood of e




Query 2: Conditional Probability

\
e Often we are interested in the conditional probability

distribution of a variable given the evidence
PXe)  AXe)
Ple) ~ 2P(X=xe)

P(Xe)=
e thisis the a posteriori belief in X; given evidence e

e We usually query a subset Y of all domain variables
X={Y.Z} and "don't care" about the remaining, Z-

P(Y|e)= 2P(V.Z =z|e)

e the process of summing out the "don't care" variables zis called marginalization, and
the resulting Aye) is called a marginal prob.

Applications of a posteriori Belief

e Prediction: what is the probability of an outcome given the starting
condition ?

A D= E OO

e the query node is a descendent of the evidence
e Diagnosis: what is the probability of disease/fault given symptoms
I)
A D> E > 5
e the query node an ancestor of the evidence
e Learning under partial observation

e fill in the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not restricted
by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network




Query 3: Most Probable
Assignment

\
e In this query we want to find the most probable joint

assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence e, and ignoring (the values of) other variables
z:

MPA(Y | e) =argmax,, P(y | e) = argmax,, ZP(y,z|e)

e this is the maximum a posteriori configuration of y.

Applications of MPA

e Classification

e find most likely label, given the evidence

e Explanation
e what is the most likely scenario, given the evidence

Cautionary note:

e The MPA of a variable depends on its "context"---the set

of variables been jointly queried x ¥ Plxy)

e Example: ol 0| 035
e MPA of X? = & e

e MPAoOf (X, ¥)? Z| O o3
7 7 0.3
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Complexity of Inference

Thm:
Computing AX= x| e) in a GM is NP-hard

e Hardness does not mean we cannot solve inference

e |timplies that we cannot find a general procedure that works efficiently
for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures

Approaches to inference

e Exact inference algorithms

e The elimination algorithm N
e The junction tree algorithms +/ (but will not cover in detail here)

e Approximate inference techniques

e Stochastic simulation / sampling methods

2 2

e Markov chain Monte Carlo methods
e Variational algorithms (later lectures)

11



What is the likelihood that protein E is active?

e Query: Ae) 3>_
Pe)= XXX 2P(ab,c.d,e) = =%
d ¢ b a z F_I'—'esﬂ
e By chain decomposition, we get
= 22 2 2P(@)P(b|a)P(c|b)P(d |c)Ple|d)
d ¢ b a
000
H-44-
- 8:
Elimination on Chains .

CAO—C D>~ o—Coo—CED

e Rearranging terms ...

Ple)= 22 2 2P(a)P(b|a)P(c|b)P(d|c)P(e|d)

d ¢ b a

= 22 2P(c|b)P(d | c)P(e|d) 2P (a)P(b|a)

d ¢ b

12



Elimination on Chains

|
>~ O—C o~ o~

e Now we can perform innermost summation

Ple)= 2 2 2P(c|b)P(d | c)P(e|d) 2P(a)P(b|a)

d ¢ b

= X2 2P( c|b)P(d|c)P(e|d)p(b)

d ¢ b

e This summation "eliminates" one variable from our
summation argument at a "local cost".

Elimination in Chains

DO~ D>—Ceo—Coo—CED
e Rearranging and then summing again, we get
Pe)= 22 2P(c|b)P(d |c)P(e|d)p(b)

d ¢ b

= X 2P(d | c)Pe|d) 2P(c|b)p(b)
d ¢ b

= X 2P(d|c)Pe|d)p(c)
d ¢

13



Elimination in Chains

|
CLO—CA D>~~~

—

e Eliminate nodes one by one all the way to the end, we
get

P(e) = §P(e|d)p<d>

Complexity:
» Each step costs O(|Val(X)|*|Val(X;,,)|) operations: O(kn?2)

e Compare to naive evaluation that sums over joint values of n-1
variables O(n¥)

