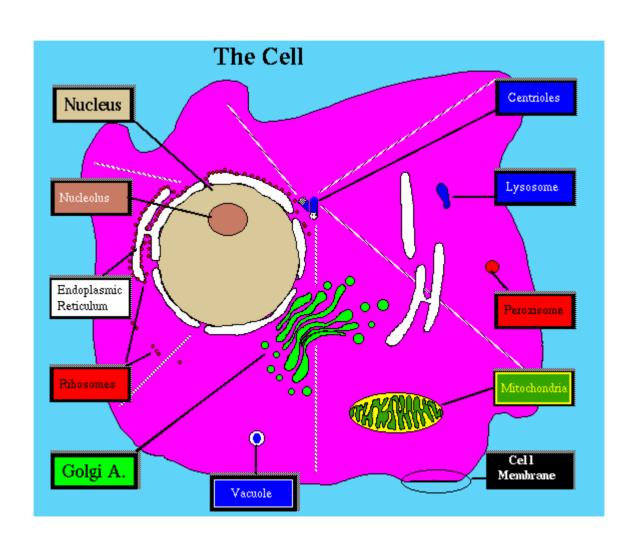
10-810 Advanced Algorithms and Models for Computational Biology

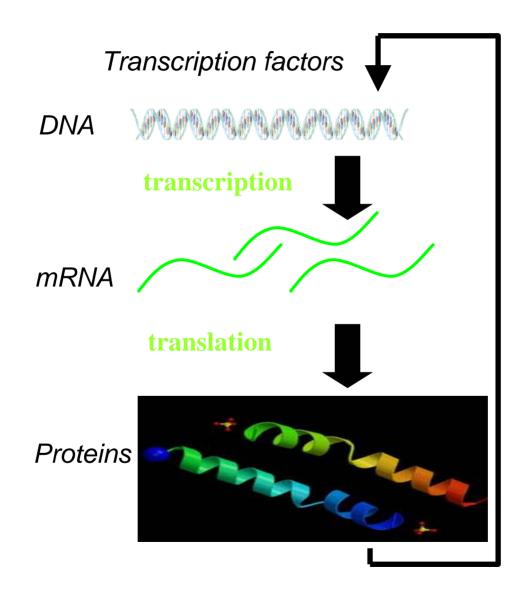
Ziv Bar-Joseph zivbj@cs.cmu.edu WeH 4107 Eric Xing epxing@cs.cmu.edu WeH 4127


http://www.cs.cmu.edu/~epxing/Class/10810-06/

Topics

- Introduction (1 Week)
- Sequence analysis (3 weeks)
- Gene expression (4 weeks)
- Genetics (3 weeks)
- Systems biology (3 weeks)
- Projects (1 week)

Introduction to Molecular Biology


The Eukaryotic Cell

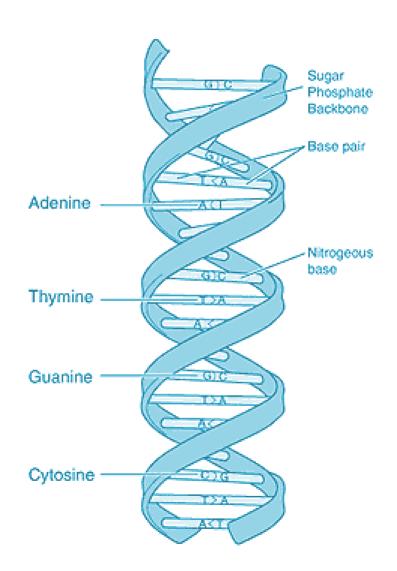
Cells Type

- Eukaryots:
 - Plants, animals, humans
 - DNA resides in the nucleus
 - Contain also other compartments
- Prokaryots:
 - Bacteria
 - Do not contain compartments

Central Dogma

The Genome

Genome


- A genome is an organism's complete set of DNA (including its genes).
- However, in humans less than 3% of the genome actually encodes for genes.
- A part of the rest of the genome serves as a control regions (though that's also a small part).
- The goal of the rest of the genome is unknown (a possible project ...).

