Advanced Algorithms and Models for Computational Biology

-- a machine learning approach

Molecular Evolution:
nucleotide substitution models

Eric Xing
Lecture 20, April 3, 2006

Some important dates in history (billions of years ago)

- Origin of the universe
- Formation of the solar system
- First self-replicating system
- Prokaryotic-eukaryotic divergence
- Plant-animal divergence
- Invertebrate-vertebrate divergence
- Mammalian radiation beginning4.6$3.5 \pm 0.5$
1.8 ± 0.3
1.0
0.5
0.1

Two important early observations

- Different proteins evolve at different rates, and this seems more or less independent of the host organism, including its generation time.
- It is necessary to adjust the observed percent difference between two homologous proteins to get a distance more or less linearly related to the time since their common ancestor. (Later we offer a rational basis for doing this.)
- A striking early version of these observations is next.

How does sequence variation arise?

- Mutation:
- (a) Inherent: DNA replication errors are not always corrected.
- (b) External: exposure to chemicals and radiation.
- Selection: Deleterious mutations are removed quickly. Neutral and rarely, advantageous mutations, are tolerated and stick around.
- Fixation: It takes time for a new variant to be established (having a stable frequency) in a population.

Modeling DNA base substitution

- Standard assumptions (sometimes weakened)
- Site independence.
- Site homogeneity.
- Markovian: given current base, future substitutions independent of past.
- Temporal homogeneity: stationary Markov chain.
- Strictly speaking, only applicable to regions undergoing little selection.

Some terminology

- In evolution, homology (here of proteins), means similarity due to common ancestry.
- A common mode of protein evolution is by duplication. Depending on the relations between duplication and speciation dates, we have two different types of homologous proteins. Loosely,
- Orthologues: the "same" gene in different organisms; common ancestry goes back to a speciation event.
- Paralogues: different genes in the same organism; common ancestry goes back to a gene duplication.
- Lateral gene transfer gives another form of homology.

Speciation vs. duplication

Beta-globins (orthologues)

Beta-globins: uncorrected pairwise distances

- DISTANCES between protein sequences (calculated over: 1 to 147)
- Below diagonal: observed number of differences
- Above diagonal: number of differences per 100 amino acids

	hum	mac	bov	pla	chi	sha
hum	----	5	16	23	31	65
mac	7	----	17	23	30	62
bov	23	24	----	27	37	65
pla	34	34	39	----	29	64
chi	45	44	52	42	----	61
sha	91	88	91	90	87	----

Beta-globins: corrected pairwise distances

- DISTANCES between protein sequences (calculated over: 1 to 147)
- Below diagonal: observed number of differences
- Above diagonal: number of differences per 100 amino acids
- Correction method: Jukes-Cantor

	hum	mac	bov	pla	chi	sha
hum	----	5	17	27	37	108
mac	7	----	18	27	36	102
bov	23	24	---	32	46	110
pla	34	34	39	----	34	106
chi	45	44	52	42	----	98
sha	91	88	91	90	87	----

Human globins (paralogues)	:\%:\%

Human globins: corrected pairwise distances

- DISTANCES between protein sequences (calculated over 1 to 141)
- Below diagonal: observed number of differences
- Above diagonal: estimated number of substitutions per 100 amino acids
- Correction method: Jukes-Cantor

	alpha	beta	delta	epsil	gamma	myo
alpha	----	281	281	281	313	208
beta	82	----	7	30	31	1000
delta	82	10	----	34	33	470
epsil	89	35	39	----	21	402
gamma 85	39	42	29	----	470	
myo	116	117	116	119	118	----

Correcting distances between DNA and protein sequences

- Why it is necessary to adjust observed percent differences to get a distance measure which scales linearly with time?
- This is because we can have multiple and back substitutions at a given position along a lineage.
- All of the correction methods (with names like Jukes-Cantor, 2parameter Kimura, etc) are justified by simple probabilistic arguments involving Markov chains whose basis is worth mastering.
- The same molecular evolutionary models can be used in scoring sequence alignments.

