Advanced Algorithms and Models for Computational Biology

-- a machine learning approach

Molecular Ecolution: Phylogenetic trees

Eric Xing
Lecture 21, April 5, 2006

Reading: DTW book, Chap 12 DEKM book, Chap 7, 8

A pair of homologous bases ancestor ? Tyears Qh Qh C Typically, the ancestor is unknown.

How does sequence variation arise?

- Mutation:
 - (a) Inherent: DNA replication errors are not always corrected.
 - (b) External: exposure to chemicals and radiation.
- Selection: Deleterious mutations are removed quickly.
 Neutral and rarely, advantageous mutations, are tolerated and stick around.
- **Fixation**: It takes time for a new variant to be established (having a stable frequency) in a population.

Modeling DNA base substitution

- Strictly speaking, only applicable to regions undergoing little selection.
- Standard assumptions (sometimes weakened)
 - 1. Site independence.
 - 2. Site homogeneity.
 - 3. Markovian: given current base, future substitutions independent of past.
 - 4. Temporal homogeneity: stationary Markov chain.

More assumptions

- $Q_h = s_h Q$ and $Q_m = s_m Q$, for some positive s_h , s_m , and a rate matrix Q.
- The ancestor is sampled from the stationary distribution π of Q.
- Q is **reversible**: for a, b, $t \ge 0$ $\pi(a)P(t,a,b) = P(t,b,a)\pi(b),$ (detailed balance).

The stationary distribution

• A probability distribution π on $\{A,C,G,T\}$ is a **stationary distribution** of the Markov chain with transition probability matrix P = P(i,j), if for all j,

$$\sum_{i} \pi(i) \ P(i,j) = \pi(j).$$

- **Exercise**. Given any initial distribution, the distribution at time t of a chain with transition matrix P converges to π as $t \to \infty$. Thus, π is also called an **equilibrium** distribution.
- Exercise. For the Jukes-Cantor and Kimura models, the uniform distribution is stationary. (Hint: diagonalize their infinitesimal rate matrices.)

We often assume that the ancestor sequence is i.i.d π .

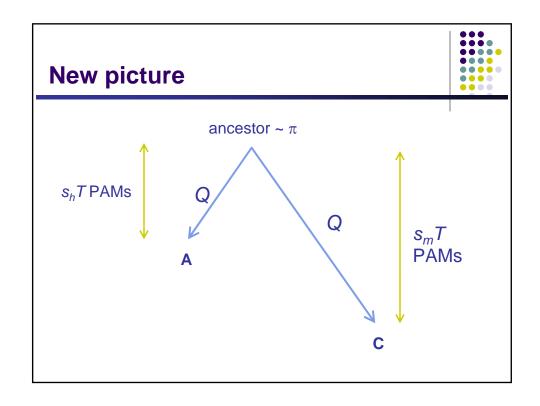
Phylogeny methods

Basic principles:

- Degree of sequence difference is proportional to length of independent sequence evolution
- Only use positions where alignment is pretty certain avoid areas with (too many) gaps

Major methods:

- Parsimony phylogeny methods
- Likelihood methods



Joint probability of A and C

• Under the model in the previous slides, the joint probability is

$$\begin{split} p(\mathbf{A},\mathbf{C}) &= \sum_{a} \pi(a) p(\mathbf{A} \,|\, \boldsymbol{s}_h \boldsymbol{T}, \boldsymbol{Q}, a) p(\mathbf{C} \,|\, \boldsymbol{s}_m \boldsymbol{T}, \boldsymbol{Q}, a) \\ &= \sum_{a} \pi(\mathbf{A}) p(a \,|\, \boldsymbol{s}_h \boldsymbol{T}, \boldsymbol{Q}, \mathbf{A}) p(\mathbf{C} \,|\, \boldsymbol{s}_m \boldsymbol{T}, \boldsymbol{Q}, a) \\ &= \pi(\mathbf{A}) p(\mathbf{C} \,|\, \boldsymbol{s}_h \boldsymbol{T} + \boldsymbol{s}_m \boldsymbol{T}, \boldsymbol{Q}, \mathbf{A}) \\ &= F(\boldsymbol{t}, \mathbf{A}, \mathbf{C}) \end{split}$$

- where t = s_hT+ s_mT is the (evolutionary) distance between A and C.
 Note that s_h, s_m and T are not identifiable.
- The matrix F(t) is symmetric. It is equally valid to view A as the ancestor of C or vice versa.

