# Advanced Algorithms and Models for Computational Biology

-- a machine learning approach

### **Network Algorithms**

Eric Xing Lecture 23, April 12 & 17, 2006

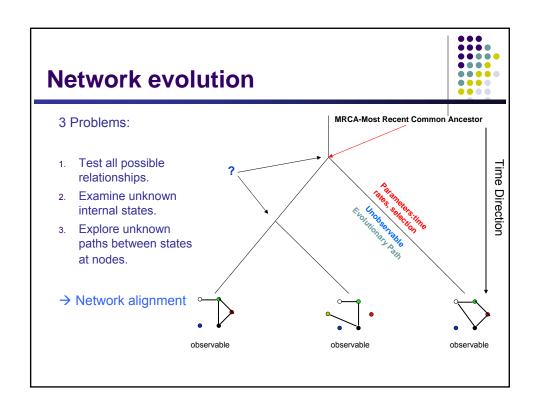


Reading

### Mining and analyzing networks



- Identifying Signaling Pathways
  - color-coding technique (Alon, Yuster and Zwick. 1995) and generalizations (Scott et al. RECOMB 2005)
- Identifying Interaction Complexes (clique-like structures)
  - Statistical subgraph scoring (Sharan et al. RECOMB 2004)
- Network alignment
  - PathBLAST: identify conserved pathways (Kelley et al 2003)
  - MaWISh: identify conserved *multi-protein complexes* (Koyuturk et al 2004)
  - Nuke: Scalable and General Pairwise and Multiple Network Alignment (Flannick, Novak, Srinivasan, McAdams, Batzoglou 2005)
- Network Dynamics
  - Sandy: backtracking to find active sub-network (Luscombe et al, Nature 2005)
- Node function inference
  - Stochastic block models (Aroldi et al, 2006)
  - Latent space models (Hoff, 2004)
- Link prediction
  - Naïve Bayes classifier, Bayesian network
  - MRF



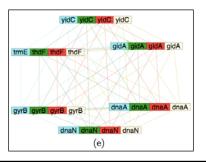
### **Motivation**



- Sequence alignment seeks to identify conserved DNA or protein sequence
  - Intuition: conservation implies functionality

EFTPPVQAAYQKVVAGV (human)
DFNPNVQAAFQKVVAGV (pig)
EFTPPVQAAYQKVVAGV (rabbit)

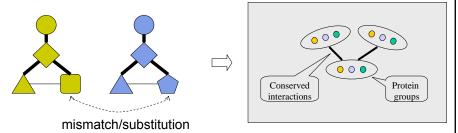
 By similar intuition, subnetworks conserved across species are likely functional modules



### **Network Alignment**



- "Conserved" means two subgraphs contain proteins serving similar functions, having similar interaction profiles
  - Key word is similar, not identical



- · Product graph:
  - Nodes: groups of sequence-similar proteins, one per species.
  - Edges: conserved interactions.

### **Scoring Scheme**



- Given two protein subsets, one in each species, with a many-to-many correspondence between them, we wish:
  - Each subset induces a dense subgraph.
  - Matched protein pairs are sequence-similar.
- Two hypothesis:
  - Conserved complex model: matched pairs are similar.
  - Random model: matched pairs are randomly chosen.

$$L(C,C') = L(C) \cdot L(C') \cdot \prod_{u,v \text{ matched}} \frac{\Pr(S_{u,v} \mid \text{similar})}{\Pr(S_{u,v} \mid \text{random})}$$

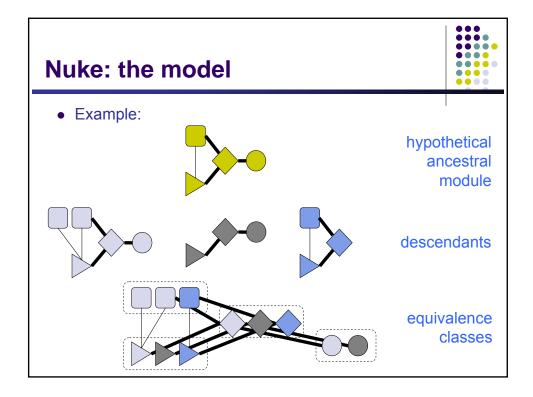
**Similarity (BLAST E-value)** 

### **Scoring Scheme cont.**



- For multiple networks: run into problem of scoring a multiple sequence alignment.
- Need to balance edge and vertex terms.
- Practical solution:
  - Sensible threshold for sequence similarity.
  - Nodes in alignment graph are filtered accordingly.
  - Node terms are removed from score.

