Advanced Algorithms and Models for Computational Biology

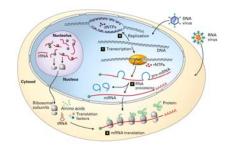
Introduction to cell biology, genomics, development, and probability

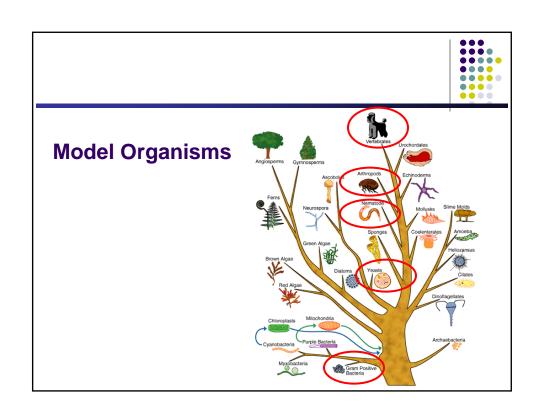
Eric Xing

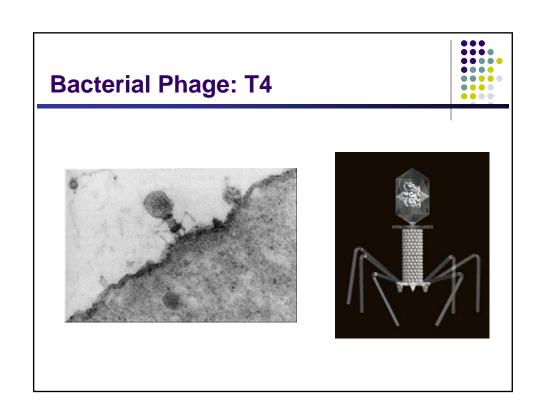
Lecture 2, January 23, 2006

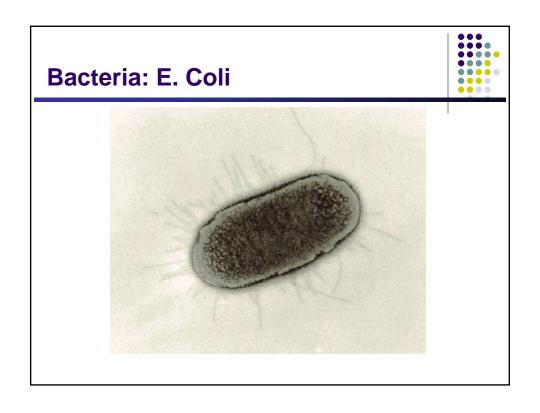
Reading: Chap. 1, DTM book

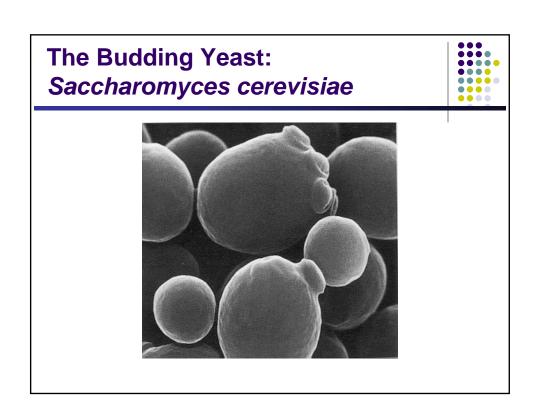
Introduction to cell biology, functional genomics, development, etc.





