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Housekeeping

* Homework 1
— Was released on Saturday ‘morning’
— Due date: Feb 15, 12:00 noon
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2. Model

Define the model to be an l\/\RF
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3. Objective

Choose the objective to be log-likelihood:

(Assign high probability (n)

to the things we observe . — E n

and low probability to 8(97 D) — log p(iB ’ 9)
everything else)
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3. Objective

Choose the objective to be log-likelihood:

(Assign high probability
to the things we observe
and low probability to
everything else)

Tune the parameter
function
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MLE for Undirected GMs




MLE for Undirected GMs

* Today’s parameter estimation assumptions:
1. The graphical model structure is given
2. Every variable appears in the training examples



Questions

1. What does the likelihood objective
accomplish?

2. Islikelihood the right objective function?

3. How do we optimize the objective function
(i.e. learn)?

4. What guarantees does the optimizer provide?

5. (What is the mapping from data -> model? In
what ways can we incorporate our domain
knowledge? How does this impact learning?)



Options for MLE of MRFs

* Setting I: ¢C($C) — HC’,a}C
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (1PF)

» Setting Il: Yc(xc) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods

. Setting lll: Yc(Tc) =
D. Gradient-based Methods
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Whiteboard

* Log-likelihood of MRFs with discrete
variables (i.e. tabular clique potentials)

* Derivative of log-likelihood with respect to
potentials



Log Likelihood for UGMs W
tabular cligue potentials

e Sufficient statistics: for a UGM (V,E), the number of times that a

configuration x (i.e., X ~x) is observed in a dataset D={x,...,x,} can

be represented as follows:
def def

m(x) = Eé(x x,) (totalcount), and m(x )= Em(x) (clique count)
e In terms of the counts, the log likelihood is given by:
p(Dlp) =] [] [ pxioy
logp(DI6) = 2 2 d(x,x,)logp(x|6) = 2 2 o(x,x,)logp(x| 6)

‘- zm(xnog(%ﬂwm)

= 3 3 mix)logy (x.) - Nlog Z

e There is a nasty log Zin the likelihood

© Eric Xing @ CMU, 2005-2015 21



Log Likelihood for UGMs W
tabular cligue potentials

e Sufficient statistics: for a UGM (V,E), the number of times that a

configuration x (i.e., X ~x) is observed in a dataset D={x,...,x,} can

be represented as follows:
def

m(X) = Eé(x x,) (totalcount), and m(x, )def Em(x) (clique count)

e In terms of the counts, the log likelihood is given by:

logp(D}6) =y Y m(x,)logy(x,) - NlogZ

e There is a nasty log Zin the likelihood
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Derivative of log Likelihood

e Log-likelihood:

e Firstterm:

¢ = E E m(x)logy (x.)-NlogZ

d  _m(x,)
GZ/JC(XC) 46‘()(6)

e Secondterm: dlogZ
. (x,) Zaw )(EU’/"’(XC’)

Set the value of variables X

) X

- 0 -
=?25(XC,XC)al/JC(XC)(E-wd(Xd))
=}jé<ic,xc> oz v

P
0
20X P = Pe(x,)

l/fc( )&
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Conditions on Clique Marginals

e Derivative of log-likelihood

0¢ — m(Xc) _N p(xc)
awc (XC) wc (XC) z/jc (XC)

e Hence, for the maximum likelihood parameters, we know that:

. m def
pMLE(Xc) - /(\);C) - p(xc)

e In other words, at the maximum likelihood setting of the
parameters, for each clique, the model marginals must be
equal to the observed marginals (empirical counts).

e This doesn't tell us how to get the ML parameters, it just gives
us a condition that must be satisfied when we have them.
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Options for MLE of MRFs

* Setting I w(J(wC) — HC’,wC
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (1PF)

» Setting Il: Yc(xc) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods

. Setting lll: Yc(Tc) =
D. Gradient-based Methods



Whiteboard

* MLE by Guessing
— Example 1: linear-chain on three variables
— Example 2: “decomposable” with four variables



MLE by Guessing

* Definition: Graph is decomposable if it can be
recursively subdivided into sets A, B, and S such
that S separates A and B.