### **Multiple Network Alignment** Subnetwork search Network alignment Preprocessing Conserved paths Filtering & Visualizing Interaction scores: logistic regression on p-value<0.01, #observations, expression ≤80% overlap correlation, clustering coeff. Conserved clusters Two recent algorithms: ???, Sharan et al. PNAS 2005 Nuke: Flannick, Novak, Srinivasan, McAdams, Batzoglou 2005



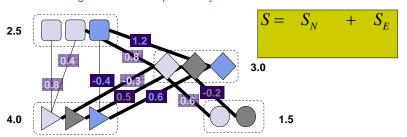
### **Nuke: Scoring**



• Probabilistic scoring of alignments:

$$\log \frac{P(nodes \mid M)}{P(nodes \mid R)} + \log \frac{P(edges \mid M)}{P(edges \mid R)}$$

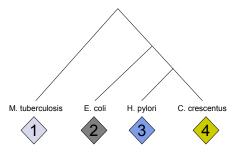
- *M* : **Alignment model** (network evolved from a common ancestor)
- R: Random model (nodes and edges picked at random)
- Nodes and edges scored independently



### Nuke: Scoring, cont.



- Node scores: simple
  - Weighted Sum-Of-Pairs (SOP)
    - Each equivalence class scored as sum (over pairs  $n_i$ ,  $n_j$ ) of  $w_{ij} \log P(n_i, n_j)$ , where  $w_{ij}$  is weight on phylogenetic tree





$$w_{12} = 0.5$$
  $w_{23} = 0.25$   
 $w_{13} = 0.25$   $w_{24} = 0.25$   
 $w_{14} = 0.25$   $w_{34} = 0.5$ 

### Nuke: Scoring, cont.



- Alignment model
  - Based on BLAST pairwise sequence alignment scores  $S_{ij}$ 
    - Intuition: most proteins descended from common ancestor have sequence similarity

$$P_{M}(n_{i}, n_{j}) = P(BLAST \text{ score } S_{ij} \mid n_{i}, n_{j} \text{ homologous})$$

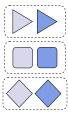
- Random model
  - Nodes picked at random

$$P_R(n_i, n_j) = P(BLAST \text{ score } S_{ij})$$

### Nuke: Scoring, cont.



- · Edge scores: more complicated
  - Edge scores in earlier aligners rewarded high edge weights
    - But this biases towards clique-like topology!
  - Don't want solely conservation either
    - This alignment has highly conserved (zero-weight) edges:



Non-trivial tradeoff in pairwise alignment of full networks

# **ESMs: A New Edge-Scoring Paradigm**



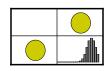
- Idea: assign each node a label from a finite alphabet ∑, and define edge likelihood in terms of labels it connects
  - During alignment, assign labels which maximize score
- E: Symmetric matrix of probability distributions, E(x, y) is distribution of edge weights between nodes labeled x and y

# **ESMs: A New Edge-Scoring Paradigm**



- Idea: assign each node a label from a finite alphabet ∑, and define edge likelihood in terms of labels it connects
  - During alignment, assign labels which maximize score
- E: Symmetric matrix of probability distributions, E(x, y) is distribution of edge weights between nodes labeled x and y
- Simplest case is *clique ESM* 
  - 1x1 matrix: ∑ contains a single label
  - Duplicates edge-scoring of aligners which search for cliques

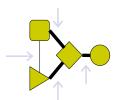


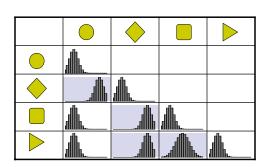


### **ESMs: A New Edge-Scoring Paradigm**



- For query-to-database alignment, use a module ESM
  - One label for each node in guery module
    - Tractable because queries are usually small (~10-40 nodes)
  - For each pair of nodes  $(n_i, n_j)$  in query, let E(i, j) be a Gaussian centered at  $c_{ij}$  = weight of  $(n_i, n_j)$  edge

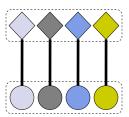


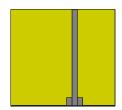




### **ESMs: A New Edge-Scoring Paradigm**

- Multiple alignment gives us more information about conservation
  - Can iteratively improve ESM to adjust mean and deviation based on weights of edges between aligned pairs of query nodes
    - Easily implemented using kernel density estimation (KDE)





### A General Network Aligner: Algorithm

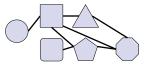


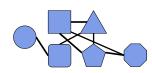
- Given this model of network alignment and scoring framework, how to efficiently find alignments between a pair of networks (N<sub>1</sub>, N<sub>2</sub>)?
- Constructing every possible set of equivalence classes clearly prohibitive

### A General Network Aligner: Algorithm



- Idea: seeded alignment
  - Inspired by seeded sequence alignment (BLAST)
  - Identify regions of network in which "good" alignments likely to be found
    - MaWISh does this, using high-degree nodes for seeds
    - Can we avoid such strong topological constraints?







