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Trees Falling in the Forest 

●  Nobody knows what’s in data unless it has been 
processed and analyzed

●  Need a scalable way to automatically search, digest, index, and 

understand contents

 

Data ≠ Knowledge 

"If a tree falls in a forest and no one is around to hear it, does it 
make a sound?"  --- George Berkeley 
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Machine Learning 
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1B+ USERS 
30+ PETABYTES 

645 million users 
500 million tweets / day 
 

100+ hours video 
uploaded every minute 
 

32 million 
pages 
 

Massive Data 
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The Scalability Challenge 

Pathetic 

Good! 
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Number of “machines” 
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for	
  (t	
  =	
  1	
  to	
  T)	
  {	
  
	
  	
  doThings()	
  

	
  	
  	
  	
  	
  
	
  	
  doOtherThings()	
  
}	
  

An ML Program 

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data 

This computation needs to be scaled up !  

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm 
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Challenge 1 – 
Massive Data Scale 

Familiar problem: data from 50B devices, data 
centers won’t fit into memory of single machine 

Source: Cisco Global Cloud 
Index 

Source: The Connectivist 

Δ θ(D) 
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Challenge 2 – 
Gigantic Model Size 

Maybe Big Data needs Big Models to extract understanding? 
But models with >1 trillion params also won’t fit! 

Source: University of 
Bonn 

Δ θ(D) 
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Classic algorithms used for decades 

K-
means 

Logistic 
regression 

Decision trees Naive Bayes 

 
 
 

Challenge 3 – Inadequate support 
for newer methods 
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Google Brain  
Deep Learning  

for images: 
1~10 Billion 

model parameters 

Topic Models  
for news article 

analysis: 
Up to 1 Trillion 

model  
parameters 

      Collaborative filtering  
for Video recommendation: 

1~10 Billion 
                model  

parameters 

Multi-task Regression  
       for simplest whole-

genome analysis: 
100 million ~ 1 Billion 

model  
parameters 

  

Growing Need for Big and 
Contemporary ML Programs 
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The Need for Distributed ML 

l  We had developed 
l  a highly cost-effective model (MMTM [Ho et al., 2012]), 
l  two generations of highly efficient algorithms  

 (δ-subsampling Gibbs [Ho et al., 2012], SVI [Yin et al., 2013]) 
l  and highly specialized implementations   

à State-of-the-art results: 1M node networks with 100 roles in a few hours, on 
just one machine, 2-3 order’s of magnitudes speed-up 

l  But when we tried to do 10K roles in a 100M-node network: 
l  Memory: 100M * 10K = 1 trillion latent states = 4TB of RAM 
l  Computation: 10K+ hrs on one machine, i.e. yrs! 
l  Attempt with Hadoop failed while in FB (see later) !!! 

Say we want to analyze 10K 
roles in a 100M-node network, 
using a mixed membership 
model? 
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Many Open Questions: 

l  When is Big Data useful? 

l  Are Big Models useful? 

-- Both positive and negative answers exist …  

l  Inference algorithms, or inference systems? 

l  Theoretical guarantees, or empirical performance? 

KDD 15 © Eric Xing @ CMU, 2015 12 



Current Solutions to Scalable ML 
l  Implementations of specific ML algorithms 

l  YahooLDA, Vowpal Wabbit, Caffe, Torch, … 
l  Provide a finely-tuned implementation of one (or a few) ML algorithms 

l  Platforms for general-purpose ML 
l  Hadoop, Spark, GraphLab, Petuum, … 
l  Allow others to write new ML programs 

l  Why this tutorial? 
l  At first glance, ML problems seem radically different 
l  We introduce a formal picture of ML to “bring order to the zoo” 
l  We expose ML mathematical properties to be explored and later exploited 
l  We note that many ML problems can be solved by a few “workhorse” algorithms 
l  We explain how to design systems around these insights – thus achieving 

scalability, with both speed and solution quality guarantees 
l  We provide theoretical guarantees for the system designs, and lay out roadmap 

for further analysis  
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•  Nonparametric 
Bayesian Models 

•  Graphical 
Models 

•  Sparse Structured 
I/O Regression •  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Deep Learning •  Large-Margin 

Machine Learning Models/Algorithms 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 

  
 
 

Solution: 
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•  Nonparametric 
Bayesian Models 

•  Graphical 
Models 

•  Sparse Structured 
I/O Regression •  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Deep Learning •  Large-Margin 

Machine Learning Models/Algorithms 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 

  
 
 

Solution:  
An Alg/Sys INTERFACE for Big ML 
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Outline 

l  Overview of Modern ML 

l  Distributed ML Algorithms 

l  Open-Source Platforms for Distributed ML 

l  Principles of Systems, Architectures for Distributed ML 

l  Theory of Real Distributed ML Systems 

l  Open Research Issues and Topics 
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Overview of Modern ML 
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A “Classification” of ML Models 
and Tools 

l  An ML program consists of: 
l  A mathematical “ML model” (from one of many families)… 
l  … which is solved by an “ML algorithm” (from one of a few types) 
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•  Stochastic Versions of the above Algorithms 

•  MC and MCMC  •  Optimization •  Matrix and 
Spectral 

Algorithms 

•  Nonparametric 
Bayesian Models 

•  Graphical Models 

•  Sparse Structured 
Input/Output 
Regression 

•  Sparse Coding •  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods 

•  Deep Learning •  Large-Margin 

Machine Learning Model Families 

Machine Learning Algorithm Families 
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A “Classification” of ML Models 
and Tools 

l  We can view ML programs as either 
l  Probabilistic programs 
l  Optimization programs 
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Probabilistic Programs Optimization Programs 
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Key building blocks 
of an ML program 

l  ML program: f(θ,D) = L(θ,D) + r(θ) 
l  Objective or Loss function: L(θ,D) 

l  θ = model, D = data 
l  Common examples: 

l  Least squares difference between predicted value and data 
l  Log-likelihood of data 

l  Regularization / Prior / Structural Knowledge: r(θ) 
l  Common examples: 

l  L2 regularization on θ to prevent overfitting 
l  L1 regularization on θ to obtain sparse solution 
l  (log of) Gaussian or Laplace priors over θ 
l  (log of) Dirichlet prior over θ for smoothing 

l  Algorithm to solve for model given the data (cont’ next slide) 
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Iterative-convergent view of ML 

l  ML models solved via iterative-convergent ML algorithms 
l  Iterative-convergent algorithms repeat until θ is stationary. Examples: 

l  Probabilistic programs: MC, MCMC, Variational Inference 
l  Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent 
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New Model = Old Model + 
Update(Data) 

Δ θ(D) Δ θ(D) 
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Optimization Example: 
Lasso Regression 

l  Data, Model 
l  D = {feature matrix X, response vector y} 
l  θ = {parameter vector β) 

l  Objective L(θ,D) 
l  Least-squares difference between y and Xβ: 

l  Regularization r(θ) 
l  L1 penalty on β to encourage sparsity: 
l  λ is a tuning parameter 

l  Algorithms 
l  Coordinate Descent 
l  Stochastic Proximal Gradient Descent 
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Optimization Example: 
Lasso Regression 
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Model (Parameter Vector) 

Data (Feature + Response Matrices) 

Update (CD algo) 

23 

Applications: 
Genetic Assays, Online Advertising 



Probabilistic Example: 
Topic Models 

l  Objective L(θ,D) 
l  Log-likelihood of D = {document words xij} given unknown θ = {document word 

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}: 

l  Prior r(θ) 
l  Dirichlet prior on θ = {doc-topic, word-topic distributions} 

l  α, β are “hyperparameters” that control the Dirichet prior’s strength 

l  Algorithm 
l  Collapsed Gibbs Sampling 
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Probabilistic Example: 
Topic Models 
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Model (Topics) = Bk Data (Docs) = xij 

Applications: Natural Language Processing, Information Retrieval 

Update (Collapsed Gibbs sampling) 
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 ML Computation vs. Classical 
Computing Programs  

ML Program: 
optimization-centric and 
iterative convergent  

Traditional Program: 
operation-centric and 
deterministic  
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 Traditional Data Processing 
needs operational correctness … 

Example: Merge sort 

Sorting 
error: 2 
after 5 

Error persists and is 
not corrected 
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… but ML Algorithms 
can Self-heal 
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l  ML is optimization-centric, and admits an iterative convergent 
algorithmic solution rather than a one-step closed form solution 

l  Error tolerance: often robust against limited 
 errors in intermediate calculations 

l  Dynamic structural dependency: 
 changing correlations between model parameters  
 critical to efficient parallelization  

l  Non-uniform convergence: parameters 
 can converge in very different number of steps 

 

l  Whereas traditional programs are transaction-centric, thus only 
guaranteed by atomic correctness at every step  

More Intrinsic Properties of ML 
Programs 
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Why come up with 
an ML classification? 

l  An ML classification helps to solve ML algorithm challenges 
systematically 
l  No need to invent new algorithms for each new ML model or variant 
l  Instead, re-use a smaller number of “workhorse” algorithms (engines) to solve 

entire classes of models 
l  For each new ML model, determine which ML class it falls under 
l  Then apply the most appropriate workhorse algorithm for that class 

l  Next tutorial section: Distributed ML Algorithms 
l  We present a number of “workhorse” algorithms: 

l  Basic form 
l  Which units can be parallelized 
l  What risks are incurred by parallelization (e.g. error or non-convergence) 
l  Examples of scalable realizations (software) 
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Distributed ML Algorithms 
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for	
  (t	
  =	
  1	
  to	
  T)	
  {	
  
	
  	
  doThings()	
  

	
  	
  	
  	
  	
  
	
  	
  doOtherThings()	
  
}	
  

An ML Program 

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data 

This computation needs to be parallelized!  