- State space $=\{A, C, G, T\}$.
$p(\mathrm{i}, \mathrm{j})=\operatorname{pr}\left(\right.$ next state $\mathrm{S}_{\mathrm{j}} \mid$ current state $\left.\mathrm{S}_{\mathrm{i}}\right)$
- Markov assumption:
p (next state $S_{j} \mid$ current state $S_{i} \&$ any configuration of states before this) $=p(i, j)$

Only the present state, not previous states, affects the probs of moving to next states.

The multiplication rule

$p r\left(\right.$ state after next is $S_{k} \mid$ current state is $\left.S_{i}\right)$
$=\sum_{j} p r\left(\right.$ state after next is S_{k}, next state is $S_{j} \mid$ current state is $\left.S_{i}\right) \quad$ [addition rule]
$=\sum_{j} p r\left(\right.$ next state is $S_{j} \mid$ current state is $\left.S_{i}\right) \times p r\left(\right.$ state after next is $S_{k} \mid$ current
state is S_{j}, next state is S_{j})
[multiplication rule]
$=\sum_{j} p_{i, j} \times p_{j, k}$
[Markov assumption]
$=(i, k)$-element of P^{2}, where $P=\left(p_{i, j}\right)$.

More generally, $\operatorname{pr}\left(\right.$ state t steps from now is $S_{k} \mid$ current state is $\left.S_{i}\right)=i, k$ element of P^{t}

Continuous-time version

- For any (s, t) :
- Let $p_{i j}(t)=\operatorname{pr}\left(S_{j}\right.$ at time $t+s \mid S_{i}$ at time $\left.s\right)$ denote the stationary (time-homogeneous) transition probabilities.
- Let $P(t)=\left(p_{i j}(t)\right)$ denote the matrix of $p_{i j}(t)$'s.
- Then for any $(t, u): P(t+u)=P(t) P(u)$.
- It follows that $P(t)=\exp (Q t)$, where $Q=P^{\prime}(0)$ (the derivative of $P(t)$ at t $=0$).
- Q is called the infinitesimal matrix (transition rate matrix) of $P(t)$, and satisfies

$$
P^{\prime}(t)=Q P(t)=P(t) Q .
$$

- Important approximation: when t is small,

$$
P(t) \approx I+Q t .
$$

Interpretation of Q

- Roughly, $q_{i j}$ is the rate of transitions of i to j, while $q_{i i}=-\Sigma_{j i j} q_{i j}$, so each row sum is 0 (Why?).
- Now we have the short-time approximation:

$$
p_{i \neq j}(t+h)=q_{i j} h+o(h) \quad p_{i=j}(t+h)=1+q_{i i} h+o(h)
$$

where $p_{i j}(t+h)$ is the probability of transitioning from i at time t to j at time $t+h$

- Now consider the Chapman-Kolmogorov relation: (assuming we have a continuous-time Markov chain, and let $p_{j}(t)=\operatorname{pr}\left(S_{j}\right.$ at time $\left.t\right)$)

$$
\begin{aligned}
& p_{j}(t+h)=\sum_{i} p r\left(S_{i} \text { at } t, S_{j} \text { at } t+h\right) \\
& =\sum_{i} p r\left(S_{i} \text { at } t\right) p r\left(S_{i} \text { at } t+h \mid S_{j} \text { at } t\right) \\
& =p_{j}(t) \times\left(1+q_{j j} h\right)+\sum_{i \neq j} p_{i}(t) \times h q_{i j}
\end{aligned}
$$

i.e., $h^{-1}\left(p_{j}(t+h)-p_{j}(t)\right)=p_{j}(t) q_{j j}+\sum_{i=j} p_{i}(t) q_{i j}$, which becomes: $P^{\prime}=Q P$ as $h \downarrow 0$.