MLE by Guessing

* Definition: Graph is decomposable if it can be
recursively subdivided into sets A, B, and S such

that S separates A and B.

* Recipe for MLE by Guessing:

— Three conditions:
1. Graphical model is decomposable
2. Potentials defined on maximal cliques
3. Potentials are are parameterized as: Yc(xc) = 0c .z

— Step 1: set each clique potential to its empirical
marginal

— Step 2: divide out every non-empty intersection
between cliques exactly once



Non-decomposable and/or with cece
non-maximal clique potentials

e If the graph is non-decomposable, and or the potentials are

defined on non-maximal cliques (e.g., v,,, 5,), we could not
equate empirical marginals (or conditionals) to MLE of cliques

potentials.

p(XaXaXaX )= 1/],(/\//,/\’)
157257335 7%4 ” /f J

ﬁ(X/,XJ)

A7, j) st Y, x;) = 1P (X X)) P(X)
X)) Bx;)
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Options for MLE of MRFs

* Setting I: w(J(wC) — HC’,wC
A. MLE by inspection (Decomposable Models)
B. Iterative Proportional Fitting (IPF)

» Setting Il: Yc(xc) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods

. Setting lll: Yc(Tc) =
D. Gradient-based Methods



Fixed Point Iteration for Optimization

* Fixed point iteration is a general tool for solving systems of
equations

* It canalso be applied to optimization.

J(H) Given objective function:
Compute derivative, set to
dJ(H) zero (call this function f').
3 =0 = f(0) Rearrange the equation s.t.
)

0= f(0) = 0; =g(0)
9§t+1) _ g(e(t))

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment ¢

Repeat #5 until convergence

1
2
/3.
one of parameters appears on
the LHS.
4
5
/
6



Fixed Point Iteration for Optimization

Fixed point iteration is a general tool for solving systems of

equations

It can also be applied to optimization.

3 5332 —+ 2x

dJ(x)

dx

= f(z)=2"-32+2=0

=z =

x2 + 92
3 = g(x)

1.
2.

/

\

Given objective function:

Compute derivative, set to
zero (call this function f').

Rearrange the equation s.t.

one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment ¢

Repeat #5 until convergence
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Fixed Point Iteration for Optimization

x2 4 2
=a=—a—=g()
x2 + 92
T <

We can implement our
example in a few lines of
python.

def

def

def

if _

fF1(x):
TTTE(X) = xA2 - 3x + 2"
return xX**2 - 3.*x + 2.

gl(x):
"Trg(x) = \frac{xAZ + 2}{3}'""

AT

return (x**2 + 2.) / 3.

fpi(g, x@, n, f):
""'Optimizes the 1D function g by fixed point iteration
starting at x@ and stopping after n iterations. Also
includes an auxiliary function f to test at each value.'"’
X = X0
for 1 in range(n):
print("i=%2d x=%.4f fOO=%.4f" ¥ (1, x, f(x)))
x = g(x)
1+=1
print("i=%2d x=%.4f f()=%.4f" ¥ (1, x, f(x)))
return X

_name__ == "__main__":
x = fpi(gl, 0, 20, f1)
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Fixed Point Iteration for Optimization

$ python

e
RPOWONOUIAWNRES
XXX X X X X X X X X X X X X X X X X X

o pede pde pde pde pde pde pde pde pde pde pde

xX=0.
.6667
.8148
.8880
.9295
.9547
.9705
.98006
.9872
.9915
.9944
.9963
.9975
.9983
.9989
.9993
.9995
.9997
.9998
.9999
.9999

(SSRGS RS RO O OO RO RO RO RO RO RO RO OO O G O O

fixed-point-iteration.py
.0000
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.
f(x)=0.

0000

f(x)=2

4444
2195
1246
0755
0474
0304
0198
0130
0086
0057
0038
0025
0017
0011
0007
0005
0003
0002
0001
0001
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Iterative Proportional Fitting (1PF)

IPF applies fixed point iteration to the
derivative of the likelihood objective

N
((6;D) = > logp(z'™ | 6)
n=1

a  m(x,) N p(x,)

v.(x) w.(x)  p.(x,)

(@5)

¢c( c)_wc( c)p(mc)

) =y ) e

Need to do inference here

plxc)= > pa'|6)

T/ =xC

SE—

¢
2.
/3.
L
4.
5.