DNA

- Four letters alphabet: A, C, G and T.
- Complementary base pairing: A-T and G-C
- Double stranded.
- Encodes proteins in segments called genes.
- Control regions in front of genes.
- Similar in all cells in the body.

DNA

- Four letters alphabet: A, C, G and T.
- Complementary base pairing: A-T and G-C
- Double stranded.
- Encodes proteins in segments called genes.
- Control regions in front of genes.
- Similar in MOST cells in the body.

Comparison of Different Organisms

	Genome size	Num. of genes
E. coli	.05*108	4,200
Yeast	.15*108	6,000
Worm	1*10 ⁸	18,400
Fly	1.8*108	13,600
Human	30*108	30,000
Plant	1.3*108	25,000

DNA is Divided Between Chromosomes

- Single molecule of DNA
- 46 chromosomes in human cells
- 22 pairs, and two sex chromosomes: X and Y
- For different diseases, many diseases related genes reside on the same chromosome

Genes

What is a gene?

Promoter

Protein coding sequence

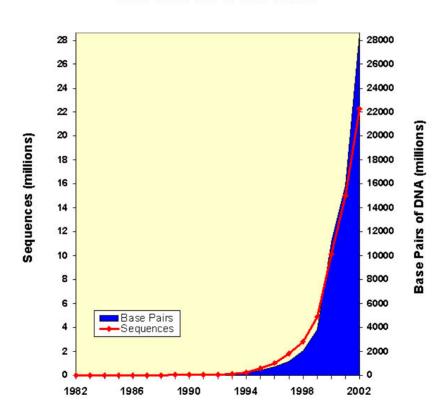
Terminator

Genomic DNA

Example of a Gene: Gal4 DNA

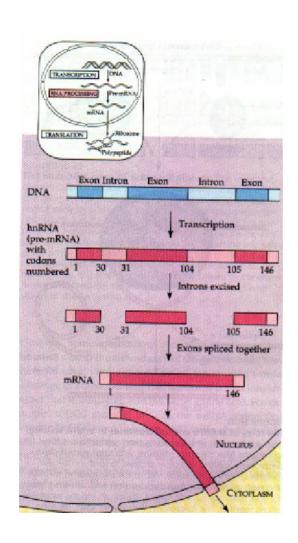
ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAG TGCTCCAAAGAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTAC TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGG CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAGAAGACCTTGACATGATT TTGAAAATGGATTCTTTACAGGATATAAAAGCATTGTTAACAGGATTATTTGTACAAGAT AATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAGACTGATATGCCTCTA ACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAACAAAGGT CAAAGACAGTTGACTGTATCGATTGACTCGGCAGCTCATCATGATAACTCCACAATTCCG TTGGATTTTATGCCCAGGGATGCTCTTCATGGATTTGATTGGTCTGAAGAGGGATGACATG TCGGATGGCTTGCCCTTCCTGAAAACGGACCCCAACAATAATGGGTTCTTTGGCGACGGT TCTCTCTTATGTATTCTTCGATCTATTGGCTTTAAACCGGAAAATTACACGAACTCTAAC GTTAACAGGCTCCCGACCATGATTACGGATAGATACACGTTGGCTTCTAGATCCACAACA TCCCGTTTACTTCAAAGTTATCTCAATAATTTTCACCCCTACTGCCCTATCGTGCACTCA CCGACGCTAATGATGTTGTATAATAACCAGATTGAAATCGCGTCGAAGGATCAATGGCAA ATCCTTTTTAACTGCATATTAGCCATTGGAGCCTGGTGTATAGAGGGGGAATCTACTGAT ATAGATGTTTTTTACTATCAAAATGCTAAATCTCATTTGACGAGCAAGGTCTTCGAGTCA