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm 
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Challenge 
l  Optimization programs: 

�

A huge number of parameters  
(e.g.) J = 1B 

XyN

M

M= 

� 
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data 
(e.g.) N = 1B 
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Challenge 
l  Probabilistic programs   

topic doc 
(~ 1B) 

topic 

word (~ 1M) 

topic 
(~ 1M) 
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Parallelization Strategies 
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Data Parallel 

New Model = Old Model + 
Update(Data) 

Δ θ(D) 
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Parallelization Strategies 

Data Parallel Model Parallel 

New Model = Old Model + 
Update(Data) 

Δ θ(D) Δ θ(D) 
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Outline:  
Optimization & MCMC Algorithms 

l  Optimization Algorithms 
l  Stochastic gradient descent 
l  Coordinate descent 
l  Proximal gradient methods 

l  ISTA, FASTA, Smoothing proximal gradient 

l  ADMM 

l  Markov Chain Monte Carlo Algorithms 
l  Auxiliary Variable methods 
l  Embarrassingly Parallel MCMC 
l  Parallel Gibbs Sampling 

l  Data parallel 
l  Model parallel 
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Example Optimization Program: 
Sparse Linear Regression 

)(
2
1min 2

2
βXβy

β
Ω+− λ

Data fitting Regularization 

Data fitting part:  
 - find β that fits into the data 
 - Squared loss, logistic loss, hinge loss, etc 

 
Regularization part:  

 - induces sparsity in β.  
           - incorporates structured information into the model  
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Example Optimization Program: 
Sparse Linear Regression 

)(
2
1min 2

2
βXβy

β
Ω+− λ

Examples of regularization             : )(βΩ

∑
=

=Ω
J

j
jlasso

1
)( ββ

∑
∈

=Ω
G

group
g

gββ
2

)(

)(βtreeΩ

)(βoverlapΩ

∑
∈

=
g

gβ
j

j
2

2
)(βwhere 

Sparsity 

Structured sparsity 
(sparsity + structured information) 
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Algorithm I: 
Stochastic Gradient Descent 

l  Consider an optimization problem: 

l  Classical gradient descent: 
 
l  Stochastic gradient descent: 

l  Pick a random sample di 

l  Update parameters based on noisy approximation of the true gradient  

min
x

E{f(x, d)}

x

(t+1)  x

(t) � �

1

n

nX

i=1

r
x

f(x(t)
, d

i

)

x

(t+1)  x

(t) � �r
x

f(x(t)
, d

i

)
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l  SGD converges almost surely to  
a global optimal for convex problems 

l  Traditional SGD compute gradients based on a single 
sample 

l  Mini-batch version computes gradients based on multiple 
samples 
l  Reduce variance in gradients due to multiple samples 
l  Multiple samples => represent as multiple vectors => use vector 

computation => speedup in computing gradients 

Stochastic Gradient Descent 
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Parallel Stochastic Gradient 
Descent 

l  Parallel SGD: Partition data to different workers; all workers 
update full parameter vector 

l  Parallel SGD [Zinkevich et al., 2010]   

l  PSGD runs SGD on local copy of params in each machine 

Input 
Data 

Input 
Data 

Input 
Data 

split Update local copy 
of ALL params 

Update local copy 
of ALL params 

aggregate 

Update ALL 
params 

Input 
Data 

Input 
Data 

Input  
Data 
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Hogwild!: Lock-free approach to 
PSGD [Recht et al., 2011] 

l  Goal is to minimize a function in the form of 

l  e denotes a small subset of parameter indices 
l  xe denotes parameter values indexed by xe 

l  Key observation: 
l  Cost functions of many ML problems can be represented by f(x) 
l  In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is 

applied only a small number of parameters in x 

 

 

f(x) =
X

e2E

fe(xe)
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Hogwild!: Lock-free approach to 
PSGD [Recht et al., 2011] 

l  Example:  
l  Sparse SVM 

 
l  z is input vector, and y is a label; (z,y) is an elements of E  
l  Assume that zα are sparse 

l  Matrix Completion 

l  Input A matrix is sparse 

l  Graph cuts 

l  W is a sparse similarity matrix, encoding a graph 

min

x

X

↵2E

max(1� y

↵

x

T

z

↵

, 0) + � kxk22

min
W,H

X

(u,v)2E

(Auv �WuH
T
v )

2 + �1 kWk2F + �2 kHk2F

min

x

X

(u,v)2E

w

uv

kx
u

� x

v

k1 subject to x

v

2 S

D

, v = 1, . . . , n
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Hogwild! Algorithm [Recht et al., 2011] 
l  Hogwild! algorithm: iterate in parallel for each core 

l  Sample e uniformly at random from E 
l  Read current parameter xe; evaluate gradient of function fe 

l  Sample uniformly at random a coordinate v from subset e 
l  Perform SGD on coordinate v with small constant step size 

l  Advantages 
l  Atomically update single coordinate, no mem-locking 
l  Takes advantage of sparsity in ML problems 
l  Near-linear speedup on various ML problems, on single machine 

l  Excellent on single machine, less ideal for distributed 
l  Atomic update on multi-machine challenging to implement; inefficient and slow 
l  Delay among machines requires explicit control… why? (see next slide) 
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The cost of uncontrolled delay – 
slower convergence [Dai et al. 2015] 

l  Theorem: Given lipschitz objective ft and step size ηt, 

l  where 
l  Where L is a lipschitz constant, and εm and εv are the mean and variance of the 

delay 

l  Intuition: distance between current estimate and optimal value 
decreases exponentially with more iterations 
l  But high variance in the delay εv incurs exponential penalty! 

l  Distributed systems exhibit much higher delay variance, 
compared to single machine 
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The cost of uncontrolled delay – 
unstable convergence [Dai et al. 2015] 

l  Theorem: the variance in the parameter estimate is 

l  Where 
l  and       represents 5th order or higher terms, as a function of the delay εt 

l  Intuition: variance of the parameter estimate decreases near 
the optimum 
l  But delay εt increases parameter variance => instability during convergence 

l  Distributed systems have much higher average delay, 
compared to single machine 
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Parallel SGD with 
Key-Value Stores 

l  We can parallelize SGD via 
l  Distributed key-value store to share parameters 
l  Synchronization scheme to synchronize parameters 

l  Shared key-value store provides easy interface to read/write 
shared parameters  

l  Synchronization scheme determines how parameters are 
shared among multiple workers 
l  Bulk synchronous parallel (e.g., Hadoop) 
l  Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014] 

l  Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015] 
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Parallel SGD with 
Bounded Async KV-store 

l  Stale synchronous parallel (SSP) is a synchronization model 
with bounded staleness – “bounded async” 

l  Fastest and the slowest workers are ≤s clocks apart 
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Example KV-Store Program: 
Lasso 

l  Lasso example: want to optimize 

 
l  Put β in KV-store to share among all workers 
l  Step 1: SGD: each worker draws subset of samples Xi 

l  Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient 

l  Step 2: Proximal operator: perform soft thresholding on β 

l  Can be done at workers, or at the key-value store itself 

l  Bounded Asynchronous synchronization allows fast read/write 
to β, even over slow or unreliable networks 
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Bounded Async KV-store: 
Faster and better convergence 
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Algorithm II: 
Coordinate Descent 

Update each regression coefficient in a cyclic manner 

1st iteration 

1β 2β 3β Jβ
2st iteration 

1β 2β 3β Jβ

l  Pros and cons 
l  Unlike SGD, CD does not involve learning rate 
l  If CD can be used for a model,  it is often comparable to the state-of-the-art 

(e.g. lasso, group lasso) 
l  However, as sample size increases, time for each iteration also increases 
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Example: Coordinate Descent for 
Lasso  

l  Set a subgradient to zero: 

 
l  Assuming that                , we can derive update rule: 

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

0)( =+−− j
T
j tλXβyx

1=j
T
j
xx

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
≠

λββ ),(
jl

ll
T
jj xS yx

Soft thresholding 

+−= ))((),( λλ xxsignxS

Standardization 
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Example: Block Coordinate 
Descent for Group Lasso  

l  Set it to zero: 

 
l  In a similar fashion, we can derive update rule for group g 

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

gXβyx ∈∀=+−− ju j
T
j ,0)( λ

Iterate over each 
group of coefficients 
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Parallel Coordinate Descent 
[Bradley et al. 2011] 

l  Shotgun, a parallel coordinate descent algorithm 
l  Choose parameters to update at random 
l  Update the selected parameters in parallel 
l  Iterate until convergence 
 

l  When features are nearly independent, Shotgun scales 
almost linearly  
l  Shotgun scales linearly up to             workers, where ρ is spectral radius of ATA 
l  For uncorrelated features, ρ=1; for exactly correlated features ρ=d 
l  No parallelism if features are exactly correlated! 