6.

Given likelihood objective

Compute derivative, set to
zero

Rearrange the equation s.t.
one of potentials appears on
the LHS.

Initialize the potential tables.

For each clique cin C, update
each potential table and
increment ¢:

Repeat #5 until convergence
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Properties of IPF Updates

A

e Applies only when potentials are parameterized as:
wC(wC) — ‘90,330

o |PF iterates a set of fixed-point equations:

+ , p(x,)
UJ(E 1)(Xc) = wi )(XC)P(TXC)

e However, we can prove it is also a coordinate ascent
algorithm (coordinates = parameters of clique potentials).

e Hence at each step, it will increase
the log-likelihood, and it will converge

to a global maximum.

© Eric Xing @ CMU, 2005-2015 36



KL Divergence View

e |PF can be seen as coordinate ascent in the likelihood using
the way of expressing likelihoods using KL divergences.

e \We can show that maximizing the log likelihood is equivalent
to minimizing the KL divergence (cross entropy) from the
observed distribution to the model distribution:

p(x)
p(x|06)

e Using a property of KL divergence based on the conditional

chain rule: p(x) = p(x,)p(x,|x,):
ICAVICAEN
KL(g(x,,x5) | p(Xos X)) =, 9(X,)g(x, | X,)log P00 )

Xa:Xp

max¢ < min KL(5(x) || p(x|6))= Y B (x)log

- 3 g0 1x)loe D e S g0x,)g0x L x, o f e

Xq.Xp (a Xa>Xp

= KL(g(x,) | p(x)+ 3 g(X)KLIG(x, | X,) 1| px, | X,)

© Eric Xing @ CIMU, 2005-2015 37



IPF minimizes KL divergence

e Putting things together, we have

KL(B(x) || p(x|6))= KL(B (x,) | p(x, | 6))+
S POIKLB (. x| e [x,))

It can be shown that changing the clique potential vy has no effect
on the conditional distribution, so the second term in unaffected.

e To minimize the first term, we set the marginal to the
observed marginal, just as in IPF.
e Note that this is only good when the model is decomposable !

e We can interpret IPF updates as retaining the “old” conditional
probabilities p((x_.|x_) while replacing the “old” marginal
probability p((x,) with the observed marginal p(x,).

© Eric Xing @ CMU, 2005-2015 38



Options for MLE of MRFs

* Setting I: w(J(CUC) — HC’,wC
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (1PF)

» Setting Il: Yc(xc) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods

. Setting lll: Yc(Tc) =
D. Gradient-based Methods
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Feature-based Clique Potentials

So far we have discussed the most general form of an
undirected graphical model in which cliques are
parameterized by general “tabular” potential functions y(x.).

But for large cliques these general potentials are exponentially
costly for inference and have exponential numbers of
parameters that we must learn from limited data.

One solution: change the graphical model to make cliques
smaller. But this changes the dependencies, and may force us
to make more independence assumptions than we would like.

Another solution: keep the same graphical model, but use a
less general parameterization of the clique potentials.

This is the idea behind feature-based models.

© Eric Xing @ CMU, 2005-2015 40



Features °

e

e Consider a clique x, of random variables in a UGM, e.qg. three
consecutive characters ¢,¢,¢; in a string of English text.

e How would we build a model of p(¢,¢,¢5)?

e If we use a single clique function over ¢, c,¢;, the full joint clique potential would
be huge: 263-1 parameters.

e However, we often know that some particular joint settings of the variables in a
clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

e A “feature” is a function which is vacuous over all joint settings
except a few particular ones on which it is high or low.

e For example, we might have £, ,(¢;,¢,¢;) which is 1 if the string is ing’ and 0
otherwise, and similar features for ?ed’, etc.

e We can also define features when the inputs are continuous.
Then the idea of a cell on which it is active disappears, but we
might still have a compact parameterization of the feature.

