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Learning Graphical Models
The goal:

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)
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Learning Graphical Models
 Scenarios:

 completely observed GMs
 directed
 undirected 

 partially or unobserved GMs
 directed
 undirected (an open research topic) 

 Estimation principles:
 Maximal likelihood estimation (MLE)
 Bayesian estimation
 Maximal conditional likelihood
 Maximal "Margin" 
 Maximum entropy

 We use learning as a name for the process of estimating the parameters, 
and in some cases, the topology of the network, from data.
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ML Structural Learning for 
completely observed 

GMs 
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Two “Optimal” approaches 
 “Optimal” here means the employed algorithms guarantee to 

return a structure that maximizes the objectives (e.g., LogLik)
 Many heuristics used to be popular, but they provide no guarantee on attaining 

optimality, interpretability, or even do not have an explicit objective
 E.g.: structured EM, Module network, greedy structural search, deep learning via 

auto-encoders, etc. 

 We will learn two classes of algorithms for guaranteed 
structure learning, which are likely to be the only known 
methods enjoying such guarantee, but they only apply to 
certain families of graphs:
 Trees: The Chow-Liu algorithm (this lecture)
 Pairwise MRFs: covariance selection, neighborhood-selection (later)      
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Structural Search
 How many graphs over n nodes?

 How many trees over n nodes?

 But it turns out that we can find exact solution of an optimal 
tree (under MLE)!
 Trick: MLE score decomposable to edge-related elements
 Trick: in a tree each node has only one parent!
 Chow-liu algorithm
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Information Theoretic 
Interpretation of ML
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Information Theoretic 
Interpretation of ML (con'd)
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Chow-Liu tree learning algorithm
 Objection function:

 Chow-Liu:
 For each pair of variable xi and xj

 Compute empirical distribution:

 Compute mutual information:

 Define a graph with node x1,…, xn

 Edge (I,j) gets weight 
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Chow-Liu algorithm (con'd)
 Objection function:

 Chow-Liu:
Optimal tree BN
 Compute maximum weight spanning tree
 Direction in BN: pick any node as root, do breadth-first-search to define directions
 I-equivalence:
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Structure Learning for general 
graphs
 Theorem:

 The problem of learning a BN structure with at most d parents is 
NP-hard for any (fixed) d≥2

 Most structure learning approaches use heuristics
 Exploit score decomposition 
 Two heuristics that exploit decomposition in different ways

 Greedy search through space of node-orders

 Local search of graph structures
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ML Parameter Est. for 
completely observed GMs of 

given structure

Z

X

 The data:
{ (z1,x1), (z2,x2), (z3,x3), ... (zN,xN)}
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Parameter Learning
 Assume G is known and fixed,

 from expert design
 from an intermediate outcome of iterative structure learning

 Goal: estimate  from a dataset of N independent, identically 
distributed (iid) training cases D = {x1, . . . , xN}.

 In general, each training case xn=(xn,1, . . . , xn,M)                           
is a vector of M values, one per node,
 the model can be completely observable, i.e., every element in xn is known (no 

missing values, no hidden variables),
 or, partially observable, i.e., i, s.t. xn,i is not observed.  

 In this lecture we consider learning parameters for a BN 
with given structure and is completely observable
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Review of density estimation
 Can be viewed as single-node graphical models

 Instances of exponential family dist.

 Building blocks of general GM

 MLE and Bayesian estimate 

x1 x2 x3 xN
…

xi
N

GM:
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 Bernoulli distribution: Ber(p)

 Multinomial distribution: Mult(1,)

 Multinomial (indicator) variable:
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 Multinomial distribution: Mult(n,)

 Count variable:

Discrete Distributions
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Example: multinomial model
 Data: 

 We observed N iid die rolls (K-sided): D={5, 1, K, …, 3}

 Representation:

Unit basis vectors:

 Model: 

 How to write the likelihood of a single observation xn? 