Genes Encode for Proteins


			Secon	d Letter		_
		U	С	Α	G	
1st letter	0	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	С	CUU Leu CUA CUA	CCU Pro	CAU His CAC CAA GIN CAG	CGU CGC Arg CGA CGG	U C A G
	A	AUU IIe AUA AUG Met	ACU Thr ACA ACG	AAU Asn AAC AAA Lys AAG Lys	AGU Ser AGC AGA AGA Arg	U letter C A G
	G	GUU Val GUA GUA	GCU GCC Ala GCA GCG	GAU Asp GAC GAA Glu	GGU GGC GGA GGG	U C A G

Example of a Gene: Gal4 AA

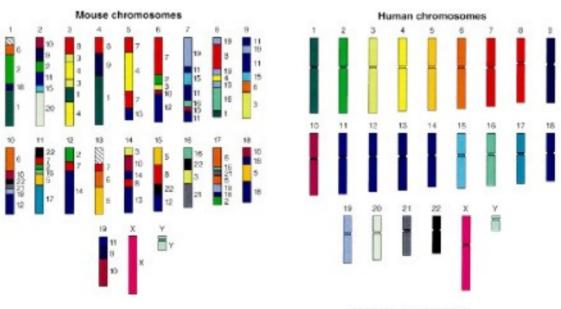
MKLLSSIEQACDICRLKKLKCSKEKPKCAKCLKNNWECRYSPKTKRSPLTRAHLTEVESR LERLEQLFLLIFPREDLDMILKMDSLQDIKALLTGLFVQDNVNKDAVTDRLASVETDMPL TLRQHRISATSSSEESSNKGQRQLTVSIDSAAHHDNSTIPLDFMPRDALHGFDWSEEDDM SDGLPFLKTDPNNNGFFGDGSLLCILRSIGFKPENYTNSNVNRLPTMITDRYTLASRSTT SRLLQSYLNNFHPYCPIVHSPTLMMLYNNQIEIASKDQWQILFNCILAIGAWCIEGESTD IDVFYYQNAKSHLTSKVFESGSIILVTALHLLSRYTQWRQKTNTSYNFHSFSIRMAISLG LNRDLPSSFSDSSILEQRRRIWWSVYSWEIQLSLLYGRSIQLSQNTISFPSSVDDVQRTT TGPTIYHGIIETARLLQVFTKIYELDKTVTAEKSPICAKKCLMICNEIEEVSRQAPKFLQ MDISTTALTNLLKEHPWLSFTRFELKWKQLSLIIYVLRDFFTNFTQKKSQLEQDQNDHQS YEVKRCSIMLSDAAQRTVMSVSSYMDNHNVTPYFAWNCSYYLFNAVLVPIKTLLSNSKSN AENNETAQLLQQINTVLMLLKKLATFKIQTCEKYIQVLEEVCAPFLLSQCAIPLPHISYN NSNGSAIKNIVGSATIAQYPTLPEENVNNISVKYVSPGSVGPSPVPLKSGASFSDLVKLL SNRPPSRNSPVTIPRSTPSHRSVTPFLGQQQQLQSLVPLTPSALFGGANFNQSGNIADSS


Number of Genes in Public Databases

Growth of GenBank

Structure of Genes in Mammalian Cells

- Within coding DNA genes there can be "junk" regions (Introns)
- Exons are segments of DNA that contain the gene's information coding for a protein
- Need to cut Introns out of RNA and splice together Exons before protein can be made
- Alternative splicing increases the potential number of different proteins, allowing the generation of millions of proteins from a small number of genes.

