Advanced Algorithms
and Models for

Computational Biology
--a machine learning approach
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Mining and analyzing networks 3

e Identifying Signaling Pathways
e color-coding technique (Alon, Yuster and Zwick. 1995) and generalizations (Scott et al.
RECOMB 2005)
e Identifying Interaction Complexes (clique-like structures)
e Statistical subgraph scoring (Sharan et al. RECOMB 2004)
e Network alignment
e PathBLAST: identify conserved pathways (Kelley et al 2003)
e MaWISh: identify conserved multi-protein complexes (Koyuturk et al 2004)

e Nuke: Scalable and General Pairwise and Multiple Network Alignment (Flannick, Novak,
Srinivasan, McAdams, Batzoglou 2005)

e Network Dynamics

e Sandy: backtracking to find active sub-network (Luscombe et al, Nature 2005)
e Node function inference

e Stochastic block models (Aroldi et al, 2006)

e Latent space models (Hoff, 2004)
e Link prediction

e Naive Bayes classifier, Bayesian network

o MRF




Network evolution

MRCA-Most Recent Common Ancestor

3 Problems:

1. Test all possible .

relationships. \

2. Examine unknown
internal states.

3. Explore unknown
paths between states

at nodes.
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Motivation

e Sequence alignment seeks to identify conserved DNA or
protein sequence
e Intuition: conservation implies functionality
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e By similar intuition, subnetworks
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Network Alignment

\
e “Conserved” means two subgraphs contain proteins serving

similar functions, having similar interaction profiles
e Key word is similar, not identical
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Conserved
interactions

Protein
A A groups

e Product graph:
e Nodes: groups of sequence-similar proteins, one per species.
e Edges: conserved interactions.

Scoring Scheme

e Given two protein subsets, one in each species, with a many-
to-many correspondence between them, we wish:
e Each subset induces a dense subgraph.
e Matched protein pairs are sequence-similar.

e Two hypothesis:
e Conserved complex model: matched pairs are similar.
e Random model: matched pairs are randomly chosen.

. , Pr(S, , | similar)
L(C,C')=L(C)-L(C")- H 5 :
u,v matched Ir(su,v | random)




Scoring Scheme cont.

e For multiple networks: run into problem of scoring a multiple
sequence alignment.

e Need to balance edge and vertex terms.

e Practical solution:
e Sensible threshold for sequence similarity.
e Nodes in alignment graph are filtered accordingly.
e Node terms are removed from score.
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e Two recent algorithms:
e 7?77, Sharan et al. PNAS 2005
e Nuke: Flannick, Novak, Srinivasan, McAdams, Batzoglou 2005
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e Example:
hypothetical
ancestral
module
descendants
equivalence
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Nuke: Scoring :
e Probabilistic scoring of alignments:
P(nodes | M) o P(edges| M)
P(nodes |R) P(edges|R)
e M : Alignment model (network evolved from a common ancestor)
e R :Random model (nodes and edges picked at random)
o Nodes and edges scored independently
25 + S




Nuke: Scoring, cont.

e Node scores: simple
e Weighted Sum-Of-Pairs (SOP)

Each equivalence class scored as sum (over pairs n;, n)) of
w;; logP(n;,n;) , where wj is weight on phylogenetic tree

w,= 05 w, =025

M. tuberculosis E. coli H. pylori C. crescentus W13 = 025 W24 = 025

D © @ @ w=025 w,=05

Nuke: Scoring, cont.

e Alignment model

e Based on BLAST pairwise sequence alignment scores Sj

Intuition: most proteins descended from common ancestor have
sequence similarity

Py (n;,n;) =P(BLAST score S; | n;,n; homologous)

e Random model
e Nodes picked at random

Pz (n;,n;) = P(BLAST score S;)
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Nuke: Scoring, cont. :
e Edge scores: more complicated
e Edge scores in earlier aligners rewarded high edge weights
But this biases towards clique-like topology!
e Don’t want solely conservation either
This alignment has highly conserved (zero-weight) edges:
Non-trivial tradeoff in pairwise alignment of full networks
. o000 R
ESMs: A New Edge-Scoring seoe
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Paradigm :

e |dea: assign each node a label from a finite alphabet 3,
and define edge likelihood in terms of labels it connects

e During alignment, assign labels which maximize score

e E: Symmetric matrix of probability distributions, E(X, y) is
distribution of edge weights between nodes labeled x
andy