Probabilistic models for DNA changes

Orc:	ACAGTGACGCCCCAAACGT
Elf:	ACAGTGACGCTACAAACGT
Dwarf:	CCTGTGACGTAACAAACGA
Hobbit:	CCTGTGACGTAGCAAACGA
Human:	CCTGTGACGTAGCAAACGA

The Jukes-Cantor model (1969)

- Substitution rate:

the simplest symmetrical model for DNA evolution

Transition probabilities under the Jukes-Cantor model

- IID assumption:
- All sites change independently
- All sites have the same stochastic process working at them
- Equiprobablity assumption:
- Make up a fictional kind of event, such that when it happens the site changes to one of the 4 bases chosen at random equiprobably
- Equilibrium condition:
- No matter how many of these fictional events occur, provided it is not zero, the chance of ending up at a particular base is $1 / 4$.
- Solving differentially equation system $P^{\prime}=Q P$

Transition probabilities under the Jukes-Cantor model (cont.)

- Prob transition matrix:
$\left.P(t)=\begin{array}{l} \\ A \\ C \\ G \\ T\end{array} \begin{array}{ccll}\text { A } & C & G & T \\ r(t) & s(t) & s(t) & s(t) \\ s(t) & r(t) & s(t) & s(t) \\ s(t) & s(t) & r(t) & s(t) \\ s(t) & s(t) & s(t) & r(t)\end{array}\right)$

Where we can derive:

$$
\begin{aligned}
& r(t)=\frac{1}{4}\left(1+3 e^{-\frac{4}{3} \mu t}\right) \\
& s(t)=\frac{1}{4}\left(1-e^{-\frac{-4}{3} \mu t}\right)
\end{aligned}
$$

Homework!

Jukes-Cantor (cont.)

- Fraction of sites differences

time

Kimura's K2P model (1980)

- Substitution rate:

- which allows for different rates of transition and transversions.
- Transitions (rate α) are much more likely than transversions (rate β).

Kimura (cont.)

- Prob transition matrix:

$$
\begin{aligned}
& P(t)=\quad\left(\begin{array}{llll}
r(t) & s(t) & u(t) & s(t) \\
s(t) & r(t) & s(t) & u(t) \\
u(t) & s(t) & r(t) & s(t) \\
s(t) & u(t) & s(t) & r(t)
\end{array}\right) \\
& \text { Where } \\
& \quad \begin{array}{l}
s(t)=1 / 4\left(1-e^{-4 \beta t}\right) \\
u(t)=1 / 4\left(1+e^{-4 \beta t}-e^{-2(\alpha+\beta) t}\right) \\
r(t)=1-2 s(t)-u(t)
\end{array}
\end{aligned}
$$

- By proper choice of and one can achieve the overall rate of change and $\mathrm{Ts}=$ Tn ratio R you want (warning: terminological tangle).

Kimura (cont.)
 - 0 - 0 0.0 - 0

- Transitions, transversions expected under different R:

Other commonly used models

- Two models that specify the equilibrium base frequencies (you provide the frequencies A; C; G; T and they are set up to have an equilibrium which achieves them), and also let you control the transition/transversion ratio:
- The Hasegawa-Kishino-Yano (1985) model:

Other commonly used models

- The F84 model (Felsenstein)

- where $\pi_{R}=\pi_{\mathrm{A}}+\pi_{\mathrm{G}}$ and $\pi_{\mathrm{Y}}=\pi_{\mathrm{C}}+\pi_{T}$ (The equilibrium frequencies of purines and pyrimidines)

The general time-reversible model

- It maintains "detailed balance" so that the probability of starting at (say) A and ending at (say) T in evolution is the same as the probability of starting at T and ending at A :

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	-	$\alpha \pi_{C}$	$\beta \pi_{G}$	$\gamma \pi_{T}$
\mathbf{C}	$\alpha \pi_{A}$	-	$\delta \pi_{G}$	$\varepsilon \pi_{T}$
\mathbf{G}	$\beta \pi_{A}$	$\delta \pi_{C}$	-	$v \pi_{T}$
\mathbf{T}	$\gamma \pi_{A}$	$\varepsilon \pi_{C}$	$v \pi_{G}$	-

- And there is of course the general 12-parameter model which has arbitrary rates for each of the 12 possible changes (from each of the 4 nucleotides to each of the 3 others).
- (Neither of these has formulas for the transition probabilities, but those can be done numerically.)