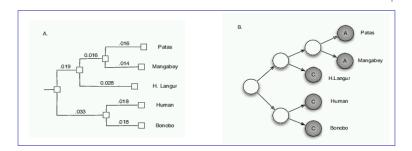
Estimating the evolutionary distance between two sequences

- Suppose two aligned protein sequences $a_1...a_n$ and $b_1...b_n$ are separated by t PAMs.
- Under a reversible substitution model that is IID across sites, the likelihood of t is

$$\begin{split} L(t) &= p(a_1 \dots a_n, b_1 \dots b_n \mid \text{model}) \\ &= \prod_k F(t, a_k, b_k) \\ &= \prod_{a, b} F(t, a, b)^{c(a, b)} \end{split}$$

- where $c(a,b) = \# \{k : a_k = a, b_k = b\}.$
- Maximizing this quantity gives the maximum likelihood estimate of t. This generalizes the distance correction with Jukes-Cantor.

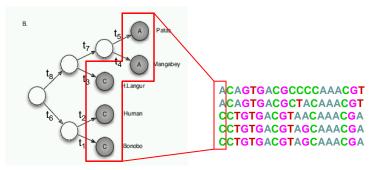
Phylogeny



- The shaded nodes represent the observed nucleotides at a given site for a set of organisms
- The unshaded nodes represent putative ancestral nucleotides
- Transitions between nodes capture the dynamic of evolution

Likelihood methods

• A tree, with branch lengths, and the data at a single site.



Since the sites evolve independently on the same tree,

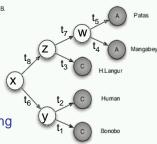
$$L = P(D \mid T) = \prod_{i=1}^{m} P(D^{(i)} \mid T)$$

Likelihood at one site on a tree

 We can compute this by summing over all assignments of states x, y, z and w to the interior nodes:

$$P(\mathcal{D}^{(i)} \mid \mathcal{T}) = \sum_{x} \sum_{y} \sum_{z} \sum_{w} P(\mathcal{A}, \mathcal{A}, \mathcal{C}, \mathcal{C}, \mathcal{C}, x, y, z, w \mid \mathcal{T})$$

 Due to the Markov property of the tree, we can factorize the complete likelihood according to the tree topology:



$$\begin{split} P(A,A,C,C,C,x,y,z,w \mid T) = \\ P(x) & P(y \mid x,t_6) & P(A \mid y,t_1) \ P(C \mid y,t_2) \\ & P(z \mid x,t_8) & P(C \mid y,t_3) \\ & P(w \mid z,t_7) \ P(C \mid y,t_4) \ P(C \mid y,t_5) \end{split}$$

• Summing this up, there are 256 terms in this case!

Getting a recursive algorithm

• when we move the summation signs as far right as possible:

$$P(D^{(i)} | T) = \sum_{x} \sum_{y} \sum_{z} \sum_{w} P(A, A, C, C, C, x, y, z, w | T) =$$

$$\sum_{x} P(x)$$

$$\left(\sum_{y} P(y | x, t_{6}) \quad P(A | y, t_{1}) P(C | y, t_{2}) \right)$$

$$\left(\sum_{z} P(z | x, t_{8}) \quad P(C | z, t_{3}) \right)$$

$$\left(\sum_{w} P(w | z, t_{7}) P(C | w, t_{4}) P(C | w, t_{5}) \right)$$

Felsenstein's Pruning Algorithm

• To calculate P(x₁, x₂, ..., x_N | T, t)