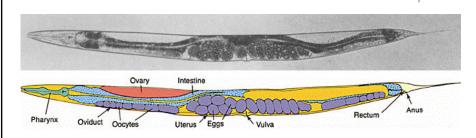




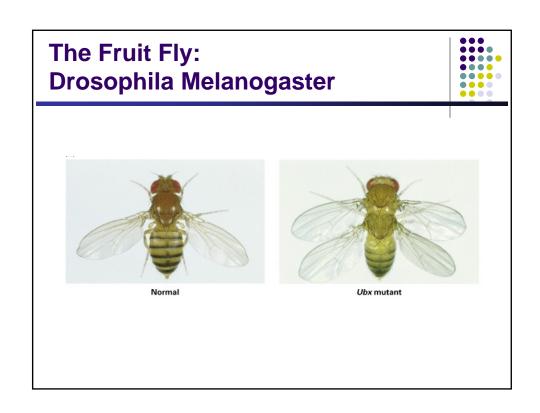


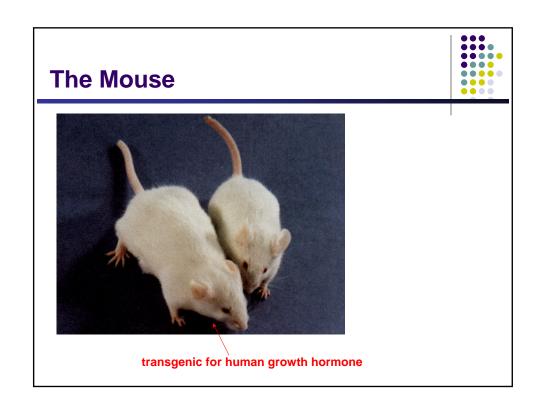
The Fission Yeast: *Schizosaccharomyces pombe*

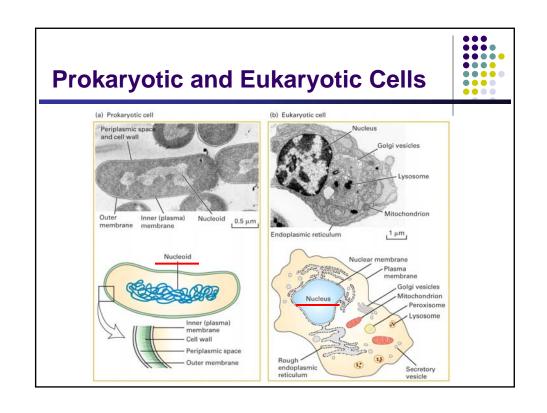
The Nematode: Caenorhabditis elegans

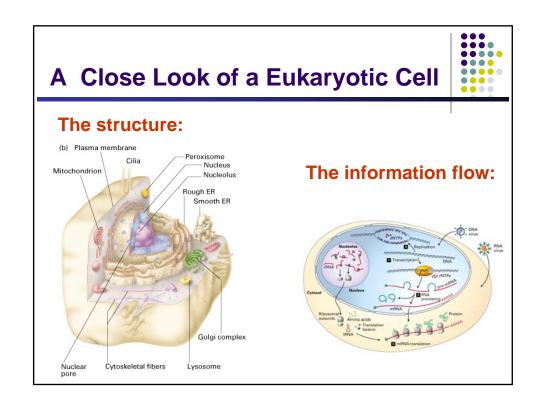


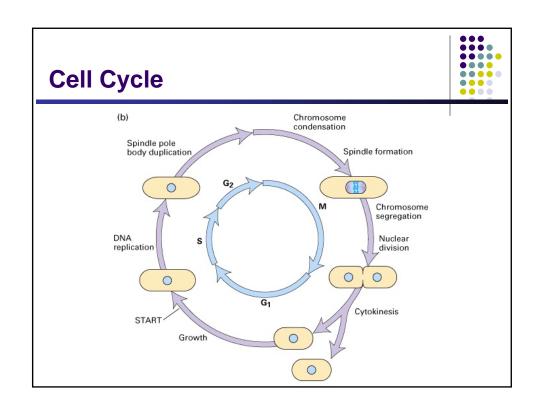
- SMALL: ~ 250 µm
- TRANSPARENT
- 959 CELLS
- 300 NEURONS
- SHORT GENERATION TIME
- SIMPLE GROWTH MEDIUM
- SELF- FERTILIZING HERMAPHRODITE
- RAPID ISOLATION AND CLONING OF MULTIPLE TYPES OF MUTANT ORGANISMS