. 000
Inference on General GM via sels
Variable Elimination °e

General idea:

e Write query in the form

Pe)= % S ET1P, | pa)

X, X3 Xo 1

e this suggests an "elimination order" of latent variables to be
marginalized

e lteratively

e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product

P(X,,
P10

e wrap-up

14



A more complex network H
A food web
B W
« O
& UG
& W

What is the probability that hawks are leaving given that the grass condition is poor?
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Example: Variable Elimination o
e Query: (A |h) O @D
o Need to eliminate: B,C.D,E,F,6,H
e Initial factors: (O 2
P(a@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e,f) CE) o
Choose an elimination order: H.6,F,E,D,C.B
* ©& W
e Step 1: A regulatory network
° (fix the evidence node (i.e., A) to its observed
value (i.e., A)): ~
m,(e.,f)=ph=h|ef) ® @

e This step is isomorphic to a marginalization step:

m,(e.f)= 2p(hle.f)sth=h)
h

15
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Example: Variable Elimination 5
|
e Query: P(B|h) (B @)D
e Need to eliminate: B,C.D,E,F,6
© O
e Initial factors:
e G
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f|a)P(g]| e)P(h|e,f)
=P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(Fla)P(gle)m,(e.f) (&) (HD

e Step 2:

e compute

m,(e)= 2p(gle)=1
= P@)PB)P(c|b)P(d | a)Pe]¢,d)P(F | a)m, (e)m,(e.f)
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, 1)

& W

oeﬂo
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Example: Variable Elimination o
e Query: P(B|h) (B @D
e Need to eliminate: 8,C.D,E,F
© O
e Initial factors: G G
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(F|a)P(g|e)P(h|e.f)
SP(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(gle)m,(e.f) (&) (A

=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e,f)
e Step 3:
o compute (2 )= 2p(F|a)m,(e.f)
f

= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)

<5
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Example: Variable Elimination .
\
e Query: P(B|h) D G
e Need to eliminate: 8,C.0,F
o O
e |nitial factors:
e G

P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e.f)
=P(a)P(b)P(c|b)P(d|a)Pe|c.d)P(Fla)P(gleym e f) (&) (D
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(F |a)m,(e.f)

=P(a)P(b)P(c| b)P(d |a)P(e|c,d)m,(a.e)

e Step 4: D D
e compute me(a’c’d): 2p(6|C,d)mf(aae) o/o

= P(a)P(b)P(c|b)P(d |a)ym.(a,c,d)

000
0000
[ X XX}
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Example: Variable Elimination .
e Query: P(B|h) O @D
e Need to eliminate: B,C,D
L © W
e Initial factors:
P(a)P(b)P(c | b)P(d |a)Ple|c,d)P(F |a)P(g|e)P(h|e.f) & G
=P(a)P(b)P(c| b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e,f)
SP@)PBYP(C|B)P(d | a)Pe| c.d)P(F | a)m, (e, F) & D
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)m.(a,e)
=P(a)P(b)P(c|b)P(d |a)m,(a,c,d)

e compute s (a,c)= Zp(a’la)me(a,c,d) @,
d
= P(a)P(b)P(c|d)m,(a.c)

17
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Example: Variable Elimination o
e Query: P{B Ih) 0 o
e Need to eliminate: 8,C
e Initial factors:
P(@)P(b)P(c|d)P(d |a)P(elc,d)P(f|a)P(gle)P(hle,f) G G

=P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f|a)P(g|e)m,(e. f)

=SP(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m,(e,f) e 0
=P(a)P(b)P(c|d)P(d |a)P(e|c,d)m.(a,e)

=P(a)P(b)P(c|d)P(d |a)m.(a,c,d)

=P(a)P(b)P(c|d)m,(a,c)

e Step 6:

e compute m.(a,b) = Zp(c|b)md(a,c)
= P(a)P(b)m.(a,b) ’