Initialization:

Set
$$k = 2N - 1$$

Recursion: Compute $P(L_k \mid a)$ for all $a \in \Sigma$

If k is a leaf node:

Set
$$P(L_k | a) = 1(a = x_k)$$

If k is not a leaf node:

1. Compute $P(L_i \mid b)$, $P(L_i \mid b)$ for all b, for daughter nodes i, j

2. Set
$$P(L_k \mid a) = \sum_{b, c} P(b \mid a, t_i) P(L_i \mid b) P(c \mid a, t_j) P(L_j \mid c)$$

Termination:

Likelihood at this column =
$$P(x_1, x_2, ..., x_N | T, t) = \sum_a P(L_{2N-1} | a)P(a)$$

• This algorithm can easily handle Ambiguity and error in the sequences (how?)

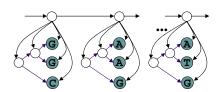
Finding the ML tree

- So far I have just talked about the computation of the likelihood for one tree with branch lengths known.
- To find a ML tree, we must search the space of tree topologies, and for each one examined, we need to optimize the branch lengths to maximize the likelihood.

Bayesian phylogeny methods

- Bayesian inference has been applied to inferring phylogenies (Rannala and Yang, 1996; Mau and Larget, 1997; Li, Pearl and Doss, 2000).
 - All use a prior distribution on trees. The prior has enough influence on the result that its reasonableness should be a major concern. In particular, the depth of the tree may be seriously affected by the distribution of depths in the prior.
 - All use Markov Chain Monte Carlo (MCMC) methods. They sample from the posterior distribution.
 - When these methods make sense they not only get you a point estimate of the phylogeny, they get you a distribution of possible phylogenies.

Modeling rate variation among sites

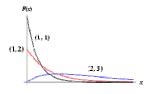


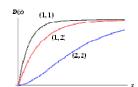
A model of variation in evolutionary rates among sites

 The basic idea is that the rate at each site is drawn independently from a distribution of rates. The most widely used choice is the Gamma distribution, which has density function:

$$f(\mathbf{r}) = \frac{\lambda^{\alpha} \mathbf{r}^{\alpha - 1} e^{-\lambda r}}{\Gamma(\alpha)} = \frac{\mathbf{r}^{\alpha - 1} e^{-r/\theta}}{\Gamma(\alpha) \theta^{\alpha}}$$

• Gamma distributions (α, θ)





Unrealistic aspects of the model:

- There is no reason, aside from mathematical convenience, to
- assume that the Gamma is the right distribution.
- A common variation is to assume there is a separate probability f0 of having rate 0.
- Rates at different sites appear to be correlated, which this model does not allow.
- Rates are not constant throughout evolution, they change with time.

Rates varying among sites

If L⁽ⁱ⁾(r_i) is the likelihood of the tree for site i given that the rate
of evolution at site i is r_i, we can integrate this over a gamma
density:

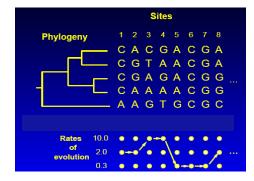
$$L^{(i)} = \int_0^\infty f(\mathbf{r}_i; \alpha) L^{(i)}(\mathbf{r}_i) d\mathbf{r}_i$$

• so that the overall likelihood is

$$L = \prod_{i=1}^{m} \left[\int_{0}^{\infty} f(\mathbf{r}_{i}; \alpha) L^{(i)}(\mathbf{r}_{i}) d\mathbf{r}_{i} \right]$$

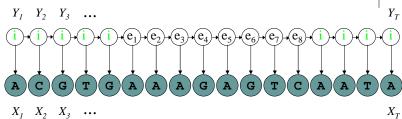
 Unfortunately these integrals cannot be evaluated for trees with more than a few tips as the quantities L⁽ⁱ⁾(r_i) becomes complicated.