Relation between models

Adjusting evolutionary distance using base-substitution model

The Jukes-Cantor model		
Common ancestor of human and orang	$Q=\left[\begin{array}{cccc}-3 \alpha & \alpha & \alpha & \alpha \\ \alpha & -3 \alpha & \alpha & \alpha \\ \alpha & \alpha & -3 \alpha & \alpha \\ \alpha & \alpha & \alpha & -3 \alpha\end{array}\right]$	

t time unit

Human (now)

$$
P=\left[\begin{array}{llll}
r & s & s & s \\
s & r & s & s \\
s & s & r & s \\
s & s & s & r
\end{array}\right]
$$

Consider e.g. the 2 nd
position in a-globin2 Alu1. $\quad r=\left(1+3 e^{-4 \alpha t}\right) / 4, \quad s=\left(1-e^{-4 \alpha t}\right) / 4$.

Definition of PAM

- Let $P(t)=\exp (Q t)$. Then the A, G element of $P(t)$ is

$$
\operatorname{pr}(G \text { now } \mid A \text { then })=(1-e-4 \alpha t) / 4
$$

- Same for all pairs of different nucleotides.
- Overall rate of change $k=3 \alpha t$.
- $P A M=$ accepted point mutation
- When $k=.01$, described as 1 PAM
- Put $t=.01 / 3 \alpha=1 / 300 \alpha$. Then the resulting $P=P(1 / 300 \alpha)$ is called the $\operatorname{PAM}(1)$ matrix.
- Why use PAMs?

Evolutionary time, PAM

- Since sequences evolve at different rates, it is convenient to rescale time so that 1 PAM of evolutionary time corresponds to 1% expected substitutions.
- For Jukes-Cantor, $k=3 \alpha t$ is the expected number of substitutions in $[0, t]$, so is a distance. (Show this.)
- Set $3 \alpha t=1 / 100$, or $t=1 / 300 \alpha$, so 1 PAM $=1 / 300 \alpha$ years.

Distance adjustment

- For a pair of sequences, $k=3 \alpha t$ is the desired metric, but not observable. Instead, pr(different) is observed. So we use a model to convert pr(different) to k.
- This is completely analogous to the conversion of

$$
\theta=p r(\text { recombination })
$$

to genetic (map) distance (= expected number of crossovers) using the Haldane map function

$$
\theta=1 / 2 \times\left(1-e^{-2 d}\right),
$$

assuming the no-interference (Poisson) model.

Towards Jukes-Cantor adjustment

- E.g., 2nd position in a-globin Alu 1

- Then the chance of the nt differing

$$
\begin{aligned}
p_{\neq} & =3 / 4 \times\left(1-e^{-8 \alpha t}\right) \\
& =3 / 4 \times\left(1-e^{-4 k / 3}\right), \text { since } k=2 \times 3 \alpha t
\end{aligned}
$$

Jukes-Cantor adjustment

- If we suppose all nucleotide positions behave identically and independently, and n_{\neq}differ out of n, we can invert this, obtaining

$$
\hat{k}=-\frac{3}{4} \times \log \left(1-\frac{4}{3} n_{\neq} / n\right)
$$

- This is the corrected or adjusted fraction of differences (under this simple model). $\times 100$ to get PAMs
- The analogous simple model for amino acid sequences has

$$
\hat{k}=-\frac{19}{20} \times \log \left(1-\frac{20}{19} n_{\neq} / n\right)
$$

$\times 100$ for PAM.

Illustration

1. Human and bovine beta-globins are aligned with no deletions at 145 out of 147 sites. They differ at 23 of these sites. Thus $\mathrm{n}_{\neq} / \mathrm{n}=23 / 145$, and the corrected distance using the JukesCantor formula is (natural logs)

$$
-19 / 20 \times \log (1-20 / 19 \times 23 / 145)=17.3 \times 10^{-2}
$$

2. The human and gorilla sequences are aligned without gaps across all 300 bp , and differ at 14 sites. Thus $n_{\neq} / \mathrm{n}=14 / 300$, and the corrected distance using the Jukes-Cantor formula is
```
-3/4 \times log(1-4/3 \times 14/300) = 4.8 \times 10-2.
```