### d-Clusters: Intuition

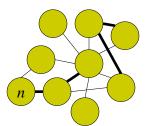


- "Good" alignments typically have:
  - a significant number of nodes with high sequence similarity
    - Implied by the node scoring function, which prefers aligning nodes with high BLAST scores
  - with mostly conserved connected components
    - Implied by the edge scoring function which prefers conserved edge weights

### d-Clusters



- Define D(n), the d-cluster of node n as the d "closest" nodes to n
  - Distance defined in terms of edge weights

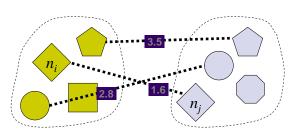


d = 4

### d-Clusters



- Expect the majority of high-scoring alignments to contain a pair of d-clusters ( $D(n_i)$ ,  $D(n_j)$ ) such that a greedy matching scores at least T
  - for suitably chosen d and T



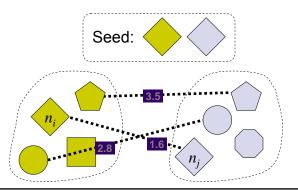
d = 4T = 7

Matching score: **8.9** 

### d-Clusters



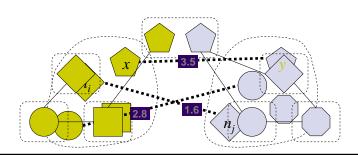
• Seeding algorithm: for each  $n_i \in N_1$  and  $n_j \in N_2$ , emit  $(n_i, n_j)$  as a seed if matching score exceeds T



### **Extending seeds**



- Given a pair of *d*-cluster seeds ( $D(n_i)$ ,  $D(n_j)$ ), want to find highest-scoring alignment containing this seed
- Start by forming an equivalence class consisting of  $x \in D(n_i)$  and  $y \in D(n_i)$  maximizing  $S_N(x, y)$ 
  - All other  $m \in N_1 \cup N_2$  are singleton equivalence classes



### **Extending seeds**



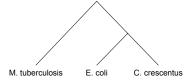
- Extend greedily:
  - Define the *frontier* (*F*) as the set of all already-aligned nodes **and** their neighbors in each network
  - Picking nodes  $s, t \in F$ ,  $\bot$  and label  $L \in \Sigma$ , which maximally increase alignment score:
    - Merge equivalence classes [s] and [f]
    - Relabel the resulting equivalence class to L



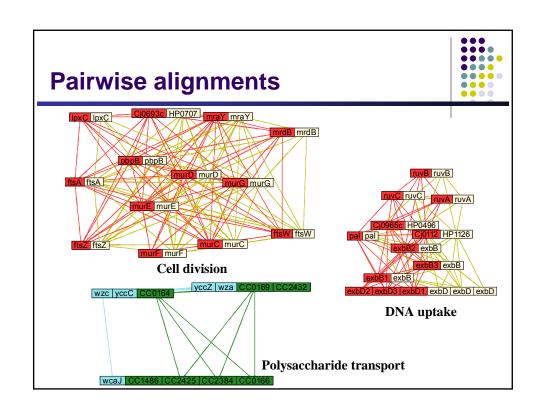
### **Multiple Alignment**

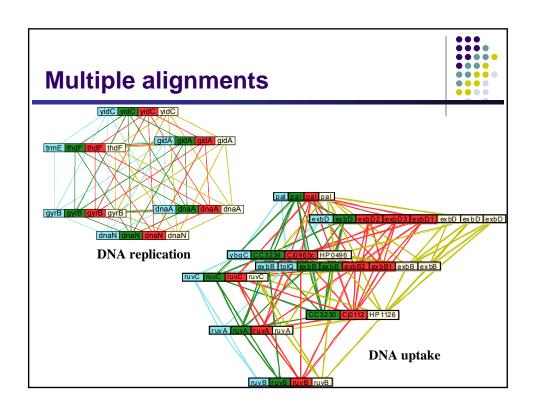


- Progressive alignment technique
  - Used by most multiple sequence aligners



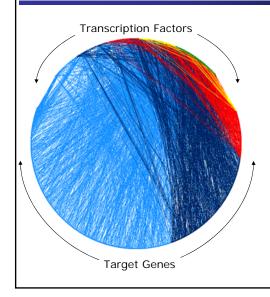
- Simple modification of implementation to align alignments rather than networks
  - Node scoring already uses weighted SOP
  - Edge scoring remains unchanged