© Eric Xing @ CMU, 2005-2015 41



Features as Micropotentials &

B

e By exponentiating them, each feature function can be made
into a “micropotential”. We can multiply these micropotentials
together to get a clique potential.

e Example: a clique potential y/(c,c,c¢;) could be expressed as:

Hinfi'n 2adl0
Y (G,6,6)=¢€e™ 2 x @hale x|

K
— exp{z (9/(76( (Cl , G, C3)}

e This is still a potential over 262 possible settings, but only

uses K parameters if there are K features.

e By having one indicator function per combination of x_, we recover the standard
tabular potential.
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Combining Feature

>

e Each feature has a weight 6, which represents the numerical
strength of the feature and whether it increases or decreases

the probability of the clique.

e The marginal over the clique is a generalized exponential
family distribution, actually, a GLIM:

eing ﬁng (Cl > CZ > CS ) + e?edf?ed (Cl > CZ > CS ) + }

p(C19C29C3) x €Xp
equ?]flu? (Cl > CZ > C3) + szzfzzz (Cl > CZ > C3) o

e In general, the features may be overlapping, unconstrained
indicators or any function of any subset of the clique variables:

v.(x,) = exp{;m(xc,)}

© Eric Xing @ CMU, 2005-2015 43



Feature Based Model

e \We can multiply these clique potentials as usual:

p(x )_Z(H)Hl/jc( )‘Z(Q)GXP{ /; 0,7 (x,.) }

e However, in general we can forget about associating features
with cliques and just use a simplified form:

= ; exp{g Of(x, >}

e This is just our friend the exponential family model, with the
features as sufficient statistics!

p(X) =

p(x,)
p7(x,)

e Not obvious how to use this rule to update the weights and features
individually !!!

e Learning: recall that in IPF, we have v (x,) =y (x,)

Q. EsicXing@-CMLL2005.20.15 44




Options for MLE of MRFs

* Setting I: w(J(wC) — HC’,wC
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (1PF)

» Setting Il: Yc(xc) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods

. Setting lll: Yc(Tc) =
D. Gradient-based Methods

45



Generalized Iterative Scaling (GIS)

Key idea:
— Define a function which lower-bounds the log-
likelihood

— Observe that the bound is tight at current
parameters

— Increase lower-bound by fixed-point iteration
in order to increase log-likelihood

Side note: This idea is akin to a standard
derivation of the Expectation-Maximization
(EM) algorithm



Generalized Iterative Scaling (GIS)

GIS applies fixed point iteration to the derivative
of a lower-bound of the likelihood objective

/

/

=S F(x)f(x)- exp(A” )E p(x |67 (x)

SP)
2p< (x) fi (x)

0" = 0" + log(

|

7.

s w e

o 1

Given avg. likelihood objective
Derive lower bound

Compute derivative of bound,
set to zero

Rearrange the equation s.t.
one parameter appears on the
LHS.

Initialize the parameters.

Foreachiin{/,...K}, update
each parameter and increment
l

Repeat #6 until convergence

The lower bound is obtained by linearizing a log and applying Jensen-Shannon.

((0:D) = Ee E B(XYFE(X)- E p(X|t9(”)2f(X)eXp( AGD )=Tog Z(67) +1= A(6)
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e Scaled likelihood function

¢ (0;0)=¢(0;D)/N = %Z log p(x, | 6)
= ¥ p(x)log p(x | 6)
=Y Px)Y 6f(x)-log Z(6)

e Instead of optimizing this objective directly, we attack its lower
bound

The logarithm has a linear upper bound ...

logZ(0) =< uZ(0)-logu-1

This bound holds for all u, in particular, for

u=Z0")

e Thus we have
Z(6)

¢ (6;D)= > ,B“(x)z 0. (x) - Z 0™

© Eric Xing @ CMU, 2005-2015 48
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Generalized lterative Sca
(GIS)

e Lower bound of scaled loglikelihood

C(0:0)= 3 PS030~ F 0

Z@) log Z(67)+1

e Define AH(” ¢9 -6

¢(6:0)2F P03 6 (X) ‘Z(;MEGXP {E Hfﬂx)}‘l%zwm) o

= 0. ) PXNi(x)- Z(;m)Eexp{E Hf”ﬁ(X)}exp{E A@f”ﬁ(X)}—logZ(ﬁ(”) +1

=363 Px0)- Y pix| e<f>>exp{2 Mf”ﬁ(m}—logzwmwl
e Relax again
Assume £ (x)=0, E/f(X) =1
Convexity of exponential: eXp(E/ﬂ,’X,’ )s E/ 7, eXp(X/)
e We have:

(" (6:D) = Ee Ep(x)f(x) E p(X|6'(”)E £(x)expla8? )=log Z(87) +1'= A6)
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GIS

e Lower bound of scaled loglikelihood

(" (0:D) > Ee E p(x)f(x) E p(x| em)z £(x)explAD )-log Z(6P) +1= A6)

e Take denvatlve.

e Setto zero

AGY

= 3 B () -explad” |3 pix |67 (x)
DEETIC IOV

§p<x 167),(x) Ep“>(x>f<x)

where p)(x) is the unnormalized version of p(x] &)

(t+1) _ p(0) (t) (t+1) N () AO" £ (x)
‘91' = ‘91' + Aei = p (x) =p (X)He
I

e Update

p(f+1) (X) _

P (x)

Z@o"LA

(7‘) (X)

Z((g(f)) [ 1

=p” (x)ﬂ

=g % (%)
gp(x)ﬁ(X) Z (9“))
3P0 (0)F(x)

f(X)

3P XV (x) )' (Z(e(r)))Zﬁ(x)

zp<”(x>ﬁ<x)

SBO () )ﬁm

EP(”(X)ﬁ(X)

© Eric Xing @ CMU, 2005-2015

2(6")

Recall IPF:
%Uém) (Xc) = I/Jy) (Xc)

p(x,)
p7(x,)
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Contrast of IPF and GIS ot

e |PF is a general algorithm for finding MLE of UGMs.
e a fixed-point equation for iy, over single cliques, coordinate ascent
e Requires the potential to be fully parameterized
e The clique described by the potentials do not have to be max-clique
e For fully decomposable model, reduces to a single step iteration

o GIS

e lterative scaling on general UGM with feature-based potentials

e |PF is a special case of GIS which the clique potential is built on features defined
as an indicator function of clique configurations.

GIS: o IPF: ( N

. t SPf () .\ X

RN (Fere) w0 =y (k) e
SPf )

(t+1) _ pn(®)

b =07+ log( 3P (%) f; (x) )
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Options for MLE of MRFs

* Setting I: w(J(wC) — HC’,wC
A. MLE by inspection (Decomposable Models)
B. lterative Proportional Fitting (1PF)

» Setting Il: Yc(xc) = exp(0 - f(xc))
C. Generalized Iterative Scaling
D. Gradient-based Methods

. Setting lll: Yc(Tc) =
D. Gradient-based Methods



Recipe for Gradient-based Learning

. Write down the objective function

. Compute the partial derivatives of the
objective (i.e. gradient, and maybe Hessian)

. Feed objective function and derivatives into
black box

—)

—)

Optimization

. Retrieve optimal parameters from black
box



Optimization Algorithms

What is the black box? = E&=t
* Newton’s method

* Hessian-free /| Quasi-Newton methods
— Conjugate gradient
— L-BFGS

* Stochastic gradient methods

— Stochastic gradient descent (SGD)
— Stochastic meta-descent
— AdaGrad



Whiteboard

* Gradient of MRF log-likelihood for feature-
based potentials

* Gradient of CRF log-likelihood for feature-
based potentials [ next time]

* L1and L2 regularization



Practical Considerations

for Gradient-based Methods
* Overfitting
— L2 regularization
— L1 regularization

— Regularization by early stopping
* For SGD: Sparse updates



“Empirical” Comparison of
Parameter Estimation Methods

Example NLP task: CRF dependency parsing
Suppose: Training time is dominated by inference

Dataset: One million tokens
Inference speed: 1,000 tokens [ sec
=» 0.27 hours per pass through dataset

GIS
L-BFGS
SGD

# passes through
data to converge

1000+
100+

10

# hours to
converge

270
27
~3




Setting I:

Setting Il
Vvo(xe) =exp(0 - f(zc))

Yo(xe) =00z

B.