Correspondence between observed a.a. differences and the evolutionary distance (Dayhoff et al., 1978)	$\because \because \because: 8$
Observed Percent Difference	Evolutionary Distance in PAMs
1	
5	1
10	5
15	11
20	17
25	23
30	30
35	38
40	47
45	56
50	67
55	90
60	112
70	133
75	159
80	195
85	246

Scoring matrices for alignment

How scoring matrices work

134 LQQGELDLVMTSDILPRSELHYSPMFDFEVRLVLAPDHPLASKTQITPEDLASETLLI
137 LDSNSVDLVLMGVPPRNVEVEAEAFMDNPLVVIAPPDHPLAGERAISLARLAEETFVM

Statistical motivation for alignment scores

Alignment: AGCTGATCA... Hypotheses: $\begin{aligned} & \mathrm{H}=\text { homologous (indep. sites, Jukes-Cantor) } \\ & \mathrm{R}=\text { (}\end{aligned}$ AACCGGTTA... Hypotheses: \quad = random (indep. sites, equal freq.)
$\operatorname{pr}($ data $\mid H)=\operatorname{pr}(\mathrm{AA} \mid H) \operatorname{pr}(\mathrm{GA} \mid H) \operatorname{pr}(\mathrm{CC} \mid H) \ldots$
$=(1-p)^{a} p^{d}$, where $a=\#$ agreements, $d=\#$ disagreements, $p=\frac{3}{4}\left(1-e^{-8 \alpha t}\right)$.
$\operatorname{pr}($ data $\mid R)=\operatorname{pr}(\mathrm{AA} \mid R) \operatorname{pr}(\mathrm{GA} \mid R) \operatorname{pr}(\mathrm{CC} \mid R) \ldots$
$=\left(\frac{1}{4}\right)^{a}\left(\frac{3}{4}\right)^{d}$
$\Rightarrow \quad \log \left\{\frac{\operatorname{pr}(d a+a \mid H)}{\operatorname{pr}(d a t a \mid R)}\right\}=a \log \frac{1-p}{1 / 4}+d \log \frac{p}{3 / 4}=a \times \sigma+d \times(-\mu)$.

- Since $p<3 / 4, \sigma=\log ((1-p) /(1 / 4))>0$, while $-\mu=\log (p /(3 / 4))<0$.
- Thus the alignment score $=a \times \sigma+d \times(-\mu)$, where the match score $\sigma>$ 0 , and the mismatch penalty is $-\mu<0$.

Large and small evolutionary distances

- Recall that
- $p=(3 / 4)\left(1-e^{-8 \alpha t}\right)$,
- $\sigma=\log ((1-p) /(1 / 4))$,
- $-\mu=\log (p /(3 / 4))$.
- Now note that if $\alpha t \approx 0$,
- then $p \approx 6 \alpha$, and $1-p \approx 1$, and so $\sigma \approx \log 4$, while $-\mu \approx \log 8 \alpha t$ is large and negative.
- That is, we see a big difference in the two values of σ and μ for small distances.
- Conversely, if α t is large,
- $p=(3 / 4)(1-\varepsilon)$, hence $p /(3 / 4)=1-\varepsilon$, giving $\mu=-\log (1-\varepsilon) \approx \varepsilon$, while $1-p=(1+3 \varepsilon) / 4$, $(1-p) /(1 / 4)=1+3 \varepsilon$, and so $\sigma=\log (1+3 \varepsilon) \approx 3 \varepsilon$.
- Thus the scores are about 3 (for a match) to 1 (for a mismatch) for large distances. This makes sense, as mismatches will on average be about 3 times more frequent than matches.
- the matrix which performs best will be the matrix that reflects the evolutionary separation of the sequences being aligned.

What about multiple alignment

- Phylogenetic methods: a tree, with branch lengths, and the data at a single site.

- See next lecture for how to compute likelihood under this hypothesis

Acknowledgments

- Terry Speed: for some of the slides modified from his lectures at UC Berkeley
- Phil Green and Joe Felsenstein: for some of the slides modified from his lectures at Univ. of Washington

