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A pair of homologous bases

Typically, the ancestor is unknown.
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How does sequence variation 
arise?

Mutation: 
(a) Inherent: DNA replication errors are not always corrected. 
(b) External: exposure to chemicals and radiation. 

Selection: Deleterious mutations are removed quickly. 
Neutral and rarely, advantageous mutations, are tolerated and 
stick around.
Fixation: It takes time for a new variant to be established 
(having a stable frequency) in a population. 

Modeling DNA base substitution

Strictly speaking, only applicable to regions undergoing 
little selection.
Standard assumptions  (sometimes weakened)

1. Site independence.
2. Site homogeneity.
3. Markovian: given current base, future substitutions independent of past.
4. Temporal homogeneity: stationary Markov chain.
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More assumptions
Qh = shQ and Qm = smQ, for some positive sh, sm, and a rate 
matrix Q. 

The ancestor is sampled from the stationary distribution π of 
Q.

Q is reversible: for a, b, t ≥ 0

π(a)P(t,a,b) = P(t,b,a)π(b),    

(detailed balance).

The stationary distribution
A probability distribution π on {A,C,G,T} is a stationary 
distribution of the Markov chain with transition probability matrix P 
= P(i,j), if for all j, 

∑i π(i) P(i,j) = π(j).

Exercise.  Given any initial distribution, the distribution at time t of a 
chain with transition matrix P converges to π as t → ∞. Thus, π is 
also called an equilibrium distribution. 

Exercise. For the Jukes-Cantor and Kimura models, the uniform 
distribution is stationary. (Hint: diagonalize their infinitesimal rate 
matrices.)

We often assume that the ancestor sequence is i.i.d π.
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Basic principles:

Degree of sequence difference is proportional to length of independent 
sequence evolution

Only use positions where alignment is pretty certain – avoid areas with (too 
many) gaps

Major methods:

Parsimony phylogeny methods 
Likelihood methods

Phylogeny methods 

ancestor ~ π

A

C

Q
Q

shT PAMs

smT
PAMs

New picture
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Joint probability of A and C
Under the model in the previous slides, the joint probability is

where t = shT+ smT is the (evolutionary) distance between A and C.                
Note that sh , sm and T are not identifiable.

The matrix F(t) is symmetric. It is equally valid to view A as the 
ancestor of C or vice versa.  
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Estimating the evolutionary 
distance between two sequences

Suppose two aligned protein sequences a1…an and b1…bn are 
separated by t PAMs.

Under a reversible substitution model that is IID across sites, the 
likelihood of t is

where c(a,b) = # {k : ak = a, bk = b}.

Maximizing this quantity gives the maximum likelihood estimate 
of t. This generalizes the distance correction with Jukes-Cantor. 
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Phylogeny

The shaded nodes represent the observed nucleotides at a 
given site for a set of organisms
The unshaded nodes represent putative ancestral nucleotides
Transitions between nodes capture the dynamic of evolution

A tree, with branch lengths, and the data at a single site.

Since the sites evolve independently on the same tree,
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Likelihood methods
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Likelihood at one site on a tree
We can compute this by summing over 
all assignments of states x, y, z and w 
to the interior nodes:

Due to the Markov property of the tree, we 
can factorize the complete likelihood according 
to the tree topology: 

Summing this up, there are 256 terms in this case!
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Getting a recursive algorithm
when we move the summation signs as far right as possible:
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Felsenstein’s Pruning Algorithm
To calculate P(x1, x2, …, xN | T, t)

Initialization:
Set k = 2N – 1

Recursion: Compute P(Lk | a) for all a ∈ Σ
If k is a leaf node:

Set P(Lk | a) = 1(a = xk)
If k is not a leaf node:

1. Compute P(Li | b), P(Lj | b) for all b, for daughter nodes i, j

2. Set P(Lk | a) = Σb, cP(b | a, ti)P(Li | b) P(c | a, tj) P(Lj | c)

Termination:

Likelihood at this column = P(x1, x2, …, xN | T, t) = ΣaP(L2N-1 | a)P(a)

This algorithm can easily handle Ambiguity and error in the sequences (how?)