D.

Summary

MLE by inspection (Decomposable Models)
—  Very limited applicability
—  Exemplifies the need for general algorithms
Iterative Proportional Fitting (IPF)
— Guaranteed to converge
—  Only applies to “tabular’” potential functions

Generalized Iterative Scaling (GIS)
—  Maximizes a lower-bound of log-likelihood

— lterative algorithm (like IPF), but more broadly applies to
exponential family potentials

Gradient-based Methods

— Doesn’t require fancy optimization algorithms (i.e. SGD
works great)

— Faster convergence than GIS
— Applies to arbitrary potentials [later in the course]



MLE for Undirected GMs




Contrast of MLE for T
directed / undirected GMs ot

e For directed graphical models, the log-likelihood decomposes
into a sum of terms, one per family (node plus parents).

e For undirected graphical models, the log-likelihood does not
decompose, because the normalization constant Zis a
function of all the parameters

Ptyseee) == [ (%) z- 3 v

Z

e In general, we will need to do inference (i.e., marginalization)
to learn parameters for undirected models, even in the fully
observed case.
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ML Structural Learning via
Neighborhood Selection for

—— completely observed
MIRF
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Gaussian Graphical Models

e Multivariate Gaussian density:
1

C
(277)”/2‘2‘1/2

p(x| 1.3) = XT3 (x-0) 7 (x- o)

e WOLG: letp=0 Q=X""

‘ ‘1/2

p(xl,xz,"',xp|M=O,Q)—(2i_7 { Equ qu }

e \We can view this as a continuous Markov Random Field with
potentials defined on every node and edge:
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Pairwise MRF (e.g., Ising Model)

e Assuming the nodes are discrete, and edges are weighted,
then for a sample x,, we have

P(x4|©) = oxp(ze Tai+ Z Oijvaiva; — A€ ))

eV (i,7)EE
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The covariance and the precision |32
matrices

e Covariance matrix
Zi,j =0 — XfLJ_X] or p(XZ,X]) — p(Xz)p(X])

e Graphical model interpretation?

e Precision matrix @ =¥ !

Qi; =0 = X LX;|X_;; or p(Xy, X;|X i) = p(Xs|Xi5)p(X;|1X_i5)

e Graphical model interpretation?
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Sparse precision vs. sparse

covariance in GGM

(20—
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Another example o

o xr3

L1 T4

O % % % ¥ ¥
O % % % ¥ %
O OO % % %
O O ¥ O % *
O *x OO % *
N eoNoNoNoN®

) 26 O

e How to estimate this MRF?

e Whatifp>>n
e MLE does not exist in general!

e What about only learning a “sparse” graphical model?
This is possible when s=o(n)
Very often it is the structure of the GM that is more interesting ...
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Recall lasso

Hﬂ.t-_ = arg 1‘1‘5115(9.;_) + M| i ||

where [(6;) = log P(yi|x:.0;).
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Graph Regression

Neighborhood selection

0 = argmin) _I(6) +Ad| 6]
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Graph Regression
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Graph Regression :

0O
)

It can be shown that:
given iid samples, and under several technical conditions (e.g.,
"irrepresentable"), the recovered structured is "sparsistent” even when p

>>nN
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Learning Ising Model cecs
(i.e. pairwise MRF)

e Assuming the nodes are discrete, and edges are weighted,
then for a sample x,, we have

P(x4|©) = oxp(ze Tai+ Z Oijvaiva; — A€ ))

eV (i,7)EE

e It can be shown following the same logic that we can use L_1
regularized logistic regression to obtain a sparse estimate of
the neighborhood of each variable in the discrete case.
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Consistency

e

e Theorem: for the graphical regression algorithm, under
certain verifiable conditions (omitted here for simplicity):

P [G‘(A”) £ G} — O (exp (=Cn)) = 0

Note the from this theorem one should see that the regularizer is not actually
used to introduce an “artificial” sparsity bias, but a devise to ensure consistency
under finite data and high dimension condition.
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