 The likelihood of datasetD={x1, …,xN}:
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MLE: constrained optimization 
with Lagrange multipliers
 Objective function: 

 We need to maximize this subject to the constrain

 Constrained cost function with a Lagrange multiplier

 Take derivatives wrt k

 Sufficient statistics
 The counts,                                                are sufficient statistics of data D
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Bayesian estimation: 
 Dirichlet distribution:  

 Posterior distribution of  : 

 Notice the isomorphism of the posterior to the prior, 
 such a prior is called a conjugate prior

 Posterior mean estimation:
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More on Dirichlet Prior:
 Where is the normalize constant C() come from?

 Integration by parts 
 () is the gamma function:
 For inregers,  

 Marginal likelihood:

 Posterior in closed-form:

 Posterior predictive rate:
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Sequential Bayesian updating
 Start with Dirichlet prior
 Observe N ' samples with sufficient statistics    . Posterior 

becomes:

 Observe another N " samples with sufficient statistics     . 
Posterior becomes:

 So sequentially absorbing data in any order is equivalent to 
batch update.
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Hierarchical Bayesian Models
  are the parameters for the likelihood p(x|)
  are the parameters for the prior p(|) .
 We can have hyper-hyper-parameters, etc.
 We stop when the choice of hyper-parameters makes no 

difference to the marginal likelihood; typically make hyper-
parameters constants.

 Where do we get the prior? 
 Intelligent guesses
 Empirical Bayes (Type-II maximum likelihood) 
 computing point estimates of  :
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Limitation of Dirichlet Prior:



N



xi
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- Log Partition Function
- Normalization Constant
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The Logistic Normal Prior

 Pro: co-variance structure
 Con: non-conjugate (we will discuss how to solve this later)
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Logistic Normal Densities
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 Uniform Probability Density Function

 Normal (Gaussian) Probability Density Function

 The distribution is symmetric, and is often illustrated as a bell-shaped curve. 
 Two parameters,  (mean) and  (standard deviation), determine the location and shape of 

the distribution.
 The highest point on the normal curve is at the mean, which is also the median and mode.
 The mean can be any numerical value: negative, zero, or positive.

 Multivariate Gaussian

Continuous Distributions
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MLE for a multivariate-Gaussian
 It can be shown that the MLE for µ and Σ is

where the scatter matrix is

 The sufficient statistics are nxn and nxnxn
T.

 Note that XTX=nxnxn
T may not be full rank (eg. if N <D), in which case ΣML is not 

invertible
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Bayesian parameter estimation 
for a Gaussian
 There are various reasons to pursue a Bayesian approach

 We would like to update our estimates sequentially over time.
 We may have prior knowledge about the expected magnitude of the parameters.
 The MLE for Σ may not be full rank if we don’t have enough data.

 We will restrict our attention to conjugate priors.

 We will consider various cases, in order of increasing 
complexity:
 Known σ, unknown µ
 Known µ, unknown σ
 Unknown µ and σ
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Bayesian estimation: unknown µ, known σ

 Normal Prior:  

 Joint probability: 

 Posterior:
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Bayesian estimation: unknown µ, known σ

 The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.

 The precision of the posterior 1/σ2
N is the precision of the prior 1/σ2

0 plus one 
contribution of data precision 1/σ2 for each observed data point.

 Sequentially updating the mean
 µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

 Effect of single data point

 Uninformative (vague/ flat) prior, σ2
0 →∞
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Other scenarios
 Known µ, unknown λ = 1/σ2

 The conjugate prior for λ is a Gamma with shape a0 and rate (inverse scale) b0

 The conjugate prior for σ2 is Inverse-Gamma

 Unknown µ and unknown σ2
 The conjugate prior is 

Normal-Inverse-Gamma

 Semi conjugate prior

 Multivariate case:
 The conjugate prior is 

Normal-Inverse-Wishart
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Estimation of conditional density
 Can be viewed as two-node graphical models

 Instances of GLIM

 Building blocks of general GM

 MLE and Bayesian estimate 

 See supplementary slides

Q

X

Q

X
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MLE for general BNs
 If we assume the parameters for each CPD are globally 

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:
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 A plate is a “macro” that allows subgraphs to be replicated

 For iid (exchangeable) data, the likelihood is

 We can represent this as a Bayes net with N nodes.
 The rules of plates are simple: repeat every structure in a box a number of 

times given by the integer in the corner of the box (e.g. N), updating the plate 
index variable (e.g. n) as you go.