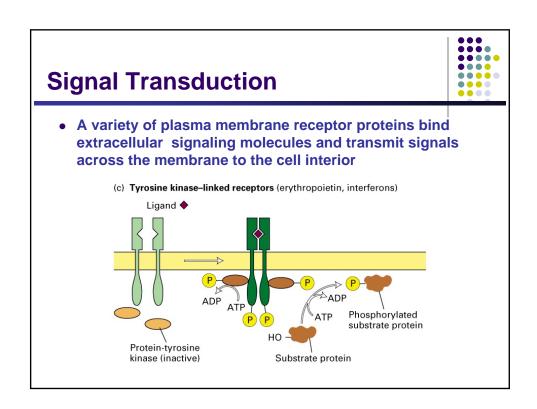


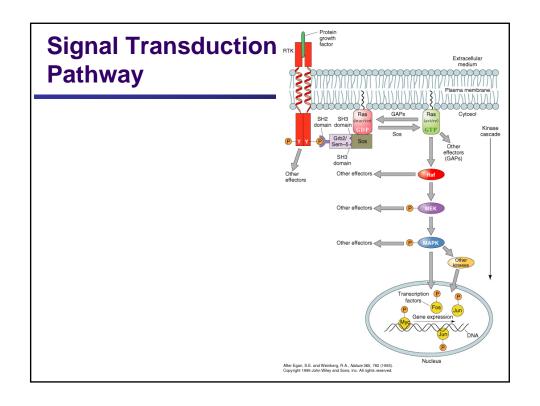




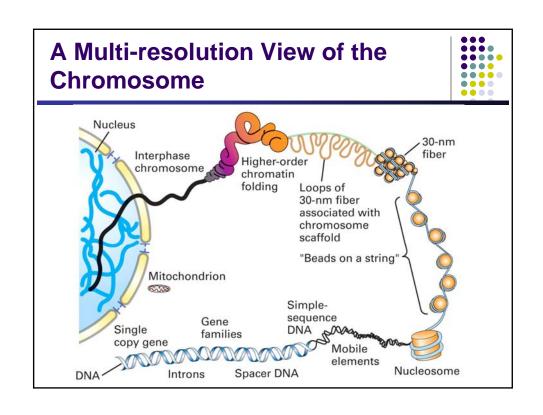










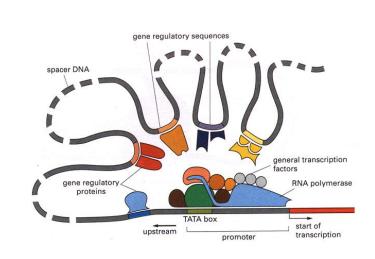


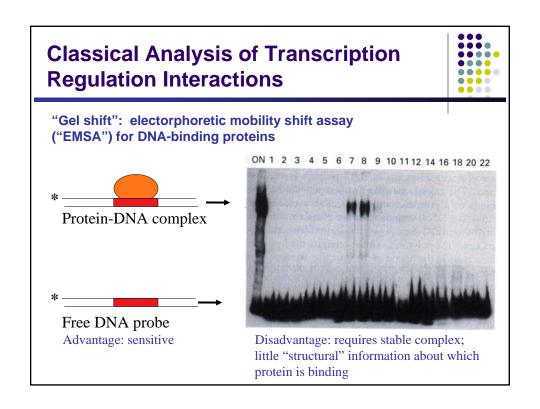
DNA Content of Representative Types of Cells				
Organism	Number of base pairs (millions)	Number of encoded proteins	Number of chromosome	
PROKARYOTIC	v 0.58	470	1	
Mycoplasma genitalum (Bacterium	,	•		
Helicobacter pylori (Bacterium)	1.67	1590	1	
Haemophilus influenza (Bacterium) 1.83	1743	1	
<u>EUKARYOTIC</u>				
Saccharomyces cerevisiae (yeast)	12	5885	17	
Drosophila melanogaster (insect)	165	13,601	4	
Caenorhabditis elegans (worm)	97	19,099	6	
Homo sapiens (human)	2900	30,000 TO 40,000	23	
Arabidopsis thaliana (plant)	125	25,498	10	