 

P  d

2⇢
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Intuitions for Parallel Coordinate 
Descent 

l  Concurrent updates of parameters are useful when features 
are uncorrelated 

 
l  Updating parameters for correlated features may slow down 

convergence, or diverge parallel CD in the worst case 
l  To avoid updates of parameters for correlated features, block-greedy CD has 

been proposed 
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Uncorrelated features Correlated features 

Source: 
[Bradley et al., 2011] 



Block-greedy Coordinate Descent 
[Scherrer et al., 2012] 

l  Block-greedy coordinate descent generalizes various parallel 
CD strategies 
l  e.g. Greedy-CD, Shotgun, Randomized-CD 

l  Alg: partition p params into B blocks; iterate: 
l  Randomly select P blocks 
l  Greedily select one coordinate per P blocks 
l  Update each selected coordinate 

l  Sublinear convergence O(1/k) for separable regularizer r : 

l  Big-O constant depends on the maximal correlation among the B blocks 

l  Hence greedily cluster features (blocks) to reduce correlation 

min
x

X
i

f

i

(x) + r(x
i

)
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Parallel Coordinate Descent with 
Dynamic Scheduler 
[Lee et al., 2014] 

l  STRADS (STRucture-Aware Dynamic Scheduler) allows 
scheduling of concurrent CD updates 
l  STRADS is a general scheduler for ML problems 
l  Applicable to CD, and other ML algorithms such as Gibbs sampling 

l  STRADS improves CD performance via 
l  Dependency checking   

l  Update parameters which are nearly independent => small parallelization error 

l  Priority-based updates   
l  More frequently update those parameters which decrease objective function faster 
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Example Scheduler Program: 
Lasso 

l  Schedule step: 
l  Prioritization: choose next variables βj to update, with probability proportional to 

their historical rate of change 

l  Dependency checking: do not update βj, βk in parallel if feature dimensions j 
and k are correlated 

l  Update step: 
l  For all βj chosen in Schedule step, in parallel, perform coordinate descent update 

l  Repeat from Schedule step 
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l  Priority-based scheduling converges faster than Shotgun 
(random) scheduling 
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Advanced 
Optimization Techniques 

l  What if simple methods like SPG, CD are not adequate?  

l  Advanced techniques at hand 
l  Complex regularizer: PG 
l  Complex loss: SPG 
l  Overlapping loss/regularizer: ADMM 

l  How to parallelize them? Must understand math behind 
algorithms 
l  Which terms should be computed at server  
l  Which terms can be distributed to clients  
l  …  
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When Constraints Are Complex:  
 -- Algorithm III: Proximal Gradient (a.k.a. ISTA) 

l  f: loss term, smooth (continuously differentiable) 
l  g: regularizer, non-differentiable (e.g. 1-norm) 

Proximal gradient 
•   g represents some simple function 

•  e.g., 1-norm, constraint C, etc.  

Projected gradient 
•   g represents some constraint   

min
w

f(w) + g(w)

g(w) = ◆C(w) =

(
0, w 2 C

1, otherwise

w w � ⌘rf(w)

w argmin
z

1
2⌘kw � zk2 + ◆C(z)

= argmin
z2C

1
2kw � zk2

w w � ⌘rf(w) gradient

w argmin

z

1
2⌘kw � zk2 + g(z)

| {z }
proximal map
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Algorithm III:  
Proximal Gradient (a.k.a. ISTA) 

l  PG hinges on the proximal map [Moreau, 1965]: 

l  Treated as black-box in PG 
l  Need proximal map efficiently computable, better closed-form 

l  True when g is separable and “simple”, e.g. 1-norm (separable in each 
coordinate), non-overlapping group norm, etc. 

l  Can be demanding if g = g1+g2, but vars in g1, g2 overlap 
l  [Yu, 2013] gave sufficient conditions for when g = g1+g2 can 

be easily handled: 

l  Useful when         and          available in closed-forms 
l  E.g. fused lasso (Friedman et al.'07):  

P⌘
g(w) = argmin

z

1
2⌘kw � zk2 + g(z)

P⌘
g1 P⌘

g2

P⌘
g1+g2(w) = P⌘

g1

⇣
P⌘
g2(w)

⌘

P⌘
k·k1+k·ktv

(w) = P⌘
k·k1

⇣
P⌘
k·ktv

(w)
⌘
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Accelerated PG (a.k.a. FISTA) 
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008] 

l  PG convergence rate  
l  Can be boosted to   

l  Same Lipschitz gradient assumption on f; similar per-step complexity! 
l  Lots of follow-up work to the papers cited above 
 
 

P⌘
g(w) := argmin

z

1
2⌘kw � zk22 + g(z)

Proximal Gradient Accelerated Proximal Gradient 

O(1/(⌘t))

O(1/(⌘t2))

vt  wt � ⌘rf(wt)

ut  P⌘

g

(vt)

wt+1  ut + 0|{z}
no

· (ut � ut�1)| {z }
momentum

vt  wt � ⌘rf(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum
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Parallel (Accelerated) PG 
l  Bulk Synchronous Parallel Accelerated PG (exact) 

l  [Chen and Ozdaglar, 2012] 

l  Asynchronous Parallel (non-accelerated) PG (inexact) 
l  [Li et al., 2014] Parameter Server 

l  General strategy: 
1.  Compute gradients on workers 
2.  Aggregate gradients on servers 
3.  Compute proximal operator on servers 
4.  Compute momentum on servers 
5.  Send result wt+1 to workers and repeat 

l  Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup 
l  Open question: what about accelerated PG? What happens theoretically and 

empirically to accelerated momentum under asynchrony? 

vt  wt � ⌘rf(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum
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When Objective Is Not Smooth: 
 -- Moreau Envelope Smoothing 

l  So far need f to have Lipschitz cont grad, obtained O(1/t2) 
l  What if not ? 
l  Can use subgradient, with diminishing step size     O(1/sqrt(t)) 

l  Huge gap !! 

l  Smoothing comes into rescue, if f itself is H-Lipschitz cont 
l  Approx f with something nicer, like Taylor expansion in calculus 101 

l  Replace f with its Moreau envelope function 

l  f(w) = |w|, envelope        is Huber’s func (blue curve) 
l  Minimizer gives the proximal map       (red curve) 

Prop. 

M⌘
f

P⌘
f

M⌘
f (w) := min

z

1
2⌘kw � zk22 + f(z)

8w , 0  f(w)�M⌘
f (w)  ⌘H2/2
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Smoothing Proximal Gradient 
[Chen et al., 2012] 

l  Use Moreau envelope as smooth approximation 
l  Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984] 

l  Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976] 
l  Proximal point alg = PG, when  

l  Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012] 

 
l  With                       , SPG converges at 

l  Improves subgradient  
l  Requires both efficient        and         

f ⌘ 0

Smoothing Proximal Gradient 
original 

approx. 

P⌘
f P⌘

g

min
w

f(w) + g(w)
⇡ min

w
M⌘

f (w) + g(w)

vt  

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

⌘ = O(1/t)

O(1/(⌘t2)) = O(1/t)
O(1/

p
t)
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Parallel SPG? 
l  No known work yet 
l  Possible strategy: 

1.  Compute smoothed gradients on workers 
2.  Aggregate smoothed gradients on servers 
3.  Compute proximal operator on servers 
4.  Compute momentum on servers 
5.  Send result wt+1 to workers and repeat 

l  The above strategy is exact under Bulk Synchronous Parallel 
(just like accelerated PG). 
l  Not clear how asynchronous updates impact smoothing+momentum 
l  Open research topic 

vt  

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut  P⌘

g

(vt)

wt+1  ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum
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When Variables Are Coupled:  
 -- Algorithm IV: ADMM 

l  Numerically challenging because 
l  Function f or g nonsmooth or constrained (i.e., can take value     ) 
l  Linear constraint couples the variables w and z 
l  Large scale, interior point methods NA 

l  Naively alternating x and z does not work 
l  Min w2  s.t.  w + z = 1;    optimum clearly is w = 0 
l  Start with say w = 1 à z = 0 à w = 1 à z = 0 …  

l  However, without coupling, can solve separately w and z 
l  Idea: try to decouple vars in the constraint! 

1

 uncoupled   coupled 

where 

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq
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Example: Empirical Risk 
Minimization (ERM) 

l  Each i corresponds to a training point (xi, yi) 
l  Loss fi measures the fitness of the model parameter w 

l  least squares:                                    
l  support vector machines:                                       
l  boosting:   
l  logistic regression:  

l  g is the regularization function, e.g.            or  
l  Vars coupled in obj, but not in constraint (none) 

l  Reformulate: transfer coupling from obj to constraint 
l  Arrive at canonical form, allow unified treatment later 

min
w

g(w) +
nX

i=1

fi(w)

�nkwk22 �nkwk1

fi(w) = (yi � w

>
xi)

2

fi(w) = (1� yiw
>
xi)+

fi(w) = exp(�yiw
>
xi)

fi(w) = log(1 + exp(�yiw
>
xi))

 coupled 
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How to: variable duplication 
l  Duplicate variables to achieve canonical form 

 
l  Global consensus constraint:  

l  All wi must (eventually) agree 

l  Downside: many extra variables, increase problem size 
l  Implicitly maintain duplicated variables 

min
w

g(w) +
nX

i=1

fi(w)

8i, wi = z

min
v,z

g(z) +
X

i
fi(wi)

| {z }
f(v)

, s.t. wi = z, 8i| {z }
v�[I,...,I]>z=0

v = [w1, . . . , wn]
>
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Augmented Lagrangian 

l  Intro Lagrangian multiplier     to decouple variables 

l      : augmented Lagrangian 
l  More complicated min-max problem, but no coupling constraints 
Lµ

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)

�

where 

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq
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Algorithm IV: 
ADMM 

l  Fix dual     , block coordinate descent on primal w, z 

l  Fix primal w, z, gradient ascent on dual  

l  Step size     can be large, e.g.  
l  Usually rescale                    to remove 

⌘ ⌘ = µ
⌘

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)

�t+1  �t + ⌘(Awt+1 +Bzt+1 � c)

wt+1  argmin
w

Lµ(w, zt;�t)

zt+1  argmin
z

Lµ(w
t+1, z;�t)