AcAb
a

i j

k ak

Finding the ML tree
So far I have just talked about the computation of the 
likelihood for one tree with branch lengths known.

To find a ML tree, we must search the space of tree 
topologies, and for each one examined, we need to optimize 
the branch lengths to maximize the likelihood.
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Bayesian phylogeny methods
Bayesian inference has been applied to inferring phylogenies 
(Rannala and Yang, 1996;Mau and Larget, 1997; Li, Pearl 
and Doss, 2000).

All use a prior distribution on trees. The prior has enough influence on 
the result that its reasonableness should be a major concern. In
particular, the depth of the tree may be seriously affected by the 
distribution of depths in the prior.
All use Markov Chain Monte Carlo (MCMC) methods. They sample from 
the posterior distribution.
When these methods make sense they not only get you a point estimate 
of the phylogeny, they get you a distribution of possible phylogenies.

Modeling rate
variation among sites

AG

AG

AC

AA

AA

AG

AA

AT

AG

...



10

A model of variation in 
evolutionary rates among sites

The basic idea is that the rate at each site is drawn 
independently from a distribution of rates. The most widely 
used choice is the Gamma distribution, which has density 
function:

Gamma distributions (α,θ)
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Unrealistic aspects of the model:
There is no reason, aside from mathematical convenience, to
assume that the Gamma is the right distribution. 
A common variation is to assume there is a separate 
probability f0 of having rate 0.
Rates at different sites appear to be correlated, which this 
model does not allow.
Rates are not constant throughout evolution, they change with 
time.
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Rates varying among sites
If L(i)(ri) is the likelihood of the tree for site i given that the rate 
of evolution at site i is ri, we can integrate this over a gamma 
density:

so that the overall likelihood is

Unfortunately these integrals cannot be evaluated for trees 
with more than a few tips as the quantities L(i)(ri) becomes 
complicated.
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There are a finite number of rates (denote rate i as ri).
There are probabilities pi of a site having rate i.
A process not visible to us ("hidden") assigns rates to sites. 
The probability of our seeing some data are to be obtained by summing 
over all possible combinations of rates, weighting appropriately by their 
probabilities of occurrence.

Modeling rate variation among 
sites
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Rocall the HMM

The shaded nodes represent the observed nucleotides at particular 
sites of an organism's genome
For discrete Yi, widely used in computational biology to represent 
segments of sequences

gene finders and motif finders
profile models of protein domains
models of secondary structure 

Definition (of HMM)
Observation space

Alphabetic set:
Euclidean space:

Index set of hidden states

Transition probabilities between any two states

or

Start probabilities

Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 
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Hidden Markov Phylogeny

Replacing the standard emission model with a tree 
A process not visible to us (.hidden") assigns rates to sites. It is a 
Markov process working along the sequence. 
For example it might have transition probability Prob (j|i) of changing to 
rate j in the next site, given that it is at rate i in this site.

These are the most widely used models allowing rate 
variation to be correlated along the sequence.

The Forward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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The Backward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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Hidden Markov Phylogeny

this yields a gene finder that exploits evolutionary constraints
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Based on sequence data from 12-15 primate species, 
McAuliffe et al (2003) obtained sensitivity of 100%, with a 
specificity of 89%. 

Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a 
specificity of 34%.  
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A Comparison of comparative genomic 
gene-finding and isolated gene-finding

Observation:

Finding a good phylogeny will help in finding the genes.

Finding the genes will help to find biologically meaningful 
phylogenetic trees

Which came first, the chicken or the egg?

Open questions (philosophical)
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Open questions (technical)
How to learn a phylogeny (topology and transition prob.)?

Should different site use the same phylogeny? Function-
specific phylogeny?  

Other evolutionary events: duplication, rearrangement, lateral 
transfer, etc.
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