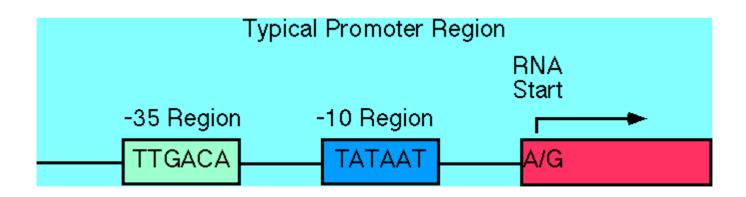


Identifying Genes in Sequence Data

- Predicting the start and end of genes as well as the introns and exons in each gene is one of the basic problems in computational biology.
- Gene prediction methods look for ORFs (Open Reading Frame).
- These are (relatively long) DNA segments that start with the start codon, end with one of the end codons, and do not contain any other end codon in between.
- Splice site prediction has received a lot of attention in the literature.

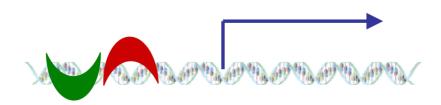
Comparative genomics

Mouse and Human Genetic Similarities

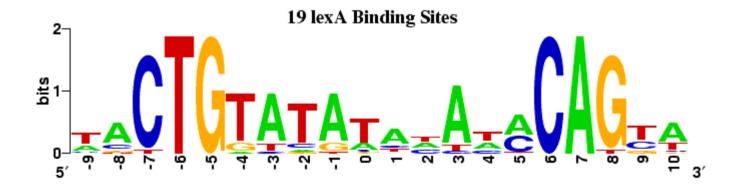

YGA 98-07582

Courtesy Lisa Stubbs
Oak Ridge National Laboratory

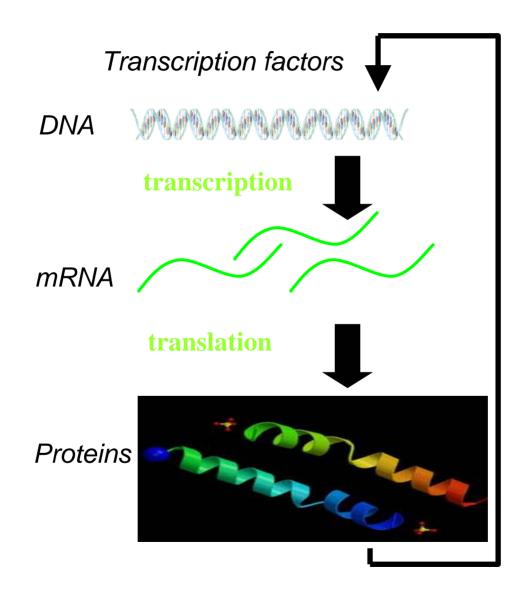
Regulatory Regions


Promoter

The promoter is the place where RNA polymerase binds to start transcription. This is what determines which strand is the coding strand.



DNA Binding Motifs

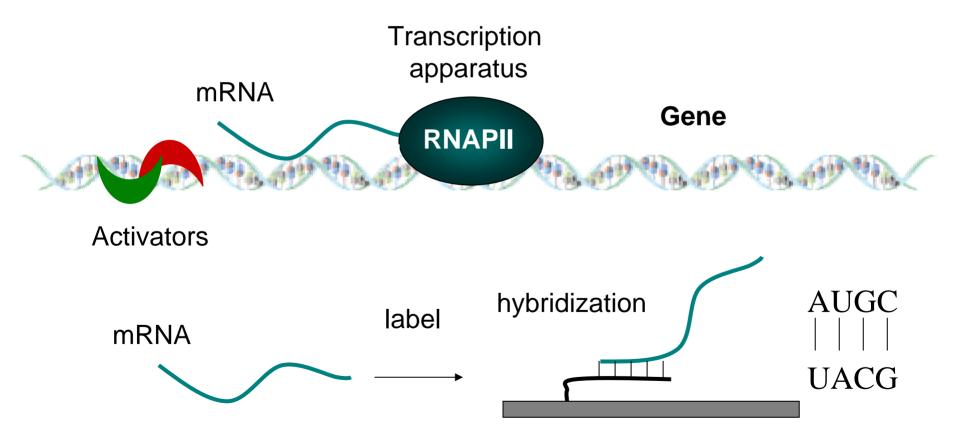

- In order to recruit the transcriptional machinery, a transcription factor (TF) needs to bind the DNA in front of the gene.
- TFs bind in to short segments which are known as DNA binding motifs.
- Usually consists 6 8 letters, and in many cases these letters generate palindromes.