⌘ f(w) + µ
2 kAw +Bzt � c+ �t/µk2

⌘ g(z) + µ
2 kAwt+1 +Bz� c+ �t/µk2

�

�

� �/⌘
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Row partition (data parallel) 

l  each i corresponds to a (block of) training data Ai 

l  all summands fi share the same global variable z 
l  all ERM in this form: SVM, lasso, logistic regression, etc. 
l  parallellize by duplicating z into w1, … wn 

l  Exact Synchronization (bulk sync parallel) needed 

min
z

g(z) +
nX

i=1

fi(Aiz � ci)

worker machine i server 

min
w=[w1,...,wn],z

g(z) +
X

i

fi(Aiwi � c), s.t. z�wi = 0, 8i

KDD 15 © Eric Xing @ CMU, 2015 74 



Column partition (model parallel) 

l  in columns data                       , variables 
l  Each function gj have its own variable wj 

l  All variables wj coupled in f 
l  parallelize by adding auxiliary variable 

l  Exact Synchronization (bulk sync parallel) needed 

worker machine j server 

min
w

f
⇣ pX

j=1

Ajwj � c
⌘
+

pX

j=1

gj(wj)

w = [w1, . . . , wp]A = [A1, . . . , Ap]

z = [z1, . . . , zp]

min
w,z

f(
X

j
zj � c) +

X
j
gj(wj), s.t. Ajwj � zj = 0, 8j
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Asynchronous Parallel ADMM 
[Zhang & Kwok, 2014] 

l  Only simplified consensus problem being studied: 

l  Can distribute the primal updates for each wi 

l  But dual update                           can happen only after all 
primal updates – barrier bottleneck 

l  How to alleviate the barrier bottleneck? 
l  Asynchronously execute dual update after seeing s out of n primal updates 
l  Condition: no machine is too far behind 

l  Can be achieved with bounded staleness [Ho et al., 2013] 
l  Asynchronous convergence proved in [Zhang & Kwok, 2014] 

min
w=[w1,...,wn],z

nX

i=1

fi(wi), s.t. wi � z = 0, 8i

(w1, . . . ,wn) argmin
w

Lµ(w, z;�)

� �+
P

i wi � z
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Outline:  
Optimization & MCMC Algorithms 

l  Optimization Algorithms 
l  Stochastic gradient descent 
l  Coordinate descent 
l  Proximal gradient methods 

l  ISTA, FASTA, Smoothing proximal gradient 

l  ADMM 

l  Markov Chain Monte Carlo Algorithms 
l  Auxiliary Variable methods 
l  Embarrassingly Parallel MCMC 
l  Parallel Gibbs Sampling 

l  Data parallel 
l  Model parallel 
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Example Probabilistic Program: 
Topic Models 

l  Generative model 
l  Fit topics to each word xij in each doc i 
l  Uses categorical distributions with parameters δ and B 

l  Parameter priors 
l  Induce sparsity in δ and B 
l  Can also incorporate structure 

l  E.g. asymmetric prior 
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Inference for Probabilistic 
Programs: MCMC and SVI 

δi	
  

zij	
  

	
  xij	
  	
  Β	
  

Ni	
  

N

	
  	
  K 

Markov Chain Monte Carlo: 
Randomly sample each variable in sequence 

Next set of slides on this 

Variational Inference: 
Gradient ascent on variables 

Can be treated as an optimization problem 

δi	
  

zij	
  

xij	
  	
  Β	
  

Ni	
  

N

	
  	
  K 
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Preliminaries: 
Speeding up sequential MCMC 

l  Technique 1: Alias tables 
l  Sample from categorical distribution in amortized O(1) 
l  “Throw darts at a dartboard” 
l  Ex: probability distribution [0.5, 0.25, 0.25] 

l  => alias table {1, 1, 2, 3} => draw from table uniformly at random 

l  Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015] 
l  Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k) 

l  Propose z1 from Pevidence(k) 
l  Accept/Reject z1 

l  Propose z2 from Pprior(k) 
l  Accept/Reject z2 … repeat 

l  Pprior(k), Pevi(k) cheap to compute with alias table 

l  Other speedup techniques 
l  Stochastic Gradient MCMC 
l  Stochastic Variational Inference 
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Parallel and Distributed MCMC: 
Classic methods 

l  Classic parallel MCMC solution 1 
l  Take multiple chains in parallel, take average/consensus between chains. 

l  But what if each chain is very slow to converge? 
l  Need full dataset on each process – no data parallelism! 

Chain on core 1 

Chain on core 2 

Chain on core 3 

Not converged Converged 
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Parallel and Distributed MCMC: 
Classic methods 

l  Classic parallel MCMC solution 2 
l  Sequential Importance Sampling 
l  Rewrite distribution over n variables as telescoping product over proposals q(): 

l  SIS algorithm: 
●  Parallel draw samples xi

n ~ qn(xn|xi
1:n-1) 

●  Parallel compute unnorm. wgts. 
 
●  Compute normalized weights wi

n by normalizing ri
n 

l  Drawback: variance of SIS samples increases exponentially with n 
l  Need resampling + take many chains to control variance 

l  Let us look at newer solutions to parallel MCMC… 
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Solution I: Induced Independence 
via Auxiliary Variables [Dubey et al. 2013, 2014] 

l  Auxiliary Variable Inference: reformulate model as P 
independent models 
l  Example below: Dirichlet Process for mixture models 
l  Also applies to Hierarchical Dirichlet Process for topic models 

l  AV model (left) equivalent to standard DP model (right) 
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Solution I: Induced Independence 
via Auxiliary Variables [Dubey et al., 2013, 2014] 

●  Why does it work? A mixture over Dirichlet processes is 
equivalent to a Dirichlet processes 

 

DP on Processor 1 

DP on Processor P 

Dirichlet Mixture over 
Processor DPs 1...P 
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Solution I: Induced Independence 
via Auxiliary Variables [Dubey et al., 2013, 2014] 

l  Parallel inference algorithm: 
l  Initialization: assign data randomly across P Dirichlet Processes; assign each 

Dirichlet Process to one worker p=1..P 
l  Repeat until convergence: 

l  Each worker performs Gibbs sampling on local data within its DP 
l  Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings: 

§  For each cluster c, propose a new DP q=1..P 
§  Compute proposal probability of c moving to p 
§  Acceptance ratio depends on cluster size 

l  Can be done asynchronously in parallel without affecting 
performance 
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Solution II: Embarrassingly Parallel 
(but correct) MCMC [Neiswanger et al., 2014] 

l  High-level idea: 
l  Run MCMC in parallel on data subsets; no communication between machines. 
l  Combine samples from machines to construct full posterior distribution samples. 

l  Objective: recover full posterior distribution 

l  Definitions: 
l  Partition data into M subsets 
l  Define m-th machine’s “subposterior” to be  

l  Subposterior: “The posterior given a subset of the observations with an underweighted 
prior”. 
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Embarassingly Parallel MCMC 
l  Algorithm 

1.  For m=1…M independently in parallel, draw samples from each subposterior 
2.  Estimate subposterior density product                                           (and thus the full 

posterior                 ) by “combining subposterior samples” 

l  “Combine subposterior samples” via nonparametric estimation 
1.  Given T samples                    from each subposterior         : 

l  Construct Kernel Density Estimate (Gaussian kernel, bandwidth h): 

2.  Combine subposterior KDEs: 

l  where 
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Embarassingly Parallel MCMC 
l  Simulations: 

l  More subposteriors = tighter estimates 
l  EPMCMC recovers correct parameter 
l  Naïve subposterior averaging does not! 
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Solution III: 
Parallel Gibbs Sampling 

l  Many MCMC algorithms 
l  Sequential Monte Carlo [Canini et al., 2009] 
l  Hybrid VB-Gibbs [Mimno et al., 2012] 
l  Langevin Monte Carlo [Patterson et al., 2013] 
l  … 

l  Common choice in tech/internet industry: 
l  Collapsed Gibbs sampling [Griffiths and Steyvers, 2004] 
l  e.g. topic model Collapsed Gibbs sampler: 
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Properties of 
Collapsed Gibbs Sampling (CGS) 

l  Simple equation: easy for system engineers to scale up 
l  Good theoretical properties 

l  Rao-Blackwell theorem guarantees CGS sampler has lower variance (better 
stability) than naïve Gibbs sampling 

l  Empirically robust 
l  Errors in δ, B do not affect final stationary distribution by much 

l  Updates are sparse: fewer parameters to send over network 
l  Model parameters δ, B are sparse: less memory used 

l  If it were dense, even 1M word * 10K topic ≈ 40GB already! 
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CGS Example: 
Topic Model sampler 

docs i 
(~ 1B) 

topics k words v (~ 1M) 
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Data Parallelization for 
CGS Topic Model Sampler 

doc 
partition 

words v (~ 1M) 

doc 
partition 

doc 
partition 

model 
replica 

model 
replica 

model 
replica 
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Data-Parallel Strategy: 
Approx. Distributed LDA 
[Newman et al., 2009] 

l  Step 1: broadcast central model 
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Data-Parallel Strategy: 
Approx. Distributed LDA 
[Newman et al., 2009] 

l  Step 1: broadcast central model 
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Data-Parallel Strategy: 
Approx. Distributed LDA 
[Newman et al., 2009] 

l  Step 2: Perform Gibbs sampling in parallel 
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Data-Parallel Strategy: 
Approx. Distributed LDA 
[Newman et al., 2009] 

l  Step 3: commit changes back to the central model 
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Data-Parallel Strategy: 
Approx. Distributed LDA 
[Newman et al., 2009] 

l  Approximate 
l  Convergence not guaranteed – Markov Chain ergodicity broken 
l  Results generally “good enough” for industrial use 

l  Bulk synchronous parallel 
l  CPU cycles are wasted while synchronizing the model 
l  Asynchronous and bounded-asynchronous extensions possible [Smola et al., 

2010; Ahmed et al., 2012, Dai et al., 2015] 

l  How to overlap communication and computation for better 
efficiency? 
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Error in data-parallel LDA 
l  Consider the CGS equation: 

l  Data-parallelism incurs error in B (the pink box) and the 
summation term (the gray box) 
l  Both quantities are duplicated onto workers; their values become stale as 

sampling proceeds 
l  True even for bulk synchronous parallel execution! 