00
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- . - . ...
Example: Variable Elimination '
e Query: P(B|h) O @D
e Need to eliminate: B
y © O
e Initial factors:
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(F |a)P(g|e)P(h|e.f) CE) (A
=SP(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e.f)
SP(a)P(b)P(c|d)P(d | a)P(e|c.d)P(F | a)m,(e.F) Cé) CH)
=P(a)P(b)P(c|d)P(d |a)P(e|c,d)m.(a,e)
=P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
SP(a)P(b)P(c|d)m,(a,c)
=P(a)P(b)m,.(a,b)
e Step 7: @
e compute m,(a) = Zp(b)mc(a,b)
b

= P(a)ym,(a)

18
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Example: Variable Elimination 5
e Query: P(Q I_h) B @
e Need to eliminate: { }
e Initial factors: (O O
P@)P(b)P(c|d)P(d|a)P(e|c.d)P(F|a)P(g|e)P(h|e.f)
=SP(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e f) G 0
=P(a)P(b)P(c|d)P(d | a)P(e|c.d)P(F | a)m,(e.f) OO
=P(a)P(b)P(c|d)P(d |a)P(e|c,d)m.(a,e)
=P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
=P(a)P(b)P(c|d)m,(a.c)
=P(a)P(b)m,(a,b)
=P(a)m,(a)
e Step 8: Wrap-up P(@/)=plam,(a), p(h)= 2p(a)m,(a)
= pla)m,(a) !
= Plalh)=-G 2B
=S paym, (@)
. . [ X X ]
Complexity of variable sete
.. : eso
elimination :

e Suppose in one elimination step we compute
m, (Vi Vi) = Zm‘X (X Vi Vi)

k
mxoyieny) = Himey,)

This requires =
o  ke|Val(x)

-H‘Val(ya)‘ multiplications

e For each value for x, y,, ..., y,, we do Amultiplications

o |Val(X)

« TTvai(y, )| additions

e For each value of y,, ..., y,, we do /Va/(X)/ additions

Complexity is exponential in number of variables
in the intermediate factor

19



Understanding Variable
Elimination

e A graph elimination algorithm

@ @ @ @ @ @ @ @ @ @ 3‘0 >
G ALY =
@ @ S & ©;

moralization graph elimination

e Intermediate terms correspond to the cliques resulted
from elimination
e “good” elimination orderings lead to small cliques and hence reduce
complexity (what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or
near-optimum can often be heuristically found

e Applies to undirected GMs

S

From Elimination to Message
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

ﬁ%%uaxwwe

m,(a,c,d)

e Messages can be reused

20



From Elimination to Message
Passing

e Our algorithm so far answers only one query (e.g., on one node), do we
need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

e Another query ...

e Messages mand m, are reused, others need to be recomputed

A Sketch of the Junction Tree
Algorithm H

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves
all queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal
clique --- a good elimination order often leads to small
maximal clique, and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...

21



Approaches to inference

e Exact inference algorithms

e The elimination algorithm  +
e The junction tree algorithms + (but will not cover in detail here)

e Approximate inference techniques

e Stochastic simulation / sampling methods

< <2

e Markov chain Monte Carlo methods
e Variational algorithms (later lectures)

Monte Carlo methods

e Draw random samples from the desired distribution

Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-
based averages

1 N
EIf (x)]=7; ZF(x")

Asymptotically exact and easy to apply to arbitrary models

Challenges:

e how to draw samples from a given dist. (not all distributions can be
trivially sampled)?

e how to make better use of the samples (not all sample are useful, or
egally useful, see an example later)?

e how to know we've sampled enough?

22



Example: naive sampling

e Sampling: Construct samples according to probabilities given in a
BN.