ESMs: A New Edge-Scoring
Paradigm

\
e |dea: assign each node a label from a finite alphabet 3,

and define edge likelihood in terms of labels it connects
e During alignment, assign labels which maximize score

e E: Symmetric matrix of probability distributions, E(X, y) is
distribution of edge weights between nodes labeled x
andy

e Simplest case is clique ESM
e 1x1 matrix: ) contains a single label
e Duplicates edge-scoring of aligners which search for cliques
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ESMs: A New Edge-Scoring Paradigm

e For query-to-database alignment, use a module ESM
e One label for each node in query module
Tractable because queries are usually small (~10-40 nodes)

e For each pair of nodes (n;, n;) in query, let E(i, j) be a Gaussian centered
at c¢; = weight of (n;, n;) edge
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ESMs: A New Edge-Scoring Paradigm

\
e Multiple alignment gives us more information about

conservation
e Can iteratively improve ESM to adjust mean and deviation based
on weights of edges between aligned pairs of query nodes
Easily implemented using kernel density estimation (KDE)

A General Network Aligner: Algorithm

e Given this model of network alignment and scoring
framework, how to efficiently find alignments between a
pair of networks (N,, N,)?

e Constructing every possible set of equivalence classes
clearly prohibitive




A General Network Aligner: Algorithm

e |dea: seeded alignment
e Inspired by seeded sequence alignment (BLAST)

e Identify regions of network in which “good” alignments likely to be found
MaWISh does this, using high-degree nodes for seeds
Can we avoid such strong topological constraints?

Seed

TR Oade )

Extend

d-Clusters: Intuition

e “Good” alignments typically have:
e a significant number of nodes with high sequence similarity

Implied by the node scoring function, which prefers aligning nodes with
high BLAST scores

e with mostly conserved connected components

Implied by the edge scoring function which prefers conserved edge
weights
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d-Clusters

!
e Define D(n), the d-cluster of node n as the d “closest” nodes

ton
e Distance defined in terms of edge weights

d-Clusters

e Expect the majority of high-scoring alignments to contain a
pair of d-clusters (D(n;), D(n;)) such that a greedy matching
scores at least T

e for suitably chosendand T
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d-Clusters

|
e Seeding algorithm: for each n, € N, and
n; € Ny, emit (n;, ;) as a seed if matching score exceeds T

Extending seeds

e Given a pair of d-cluster seeds (D(n;), D(n;)), want to find
highest-scoring alignment containing this seed

e Start by forming an equivalence class consisting of
x € D(n;) and y e D(n;) maximizing Sy(X, y)
e All other m € N, U N, are singleton equivalence classes
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Extending seeds

e Extend greedily:

e Define the frontier (F) as the set of all already-aligned nodes and their
neighbors in each network

e Picking nodes s,t € F, ! and label L € ¥, which maximally increase
alignment score:

Merge equivalence classes [s] and [t]

Relabel the resulting equivalence class to L

Multiple Alignment

e Progressive alignment technique
e Used by most multiple sequence aligners

M. tuberculosis E. coli C. crescentus

e Simple modification of implementation to align
alignments rather than networks
e Node scoring already uses weighted SOP
e Edge scoring remains unchanged
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Pairwise alignments

DNA uptake

Polysaccharide transport




Dynamic Yeast TF network

Transcription Factors

Target Genes

e Analyzed network as a
static entity

e But network is dynamic

e Different sections of the network
are active under different cellular
conditions

e Integrate gene expression
data

[Luscombe et al, Nature]

Gene expression data

e Genes that are differentially expressed under five cellular

conditions
Cellular condition No. genes
Cell cycle 437
Sporulation 876
Diauxic shift 1,876
DNA damage 1,715
Stress response 1,385

e Assume these genes undergo transcription regulation

[Luscombe et al, Nature]
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Backtracking to find active sub- | 3%
network o2
O O o Define differentially expressed genes

> > O / o Identify TFs that regulate these genes

\ | 4 a ldentify further TFs that regulate these TFs
» —
r’*—’v
O A O Active regulatory sub-network
a » [Luscombe et al, Nature]

Network usage under different
conditions -

static

16



Network usage under different
conditions

cell cycle

Network usage under different
conditions

sporulation




Network usage under different
conditions

diauxic shift

Network usage under different
conditions

DNA damage

18



. 000
Network usage under different sels
conditions o

stress response

. 000
Network usage under different sels
conditions °e
Cell cycle Sporulation Diauxic shift DNA damage Stress

How to model the networks change?

--- an open problem

[Luscombe et al, Nature]
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Node Clustering

Dissecting Social Networks

White et al: From logical role systems to empirical social structures

“We can express a role through a relation (or set of relations) and thus a
social system by the inventory of roles. If roles equate to positions in an
exchange system, then we need only identify particular aspects of a
position. But what aspect?”