Modeling rate variation among sites



- There are a finite number of rates (denote rate i as r_i).
- There are probabilities p_i of a site having rate i.
- A process not visible to us ("hidden") assigns rates to sites.
- The probability of our seeing some data are to be obtained by summing over all possible combinations of rates, weighting appropriately by their probabilities of occurrence.

Rocall the HMM



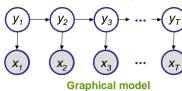
- The shaded nodes represent the observed nucleotides at particular sites of an organism's genome
- For discrete Y_n widely used in computational biology to represent segments of sequences
 - · gene finders and motif finders
 - profile models of protein domains
 - models of secondary structure

Definition (of HMM)

Observation space

Alphabetic set: $C = \{c_1, c_2, \dots, c_K\}$ Euclidean space: R^d

Index set of hidden statesI = {1,2,···, M}



Transition probabilities between any two states

 $p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$

or $p(y_t | y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, ..., a_{i,M}), \forall i \in I.$

Start probabilities

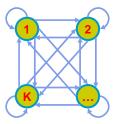
 $p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M).$

Emission probabilities associated with each state

 $p(x_t | y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in I.$

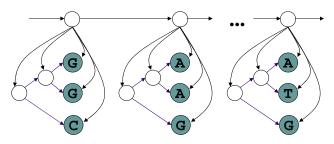
or in general:

 $p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in I.$



State automata

Hidden Markov Phylogeny



- · Replacing the standard emission model with a tree
 - A process not visible to us (.hidden") assigns rates to sites. It is a Markov process working along the sequence.
 - For example it might have transition probability Prob () of changing to rate / in the next site, given that it is at rate / in this site.
- These are the most widely used models allowing rate variation to be correlated along the sequence.

The Forward Algorithm

• We can compute α_t^k for all k, t, using dynamic programming!

Initialization:

$$\alpha_1^k = P(x_1 | y_1^k = 1)\pi_k$$

$$\alpha_1^k = P(x_1, y_1^k = 1)$$

$$= P(x_1 | y_1^k = 1)P(y_1^k = 1)$$

$$= P(x_1 | y_1^k = 1)\pi_k$$

Iteration:

$$\alpha_{t}^{k} = P(x_{t} | y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_{T}^{k}$$

The Backward Algorithm

• We can compute β_t^k for all k, t, using dynamic programming!

Initialization:

$$\beta_T^k = 1, \ \forall k$$

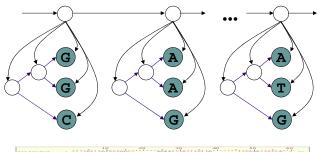
Iteration:

$$\beta_t^k = \sum_i a_{k,i} P(x_{t+1} | y_{t+1}^k = 1) \beta_{t+1}^i$$

Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_1^k \beta_1^k$$

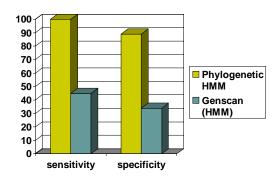
Hidden Markov Phylogeny



• this yields a gene finder that exploits evolutionary constraints

A Comparison of comparative genomic gene-finding and isolated gene-finding

- Based on sequence data from 12-15 primate species, McAuliffe et al (2003) obtained sensitivity of 100%, with a specificity of 89%.
 - Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a specificity of 34%.



Open questions (philosophical)

Observation:

- Finding a good phylogeny will help in finding the genes.
- Finding the genes will help to find biologically meaningful phylogenetic trees

Which came first, the chicken or the egg?

Open questions (technical)

- How to learn a phylogeny (topology and transition prob.)?
- Should different site use the same phylogeny? Functionspecific phylogeny?
- Other evolutionary events: duplication, rearrangement, lateral transfer, etc.

Acknowledgments

- Terry Speed: for some of the slides modified from his lectures at UC Berkeley
- Phil Green and Joe Felsenstein: for some of the slides modified from his lectures at Univ. of Washington