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Typically, the ancestor is unknown.




How does sequence variation
arise?

e Mutation:
e (@) Inherent: DNA replication errors are not always corrected.
e (b) External: exposure to chemicals and radiation.
e Selection: Deleterious mutations are removed quickly.

Neutral and rarely, advantageous mutations, are tolerated and
stick around.

e Fixation: It takes time for a new variant to be established
(having a stable frequency) in a population.

Modeling DNA base substitution

e Strictly speaking, only applicable to regions undergoing
little selection.

e Standard assumptions (sometimes weakened)

1. Site independence.

2. Site homogeneity.

3. Markovian: given current base, future substitutions independent of past.
4. Temporal homogeneity: stationary Markov chain.




More assumptions

|
e Q,=s,QandQ,=s,Q, for some positive s,, s, and a rate

matrix Q.
e The ancestor is sampled from the stationary distribution 7z of
Q.
e Qisreversible: fora, b,t >0
m@)P(t,a,b) = P(t,b,a) z(b),
(detailed balance).

The stationary distribution

e A probability distribution 7 on {A,C,G,T} is a stationary
distribution of the Markov chain with transition probability matrix P
= P(i,j), if for all j,

2 (i) P(i.j) = #(j).-

e Exercise. Given any initial distribution, the distribution at time t of a
chain with transition matrix P converges to ras t — . Thus, zis
also called an equilibrium distribution.

e Exercise. For the Jukes-Cantor and Kimura models, the uniform
distribution is stationary. (Hint: diagonalize their infinitesimal rate
matrices.)

We often assume that the ancestor sequence is i.i.d =.




Phylogeny methods

Basic principles:

e Degree of sequence difference is proportional to length of independent
sequence evolution

e Only use positions where alignment is pretty certain — avoid areas with (too
many) gaps

Major methods:

e Parsimony phylogeny methods
e Likelihood methods
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Joint probability of A and C

e Under the model in the previous slides, the joint probability is

p(A.C)=> z(a)p(Al|s,T.Q.a)p(C|s,T.Q,a)
=> 7(A)p(als,T.Q.A)p(Cl|s,T.Q.a)

= 2(A)P(C|5,T +5,T.Q.A)
= F(t,A,C)

e where t=s,T+s,T is the (evolutionary) distance between A and C.
Note that s;,, S,, and T are not identifiable.

e The matrix F(t) is symmetric. It is equally valid to view A as the
ancestor of C or vice versa.

Estimating the evolutionary
distance between two sequences | ¢

e Suppose two aligned protein sequences a,...a,and b;...b, are
separated by t PAMSs.

e Under a reversible substitution model that is [ID across sites, the
likelihood of tis

L(*)=p(q,...a,. b ...5,| model)
=[17¢.a..5)
k

=[17. a,b)"“?
a,b
e where c(a,b) =#{k:a =a, b, =Db}.

e Maximizing this quantity gives the maximum likelihood estimate
of t. This generalizes the distance correction with Jukes-Cantor.




Phylogeny

e The shaded nodes represent the observed nucleotides at a
given site for a set of organisms

e The unshaded nodes represent putative ancestral nucleotides
e Transitions between nodes capture the dynamic of evolution

Likelihood methods

e A tree, with branch lengths, and the data at a single site.

]

Jangabey
' CAGTGACGCCCCAAACGT
CAGTGACGCTACAAACGT

e, 1 ,,9 I CTGTGACGTAACAAACGA
Q: CTGTGACGTAGCAAACGA
tﬁ@ o CTGTGACGTAGCAAACGA

e Since the sites evolve independently on the same tree,

L=PD|T)= ﬁP(D“) |T)




Likelihood at one site on a tree

e We can compute this by summing over .
all assignments of states x,y, zand w
to the interior nodes:
POYT)=DDDDPAACCC xy zw|T)

X y z w

e Due to the Markov property of the tree, we ) t Humen
can factorize the complete likelihood according
to the tree topology:

4 Bonebo

P(A,AC,C.C,x,y,zwW |T) =
P(x) P(ylxts) P(Aly,t)P(Cly.t,)
P(z|xt) P(Cly.ts)
Pw]|zt;)P(C|y.t,)P(Cly.ts)
e Summing this up, there are 256 terms in this case!

Getting a recursive algorithm

e when we move the summation signs as far right as possible:

P(D(i) IT)= ZZZZP(A,A,C,C,C,X,Y,Z,W [T)=

Xy z w
2P(x)
( SP(y I xt) P(A|y,t1)P(C|y,t2))
(ZP(z|x,t8) PC|2t,)
( 2PW | zt,)P(C|w,t,)P(C |W,t5)))




Felsenstein’s Pruning Algorithm

e To calculate P(Xy, Xy, ..., Xy | T, 1)

Initialization: (a)
Setk=2N-1 O ® ©

Recursion: Compute P(L, | a) foralla € =
If k is a leaf node:
Set P(L, | @) = 1(a=xy)
If k is not a leaf node:
1. Compute P(L; | b), P(L; | b) for all b, for daughter nodes i,

-

2.SetP(L | a) = Zb’ P a, t)P(L; | b) P(c|a, tj) P(Lj | ©)
Termination:

Likelihood at this column = P(xy, X5, ..., Xy| T, t) = ZaP(LZN_1 | a)P(a)

e This algorithm can easily handle Ambiguity and error in the sequences (how?)