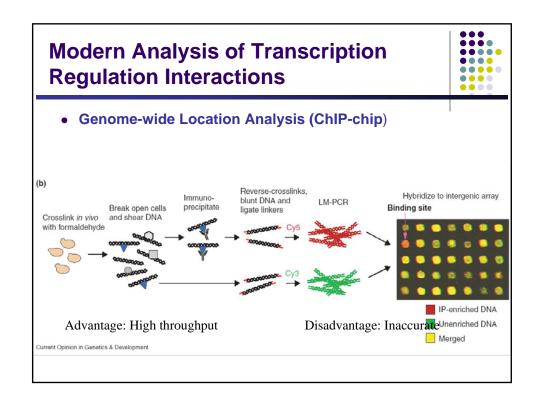
Functional Genomics

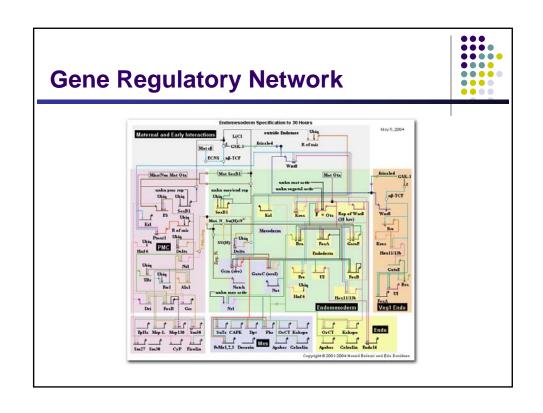
- The various genome projects have yielded the complete DNA sequences of many organisms.
 - E.g. human, mouse, yeast, fruitfly, etc.
 - Human: 3 billion base-pairs, 30-40 thousand genes.
- Challenge: go from sequence to function,
 - i.e., define the role of each gene and understand how the genome functions as a whole.

