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Model Organisms

Bacterial Phage: T4
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Bacteria: E. Coli

The Budding Yeast:
Saccharomyces cerevisiae



4

The Fission Yeast:
Schizosaccharomyces pombe

• SMALL: ~ 250 µm   
 
• TRANSPARENT 
 
• 959 CELLS 
 
• 300 NEURONS

• SHORT GENERATION TIME 
 
• SIMPLE GROWTH MEDIUM 
 
• SELF- FERTILIZING HERMAPHRODITE 
 
• RAPID  ISOLATION AND CLONING OF 
  MULTIPLE TYPES OF MUTANT ORGANISMS

The Nematode:
Caenorhabditis elegans
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The Fruit Fly: 
Drosophila Melanogaster

The Mouse

transgenic for human growth hormone
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Prokaryotic and Eukaryotic Cells

A  Close Look of a Eukaryotic Cell

The structure:

The information flow:
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Cell Cycle

Signal Transduction
A variety of plasma membrane receptor proteins bind 
extracellular signaling molecules and transmit signals 
across the membrane to the cell interior
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Signal Transduction 
Pathway

Functional Genomics 
and X-omics
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A Multi-resolution View of the 
Chromosome

 
 
 Organism 

 
 
PROKARYOTIC 
 
Mycoplasma genitalum (Bacterium)  
 
Helicobacter pylori (Bacterium)  
 
Haemophilus influenza (Bacterium)  
 
 
EUKARYOTIC 
 
Saccharomyces cerevisiae (yeast)  
 
Drosophila melanogaster (insect) 
 
 Caenorhabditis elegans (worm) 
 
Homo sapiens (human)  
 
Arabidopsis thaliana (plant)  
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DNA Content of Representative 
Types of Cells
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Functional Genomics
The various genome projects have yielded the complete 
DNA sequences of many organisms.

E.g. human, mouse, yeast, fruitfly, etc.
Human: 3 billion base-pairs, 30-40 thousand genes.

Challenge: go from sequence to function,
i.e., define the role of each gene and understand how the genome
functions as a whole.

motif

Regulatory Machinery of Gene 
Expression
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Free DNA probe
*

*
Protein-DNA complex

Advantage: sensitive Disadvantage: requires stable complex; 
little “structural” information about which 
protein is binding

Classical Analysis of Transcription 
Regulation Interactions

“Gel shift”:  electorphoretic mobility shift assay 
(“EMSA”) for DNA-binding proteins

Modern Analysis of Transcription 
Regulation Interactions

Genome-wide Location Analysis (ChIP-chip)

Advantage: High throughput Disadvantage: Inaccurate
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Gene Regulatory Network

Gene Expression 
networks

Regulatory networks

Protein-protein 
Interaction networks

Metabolic networks

Biological Networks and 
Systems Biology

Systems Biology: 

understanding cellular event under a system-
level context

Genome + proteome + lipome + …
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Gene Regulatory Functions in 
Development

Temporal-spatial Gene Regulation
and Regulatory Artifacts 

A normal fly Hopeful monster?

××
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Gene Regulation and Carcinogenesis

PCNA (not cycle specific)
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Genetic Engineering: 
Manipulating the Genome

Restriction Enzymes, naturally occurring in bacteria, that cut 
DNA at very specific places.

Recombinant DNA
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Transformation

Formation of Cell Colony
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How was Dolly cloned?
Dolly is an exact genetic replica of another sheep.

Definitions
Recombinant DNA: Two or more segments of DNA that have 
been combined by humans into a sequence that does not 
exist in nature.
Cloning: Making an exact genetic copy. A clone is one of the 
exact genetic copies.
Cloning vector: Self-replicating agents that serve as vehicles 
to transfer and replicate genetic material.
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Software and Databases
NCBI/NLM Databases Genbank, PubMed, PDB

DNA
Protein
Protein 3D
Literature

Introduction to ProbabilityIntroduction to Probability
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Basic Probability Theory 
Concepts

A sample space S is the set of all possible outcomes of a 
conceptual or physical, repeatable experiment. (S can be finite or 
infinite.)