l  Asynchrony helps somewhat 
l  Communicate very frequently to reduce staleness 

l  Is there a better solution? 
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Model-Parallel Strategy 1: 
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012] 

l  Think graphically: token = edge 

docs 
words 
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Model-Parallel Strategy 1: 
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012] 

l  Model-parallel via graph structure 

doc word 
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Model-Parallel Strategy 1: 
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012] 

l  Asynchronous communication 
l  Overlaps computation and communication – iterations are faster 

l  Model-parallelism means each machine only stores a subset 
of statistics 
l  Less memory usage if implemented well 

l  Drawback: need to convert problem into a graph 
l  Vertex-cut duplicates lots of vertices, canceling out savings 

l  Are there other ways to partition the problem? 
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Model-Parallel Strategy 2: 
LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

l  Topic model matrix structure: 

l  Idea: non-overlapping matrix partition: 

Source: [Gemulla et al., 2011] 

topic 

doc 
(~ 1B) 

topic word (~ 1M) 

topic 
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Model-Parallel Strategy 2: 
LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

l  Non-overlapping partition of the word count matrix 
l  Fix data at machines, send model to machines as needed 
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Model-Parallel Strategy 2: 
LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

l  During preprocessing: determine set of words used in each 
data block 

l  Begin training: load each data block from disk 
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Model-Parallel Strategy 2: 
LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

l  Pull the set of words from Key-Value store 
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Model-Parallel Strategy 2: 
LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

l  Sample, write result to disk, send changes back to KV-store 
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Model-Parallel Strategy 2: 
LightLDA (Petuum LDA v2) 
[Yuan et al., 2015] 

l  Model-parallel advantage: disjoint words/docs on each 
machine 
l  Gibbs sampling almost equivalent to sequential case 
l  More accurate than data-parallel LDA 
l  Fast, asynchronous execution possible 

l  Compared to GraphLab LDA: 
l  Simple partitioning strategy – less system overheads, easier to implement 
l  Need to be careful about load imbalance (some docs will touch a particular word 

more times than others) 
l  Solution: pre-group documents by word frequency 
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Error in model-parallel LDA 
l  Recall the CGS equation: 

l  Model-parallelism only has error in summation term (gray box) 
l  Summation term is very large for Big Data (billions of docs) => error negligible 
l  Compared to data-parallelism: error due to B (pink box) eliminated 
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Distributed ML Algorithms 
Summary 

l  Many parallel algorithms for both Optimization and MCMC 
l  They share common parallelization themes 

l  Embarrassingly parallel: combine results from multiple independent problems, 
e.g. PSGD, EP-MCMC 

l  Stochastic over data: approximate functions/ gradients with expectation over 
subset of data, then parallelize over data subsets, e.g. SGD 

l  Model-parallel: parallelize over model variables, e.g. Coordinate Descent 
l  Auxiliary variables: decompose problem by decoupling dependent variables, 

e.g. ADMM, Auxiliary Variable MCMC 

l  Considerations 
l  Regularizers, model structure: may need sequential proximal or projection 

step, e.g. Stochastic Proximal Gradient 
l  Data partitioning: for data-parallel, how to split data over machines? 
l  Model partitioning: for model-parallel, how to split model over machines? Need 

to be careful as model variables are not necessarily independent of each other. 
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Implementing 
Distributed ML Algorithms 

l  Implementing high-performance distributed ML is not easy 
l  If not careful, can end up slower than single machine! 

l  System bottlenecks (load imbalance, network bandwidth & latency) are not trivial 
to engineer around 

l  Even if algorithm is theoretically sound and has attractive 
properties, still need to pay attention to system aspects 
l  Bandwidth (communication volume limits) 
l  Latency (communication timing limits) 
l  Data and Model partitioning (machine memory limitation, also affects comms 

volume) 
l  Data and Model scheduling (affects convergence rate, comms volume & timing) 
l  Non-ideal systems behavior: uneven machine performance, other cluster users 
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Implementing 
Distributed ML Algorithms 

l  A number of ad-hoc or partial solutions, but sometimes 
lacking theoretical analysis 
l  Major barrier: hard to analyze solutions because algorithm/systems sometimes 

not fully/transparently described in papers 
l  Possible solution: a universal language and principles for design could facilitate 

theoretical analysis of existing and new solutions 

l  Let us look at some open-source platforms, which distributed 
ML algorithms can be implemented upon 
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Outline 

l  Overview of Modern ML 

l  Distributed ML Algorithms 

l  Open-Source Platforms for Distributed ML 

l  Principles of Systems, Architectures for Distributed ML 

l  Theory of Real Distributed ML Systems 

l  Open Research Issues and Topics 

KDD 15 © Eric Xing @ CMU, 2015 112 



School of Computer Science


Open-Source Platforms 
for Distributed ML 

KDD 15 © Eric Xing @ CMU, 2015 113 



Modern Systems for Big ML 
●  Just now: data-, model-parallel ML algorithms for optimization, 

MCMC 
 
●  One could write distributed implementations from scratch 

●  Perhaps better to use an existing open source platform? 
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Spark Overview [Zaharia et al., 2010] 
●  General-purpose system for Big Data processing 

o  Shell/interpreter for Matlab/R-like analytics 
 
●  MLlib = Spark’s ready-to-run ML library 

o  Implemented on Spark’s API 
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Spark Overview [Zaharia et al., 2010] 
l  MLlib algorithms (v1.4) 

l  Classification and regression 
l  linear models (SVMs, logistic regression, linear regression) 
l  naive Bayes 
l  decision trees 
l  ensembles of trees (Random Forests and Gradient-Boosted Trees) 
l  isotonic regression 

l  Collaborative filtering 
l  alternating least squares (ALS) 

l  Clustering 
l  k-means 
l  Gaussian mixture 
l  power iteration clustering (PIC) 
l  latent Dirichlet allocation (LDA) 
l  streaming k-means 

l  Dimensionality reduction 
l  singular value decomposition (SVD) 
l  principal component analysis (PCA)  
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Spark Overview [Zaharia et al., 2010] 

●  Key feature: Resilient Distributed Datasets (RDDs) 
●  Data processing = lineage graph of transforms 
●  RDDs = nodes 
●  Transforms = edges 
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Spark Overview [Zaharia et al., 2010] 
l  RDD-based programming model 

l  Similar in spirit to Hadoop Mapreduce 
l  Functional style: manipulate RDDs via “transformations”, “actions” 

l  E.g. map is a transformation, reduce is an action 

l  Example: load file, count total number of characters 

l  Other transformations and actions: 
l  union(), intersection(), distinct() 
l  count(), first(), take(), foreach() 
l  … 

l  Can specify if an RDD should be “persisted” to disk 
l  Allows for faster recovery during cluster faults 
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Spark Overview [Zaharia et al., 2010] 

●  Benefits of Spark: 
●  Fault tolerant - RDDs immutable, just re-compute from lineage 
●  Cacheable - keep some RDDs in RAM 

o  Faster than Hadoop MR at iterative algorithms 
●  Supports MapReduce as special case 
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Spark:  
Faster MapR on Data-Parallel 
●  Spark’s solution: Resilient Distributed Datasets (RDDs) 

o  Input data → load as RDD → apply transforms → output result 
o  RDD transforms strict superset of MapR 
o  RDDs cached in memory, avoid disk I/O 

 

●  Spark ML library supports data-parallel ML algos, like Hadoop 
o  Spark and Hadoop: comparable first iter timings… 
o  But Spark’s later iters are much faster 
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GraphLab Overview [Low et al., 2012] 
l  Known as “GraphLab PowerGraph v2.2” 

l  Different from commercial software “GraphLab Create” by Dato.com, who 
formerly developed PowerGraph v2.2 

l  System for Graph Programming 
l  Think of ML algos as graph algos 

l  Comes with ready-to-run “toolkits” 
l  ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical 

models 
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GraphLab Overview [Low et al., 2012] 
l  ML-related toolkits 

l  Clustering 
l  K-means 
l  Spectral 

l  Collaborative Filtering 
l  Matrix Factorization (including Non-negative, L1/L2-regularized) 

l  Graphical Models 
l  Factor graphs 
l  Belief propagation algorithm 

l  Topic Modeling 
l  LDA 

l  Other toolkits available for computer vision, graph analytics, 
linear systems 
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●  Key feature: Gather-Apply-Scatter Programming Model 
o  Write ML algos as vertex programs 
o  Run vertex programs in parallel on each graph node 
o  Graph nodes, edges can have data, parameters 
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●  Programming Model: GAS Vertex Programs 
o  1) Gather(): Accumulate data, params from my neighbors + edges 
o  2) Apply(): Transform output of Gather(), write to myself 
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges 

Source: Gonzalez (2012) 
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●  Programming Model: GAS Vertex Programs 
o  1) Gather(): Accumulate data, params from my neighbors + edges 
o  2) Apply(): Transform output of Gather(), write to myself 
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges 

Source: Gonzalez (2012) 
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●  Programming Model: GAS Vertex Programs 
o  1) Gather(): Accumulate data, params from my neighbors + edges 
o  2) Apply(): Transform output of Gather(), write to myself 
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges 

Source: Gonzalez (2012) 
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GraphLab Overview [Low et al., 2012] 
l  Example GAS program: Pagerank 

l  Programmer implements gather(), apply(), scatter() functions 
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●  Benefits of Graphlab 
o  Supports asynchronous execution - fast, avoids straggler problems 
o  Edge-cut partitioning - scales to large, power-law graphs 
o  Graph-correctness - for ML, more fine-grained than MapR-correctness 

Source: Gonzalez (2012) 
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●  GraphLab Graph consistency models 
o  Guide search for “ideal” model-parallel execution order 
o  ML algo correct if input graph has all dependencies 

 

●  GraphLab supports asynchronous (no-waiting) execution 
o  Correctness enforced by graph consistency model 
o  Result: GraphLab graph-parallel ML much faster than Hadoop 

