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Other types of networks
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KEGG database: http: l/www genome ad. jp/kegg/keggz html reaCtionS (1 K)
o Reflect the cell’'s metabolic circuitry.




Graph theoretic description of
metabolic networks
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“Graph theoretic description for a simple pathway (catalyzed by Mg2* -dependant
enzymes) is illustrated (a). In the most abstract approach (b) all interacting
metabolites are considered equally.”

Barabasi & Oltvai. NRG. (2004) 5 101-113

Protein Interaction Networks

o Nodes — proteins (6K).

o Edges — interactions (15K).

0 Reflect the cell’s machinery and
signlaing pathways.




Experimental approaches
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Graphs and Networks

e Graph: a pair of sets G={V,E} where V is a set of nodes,
and E is a set of edges that connect 2 elements of V.

e Directed, undirected graphs

e Large, complex networks are

ubiquitous in the world:

e Genetic networks
e Nervous system

e Social interactions
e World Wide Web




Global topological measures

e Indicate the gross topological structure of the network
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Degree Path length Clustering coefficient

[Barabasi]

Connectivity Measures

e Node degree: the number of edges incident on the node
(number of network neighbors.)
e Undetected networks

0

Degree of node i = 5

Degree distribution A(k): probability that a node has degree 4.
e Directed networks, i.e., transcription regulation networks (TRNs)

\l/ Incoming degree = 2.1
—each gene is regulated by ~2 TFs

v
‘71§‘ Outgoing degree = 49.8

—each TF targets ~50 genes
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Characteristic path length :
|
° L,-j is the number of edges in the shortest i
path between vertices /and j

e The characteristic path length of a graph is the I-(i,j) =2

average of the L,-J for every possible pair ()

e Diameter: maximal distance in the network. 3]
Networks with small values of L are said to have the “small world property”

e InaTRN, L,-j represents the number of intermediate TFs until final
target
V¥V  Starting TF

Indicate how immediate
a regulatory response is v<— 1 intermediate TF

Average path length = 4.7 1

O Final target
v

Path length =1

Clustering coefficient

e The clustering coefficient of node /is the ratio of the number
£, of edges that exist among its neighbors, over the number
of edges that could exist:

4 neighbours

Measure how inter-connected
the network is 1 existing link

Average coefficient = 0.11
6 possible links

Clustering coefficient
=1/6 =0.17

e The clustering coefficient for the entire network Cis the
average of all the C;




A Comparison of Global Network

Statistics (Barabasi & oitvai, 2004)

A. Random Networks [Erdos and Rényi (1959, 1960)] e FKK ‘
- P(k) =

k!
,{ \ - Mean path length ~ In(k)
\ Phase transition:
' . Connected if: P > In(k)/k
B. Scale Free [Price,1965 & Barabasi,1999] P(K)~k7, k>>1 2<y
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Mean path length ~
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connectedness
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Local network motifs :

e Regulatory modules within the network
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

MIM = Multiple input motifs
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]




FFL = Feed-forward loops
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FBL = Feed-back loops
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What network structure should be
used to model a biological network?

Strogatz S.H., Nature (2001) 410 268

lattice random

Calculating the degree
connectivity of a network -

L)
Caspase

Degree connectivity distributions:

‘ frequency

12 345678
degree connectivity
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Connectivity distributions for
metabolic networks
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Jeong et al. Nature (2000) 407 651-654

Protein-protein interaction
networks

-
[ T 3 4 5 6TEGIOR
degree

Jeong et al. Nature 411, 41 - 42 (2001)

color of nodes is explained later)\
( P ) Wagner. RSL (2003) 270 457-466
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Random versus scaled
exponential degree distribution

\
e Degree connectivity distributions differs between random and

observed (metabolic and protein-protein interaction) networks.
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What is so “scale-free” about
these networks? o

e No matter which scale is chosen the same distribution of
degrees is observed among nodes
10°

Strogatz S.H., Nature (2001) 410 268




Models for networks of complex §§:
topology -

e Erdos-Renyi (1960)

e Watts-Strogatz (1998)

e Barabasi-Albert (1999)
Random Networks:
The Erdés-Rényi [ER] model (1960): o

e N nodes
e Every pair of nodes is connected with probability p.