 Duplicate every arrow going into the plate and every arrow leaving the plate by 
connecting the arrows to each copy of the structure.

X1

X2

XN



…

 Xn

N


Plates
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n

nxpDp )|()|( 
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 Consider the distribution defined by the directed acyclic GM:

 This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.

Decomposable likelihood of a BN
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MLE for BNs with tabular CPDs
 Assume each CPD is represented as a table (multinomial) 

where

 Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table

 The sufficient statistics are counts of family configurations

 The log-likelihood is

 Using a Lagrange multiplier 
to enforce               , we get:
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Earthquake

Radio

Burglary

Alarm

Call
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Local Distributions 
defined by, e.g., multinomial parameters:

How to define parameter prior?

Assumptions (Geiger & Heckerman 97,99):

 Complete Model Equivalence
 Global Parameter Independence
 Local Parameter Independence
 Likelihood and Prior Modularity

? )|( Gp 
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 Global Parameter Independence
For every DAG model:

 Local Parameter Independence
For every node:
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Global & Local Parameter 
Independence
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Provided all variables are observed in all cases, we can perform 
Bayesian update each parameter independently !!!

sample 1

sample 2



2|11 2|1

X1 X2

X1 X2

Global Parameter
Independence

Local Parameter
Independence

Parameter Independence,
Graphical View
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Which PDFs Satisfy Our 
Assumptions? (Geiger & Heckerman 97,99)

 Discrete DAG Models:

Dirichlet prior:

 Gaussian DAG Models:

Normal prior:

Normal-Wishart prior:
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 Consider a time-invariant (stationary) 1st-order Markov model
 Initial state probability vector: 

 State transition probability matrix:

 The joint:

 The log-likelihood:

 Again, we optimize each parameter separately
  is a multinomial frequency vector, and we've seen it before
 What about A?

Parameter sharing
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Learning a Markov chain 
transition matrix
 A is a stochastic matrix: 
 Each row of A is multinomial distribution.
 So MLE of Aij is the fraction of transitions from i to j

 Application: 
 if the states Xt represent words, this is called a bigram language model

 Sparse data problem:
 If i j did not occur in data, we will have Aij =0, then any future sequence with 

word pair i j will have zero probability. 
 A standard hack: backoff smoothing or deleted interpolation
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Bayesian language model
 Global and local parameter independence

 The posterior of Ai∙ and Ai'∙ is factorized despite v-structure on Xt, because Xt-

1 acts like a multiplexer
 Assign a Dirichlet prior i to each row of the transition matrix:

 We could consider more realistic priors, e.g., mixtures of Dirichlets to account for 
types of words (adjectives, verbs, etc.)
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Example: HMM: two scenarios
 Supervised learning: estimation when the “right answer” is known

 Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

 QUESTION: Update the parameters  of the model to maximize P(x|) -
-- Maximal likelihood (ML) estimation 
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Recall definition of HMM
 Transition probabilities between 

any two states

or

 Start probabilities 

 Emission probabilities associated with each state

or in general:
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Supervised ML estimation
 Given x = x1…xN for which the true state path y = y1…yN is known,

 Define:
Aij = # times state transition ij occurs in y
Bik = # times state i in y emits k in x

 We can show that the maximum likelihood parameters  are:

 What if x is continuous? We can treat                                               as NT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Supervised ML estimation, ctd.
 Intuition:

 When we know the underlying states, the best estimate of  is the average 
frequency of transitions & emissions that occur in the training data

 Drawback:
 Given little data, there may be overfitting:

 P(x|) is maximized, but  is unreasonable
0 probabilities – VERY BAD

 Example:
 Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

 Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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Pseudocounts
 Solution for small training sets:

 Add pseudocounts
Aij = # times state transition ij occurs in y + Rij

Bik = # times state i in y emits k in x + Sik

 Rij, Sij are pseudocounts representing our prior belief
 Total pseudocounts: Ri = jRij , Si = kSik , 

 --- "strength" of prior belief, 
 --- total number of imaginary instances in the prior

 Larger total pseudocounts  strong prior belief

 Small total pseudocounts: just to avoid 0 probabilities --- smoothing

 This is equivalent to Bayesian est. under a uniform prior with 
"parameter strength" equals to the pseudocounts
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Summary: Learning GM

 For fully observed BN, the log-likelihood function decomposes 
into a sum of local terms, one per node; thus learning is also 
factored
 Structural learning

 Chow liu
 Neighborhood selection 

 Learning single-node GM – density estimation: exponential family dist.
 Typical discrete distribution
 Typical continuous distribution
 Conjugate priors

 Learning two-node BN: GLIM
 Conditional Density Est.
 Classification

 Learning BN with more nodes
 Local operations

© Eric Xing @ CMU, 2005-2016 49



Supplemental review:
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Classification
Generative and discriminative approaches

Q

X

Q

X

Linear/Logistic Regression

Two node fully observed BNs

Conditional mixtures
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Classification:
 Goal: Wish to learn f: X  Y

 Generative:
 Modeling the joint distribution 

of all data

 Discriminative:
 Modeling only points 

at the boundary
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Conditional Gaussian
 The data:

 Both nodes are observed:
 Y is a class indicator vector

 X is a conditional Gaussian variable with a class-specific mean
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 Data log-likelihood

 MLE
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 Prior:

 Posterior mean (Bayesian est.)

Bsyesian estimation of 
conditional Gaussian

GM:
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Classification
 Gaussian Discriminative Analysis:

 The joint probability of a datum and it label is:

 Given a datum xn, we predict its label using the conditional probability of the label 
given the datum:

 This is basic inference 
 introduce evidence, and then normalize
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Transductive classification
 Given Xn, what is its corresponding Yn

when we know the answer for 
a set of training data?

 Frequentist prediction:
 we fit ,  and  from data first, and then …

 Bayesian:
 we compute the posterior dist. of the parameters first …  

GM:
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Linear Regression 
 The data:

 Both nodes are observed:
 X is an input vector
 Y is a response vector 

(we first consider y as a generic 
continuous response vector, then 
we consider the special case of 
classification where y is a discrete 
indicator)

 A regression scheme can be 
used to model p(y|x) directly,
rather than p(x,y)
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A discriminative probabilistic 
model
 Let us assume that the target variable and the inputs are 

related by the equation:

where ε is an error term of unmodeled effects or random noise

 Now assume that ε follows a Gaussian N(0,σ), then we have:

 By independence assumption:
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Linear regression
 Hence the log-likelihood is:

 Do you recognize the last term?

Yes it is: 

 It is same as the MSE!
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A recap:
 LMS update rule

 Pros: on-line, low per-step cost
 Cons: coordinate, maybe slow-converging

 Steepest descent

 Pros: fast-converging, easy to implement
 Cons: a batch, 

 Normal equations

 Pros: a single-shot algorithm! Easiest to implement.
 Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 

(e.g., matrix is singular ..)
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Bayesian linear regression
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Classification
Generative and discriminative approach

Q

X

Q

X

Regression
Linear, conditional mixture, nonparametric

X Y

Density estimation
Parametric and nonparametric  methods

,

XX

Simple GMs are the building 
blocks of complex BNs
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