Finding the ML tree

e So far | have just talked about the computation of the
likelihood for one tree with branch lengths known.

e To find a ML tree, we must search the space of tree
topologies, and for each one examined, we need to optimize
the branch lengths to maximize the likelihood.




Bayesian phylogeny methods

\
e Bayesian inference has been applied to inferring phylogenies

(Rannala and Yang, 1996;Mau and Larget, 1997; Li, Pearl

and Doss, 2000).

e All use a prior distribution on trees. The prior has enough influence on
the result that its reasonableness should be a major concern. In

particular, the depth of the tree may be seriously affected by the
distribution of depths in the prior.

e All use Markov Chain Monte Carlo (MCMC) methods. They sample from
the posterior distribution.

e When these methods make sense they not only get you a point estimate
of the phylogeny, they get you a distribution of possible phylogenies.

Modeling rate
variation among sites




A model of variation in
evolutionary rates among sites

e The basic idea is that the rate at each site is drawn |
independently from a distribution of rates. The most widely
used choice is the Gamma distribution, which has density
function:

ﬂlrz/,,(l—le—}./’ /,,(l—le—/‘/()
M)  TI(a)d”

f(r)=

e Gamma distributions (a.,0)

Unrealistic aspects of the model:

e There is no reason, aside from mathematical convenience, to
e assume that the Gamma is the right distribution.

e A common variation is to assume there is a separate
probability fO of having rate O.

e Rates at different sites appear to be correlated, which this
model does not allow.

e Rates are not constant throughout evolution, they change with
time.
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Rates varying among sites

. \
o If LO(r) is the likelihood of the tree for site /given that the rate

of evolution at site /is r; we can integrate this over a gamma
density:

L9 = [“ £ ()L (n)d

e so that the overall likelihood is

m

L=TT[[ (e

/=1

e Unfortunately these integrals cannot be evaluated for trees
with more than a few tips as the quantities L0(r) becomes
complicated.

Modeling rate variation among
sites s

Phylogeny

A
A
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e There are a finite number of rates (denote rate i as r;).
e There are probabilities p; of a site having rate i.
e A process not visible to us ("hidden") assigns rates to sites.

e The probability of our seeing some data are to be obtained by summing
over all possible combinations of rates, weighting appropriately by their
probabilities of occurrence.
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Rocall the HMM :
e The shaded nodes represent the observed nucleotides at particular
sites of an organism's genome
e For discrete Y, widely used in computational biology to represent
segments of sequences
e gene finders and motif finders
e profile models of protein domains
e models of secondary structure
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e Observation space
Alphabetic set: C:{Cl,cz,n-,c,(} @

Euclidean space: RY @
¢ Index set of hidden states @ @
1={12,--, M}
e Transition probabilities between any two states
Py =1yl =D=a,,
or  pylyi =1~ Multinomial(a,yl,a/vz,...,a,m),v/' el 1 2

()
()

Graphical model

e Start probabilities
p(y1) ~ Multinomial(z;, 7,,..., 7, ).
e Emission probabilities associated with each state
p(x, |y =1) ~ Multinomial(,,,5.,.,....b, ) Vi €.
or in general:

px |yl =1)~f(16,)viel

K

State automata

12



Hidden Markov Phylogeny

e Replacing the standard emission model with a tree

e A process not visible to us (.hidden") assigns rates to sites. Itis a
Markov process working along the sequence.

e For example it might have transition probability Prob (,]/) of changing to
rate jin the next site, given that it is at rate /in this site.
e These are the most widely used models allowing rate
variation to be correlated along the sequence.

The Forward Algorithm

e We can compute af for all 4, #, using dynamic programming!

Initialization: af =P(x, yl =1)
=Px Iy =DP(yf =1)

o =Px |y =Dz, ~Plx Lyt =D,

lteration:

af =P(x 1y =1) Z/a;—la/,k

Termination:

P(x) = Zaﬁ
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The Backward Algorithm

\
e We can compute ﬂfk for all &, #, using dynamic programming!

Initialization:
k
B =1, vk

Bl =3, a0 P |y =1) Bl

Termination:

P =D o B
k

Hidden Markov Phylogeny

e this yields a gene finder that exploits evolutionary constraints
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A Comparison of comparative genomic
gene-finding and isolated gene-finding

e Based on sequence data from 12-15 primate species, |
McAuliffe et al (2003) obtained sensitivity of 100%, with a
specificity of 89%.

e Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a
specificity of 34%.
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Open questions (philosophical)

Observation:

e Finding a good phylogeny will help in finding the genes.

e Finding the genes will help to find biologically meaningful
phylogenetic trees

Which came first, the chicken or the egg?
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Open questions (technical)

|
e How to learn a phylogeny (topology and transition prob.)?

e Should different site use the same phylogeny? Function-
specific phylogeny?

e Other evolutionary events: duplication, rearrangement, lateral
transfer, etc.
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