. L4 d =
=0 ! |
. . . ! - L
L e . . . .
- p— M
p=0.1 p=0.15

e Mean degree: (N-1)p. |

e Degree distribution is binomial, concentrated around the mean _:;:

e Average distance (Np>1): log N P ke

k

e Important result: many properties in these graphs appear quite

suddenly, at a threshold value of PER(N)

e If PER~c/N with c<1, then almost all vertices belong to isolated trees

e Cycles of all orders appear at PER ~ 1/N
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e00
The Watts-Strogatz [WS] model sels
(1998) s
e Start with a regular network with N vertices
e Rewire each edge with probability p
For p=0 (Regular Networks): For p=1 (Random Networks):
* high clustering coefficient * low clustering coefficient
 high characteristic path length * low characteristic path length
e QUESTION: What happens for intermediate values of p?
e0o
o000
o000
e
WS model, cont. o

e There is a broad interval of p for which L is small but C
remains large
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e Small world networks are common :

Table 1 Empirical examples of small-world networks

Lactual L random Cactual Crandom
Film actors 3.65 299 079 0.00027
Power grid 187 124 0080 0.005
C. elegans 288 225 028 0.05
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Scale-free networks: 333
y _m [ X J
The Barabasi-Albert [BA] model (1999) o
e The distribution of degrees:
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e In real network, the probability of finding a highly connected
node decreases exponentially with &

P(K)~ K™

BA model, cont.

e Two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

e The BA model:

e Evolution: networks expand continuously by the addition of new
vertices, and

e Preferential-attachment (rich get richer): new vertices attach
preferentially to sites that are already well connected.

. J - <N- - AN
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Scale-free network model

|
e GROWTH: starting with a small number of vertices m, at

every timestep add a new vertex with m < m,

e PREFERENTIAL ATTACHMENT: the probability 1 that a
new vertex will be connected to vertex /depends on the
connectivity of that vertex: [](k) =<'

2k
Al e S PN

Barabasi & Bonabeau Sci. Am. May 2003 60-69
Barabasi and Albert. Science (1999) 286 509-512

Scale Free Networks

P(K)

a) Connectivity distribution with N = m,+t=300000 and m,=m=1(circles),
my=m=3 (squares), and m,=m=>5 (diamons) and m,=m=7 (triangles)

b) P(k) for mO=m=5 and system size N=100000 (circles), N=150000
(squares) and N=200000 (diamonds)

Barabasi and Albert. Science (1999) 286 509-512




Comparing Random Vs. Scale- §§:
free Networks o

e Two networks both with 130 nodes and 215 links)

s shes
LE N B

@ Five nodes with most links
@ First neighbors of red nodes
Exponential Scale-free

e The importance of the connected nodes in the scale-free
network:
e 27% of the nodes are reached by the five most connected nodes, in the
scale-free network more than 60% are reached.
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Fa i I U re a n d AttaC k Albert et al. Science (2000) 406 378-382 : H

e Failure: Removal of a random node.

e Attack: The selection and removal of a few nodes that play a
vital role in maintaining the network’s connectivity.

a macroscopic snapshot of Internet connectivity by K. C. Claffy




Failure and Attack, cont.

e Random networks are homogeneous so there is no difference
between failure and attack
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Modified from Albert et al. Science (2000) 406 378-382

Failure and Attack, cont.

e Scale-free networks are robust to failure but susceptible to
attack

12 T T T T

o Failure o ©
10 o Attack o © T

Diameter of the network

4 " 1 " 1
0.00 0.02 0.04
Fraction nodes removed from network

Modified from Albert et al. Science (2000) 406 378-382
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The phenotypic effect of removing the | se¢¢
. . [ X J
corresponding protein: °
e Yeast protein-protein interaction networks

@ Lethal

O Slow-growth

@ Non-lethal

O Unknown

Jeong et al. Nature 411, 41 - 42 (2001)

Lethality and connectivity are
positively correlated o

e Average and standard deviation for the various clusters.
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Number of links

e Pearson’s linear correlation coefficient = 0.75
Jeong et al. Nature 411, 41 - 42 (2001)




Genetic foundation of network
evolution

e Network expansion by gene duplication
e A gene duplicates b

e Inherits it connections
e The connections can change S
Before duplication
e Gene duplication slow ~10-9/year
e Connection evolution fast ~10-6/year
After duplication
Proteins

Barabasi & Oltvai. NRG. (2004) 5 101-113

The transcriptional regulation
network of Escherichia coli. H
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Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68
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Motifs in the networks

e Deployed a motif detection
algorithm on the transcriptional
regulation network.

e Identified three recurring motifs

(significant with respect to
random graphs).

single input module (SIM)
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Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68

Convergent evolution of gene

circuits

e Are the components of the
feed-forward loop for
example homologous?

e Circuit duplication is rare in
the transcription network
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Conant and Wagner. Nature Genetics (2003) 34 264-266
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