### **Dynamic Yeast TF network**





- Analyzed network as a static entity
- But network is dynamic
  - Different sections of the network are active under different cellular conditions
- Integrate gene expression data

[Luscombe et al, Nature]

### **Gene expression data**

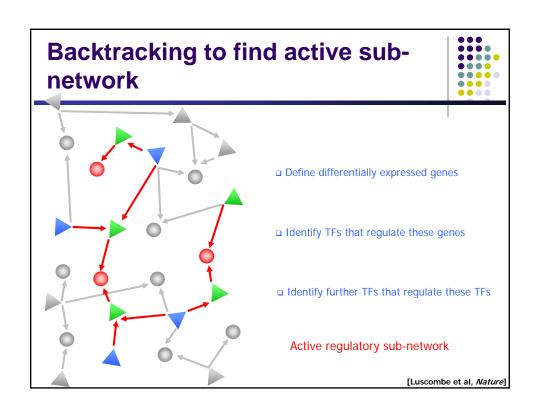


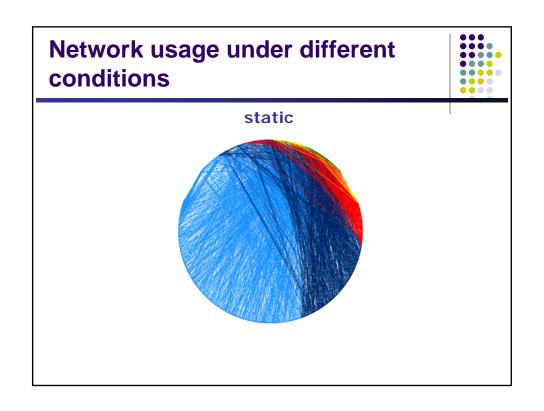
Genes that are differentially expressed under five cellular conditions

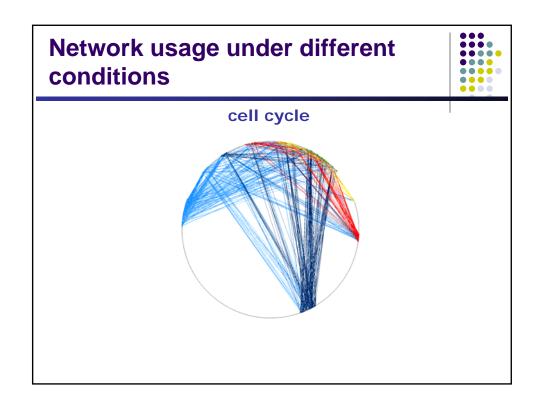
| Cellular condition | No. genes |
|--------------------|-----------|
| Cell cycle         | 437       |
| Sporulation        | 876       |
| Diauxic shift      | 1,876     |
| DNA damage         | 1,715     |
| Stress response    | 1,385     |

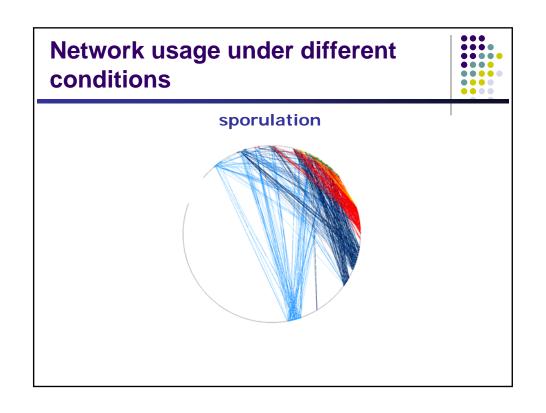
• Assume these genes undergo transcription regulation