Source: Low et al. (2010) 
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Petuum Overview [Xing et al., 2015] 
l  Key modules 

l  Key-value store (Parameter Server) for data-parallel ML algos 
l  Scheduler for model-parallel ML algos 

l  Program ML algos in iterative-convergent style 
l  ML algo = (1) write update equations + (2) iterate eqns via schedule 
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Petuum Overview [Xing et al., 2015] 
l  ML Library (Petuum v1.1): 

l  Topic Modeling 
l  LDA 
l  MedLDA (supervised topic models) 

l  Deep Learning 
l  Fully-connected DNN 
l  Convolutional Neural Network 

l  Matrix Factorization 
l  Least-squares Collaborative Filtering (with regularization) 
l  Non-negative Matrix Factorization 
l  Sparse Coding 

l  Regression 
l  Lasso Regression 

l  Metric Learning 
l  Distance Metric Learning 

l  Clustering 
l  K-means 

l  Classification 
l  Random Forest 
l  Logistic Regression and SVM 
l  Multi-class Logistic Regression 
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Petuum Overview [Xing et al., 2015] 
l  Key-Value store (Parameter Server) 

l  Enables data-parallelism 
l  A type of Distributed Shared Memory (DSM) 

l  Model parameters globally shared across workers 

l  Programming: replace local variables with PS calls 
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Petuum Overview [Xing et al., 2015] 
l  Key-Value store features: 

l  ML-tailored consistency model: Stale Synchronous Parallel (SSP) 
l  Asynchronous-like speed 
l  Bulk Synchronous Parallel-like correctness guarantees for ML 
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Petuum Overview [Xing et al., 2015] 
l  Scheduler 

l  Enables correct model-parallelism 
l  Can analyze ML model structure for best execution order 
l  Programming: schedule(), push(), pull() abstraction 
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Petuum Overview [Xing et al., 2015] 
l  Scheduler benefits: 

l  ML scheduling engine: Structure-Aware Parallelization (SAP) 
l  Scheduled ML algos require less computation to finish 
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Petuum: 
ML props = 1st-class citizen 

l  Error tolerance via Stale Sync Parallel KV-store 
l  System Insight 1: ML algos bottleneck on network comms 
l  System Insight 2: More caching => less comms => faster execution 
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Petuum: 
ML props = 1st-class citizen 

l  Harness Block dependency structure via Scheduler 
l  System Insight 1: Pipeline scheduler to hide latency 
l  System Insight 2: Load-balance blocks to prevent stragglers 
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Petuum: 
ML props = 1st-class citizen 

l  Exploit Uneven Convergence via Prioritizer 
l  System Insight 1: Prioritize small # of vars => fewer deps to check 
l  System Insight 2: Lowers computational cost of Scheduling 
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Petuum Architecture and 
Hadoop Ecosystem Integration 
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ML Programming Interface: 
Needs and Considerations 

l  An ideal ML programming interface should make it easy to 
write correct data-parallel, model-parallel ML programs 

l  What can be abstracted away? 
l  Abstract away inter-worker communication/synchronization: 

l  Automatic consistency models; bandwidth management through distributed shared 
memory 

l  Abstract scheduling away from update equations: 
l  Easy to change scheduling strategy, or use dynamic schedules 

l  Abstract away worker management: 
l  Let ML system decide optimal number and configuration of workers 

l  Ideally, reduce programmer burden to just 3 things: 
l  Declare model, write updates, write schedule 
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There Is No Ideal Distributed System! 

l  Not quite that easy… 
l  Two distributed challenges: 

l  Networks are slow 
l  “Identical” machines rarely perform equally 

Low bandwidth, 
High delay 
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performance 
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Issue: How to approach 
distributed systems? 

l  Idealist view 
l  Start with simplified view of distributed 

systems; develop elaborate theory 

l  Issues being explored: 
l  Information theoretic lower bounds for 

communication [Zhang et al. 2013] 
l  Provably correct distributed 

architectures, with mild assumptions 
[Langford et al. 2009, Duchi and 
Agarwal 2011] 

l  How can we build practical solutions 
using these ideas? 

l  Pragmatist view 
l  Start with real-world, complex 

distributed systems, and develop a 
combination of theoretical guarantees 
and empirical evidence 

l  Issues being explored: 
l  Fault tolerance and recovery [Zaharia 

et al. 2012, Spark, Li et al. 2014] 
l  Impact of stragglers and delays on 

inference, and robust solutions [Ho et 
al. 2013, Dai et al. 2015, Petuum, Li et 
al. 2014] 

l  Scheduling of inference computations 
for massive speedups [Low et al. 2012, 
GraphLab, Kim et al. 2014, Petuum] 

l  How can we connect these 
phenomena to theoretical inference 
correctness and speed? 
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Why need new Big ML systems? 
MLer’s view 

�  Focus on  
�  Correctness 
�  fewer iteration to converge,  

�  but assuming an ideal system, e.g.,  
�  zero-cost sync,  
�  uniform local progress 

 
 for	
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Why need new Big ML systems? 
Systems View: 

�  Focus on  
�  high iteration throughput (more iter per sec) 
�  strong fault-tolerant atomic operations,  

�  but assume ML algo is a black box  
�  ML algos “still work” under different execution 

models 
�  “easy to rewrite” in chosen abstraction 

Non-uniform 
convergence  

Dynamic 
structures 

Error  
tolerance  

Agonistic of ML properties and objectives in system 
design 
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Why need new Big ML systems? 
MLer’s view 

�  Focus on  
�  Correctness 
�  fewer iteration to converge,  

�  but assuming an ideal system, e.g.,  
�  zero-cost sync,  
�  uniform local progress 

 
 

     Oversimplify systems issues 
�  need machines to perform 

consistently 
�  need lots of synchronization 
�  or even try not to communicate at all 

Systems View: 
�  Focus on  

�  high iteration throughput (more iter per sec) 
�  strong fault-tolerant atomic operations,  

�  but assume ML algo is a black box  
�  ML algos “still work” under different execution 

models 
�  “easy to rewrite” in chosen abstraction 
 

 

   Oversimplify ML issues and/or 
ignore ML opportunities 
�  ML algos “just work” without proof 
�  Conversion of ML algos across 

different program models (graph 
programs, RDD) is easy 
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•  Nonparametric 
Bayesian Models 

•  Graphical 
Models 

•  Sparse Structured 
I/O Regression •  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Deep Learning •  Large-Margin 

Machine Learning Models/Algorithms 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 

  
 
 

Solution: 
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Bayesian Models 

•  Graphical 
Models 

•  Sparse Structured 
I/O Regression •  Sparse Coding 

•  Spectral/Matrix 
Methods 

•  Regularized 
Bayesian Methods •  Deep Learning •  Large-Margin 

Machine Learning Models/Algorithms 

•  Network switches 
•  Infiniband 

•  Network attached storage 
•  Flash storage 

•  Server machines 
•  Desktops/Laptops 
•  NUMA machines 

•  GPUs •  Cloud compute 
(e.g. Amazon EC2) 

•  Virtual Machines 

Hardware and infrastructure 

  
 
 

Solution:  
An Alg/Sys INTERFACE for Big ML 
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The Big-ML “Stack” - More than 
just software 

Theory: Degree of parallelism, convergence analysis, sub-sample complexity 
…  

System: Distributed architecture: DFS, KV-store, task scheduler… 

Model:    Generic building blocks: loss functions,  structures, constraints, 
priors … 

Algorithm: Parallelizable and stochastic MCMC, VI, Opt, Spectrum … 

Representation:  Compact and informative features 

Programming model & Interface: 
High: Matlab/R 
Medium: C/JAVA 
Low: MPI 

Hardware: GPU, flash storage, cloud … 
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Markov Chain Monte Carlo Optimization 

ML algorithms are 
Iterative-Convergent 
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Read 
Read + 
Write 

Data 

Model Parameters 
at iteration (t-1) 

Iterative Algorithm 

Intermediate Updates 

Aggregate + 
Transform 

Updates 

A General Picture of ML 
Iterative-Convergent Algorithms 
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Issues with Hadoop and 
I-C ML Algorithms? 

Naïve MapReduce not best for ML 
 
●  Hadoop can execute iterative-convergent, data-parallel ML... 

o  map() to distribute data samples i, compute update Δ(Di) 
o  reduce() to combine updates Δ(Di) 
o  Iterative ML algo = repeat map()+reduce() again and again 

●  But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations! 

HDFS Bottleneck 
Image source: dzone.com 

Iteration 1 Iteration 2 
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for	
  (t	
  =	
  1	
  to	
  T)	
  {	
  
	
  	
  doThings()	
  
	
  	
  parallelUpdate(x,θ)	
  
	
  	
  doOtherThings()	
  
}	
  

θ 
θ θ 

θ 
θ 

θ θ θ 

θ θ 
θ θ θ 

Good Parallelization Strategy 
is important 

ML on 
epoch 1 

ML on 
epoch 2 

ML on 
epoch 3 

ML on 
epoch m 

Barrier ? 