Eo | Bo | A0 | Mo | Jo
EO | BO | A0 | MO | JO

S EO | BO | A0 | MO | J1

Pl EO | BO | AO | MO | JO

EO BO AO MO JO

T EO BO AO MO JO

Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, EO BO A0 MO JO

BO. Same for EO. P(A|BO, E0)=<0.001, 0.999> suppose
it is false... EO BO AO MO JO

2) Frequency counting: In the samples right,
P(J]A0)=P(J,A0)/P(A0)=<1/9, 8/9>. EC BO AQ MO J0

[ X X ]
0000
[ X XX
. . ::.
Example: naive sampling .
e Sampling: Construct samples according to probabilities given in a
BN.
Alarm example: (Choose the right sampling
sequence) EO BO A0 MO JO

EO BO A0 MO JO

3) what if we want to compute P(J|AL) ?

we have only one sample ... EO BO A0 MO Ji

PJ]AL)=P(J,A1)/P(AL1)=<0, 1>. EO BO AO MO JO

4) what if we want to compute P(J|B1) ? EO BO A0 MO JO

No such sample available!

P(J]A1)=P(J,B1)/P(B1) can not be defined. EO BO A0 MO JO
_ _ El | BO | A1 | M1 | J1

For a model with hundreds or more variables,

rare events will be very hard to garner evough EO BO A0 MO JO

samples even after a long time or sampling ... EO BO AO MO J0

EO BO A0 MO JO
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Monte Carlo methods (cond.) :
e Direct Sampling
e We have seen it.
e Very difficult to populate a high-dimensional state space
e Rejection Sampling
e Create samples like direct sampling, only count samples which is
consistent with given evidences.
°
e Markov chain Monte Carlo (MCMC)
e0o
o000
[ X XX
. ::O
Markov chain Monte Carlo o

e Samples are obtained from a Markov chain (of
sequentially evolving distributions) whose stationary
distribution is the desired p(x)

e Gibbs sampling

we have variable set to X={x,, x,, X3,... Xz}

at each step one of the variables X/ is selected (at random or according
to some fixed sequences)

the conditonal distribution p(X| X) is computed
a value x;is sampled from this distribution

the sample x; replaces the previous of X;in X.

24



MCMC

e Markov-Blanket

e Avariable is independent from
others, given its parents,
children and children's parents.
d-separation.

= pX] X)= p(X} MB(X))
e Gibbs sampling

e Create a random sample.
Every step, choose one
variable and sample it by _
P(X|MB(X)) based on previous MB(A)={B. E, J, M}
sample. MB(E)={A, B}

[ X X ]
0000
0000
[ X
[ ]
MCMC s
e To calculate P(J|B1,M1)
ECE e Choose (B1,E0,A1,M1,J1) as a

0 start

Burglary

e FEvidences are B1, M1,
variables are A, E, J.

e Choose next variable as A

e Sample A by
P(A|MB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

i)

; z T e (B, EO, A0, M1, J1)
L 0
L o e Choose next random variable

m=

as E, sample E~P(E|B1,A0)




Complexity for Approximate
Inference

e Inference problem is NP-

hard- HUPOWOLEMA L FAILURE. ANARHYLAYS FUNONARY EMEOL I

e Approximate Inference
will not reach the exact
probability distribution in
finite time, but only close
to the value.

ANESTHESIA
INSUFFICIENT

KINGED
pepf 4 M gy TUBE  DSCONNECTIO

CATECHOLAMKNER YENT ALY WENT MACHINE

CVP  FGWP
e Often much faster than
exact inference when BN i
is big and complex ““'”””“ 8 5
enOUgh. In MCMC, Only T EPeD
consider P(X|MB(X)) but
not the whole network.

