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Advanced Algorithms Advanced Algorithms 
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Biological Networks & Biological Networks & 
Network EvolutionNetwork Evolution

Eric XingEric Xing
Lecture 22, April 10, 2006

Reading: 

Expression networksRegulatory networks

Interaction networks

Metabolic networks

Nodes – molecules.
Links – inteactions / relations.

Molecular Networks
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Disease 
Spread

[Krebs]

Social Network

Food Web

Electronic
Circuit

Internet
[Burch & Cheswick]

Other types of networks

KEGG database: http://www.genome.ad.jp/kegg/kegg2.html

Metabolic networks

Nodes – metabolites (0.5K).
Edges – directed biochemichal
reactions (1K).
Reflect the cell’s metabolic circuitry.
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Barabasi & Oltvai. NRG. (2004) 5 101-113

“Graph theoretic description for a simple pathway (catalyzed by Mg2+ -dependant 
enzymes) is illustrated (a). In the most abstract approach (b) all interacting 
metabolites are considered equally.”

Graph theoretic description of 
metabolic networks

Protein Interaction Networks

Nodes – proteins (6K).
Edges – interactions (15K).
Reflect the cell’s machinery and 
signlaing pathways.
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Experimental approaches

Protein coIPYeast Two-Hybrid

Graphs and Networks

Graph: a pair of sets G={V,E} where V is a set of nodes, 
and E is a set of edges that connect 2 elements of V.

Directed, undirected graphs

Large, complex networks are 
ubiquitous in the world:  

Genetic networks
Nervous system
Social interactions
World Wide Web
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Global topological measures
Indicate the gross topological structure of the network

Degree Path length Clustering coefficient

[Barabasi]

Connectivity Measures
Node degree: the number of edges incident on the node 
(number of network neighbors.)

Undetected networks 

Degree distribution P(k): probability that a node has degree k.
Directed networks, i.e., transcription regulation networks (TRNs)

Incoming degree = 2.1
each gene is regulated by ~2 TFs

Outgoing degree = 49.8
each TF targets ~50 genes

i Degree of node i = 5
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Lij is the number of edges in the shortest 
path between vertices i and j

The characteristic path length of a graph is the 
average of the Lij for every possible pair (i,j)
Diameter: maximal distance in the network.

Networks with small values of L are said to have the “small world property”

In a TRN, Lij represents the number of intermediate TFs until final 
target

( , ) 2i jL =

i

j

Characteristic path length 

Path length

Starting TF

Final target

1 intermediate TF

= 1

Indicate how immediate
a regulatory response is

Average path length = 4.7

Clustering coefficient 
The clustering coefficient of node i is the ratio of the number 
Ei of edges that exist among its neighbors, over the number 
of edges that could exist: 

CI=2TI/nI(nI-1)

The clustering coefficient for the entire network C is the 
average of all the Ci

Clustering coefficient

4 neighbours

1 existing link

6 possible links

= 1/6 = 0.17

Measure how inter-connected 
the network is

Average coefficient = 0.11
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A Comparison of Global Network 
Statistics (Barabasi & Oltvai, 2004)

P(k) ~ k−γ ,  k >>1,  2 < γ

!
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A. Random Networks   [Erdos and Rényi (1959, 1960)]

B. Scale Free [Price,1965 & Barabasi,1999]  

C.Hierarchial

Mean path length ~ ln(k)

Phase transition:
Connected if: p ≥ ln( k ) / k

Preferential 
attachment. Add 
proportionally to 
connectedness

Mean path length ~ 
lnln(k)

Copy smaller graphs and let 
them keep their connections.

Local network motifs

Regulatory modules within the network

SIM MIM FFLFBL

[Alon]
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YPR013C

HCM1

SPO1STB1ECM22

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

SIM = Single input motifs

SBF

HCM1SPT21

MBF

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

MIM = Multiple input motifs
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SBF

Yox1

Tos8 Plm2

Pog1

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FFL = Feed-forward loops

MBF

SBF

Tos4

[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FBL = Feed-back loops
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What network structure should be 
used to model a biological network?
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yDegree connectivity distributions:

Calculating the degree 
connectivity of a network
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A. fulgidus
(archaea)

C. elegans
(eukaryote)

E. coli
(bacterium)

averaged 
over 43 
organisms

Jeong et al. Nature (2000) 407 651-654

Connectivity distributions for 
metabolic networks

(color of nodes is explained later)\ Jeong et al. Nature 411, 41 - 42 (2001)
Wagner. RSL (2003) 270 457-466

Protein-protein interaction 
networks



12

St
ro

ga
tz

S.
H

., 
N

at
ur

e
(2

00
1)

 4
10

26
8

log degree connectivity
lo

g 
fr

eq
ue

nc
y ay x=

lo
g 

fr
eq

ue
nc

y

log degree connectivity
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Random versus scaled 
exponential degree distribution 

Degree connectivity distributions differs between random and 
observed (metabolic and protein-protein interaction) networks.

What is so “scale-free” about 
these networks?

