1. Find the optimal alignment of the following two sequences: AGGCTATCACCTGACCTCCAGGCCGATGCCC

TAGCTATCACGACCGCGGTCGATTTGCCCGAC

The scoring functions are: match=1, mis-match=-1, and indel=-1.

You are asked to complete the alignment matrix, find the optimal alignment path, and given the optimal alignment score.

- 2. As we learned during the lecture, the maximal likelihood estimation of the model parameter can be obtained by first writing down the likelihood of the observed data (e.g., DNA sequences) under a candidate model (e.g., an HMM) with parameters of unknown value, and then find the argmax of the likelihood for the parameters. Let $\{Y_{t,n}\}$ denote the hidden variable sequence (t index position in the sequence and n index each sequence, $\{X_{t,n}\}$ denote the observed sequence, $\{A_{i,j}\}$ denote the number of times a transition between state i and j take place, $\{E_{i,k}\}$ denote the number of times state i emit symbol k, and $\{I_i\}$ denote the number of times the initial state of n given sequences are in state i:
 - a. Supervised learning: Given both $\{X_{t,n}\}$ and $\{Y_{t,n}\}$, derive the formula for the maximum likelihood estimation of the initial, transition, and emission probabilities of the HMM (as functions of $\{A_{i,j}\}$, $\{E_{i,k}\}$, $\{I_i\}$, which are called the *sufficient statistics* of the parameters, and can be counted from the values of $\{Y_{t,n}\}$ and $\{X_{t,n}\}$. Note that once we get these counts, we do not need to keep the sequence and state data because the counts are *sufficient* for estimating the parameters.).
 - b. Unsupervised learning: When only the sequences, i.e, $\{X_{t,n}\}$ are given, but not the underlying state sequence (i.e., $\{Y_{t,n}\}$), the above algorithm breaks down. In an EM algorithm, we replace the actual counts $\{A_{i,j}\}$, $\{E_{i,k}\}$, $\{I_i\}$ with their expectations given the sequences in the so-called "E" step. The expectations are computed as following:

$$< A_{i,j}> = \sum_{t,n} p(Y_{t,n}=i, Y_{t+1,n}=j|X)$$

$$< E_{i,k}> = \sum_{t,n} p(Y_{t,n}=i|X) \delta(X_{t,n}=k)$$

$$< I_{i}> = \sum_{n} p(Y_{0,n}=i|X)$$

where $\delta(.)$ is an indicator function which equals to 1 if the argument is true and 0 otherwise.

How these formulas relate to the forward-backward algorithm?

(In the "M" step, we do the ML estimation as in problem "a" to get an *estimator* of the parameter. Then we return to the "E" step the re-compute the < $A_{i,j}>$, < $E_{i,k}>$, and < $I_i>$. Then we do "M" step again, and iterate. The is the famous Baum-Welch algorithm.)

- c. Does posterior decoding always give a valid state sequence (i.e. a state sequence permissible by the initial and transition matrix of the model)? Why?
- 3. Implement a forward-backward algorithm and the viterbi algorithm, and compute the likelihood of a sequence I will put on the web, and the estimates of the hidden states using viterbi and posterior decoding. Compute the posterior probabilities of the state-sequences for both decoding. Be careful about the data underflow issue. Rescale the forward and backward probability if necessary. (Bonus, upgrade your algorithm to a generalized HMM that use a uniform duration distribution of 1, ..., K.) Discussions among students are allowed, but you should not copy each other's code.

letters long.

- 4. What is the difference between the MEME and the AlignACE algorithm for motif detection? Are they really different in terms of the underlying model? Discuss how to justify your answer.
- 5. Read the MEME paper and implement the MEME algorithm for motif detection.