Write 
outcome to  

KV store 

Write 
outcome to  
KV store 

Write 
outcome to  
KV store 

Write 
outcome to  
KV store 

Collect 
outcomes and 
aggregate  

Do nothing Do nothing Do nothing 0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

0 8 16 24 32 40 48 

Se
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n
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s 

  

Compute vs Network 
LDA 32 machines (256 cores) 

Network waiting time 

Compute time 
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Data Parallelism 

Additive Updates 
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Model 
(Topics) 

Data (Docs) Update (MCMC 
algo) 

BIG DATA (billions of docs) 

Example Data Parallel: 
Topic Models 
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Example Data Parallel: 
Topic Models 
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MCMC algo MCMC algo MCMC algo MCMC algo MCMC algo 

Global shared model 

157 



Concatenating updates 

Model Parallelism 
Scheduling 
Function 

Read + 
Write 

model parameters not 
updated in this 
iteration KDD 15 © Eric Xing @ CMU, 2015 158 



Model (Parameter 
Vector) 

Data (Feature + Response 
Matrices) 

Update (CD algo) 

BIG MODEL (100 billions of params) 

Example Model Parallel: 
Lasso Regression 
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Example Model Parallel: 
Lasso Regression 
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A Dichotomy of Data and Model 
in ML Programs 

Di?Dj | ✓, 8i 6= j ~✓i 6? ~✓j | D, 9(i, j)

Data Parallelism Model Parallelism 
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Data+Model Parallel: 
Solving Big Data+Model 

Model (edge weights) 
Data (images) 

Update 
(backpropagation) 

Data & Model both big! 
Millions of images, 
Billions of weights 

What to do? 
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Data+Model Parallel: 
Solving Big Data+Model 

KDD 15 © Eric Xing @ CMU, 2015 

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo 

Parameter Synchronization Channel 

Tackle Deep Learning scalability 
challenges by combining data

+model parallelism 

163 



How difficult is 
data/model-parallelism? 

l  Certain mathematical conditions must be met 

l  Data-parallelism generally OK when data IID (independent, 
identically distributed) 
l  Very close to serial execution, in most cases 

l  Naive Model-parallelism doesn’t work 
l  NOT equivalent to serial execution of ML algo 
l  Need carefully designed schedule 
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Intrinsic Properties of ML Programs 

l  ML is optimization-centric, and admits an iterative convergent 
algorithmic solution rather than a one-step closed form solution 
l  Error tolerance: often robust against limited 

 errors in intermediate calculations 

l  Dynamic structural dependency: changing correlations  
 between model parameters critical to efficient parallelization  

l  Non-uniform convergence: parameters 
 can converge in very different number of steps 

 
l  Whereas traditional programs are transaction-centric, thus only 

guaranteed by atomic correctness at every step  

l  Most existing platforms (e.g., Spark, GraphLab) have not yet systematically 
explore and exploit above properties 
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Challenges in Data Parallelism 
l  Existing ways are either safe/slow (BSP), or fast/risky (Async) 

l  Challenge 1: Need “Partial” synchronicity 
l  Spread network comms evenly (don’t sync unless needed) 
l  Threads usually shouldn’t wait – but mustn’t drift too far apart! 

l  Challenge 2: Need straggler tolerance 
l  Slow threads must somehow catch up 
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Thread 2 

Thread 3 
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Thread 2 

Thread 3 

Thread 4 
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4 
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5 6 
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6 

??? 

BSP Async 

Is persistent memory really necessary for ML? 
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Is there a middle ground for data-
parallel consistency? 

l  Challenge 1: “Partial” synchronicity 
l  Spread network comms evenly (don’t sync unless needed) 
l  Threads usually shouldn’t wait – but mustn’t drift too far apart! 

l  Challenge 2: Straggler tolerance 
l  Slow threads must somehow catch up 
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High-Performance Consistency Models 
for Fast Data-Parallelism [Ho et al., 2013] 

Stale Synchronous Parallel (SSP), a “bounded-asycnhronous” model 
 

•  Allow threads to run at their own pace, without synchronization 
•  Fastest/slowest threads not allowed to drift >S iterations apart 
•  Threads cache local (stale) versions of the parameters, to reduce network syncing 

Iteration 0 1 2 3 4 5 6 7 8 9 

Thread 1 will always see 
these updates 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Staleness Threshold 3 

Thread 2 may not see 
these updates (possible error) 

Consequence: 
 

•  Asynchronous-like speed, BSP-like ML correctness guarantees 
•  Guaranteed age bound (staleness) on reads 
•  Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached 
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Improving Bounded-Async via 
Eager Updates [Dai et al., 2015] 

l  Eager SSP (ESSP) protocol 
l  Use spare bandwidth to push 

fresh parameters sooner 

l  Figure: difference in stale 
reads between SSP and ESSP 
l  ESSP has fewer stale reads; 

lower staleness variance 
l  Faster, more stable 

convergence (theorems later) 
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Enjoys Async Speed, yet BSP 
Guarantee, across algorithms  

l  Scale up Data Parallelism without being limited by long BSP 
synchronization time 

l  Effective across different algorithms, e.g. LDA, Lasso, Matrix 
Factorization: 
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LASSO Matrix Fact. LDA 
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Challenges in Model Parallelism 
l  Recall Lasso regression: 
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�

A huge number of parameters  
(e.g.) J = 100M 
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l  Concurrent updates of     may induce errors �

�1

�2

�1 �2

�1 �2

Sync 

Sequential updates Concurrent updates 

�(t)
1  S(xT

1 y � x

T
1 x2�

(t�1)
2 ,�)

Induces parallelization error 

Need to check x1
Tx2 

before updating 
parameters 

Challenge 1: 
Model Dependencies 
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Challenge 2: Uneven 
Convergence Rate on Parameters 

 
 
 
 
 

 

•  Convergence time determined by slowest parameters 
•  How to make slowest parameters converge more 

quickly? 
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Parameters converge at similar rates Parameters converge at different rates 

C
onverged 

C
onverged 

Remaining time to convergence Remaining time to convergence 
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Is there a middle ground for 
model-parallel consistency? 

l  Existing ways are either safe but slow, or fast but risky 
l  Challenge 1: need approximate but fast model partition 

l  Full representation of data/model, and explicitly compute all 
dependencies via graph cut is not feasible  

l  Challenge 2: need dynamic load balancing  
l  Capture and explore transient model dependencies  
l  Explore uneven parameter convergence 
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??? 

Graph Partition Random Partition 

Is full consistency really 
necessary for ML? 
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 Structure-Aware Parallelization 
(SAP) [Lee et al., 2014; Kumar et al., 2014] schedulerkey-value 

store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

q Careful model-parallel execution: 
q  Structure-aware scheduling 
q  Variable prioritization 
q  Load-balancing 

schedulerkey-value 
store

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

data 
partition

model 
partition

worker

q Simple programming: 
q  Schedule() 
q  Push() 
q  Pull() 
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Schedule 1: Priority-based [Lee et al., 2014] 
l  Choose params to update based on convergence progress 

l  Example: sample params with probability proportional to their recent change 
l  Approximately maximizes the convergence progress per round 
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Priority-based scheduling Shotgun [Bradley et al. 2011] 
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Schedule 2: Block-based 
(with load balancing) [Kumar et al., 2014] 
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Partition data & model into d × d blocks 
Run different-colored blocks in parallel 

 

Blocks with less data/para or experience less 
straggling run more iterations 

Automatic load-balancing + better convergence 

177 



Structure-aware Dynamic Scheduler 
(STRADS) [Lee et al., 2014, Kumar et al., 2014] 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Round 1 Round 2 Round 3 Round 4 

Blocks of variables 

Sync. 
barrier 

Sample Variables  
to be Updated ~ p(j)  

Check 
Variable 

Dependency 

All Variables  

Generate 
Blocks of 
Variables 

STRADS 
•  Priority Scheduling 

 

•  Block scheduling   

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue: 
Slow-worker agnostic distributed 
learning, AISTATS 2014] 
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Avoids dependent parallel updates, 
attains near-ideal convergence speed 

l  STRADS+SAP achieves better speed and objective 
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Efficient for large models 

l  Model is partitioned => can run larger models on same 
hardware 
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Lasso MF LDA 
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School of Computer Science


Theory of Real 
Distributed ML Systems 
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Why study parallel ML theory? 
l  What sequential guarantees still hold in parallel setting? 

l  Under what conditions? 

l  Growing body of literature for “ideal” parallel systems 
l  Serializable– equivalent to single-machine execution in some sense 
l  Focused on per-iteration analysis 

l  Abstract away computational/comms cost 
l  Predicting real-world running time requires these costs to be put back 

l  “Real-world” parallel systems a work in progress 
l  Asynchronous or bounded-async approaches can empirically work better than 

synchronous approaches 
l  Need additional theoretical analysis to understand why 
l  Async => no serializability… why does it still work? 

l  Parallelization requires data and/or model partitioning… many strategies exist 
l  Want partitioning strategies that are provably correct 
l  Need to determine when/where independence is violated, and what impact such violation 

has on algorithm correctness 
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Challenges in real-world 
distributed systems 

l  Real-world systems need asynchronous execution and load 
balancing 
l  Synchronous system: load imbalances => slow workers => waiting at barriers 
l  Need load balancing to reduce load at slow workers 
l  Need asynchronous execution so faster workers can proceed without waiting 

l  Solution 1: key-value stores 
l  Automatically manages communication with bounded asynchronous guarantees 

l  Solution 2: scheduling systems 
l  Automatically balances workload across workers; also performs prioritization and 

dependency checking 
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Communication strategies 
l  Data parallel 

l  Partition data across workers 
l  Or fetch small batches of data in an online/streaming fashion 

l  Communicate model as needed to workers 
l  e.g. key-value store with bounded asynchronous model – theoretical consequences? 

l  Model parallel 
l  Partition model across workers 

l  Model partitions can change dynamically during execution – theoretical consequences? 