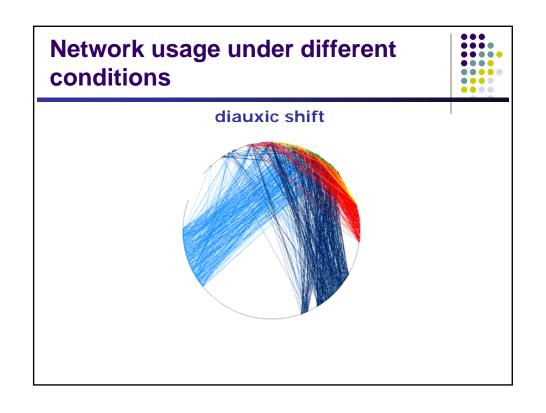
[Luscombe et al, Nature]

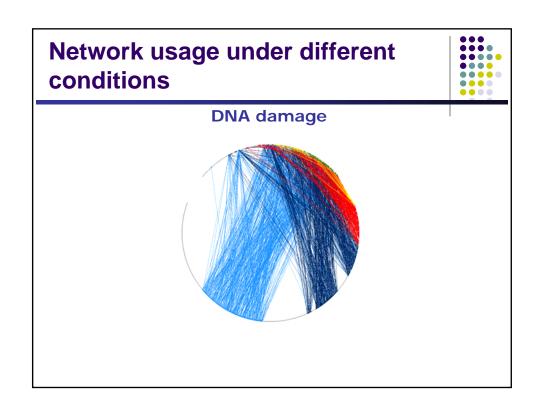


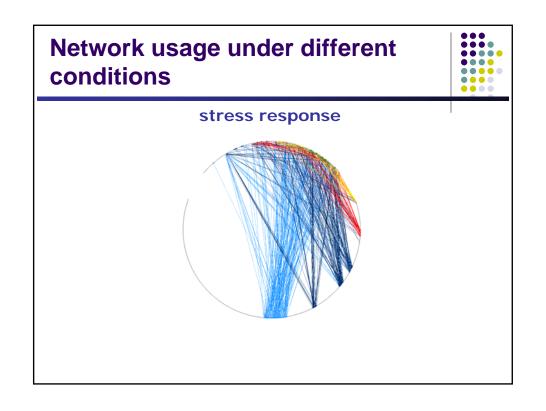


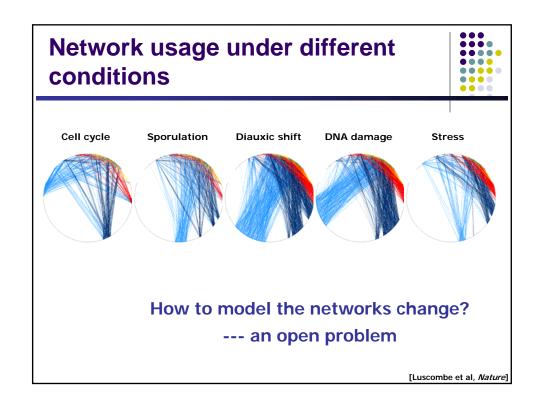


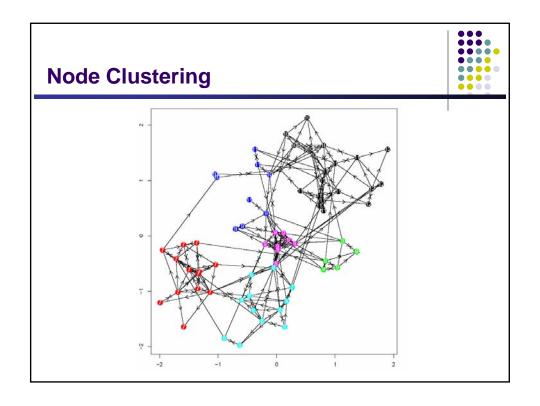












### **Dissecting Social Networks**

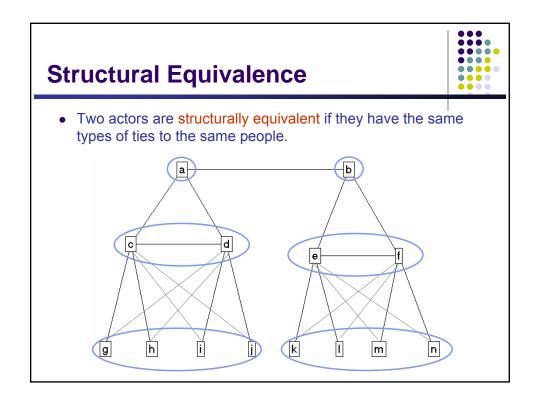


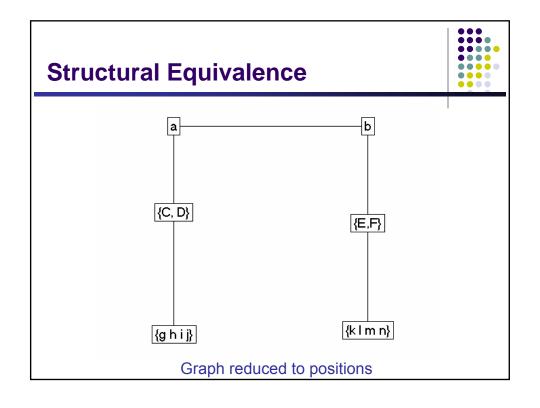
White et al: From logical role systems to empirical social structures