BLOCD
PRESEURE

Covariance Selection

e Multivariate Gaussian over all continuous expressions

P, X, ]) expl 4 (X- )" =4 (% - )}

(27)* 2]’
e The precision matrix K=X-! reveals the topology of the
(undirected) network

E(x[Xx;)= Z(Kij /Kii)xj
e Edge ~ [K;| >0 J

e Learning Algorithm: Covariance selection
e Want a sparse matrix
Regression for each node with degree constraint (Dobra et al.)
Regression for each node with hierarchical Bayesian prior (Li, et al)
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Gene modules from identified
USIng GGM (Li, Yang and Xing)

Table 1: modules with multiple regulators and more than 5 regulated genes,

[ Teguloier st anmotated JALL Taferanca of to-ragalators ComEmon procesies of funciion of Tegalated gene

ACETIWIE L7} 476 call proliferation, p=0.023 |
[ AZHIEWTE 11,1 711 call wall organization and bioganesis, p=0.003
CIRE.METd [ 7] /B copper Ton impore, pre(, 0
DIG13TEL2 14714 Tunctional and physical 1014 conjugation, p=1.75e-14
intaraction(Tedford et al 1007)
FHLTIRAFT aTE:] share motif{ Davide &t al 4778 protain biosynthesis, p=r 06e-I1
FKHIMCM1 NDDH 12/12 co-TFs(CYGD) 6/12 call proliferation, p=0.01
GATI.MAL 13 RGM1 B/ 16 /% selomerase-indepeandant telo mere maintenonce, p=1.64s-13
CATILRAPLVAFS AT /34 protein Diosyathesis, p—1.10¢15
GURL GRS HAPT (7L G/6 anargy pothways, p=1.05e08
HIRT, HIFE: 578 co-TFa(@pactor at ol 1007) /0 chromatin tasembly or disassembly, p=1.00-14 |
HIRLETE 578 6/ regulation of transcHption, MOtINE-Cype specific, pe=7 3561
HSF1 M3SN4 B/8 co-TFs{Jeffray et al, 200Z) 3/8 protain folding, p=1.53s-4
. M3N4.RG 87 3,/% salomearase-independent telomere mainten ance, pe=1.0%a-6
B/ 378 microtubula :}'i)!%‘ﬁt)n Orgamization and blogenesis, p=0.00%
MEFTIWIE IWTE 10,710 Tunctional and physcol intarac@on| DY G /10 mitotic cell cycle, p=7.7a-00
[ MEFIEWIE I¥EE] Tunctional and physical intaracd@on| DY GO 10724 call cycle, p=>5.0a-04
| MET3 METZ B/E n the same complexi Flate-Louis et al 1095 68 » r matabolism, 3.
NDD1,SWIE 676 %/ call organization snd biogenosis, p=0.03
A comparison of BN and GGM:
S|
o i
Of
. . (YY)
2. Protein-DNA Interaction eece
. [ X XX
[ X0
[ X J
etwor o

e Expression networks are not necessarily causal
e BNs are indefinable only up to Markov equivalence:

can give the same optimal score, but not further distinguishable under a likelihood
score unless further experiment from perturbation is performed

e GGM have yields functional modules, but no causal semantics

e TF-motif interactions provide direct evidence of casual,
regulatory dependencies among genes
e stronger evidence than expression correlations
e indicating presence of binding sites on target gene -- more easily verifiable

e disadvantage: often very noisy, only applies to cell-cultures, restricted to known
TFs ...
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ChlIP-chip analysis

(b) ’
Immunao- Ei:frggirg:sdllnks. LM-PCR Hybridize to intergenic array
Break open cells  precipitate ligate linkers Binding site
Crosslink in vivo  and shear DNA
with formaldehyde .pq’ R Cy!
) gpese Q\h - 000
O - —»
o
-
. IP-enriched DNA
B Unenriched DNA
Simon | et al (Young RA) Cell 2001(106):697-708 |:| Merged
Curant Opinion in Genetics & Davelopmant Ren B et al (Young RA) Science 2000 (290):2306-2309
Advantages: Limitations:

- ldentifies “all” the sites where a TF
binds “in vivo” under the experimental
condition.

- Expense: Only 1 TF per experiment

- Feasibility: need an antibody for the TF.

- Prior knowledge: need to know what TF
to test.
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