Structural Equivalence:

Two actors are structurally equivalent if they have the
same types of ties to the same people.

20



Structural Equivalence

\
e Two actors are structurally equivalent if they have the same

types of ties to the same people.
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Structural Equivalence
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Graph reduced to positions

21



Classical Blockmodeling
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Blockmodeling is the process of identifying these types of positions. A block is a
section of the adjacency matrix - a “group” of structurally equivalent people.

Cohesive Subgroups
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Structural equivalence thus generates 6 positions in the network

22



Stochastic Cohesive Subgroups

Domingo
Carlos
Alejandro

Eduardo

Frank
Hal
Karl
Bob ]
lke

Gill
Lanny
Mike
John
Xavier
Utrecht
Norm
Russ
Quint
Wendle
Ozzie
Ted
Sam

Vern

Paul

Spectral Clustering

Points of three clusters
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Clustering Results (K- means)
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o Minimize total transition probability of single-step between cluster random walk
0 Each object has a unique cluster membership
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General Framework for
Stochastic Blockmodel

\
e Regard each network tie as a random variable (often binary)

X;= 1if there is a network link from person i to person |
=0 if there is no link,
for i, j members of some set of actors N.

A directed network: X; and X; are distinct.
A non-directed network: X; = X;;

e Formulate a hypothesis about interdependencies and
construct a dependence graph

e The dependence graph represents the contingencies among network
variables XU-. (e.g., defined on cliques), i.e., a set of "potential functions".

The Hammersley-Clifford §§:
Theorem o

1
Pr(X - X) - p* (X) - Zexp {Zallcliques AAZA}
where:
the summation is over all cliques A;
z, = I1 ;. a X; Is the network statistic corresponding to the clique A;
A4 is the parameter corresponding to clique A;

C = I, exp{Z,aZ5(X)} is @ normalising constant

(Besag, 1974)
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Bernoulli blockmodels

e Suppose actors are either in block 1 or 2, and pairwise potentials
e Hammersley-Clifford:

Pr(X = x) = (1/c) exp{Z;; 1; X;
e Block homogeneity:

=044 if i and j both in block 1
L= 04, if i in block 1 and j in block 2, etc.

Pr(X =x) = (1/c) exp{04; L1405 L1,+0,; Ly4+0,, Lo}

where L is the number of edges from block r to block s.

e Extendable to multiple blocks

A Latent Mixture Membership
Blockmodel o

Motivation

e In many networks (e.g., biological network, citation networks),
each node may be “multiple-class”, i.e., has multiple
functional/topical aspects.

e The interaction of a node (e.g., a protein) with different nodes
(partners) may be under different function context.

e Prior knowledge of group interaction may be available.

25



A Latent Mixture Membership
Blockmodel '
|
Topic vector of node i Topic vector of node j
. 2K
(8) (&)
A Hierarchical Bayesian LMMB 8

\
FONRIyINGy
/ N*N KK

For each object i=1,...,N: For each pait of object ()

6, ~ Dirichlet(c) Z, ;1 ~Multi(6,)
For each topic-pair (s,?): |:> Zi2~ Multi(OJ.)
Vss ~ Beta(3) R, ~Bemoullilpy, . +(1-p)s)
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Variational Inference

e The Joint likelihood:

P
X )z 2 o e
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LMMB and SC on Simulated Data

stringent

diffused

LSC  2600% LSC  4847% LSC  86.84%
MM 10.00% MM 0.00% MM 34.70%
100 300 600

Protein-Protein Interaction Data

Table 1: Functional Categories. In the table we re-
port the functions proteins in the MIPS collection
participate in. Most proteins participate in more
than one function (= 2.4 on average) and, in the
table, we added one count for each function each
protein participates in.

# Category Size
1 Metabolism 125
2  Energy 56
3 Cell eycle & DNA processing 162
4 Transeription (tRNA) 258
5 Protein synthesis 220
6 Protein fate 170
7 Cellular transportation 122
8  Cell rescue, defence & virulence 6
9 Interaction w/ cell. environment 18

10 Cellular regulation ar

11  Cellular other T8

12 Control of cell organization 36

13 Sub-cellular activities 789

14 Protein regulators 1

15 Transport facilitation 41




Inferred Membership
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Supervised Prediction of

Membership

e Learning gand g from training data and predict /:

™

U ocdis

Figure 5: Predicted (red) versus true (black) mixed-membership probabilities for four example proteins.

45.12%

Accuracy:
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Summary of LMMB

e A stochastic block model

e Each node can play "multiple roles", and its ties with other
nodes can be explained by different roles

e Hierarchical Bayesian formalism

e Efficient variational inference
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