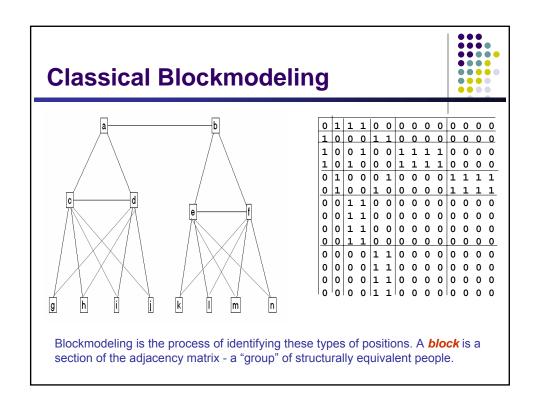
"We can express a *role* through a *relation* (or set of relations) and thus a social system by the inventory of roles. If roles equate to *positions* in an exchange system, then we need only identify particular aspects of a position. But what aspect?"

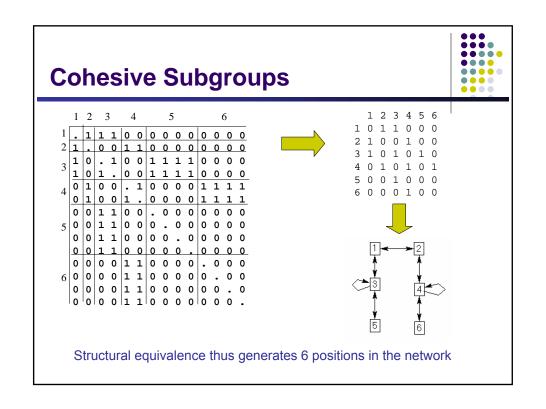
Structural Equivalence:

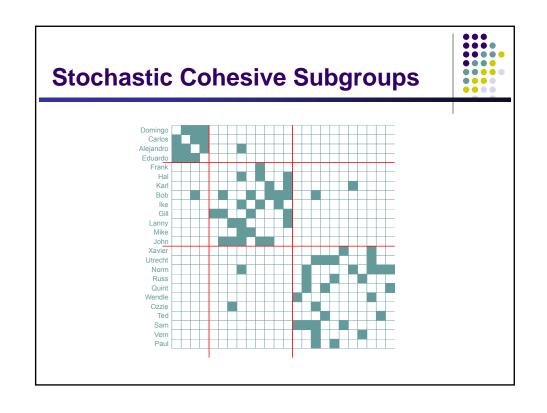
Two actors are *structurally equivalent* if they have the same types of ties to the same people.

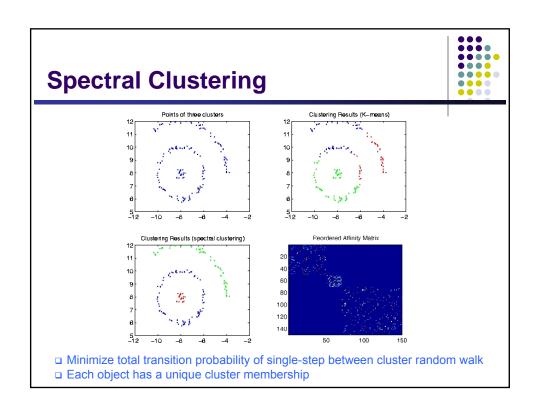












## **General Framework for Stochastic Blockmodel**



• Regard each network tie as a random variable (often binary)

```
X_{ij}= 1 if there is a network link from person i to person j = 0 if there is no link, for i, j members of some set of actors N.
```

A directed network:  $X_{ij}$  and  $X_{ji}$  are distinct. A non-directed network:  $X_{ij} = X_{ji}$ 

- Formulate a hypothesis about interdependencies and construct a dependence graph
  - The dependence graph represents the contingencies among network variables X<sub>ii</sub> (e.g., defined on cliques), i.e., a set of "potential functions".