Example of Motifs

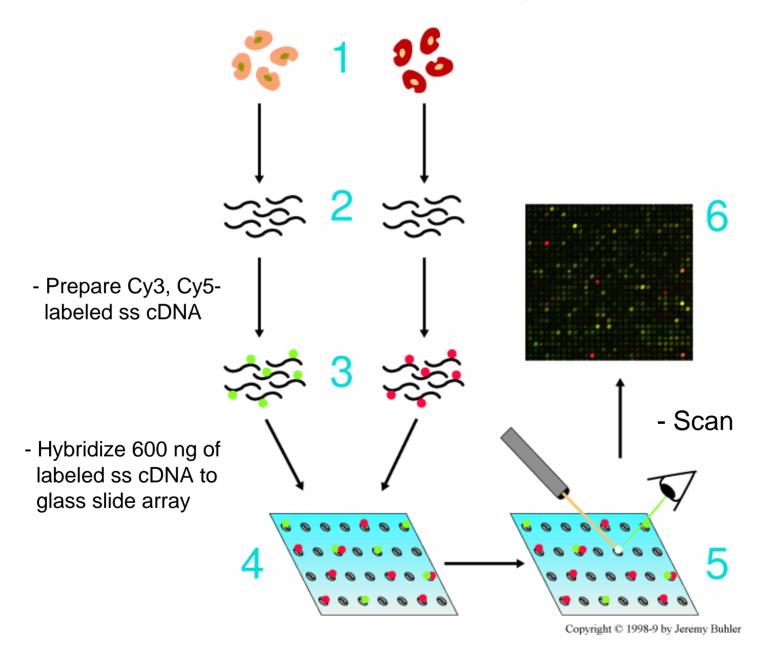
Central Dogma

RNA

Three major types (plus a recently discovered regulatory RNA).

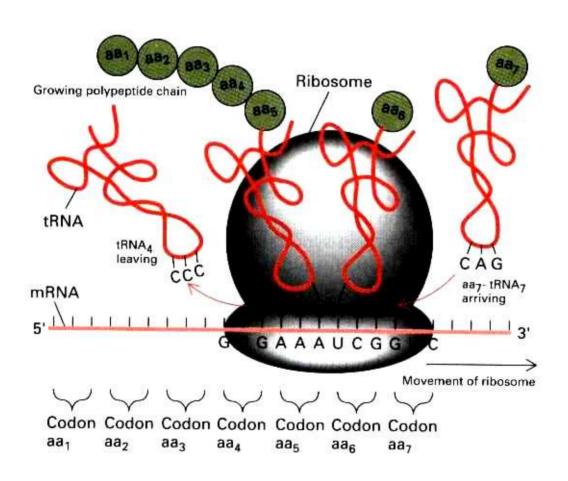

- mRNA messenger RNA
- tRNA Transfer RNA
- rRNA ribosomal RNA
- RNAi RNA interference

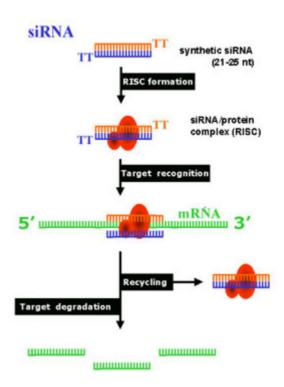
Messenger RNA


- Basically, an intermediate product
- Transcribed from the genome and translated into protein
- Number of copies correlates well with number of proteins for the gene.
- Unlike DNA, the amount of messenger RNA (as well as the number of proteins) differs between different cell types and under different conditions.