E.g., S may be the set of all possible nucleotides of a DNA site: 

A random variable is a function that associates a unique 
numerical value (a token) with every outcome of an experiment. 
(The value of the r.v. will vary from trial to trial as the experiment 
is repeated) 

E.g., seeing an "A" at a site ⇒ X=1, o/w X=0. 
This describes the true or false outcome a random event.
Can we describe richer outcomes in the same way? (i.e., X=1, 2, 3, 4, for being 
A, C, G, T) --- think about what would happen if we take expectation of X.

Unit-Base Random vector 
Xi=[XiA, XiT, XiG, XiC]T, Xi=[0,0,1,0]T ⇒ seeing a "G" at site i 

{ }GC,T,A,≡S

ωω

SS X(ω)

Basic Prob. Theory Concepts, ctd
(In the discrete case), a probability distribution P on S (and 
hence on the domain of X ) is an assignment of a non-negative 
real number P(s) to each s∈S (or each valid value of x) such that 
Σs∈SP(s)=1. (0≤P(s) ≤1)

intuitively, P(s) corresponds to the frequency (or the likelihood) of getting 
s in the experiments, if repeated many times
call θs= P(s) the parameters in a discrete probability distribution

A probability distribution on a sample space is sometimes called
a probability model, in particular if several different distributions 
are under consideration

write models as M1, M2, probabilities as P(X|M1), P(X|M2)
e.g., M1 may be the appropriate prob. dist. if X is from "splice site", M2 is 
for the "background". 
M is usually a two-tuple of {dist. family, dist. parameters}
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Bernoulli distribution: Ber(p)

Multinomial distribution: Mult(1,θ)

Multinomial (indicator) variable:

Multinomial distribution: Mult(n,θ)

Count variable:
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Basic Prob. Theory Concepts, ctd
A continuous random variable X can assume any value in an 
interval on the real line or in a region in a high dimensional space

X usually corresponds to a real-valued measurements of some property, e.g., 
length, position, …
It is not possible to talk about the probability of the random variable assuming a 
particular value --- P(x) = 0
Instead, we talk about the probability of the random variable assuming a value 
within a given interval, or half interval 

The probability of the random variable assuming a value within 
some given interval from x1 to x2 is defined to be the area under 
the graph of the probability density function between x1 and x2.

Probability mass:                                          note that 

Cumulative distribution function (CDF):

Probability density function (PDF): 
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Uniform Probability Density Function

Normal Probability Density Function

The distribution is symmetric, and is often illustrated 
as a bell-shaped curve. 
Two parameters, µ (mean) and σ (standard deviation), determine the location and shape of 
the distribution.
The highest point on the normal curve is at the mean, which is also the median and mode.
The mean can be any numerical value: negative, zero, or positive.

Exponential Probability Distribution

Continuous Distributions
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Statistical Characterizations
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Basic Prob. Theory Concepts, ctd
Joint probability: 

For events E (i.e. X=x) and H (say, Y=y), the probability of both events are true: 

P(E and H) := P(x,y)

Conditional probability
The probability of E is true given outcome of H

P(E and H) := P(x |y)

Marginal probability 
The probability of E is true regardless of the outcome of H

P(E) := P(x)=ΣxP(x,y)

Putting everything together:
P(x |y) = P(x,y)/P(y)

Independence and Conditional 
Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional 
probability of E given H, written as P(E|H), is

P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

E and H are (statistically) independent if 

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently

P(E and H)=P(E)P(H). 

E and F are conditionally independent given H if 
P(E|H,F) = P(E|H)

or equivalently

P(E,F|H) = P(E|H)P(F|H)
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X1

X2

X3

X4 X5

X6

p(X6| X2, X5)

p(X1)

p(X5| X4)
p(X4| X1)

p(X2| X1)

p(X3| X2)

P(X1, X2, X3, X4, X5, X6) = P(X1) P(X2| X1) P(X3| X2) P(X4| X1) P(X5| X4) P(X6| X2, X5)

Representing multivariate dist.
Joint probability dist. on multiple variables:

If Xi's are independent: (P(Xi|·)= P(Xi))

If Xi's are conditionally independent, the joint can be factored to 
simpler products, e.g., 

The Graphical Model representation

The Bayesian Theory
The Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

the posterior equals to the likelihood times the prior, up to a constant. 

This allows us to capture uncertainty about the model in a 
principled way