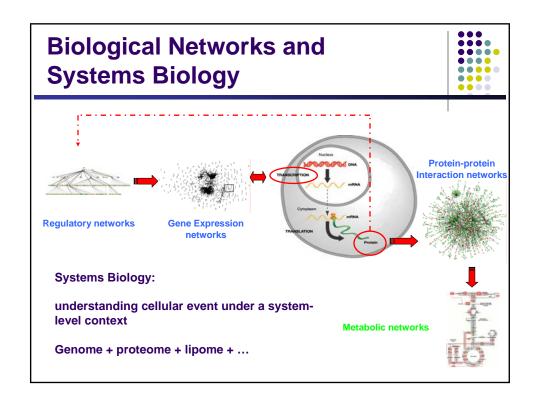
Regulatory Machinery of Gene Expression

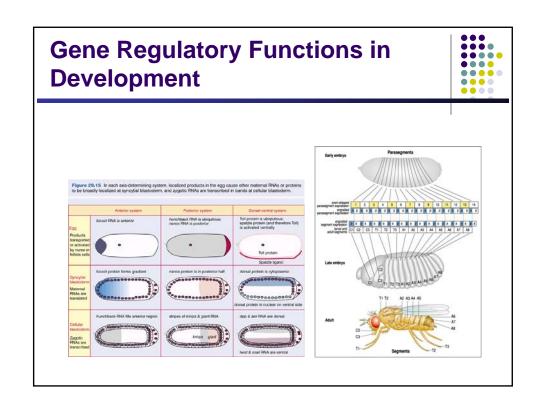


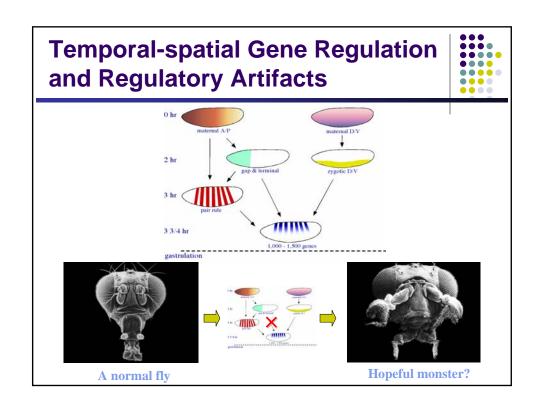


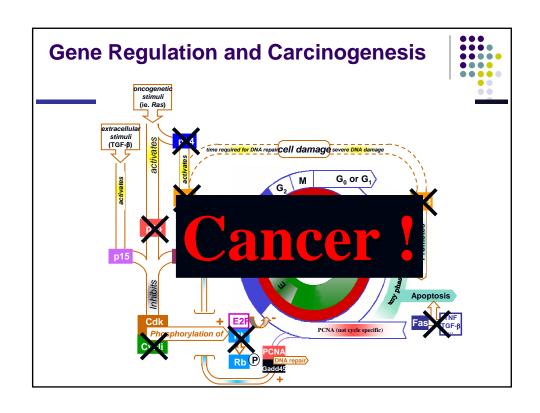


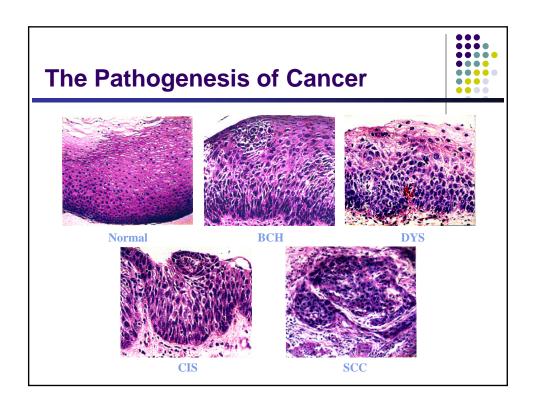






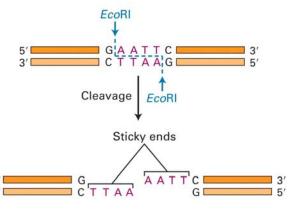


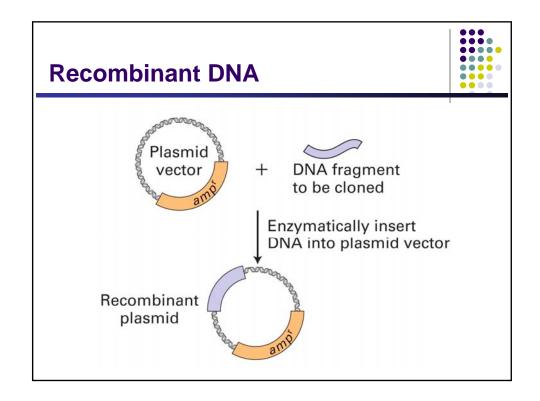


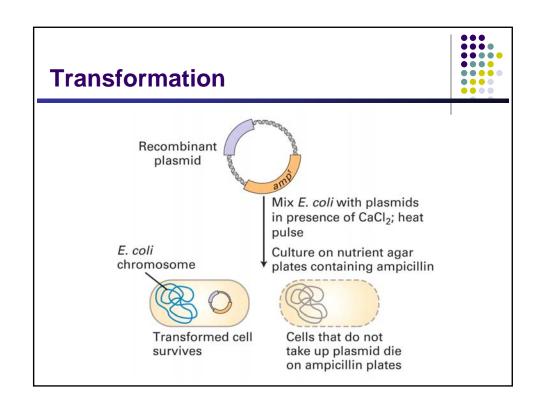


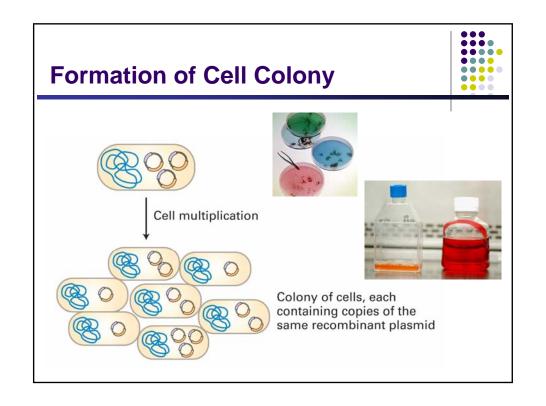
Genetic Engineering: Manipulating the Genome Restriction Enzymes, naturally occurring in

• Restriction Enzymes, naturally occurring in bacteria, that cut DNA at very specific places.





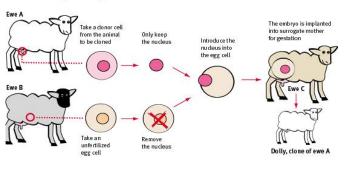




How was Dolly cloned?

• Dolly is an exact genetic replica of another sheep.

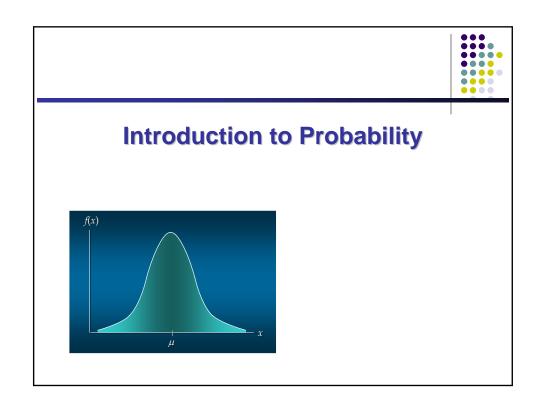
2. The making of Dolly



Definitions

- Recombinant DNA: Two or more segments of DNA that have been combined by humans into a sequence that does not exist in nature.
- Cloning: Making an exact genetic copy. A **clone** is one of the exact genetic copies.
- Cloning vector: Self-replicating agents that serve as vehicles to transfer and replicate genetic material.