# The Hammersley-Clifford Theorem



$$\Pr(X = X) = p * (X) = \frac{1}{c} \exp \left\{ \sum_{\text{all cliques}} \lambda_A Z_A \right\}$$

where:

the summation is over all cliques A;

 $z_A = \prod_{x | i \in A} x_{ij}$  is the *network statistic* corresponding to the clique A;

 $\lambda_A$  is the parameter corresponding to clique A;

 $c = \Sigma_{\mathbf{X}} \exp{\{\Sigma_{\mathbf{A}} \lambda_{\mathbf{A}} \mathbf{z}_{\mathbf{A}}(\mathbf{x})\}}$  is a normalising constant

(Besag, 1974)

### Bernoulli blockmodels



- Suppose actors are either in block 1 or 2, and pairwise potentials
- Hammersley-Clifford:

$$\Pr(\mathbf{X} = \mathbf{x}) = (1/c) \exp\{\Sigma_{i,i} \lambda_{ii} x_{ii}\}$$

• Block homogeneity:

```
\lambda_{ij} = \theta_{11} if i and j both in block 1

\lambda_{ij} = \theta_{12} if i in block 1 and j in block 2, etc.
```

$$\Pr(\mathbf{X} = \mathbf{x}) = (1/c) \exp\{\theta_{11} L_{11} + \theta_{12} L_{12} + \theta_{21} L_{21} + \theta_{22} L_{22}\}$$

where  $L_{rs}$  is the number of edges from block r to block s.

• Extendable to multiple blocks

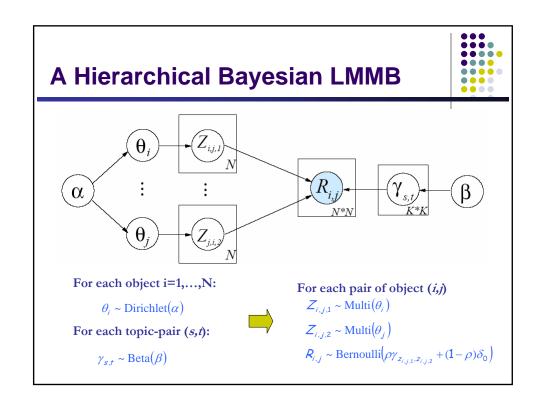
# A Latent Mixture Membership Blockmodel



### **Motivation**

- In many networks (e.g., biological network, citation networks), each node may be "multiple-class", i.e., has multiple functional/topical aspects.
- The interaction of a node (e.g., a protein) with different nodes (partners) may be under different function context.
- Prior knowledge of group interaction may be available.

# A Latent Mixture Membership Blockmodel Topic vector of node i $\theta_i$ Topic vector of node j $\theta_j$



### **Variational Inference**



• The Joint likelihood:

$$p(r,z,\theta,\gamma) = \prod_{i} \theta_{i}^{\sum_{j} z_{i,j,1} + z_{i,j,2} + \alpha - 1} \times \gamma_{m,n}^{\sum_{i,j} r_{i,j} z_{i,j,2}^{m} + \beta_{1} - 1} (1 - \gamma_{m,n})^{\sum_{i,j} (1 - r_{i,j}) z_{i,j,1}^{m} z_{i,j,2}^{n} + \beta_{2} - 1}$$

• GMF approximation:

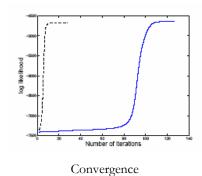
$$\begin{split} \mathbf{q}(\mathbf{r},\mathbf{z},\theta,\gamma\mid\alpha,\beta) = & \left(\prod_{i=1}^{N}\mathbf{q}(\theta_{i}\mid\mu_{i})\right) \times \left(\prod_{s=1,r=1}^{K}\mathbf{q}(\gamma_{s,t}\mid\nu_{s,t})\right) \times \left(\prod_{i=1,j=1}^{N}\mathbf{q}(Z_{i,j,1},Z_{i,j,2},F_{i,j}\mid\varphi_{i,j})\right) \\ & \mu_{i} = \alpha + \sum_{j}\left\langle Z_{i,j,1}\right\rangle + \sum_{j}\left\langle Z_{i,j,2}\right\rangle \\ & \nu_{s,t} = \beta + \sum_{i,j}F_{s,t}\left\langle Z_{i,j,1}Z_{i,j,2}\right\rangle \end{split}$$

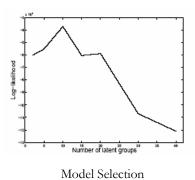
• MF approximation:

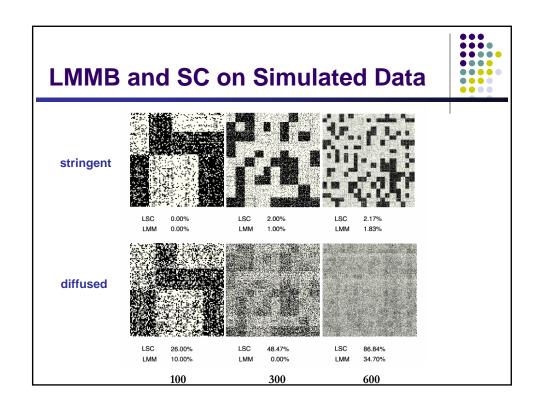
$$\mathbf{q}(\mathbf{r},\mathbf{z},\theta,\gamma\mid\alpha,\beta) = \left(\prod_{i=1}^{N}\mathbf{q}(\theta_i\mid\mu_i)\right) \times \left(\prod_{i=1}^{K}\mathbf{q}(\gamma_{s:t}\mid\nu_{s:t})\right) \times \left(\prod_{i=1}^{N}\mathbf{q}(\mathbf{Z}_{i:j,1}\mid\phi_{i:j,1})\mathbf{q}(\mathbf{Z}_{i:j,2}\mid\phi_{i:j,1})\mathbf{q}(\mathbf{T}_{i:j}\mid\phi_{i:j})\right)$$











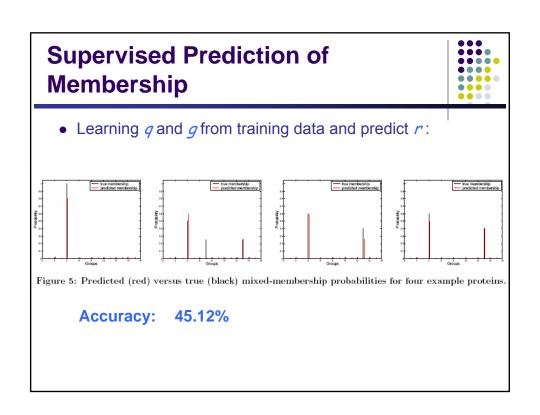
### **Protein-Protein Interaction Data**



Table 1: Functional Categories. In the table we report the functions proteins in the MIPS collection participate in. Most proteins participate in more than one function ( $\approx 2.4$  on average) and, in the table, we added one count for each function each protein participates in.

| #  | Category                         | Size |
|----|----------------------------------|------|
| 1  | Metabolism                       | 125  |
| 2  | Energy                           | 56   |
| 3  | Cell cycle & DNA processing      | 162  |
| 4  | Transcription (tRNA)             | 258  |
| 5  | Protein synthesis                | 220  |
| 6  | Protein fate                     | 170  |
| 7  | Cellular transportation          | 122  |
| 8  | Cell rescue, defence & virulence | 6    |
| 9  | Interaction w/ cell. environment | 18   |
| 10 | Cellular regulation              | 37   |
| 11 | Cellular other                   | 78   |
| 12 | Control of cell organization     | 36   |
| 13 | Sub-cellular activities          | 789  |
| 14 | Protein regulators               | 1    |
| 15 | Transport facilitation           | 41   |

| Inferr | ed I | Membership |  |
|--------|------|------------|--|
|        |      |            |  |



### **Summary of LMMB**



- · A stochastic block model
- Each node can play "multiple roles", and its ties with other nodes can be explained by different roles
- Hierarchical Bayesian formalism
- Efficient variational inference

### **Acknowledgements**



- Mark Gerstein
- Roded Sharan
- Jotun Hein
- Batzoglou

### Reference



- Deng et al. Assessment of the reliability of protein-protein interactions and protein function prediction. Proc. PSB, 140-151 (2003).
- Bader et al. Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol., 78-85 (2004).
- Kelley et al. PathBLAST: a tool for alignment of protein interaction networks.
   Nucl. Acids Res. 32, W83-8 (2004).
- Kelley et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. PNAS 100, 11394-9 (2003).
- Sharan et al. Conserved patterns of protein interaction in multiple species. PNAS 102, 1974-9 (2005).
- Sharan et al. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. J. Comp. Biol. In press (2005).
- Scott et al. Efficient algorithms for detecting signaling pathways in protein interaction networks. Proc. RECOMB, 1-13 (2005).