No matter which scale is chosen the same distribution of 
degrees is observed among nodes
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Erdos-Renyi (1960)
Watts-Strogatz (1998)
Barabasi-Albert (1999)

Models for networks of complex 
topology

N nodes
Every pair of nodes is connected with probability p.

Mean degree: (N-1)p.
Degree distribution is binomial, concentrated around the mean.
Average distance (Np>1): log N

Important result: many properties in these graphs appear quite 
suddenly, at a threshold value of PER(N)

If PER~c/N  with  c<1, then almost all vertices belong to isolated trees
Cycles of all orders appear at PER ~ 1/N

Random Networks: 
The Erdős-Rényi [ER] model (1960):
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For p=0 (Regular Networks): 
• high clustering coefficient 
• high characteristic path length

For p=1 (Random Networks): 
• low clustering coefficient
• low characteristic path length

The Watts-Strogatz [WS] model 
(1998)

Start with a regular network with N vertices
Rewire each edge with probability p

QUESTION: What happens for intermediate values of p?

WS model, cont.
There is a broad interval of p for which L is small but C 
remains large

Small world networks are common :
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ER Model

ER Model WS Model actors power grid www

( ) ~P K K γ−

Scale-free networks: 
The Barabási-Albert [BA] model (1999)

The distribution of degrees:

In real network, the probability of finding a highly connected 
node decreases exponentially with k

Two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

The BA model:
Evolution:  networks expand continuously by the addition of new 
vertices, and

Preferential-attachment (rich get richer): new vertices attach 
preferentially to sites that are already well connected.

BA model, cont.
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GROWTH: starting with a small number of vertices m0 at 
every timestep add a new vertex with m ≤ m0

PREFERENTIAL ATTACHMENT: the probability Π that a 
new vertex will be connected to vertex i depends on the 
connectivity of that vertex:

Scale-free network model

Barabasi and Albert. Science (1999) 286 509-512
Barabasi & Bonabeau Sci. Am. May 2003 60-69

Scale Free Networks

a) Connectivity distribution with N = m0+t=300000 and m0=m=1(circles), 
m0=m=3 (squares), and m0=m=5 (diamons) and m0=m=7 (triangles)

b) P(k) for m0=m=5 and system size N=100000 (circles), N=150000 
(squares) and N=200000 (diamonds)

Barabasi and Albert. Science (1999) 286 509-512
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Modified from Albert et al. Science (2000) 406 378-382

Comparing Random Vs. Scale-
free Networks

Two networks both with 130 nodes and 215 links)

The importance of the connected nodes in the scale-free 
network:

27% of the nodes are reached by the five most connected nodes, in the 
scale-free network more than 60% are reached.

Five nodes with most links
First neighbors of red nodes

Failure: Removal of a random node.

Attack: The selection and removal of a few nodes that play a 
vital role in maintaining the network’s connectivity.

Albert et al. Science (2000) 406 378-382

a macroscopic snapshot of Internet connectivity by K. C. Claffy

Failure and Attack
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Random networks are homogeneous so there is no difference 
between failure and attack

Modified from Albert et al. Science (2000) 406 378-382

Fraction nodes removed from network
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Failure and Attack, cont.

Modified from Albert et al. Science (2000) 406 378-382

Fraction nodes removed from network
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Failure and Attack, cont.
Scale-free networks are robust to failure but susceptible to 
attack
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Lethal
Slow-growth
Non-lethal
Unknown

Jeong et al. Nature 411, 41 - 42 (2001)

The phenotypic effect of removing the 
corresponding protein:

Yeast protein-protein interaction networks

Jeong et al. Nature 411, 41 - 42 (2001)

Lethality and connectivity are 
positively correlated

Average and standard deviation for the various clusters.

Pearson’s linear correlation coefficient = 0.75
Number of links
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Barabasi & Oltvai. NRG. (2004) 5 101-113

Genetic foundation of network 
evolution

Network expansion by gene duplication
A gene duplicates
Inherits it connections
The connections can change

Gene duplication slow ~10-9/year
Connection evolution fast ~10-6/year

Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68

The transcriptional regulation 
network of Escherichia coli.
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Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68

Motifs in the networks
Deployed a motif detection 
algorithm on the transcriptional 
regulation network.
Identified three recurring motifs 
(significant with respect to 
random graphs).

Conant and Wagner. Nature Genetics (2003) 34 264-266

Convergent evolution of gene 
circuits

Are the components of the 
feed-forward loop for 
example homologous?

Circuit duplication is rare in 
the transcription network



22

Acknowledgements

Itai Yanai and Doron Lancet
Mark Gerstein
Roded Sharan
Jotun Hein
Serafim Batzoglou

for some of the slides modified from their lectures or tutorials

Reference
Barabási and Albert. Emergence of scaling in random 
networks. Science 286, 509-512 (1999).
Yook et al. Functional and topological characterization of 
protein
interaction networks. Proteomics 4, 928-942 (2004).
Jeong et al. The large-scale organization of metabolic 
networks. Nature 407, 651-654 (2000).
Albert et al. Error and attack tolerance in complex 
networks. Nature 406 , 378 (2000). 
Barabási and Oltvai, Network Biology: Understanding the 
Cell's Functional Organization, Nature Reviews, vol 5, 
2004