Software and Databases NCBI/NLM Databases Genbank, PubMed, PDB DNA Protein Protein 3D Literature Nucleotide Sequences Nucleotide Sequences Sequences Structures Structures



Basic Probability Theory Concepts

 ω

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)
 - E.g., \mathcal{S} may be the set of all possible nucleotides of a DNA site: $\mathcal{S} \equiv \{A, T, C, G\}$
- A random variable is a function that associates a unique numerical value (a token) with every outcome of an experiment.
 (The value of the r.v. will vary from trial to trial as the experiment is repeated)
 - E.g., seeing an "A" at a site $\Rightarrow X=1$, o/w X=0.
 - This describes the true or false outcome a random event.
 - Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being A, C, G, T) --- think about what would happen if we take expectation of X.
- Unit-Base Random vector
 - $X_{\vdash}[X_{iA}, X_{iT}, X_{iG}, X_{iC}]^{\mathsf{T}}$, $X_{\vdash}[0,0,1,0]^{\mathsf{T}} \Rightarrow$ seeing a "G" at site i

Basic Prob. Theory Concepts, ctd

- (In the discrete case), a probability distribution P on S (and hence on the domain of X) is an assignment of a non-negative real number P(s) to each $s \in S$ (or each valid value of x) such that $\sum_{s \in S} P(s) = 1$. $(0 \le P(s) \le 1)$
 - intuitively, P(s) corresponds to the frequency (or the likelihood) of getting s in the experiments, if repeated many times
 - call $\theta_s = P(s)$ the *parameters* in a discrete probability distribution
- A probability distribution on a sample space is sometimes called a probability model, in particular if several different distributions are under consideration
 - write models as M_1 , M_2 , probabilities as $P(X|M_1)$, $P(X|M_2)$
 - e.g., M₁ may be the appropriate prob. dist. if X is from "splice site", M₂ is for the "background".
 - *M* is usually a two-tuple of {dist. family, dist. parameters}

Discrete Distributions

• Bernoulli distribution: Ber(p)

$$P(x) = \begin{cases} 1 - p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases} \Rightarrow P(x) = p^{x} (1 - p)^{1 - x}$$

- Multinomial distribution: Mult(1, θ)
 - Multinomial (indicator) variable: $X = \begin{bmatrix} X_A \\ X_C \\ X_G \\ X_T \end{bmatrix}$, where $X_j = [0,1]$, and $\sum_{j \in A, C, C, T, T_j} = 1$ where $X_j = 1$ w.p. θ_j , $\sum_{j \in A, C, C, T, T_j} = 1$

$$p(x(j)) = P(\{X_j = 1, \text{ where } j \text{ index the observed nucleotide}\})$$

$$= \theta_j = \theta_A^{x_A} \times \theta_C^{x_C} \times \theta_G^{x_G} \times \theta_T^{x_T} = \prod_k \theta_k^{x_k} = \theta^x$$

- Multinomial distribution: Mult(*n*, *θ*)
 - Count variable: $X = \begin{bmatrix} x_1 \\ \vdots \\ x_K \end{bmatrix}$, where $\sum_j x_j = n$ $p(X) = \frac{n!}{x_1! x_2! \cdots x_K!} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_K^{x_K} = \frac{n!}{x_1! x_2! \cdots x_K!} \theta^{x_K}$

Basic Prob. Theory Concepts, ctd

- A continuous random variable X can assume any value in an interval on the real line or in a region in a high dimensional space
 - X usually corresponds to a real-valued measurements of some property, e.g., length, position, ...
 - It is not possible to talk about the probability of the random variable assuming a particular value --- P(x) = 0
 - Instead, we talk about the probability of the random variable assuming a value within a given interval, or half interval
 - $P(X \in [x_1, x_2])$, $P(X < X) = P(X \in [-\infty, X])$
- The probability of the random variable assuming a value within some given interval from x₁ to x₂ is defined to be the <u>area under</u> the graph of the <u>probability density function</u> between x₁ and x₂.
 - Probability mass: $P(X \in [x_1, x_2]) = \int_{x_1}^{x_2} p(x) dx$, note that $\int_{-\infty}^{+\infty} p(x) dx = 1$.
 - Cumulative distribution function (CDF): $P(x) = P(X < x) = \int_{-\infty}^{x} p(x') dx'$
 - Probability density function (PDF): $p(x) = \frac{d}{dx} P(x)$