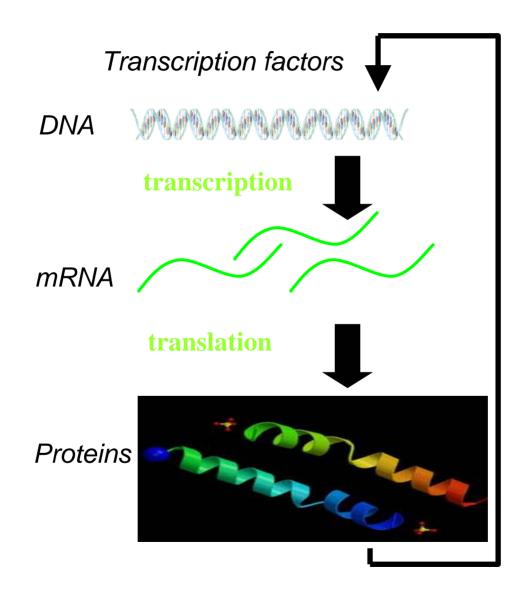
Complementary base-pairing

- mRNA is transcribed from the DNA
- mRNA (like DNA, but unlike proteins) binds to its complement

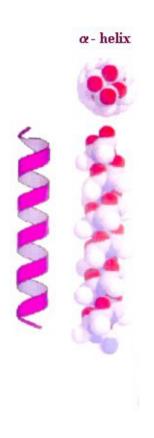

Hybridization and Scanning—Glass slide arrays

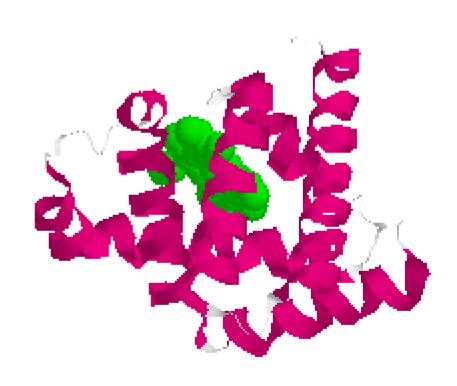

The Ribosome

- Decoding machine.
- Input: mRNA, output: protein
- Built from a large number of proteins and a number of RNAs.
- Several ribosomes can work on one mRNA

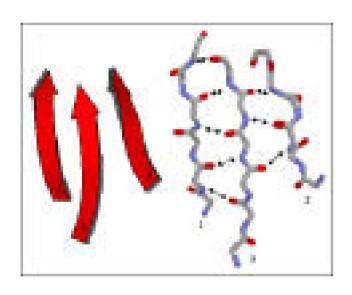

The Ribosome

RNAi


Central Dogma



Proteins


- Proteins are polypeptide chains of amino acids.
- Four levels of structure:
 - Primary Structure: The sequence of the protein
- Secondary structure: Local structure in regions of the chain
 - Tertiary Structure: Three dimensional structure
 - Quaternary Structure: multiple subunits

Secondary Structure: Alpha Helix

Secondary Structure: Beta Sheet

Protein Structure

Domains of a Protein

- While predicting the structure from the sequence is still an open problem, we can identify several domains within the protein.
- Domains are compactly folded structures.
- In many cases these domains are associated with specific biological function.

Assigning Function to Proteins

- While almost 30000 genes have been identified in the human genome, relatively few have known functional annotation.
- Determining the function of the protein can be done in several ways.
 - Sequence similarity to other (known) proteins
 - Using domain information
 - Using three dimensional structure
- Based on high throughput experiments (when does it functions and who it interacts with)

Protein Interaction

In order to fulfill their function, proteins interact with other proteins in a number of ways including:

- Regulation
- Pathways, for example A -> B -> C
- Post translational modifications
- Forming protein complexes

Determining how are these protein interact, and what are the resulting pathways and networks is one of the major focuses of this class.

What you should remember

- Higher level organization of the cell
- The central dogma
- Composition of the DNA: Genes, control regions
- Properties of mRNA
- Structure of proteins