Continuous Distributions

Uniform Probability Density Function

$$p(x) = 1/(b-a)$$
 for $a \le x \le b$
= 0 elsewhere

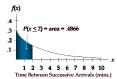
Normal Probability Density Function

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$



- The distribution is symmetric, and is often illustrated as a bell-shaped curve.
- Two parameters, μ (mean) and σ (standard deviation), determine the location and shape of
- The highest point on the normal curve is at the mean, which is also the median and mode.
- The mean can be any numerical value: negative, zero, or positive.

• Exponential Probability Distribution
density:
$$p(x) = \frac{1}{\mu} e^{-x/\mu}$$
, CDF: $P(x \le x_0) = 1 - e^{-x_0/\mu}$



Statistical Characterizations

• Expectation: the center of mass, mean value, first moment):

$$\mathcal{E}(X) = \begin{cases} \sum_{i \in S} x_i p(x_i) & \text{discrete} \\ \int_{-\infty}^{\infty} x p(x) dx & \text{continuous} \end{cases}$$

Sample mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Variance: the spreadness, second moment:

$$Var(X) = \begin{cases} \sum_{x \in S} [x_i - E(X)]^2 p(x_i) & \text{discrete} \\ \int_{-\infty}^{\infty} [x - E(X)]^2 p(x) dx & \text{continuous} \end{cases}$$

Sample variance
$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$

Basic Prob. Theory Concepts, ctd

- Joint probability:
 - For events E (i.e. X=x) and H (say, Y=y), the probability of both events are true:

$$P(E \text{ and } H) := P(x,y)$$

- Conditional probability
 - The probability of *E* is true given outcome of *H*

$$P(E \text{ and } H) := P(x | y)$$

- Marginal probability
 - The probability of *E* is true regardless of the outcome of *H*

$$P(E) := P(x) = \sum_{x} P(x, y)$$

• Putting everything together:

$$P(x|y) = P(x,y)/P(y)$$

Independence and Conditional Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional probability of E given H, written as P(E|H), is

$$P(E \text{ and } H)/P(H)$$

(= the probability of both *E* and *H* are true, given H is true)

• E and H are (statistically) independent if

$$P(E) = P(E|H)$$

(i.e., prob. \boldsymbol{E} is true doesn't depend on whether \boldsymbol{H} is true); or equivalently

$$P(E \text{ and } H)=P(E)P(H).$$

• E and F are conditionally independent given H if

$$P(E|H,F) = P(E|H)$$

or equivalently

$$P(E,F|H) = P(E|H)P(F|H)$$

Representing multivariate dist.

• Joint probability dist. on multiple variables:

```
\begin{split} &P(X_1, X_2, X_3, X_4, X_5, X_6) \\ &= P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_1, X_2) P(X_4 \mid X_1, X_2, X_3) P(X_5 \mid X_1, X_2, X_3, X_4) P(X_6 \mid X_1, X_2, X_3, X_4, X_5) \end{split}
```

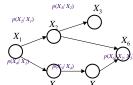
• If X_i 's are independent: $(P(X_i|\cdot) = P(X_i))$

$$\begin{split} &P(X_1, X_2, X_3, X_4, X_5, X_6) \\ &= P(X_1) P(X_2) P(X_3) P(X_4) P(X_5) P(X_6) = \prod_i P(X_i) \end{split}$$

• If X_i 's are conditionally independent, the joint can be factored to simpler products, e.g.,

```
P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}) = P(X_{1}) P(X_{2} | X_{1}) P(X_{3} | X_{2}) P(X_{4} | X_{1}) P(X_{5} | X_{4}) P(X_{6} | X_{2}, X_{5})
```

• The *Graphical Model* representation



The Bayesian Theory

• The Bayesian Theory: (e.g., for date *D* and model *M*)

$$P(M|D) = P(D|M)P(M)/P(D)$$

- the **posterior** equals to the **likelihood** times the **prior**, up to a constant.
- This allows us to capture uncertainty about the model in a principled way