l  Send data to workers as needed (e.g. from shared database) 
l  Or place full copy of data on each worker (since data is immutable) 

l  Data + Model parallel? 
l  Partition both data and model across workers 
l  Wide space of strategies; need to reduce model and data communication 

l  Reduce model communication by exploiting independence between variables 
l  Reduce data and model communication via broadcast strategies, e.g. Halton sequence 
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Bridging Models 
for Parallel Programming 

l  Bulk Synchronous Parallel [Valiant, 1990] is a bridging model 
l  Bridging model specifies how/when parallel workers should compute, and how/

when workers should communicate 
l  Key concept: barriers 

l  No communication before barrier, only computation 
l  No computation inside barrier, only communication 

l  Computation is “serializable” – many sequential theoretical guarantees can be 
applied with no modification 

l  Bounded Asynchronous Parallel (BAP) bridging model 
l  Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015] 

l  Workers re-use old version of parameters, up to s iterations old – no need to barrier 
l  Workers wait if parameter version older than s iterations 
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Types of Convegence 
Guarantees 

l  Regret/Expectation bounds on parameters 
l  Better bounds => better convergence progress per iteration 

l  Probabilistic bounds on parameters 
l  Similar meaning to regret/expectation bounds, usually stronger in guarantee 

l  Variance bounds on parameters 
l  Lower variance => higher stability near optimum => easier to determine 

convergence 

l  For data parallel? 
l  For Model parallel? 
l  For Data + model parallel? 
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BAP Data Parallel: 
Can we do value-bounding? 

l  Idea: limit model parameter 
difference Δθi-j = ||θi – θj|| between 
machines i,j to < a threshold 

l  Does not work in practice! 
l  To guarantee that Δθi-j has not 

exceeded the threshold, machines must 
wait to communicate with each other 

l  No improvement over synchronous 
execution! 

l  Rather than controlling parameter 
difference via magnitude, what 
about via iteration count? 
l  This is the (E)SSP communication 

model… 
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BAP Data Parallel: 
(E)SSP model [Ho et al., 2013; Dai et al., 2015] 
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Stale Synchronous Parallel (SSP) 
 

•  Allow threads to run at their own pace, without synchronization 
•  Fastest/slowest threads not allowed to drift >S iterations apart 
•  Threads cache local (stale) versions of the parameters, to reduce network syncing 

Iteration 0 1 2 3 4 5 6 7 8 9 

Thread 1 will always see 
these updates 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Staleness Threshold 3 

Thread 2 may not see 
these updates (possible error) 

Consequence: 
 

•  Asynchronous-like speed, BSP-like ML correctness guarantees 
•  Guaranteed age bound (staleness) on reads 
•  Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached 
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BAP Data Parallel: 
(E)SSP Regret Bound [Ho et al., 2013] 

l  Goal: minimize convex                                   
(Example: Stochastic Gradient) 
l  L-­‐Lipschitz, problem diameter bounded by F2	
  

l  Staleness s, using P threads across all machines 
l  Use step size 

l  (E)SSP converges according to 
l  Where T is the number of iterations 

l  Note the RHS interrelation between (L, F) and (s, P)	
  
l  An interaction between model and systems parameters 

l  Stronger guarantees on means and variances can also be proven 

Difference between 
SSP estimate and true optimum 
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Intuition: 
Why does (E)SSP converge? 

l  Number of missing updates bounded 
l  Partial, but bounded, loss of serializability 

l  Hence numeric error in parameter also bounded 
l  Later in this tutorial – formal theorem 
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SSP versus ESSP: 
What is the difference? 

l  ESSP is a systems improvement over SSP communication 
l  Same maximum staleness guarantee as SSP 
l  Whereas SSP waits until the last second to communicate… 
l  … ESSP communicates updates as early as possible 

l  What impact does ESSP have on convergence speed and 
stability? 
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Theorem: Given L-Lipschitz objective ft and stepsize ht, 
 
 
	



BAP Data Parallel: 
(E)SSP Probability Bound 
[Dai et al., 2015] 

Let	
  real	
  staleness	
  observed	
  by	
  system	
  be	
  
Let	
  its	
  mean,	
  variance	
  be	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  

Explana>on:	
  the	
  (E)SSP	
  distance	
  between	
  true	
  opKma	
  and	
  current	
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  decreases	
  exponenKally	
  with	
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  iteraKons.	
  Lower	
  staleness	
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  convergence	
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Take-­‐away:	
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BAP Data Parallel: 
(E)SSP Variance Bound 
[Dai et al., 2015] 

	
  Theorem:	
  the	
  variance	
  in	
  the	
  (E)SSP	
  esKmate	
  is	
  
	
  
	
  
	
  
	
  where	
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  order	
  or	
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  in	
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  in	
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  when	
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  to	
  an	
  opKmum.	
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  (E)SSP	
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  in	
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  =>	
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  in	
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  =>	
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  in	
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  quality	
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stopping	
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Take-­‐away:	
  Lower	
  average	
  staleness	
  (via	
  ESSP)	
  not	
  only	
  improves	
  
convergence	
  speed,	
  but	
  also	
  yields	
  beNer	
  parameter	
  esKmates	
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ESSP vs SSP: Increased stability 
helps empirical performance 

l  Low-staleness SSP and ESSP converge equally well 
l  But at higher staleness, ESSP is more stable than SSP 

l  ESSP communicates updates early, whereas SSP waits until the last second 
l  ESSP better suited to real-world clusters, with straggler and multi-user issues 
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Scheduled Model Parallel: 
Dynamic/Block Scheduling 
[Lee et al. 2014, Kumar et al. 2014] 
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l  Goal: solve sparse regression problem 
l  Via coordinate descent over “SAP blocks” X(1),	
  X(2),	
  …,	
  X(B)	
  

l  X(b) are the data columns (features) in block (b)	
  

l  P parallel workers, M-dimensional data 
l  ρ = Spectral	
  Radius[BlockDiag[(X(1))TX(1),	
  …,	
  (X(t))TX(t)]]; this block-diagonal 

matrix quantifies the maximum level of correlation (and hence problem 
difficulty) within all the SAP blocks X(1),	
  X(2),	
  …,	
  X(t)	
  

l  SAP converges according to 
l  Where t is # of iterations 

l  Take-away: SAP minimizes ρ by searching for feature subsets X(1),	
  
X(2),	
  …,	
  X(B) without cross-correlation => as close to P-fold speedup as 
possible	
  

Scheduled Model Parallel: 

Dynamic Scheduling Expectation Bound 

[Lee et al. 2014] 

Gap between current 
parameter estimate and optimum 

min
�

ky �X�k22 + �
X

j

|�j |

SAP explicitly minimizes ρ, ensuring 
as close to 1/P convergence as possible 

KDD 15 © Eric Xing @ CMU, 2015 196 



Scheduled Model Parallel: 
Dynamic Scheduling Expectation Bound is near-ideal 
[Xing et al. 2015] 

Let                be  an ideal model-parallel schedule 
Let           be the parameter trajectory due to ideal scheduling 
Let          be the parameter trajectory due to SAP scheduling 
 
 
 
 
 
Explanation: Under dynamic scheduling, algorithmic progress is 
nearly as good as ideal model-parallelism. 
Intuitively, this is because both ideal and SAP model-parallelism 
minimize the parameter dependencies between parallel workers.  

Theorem: After t iterations, we have 

E[|�(t)
ideal � �(t)

dyn|]  C
2M

(t+ 1)2
X>X

Sideal()
�(t)
ideal

�(t)
dyn
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Scheduled Model Parallel: 
Dynamic Scheduling Empirical Performance 

l  Dynamic Scheduling for Lasso regression (SMP-Lasso): 
almost-ideal convergence rate, much faster than random 
scheduling (Shotgun-Lasso) 
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Scheduled Data+Model Parallel: 
Block-based Scheduling (with load balancing) 
[Kumar et al. 2014] 
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Partition data & model into d × d blocks 
Run different-colored blocks in parallel 

 

Blocks with less data/para or experience less 
straggling run more iterations 

Automatic load-balancing + better convergence 
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Scheduled Data+Model Parallel: 
Block-based Scheduling Variance Bound 1 
[Kumar et al. 2014] 

l  Variance between iterations Sn+1 and Sn is: 

l  Explanation: 
l  higher order terms (red) are negligible 
l  => parameter variance decreases every iteration 

l  Every iteration, the parameter estimates become more stable 
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Scheduled Data+Model Parallel: 
Block-based Scheduling Variance Bound 2 
[Kumar et al. 2014] 

l  Intra-block variance: Within blocks, suppose we update the 
parameters     using      data points. Then, variance of     after 
those      updates is: 

l  Explanation: 
l  Higher order terms (red) are negligible 
l  => doing more updates within each block decreases parameter variance, leading 

to more stable convergence 

l  Load balancing by doing extra updates is effective 
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Scheduled Data+Model Parallel: 
Block-Scheduling Empirical Performance 

l  Slow-worker Agnostic Block-Scheduling (Fugue) faster than: 
l  Embarrassingly Parallel SGD (PSGD) 
l  Non slow-worker Agnostic Block-Scheduling (Barriered Fugue) 

l  Slow-worker Agnostic Block-Scheduling converges to a better 
optimum than asynchronous GraphLab 
l  Reason: more stable convergence due to block-scheduling 

l  Task: Imagenet Dictionary Learning 
l  630k images, 1k features 
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BAP Model-Parallel Guarantees 
l  Model-parallel under synchronous setting: 

l  Dynamic scheduling 
l  Slow-worker block-based scheduling 

l  Synchronous slow-worker problem solved by: 
l  Load balancing (for dynamic scheduling) 
l  Allow additional iters while waiting for other workers (slow-worker scheduling) 

l  Work in progress: theoretical guarantees for bounded-async 
model-parallel execution 
l  Intuition: model-parallel sub-problems are nearly independent (thanks to 

scheduling) 
l  Perhaps better per-iteration convergence than bounded-async data-parallel 

learning? 
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School of Computer Science


Open Research 
Issues and Topics 
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The Landscape of Big ML 
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The Landscape of Big ML 

Trend over last 5 years: 
More cores, bigger models 

KDD 15 © Eric Xing @ CMU, 2015 206 



The Landscape of Big ML 

Possible to learn bigger, more 
powerful models with only 
reasonable # of cores? 
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Issue: When is Big Data useful? 
l  Negative examples 

l  “Simple” regression and classification models, with fixed parameter size 
l  Intuition: decrease estimator variance has diminishing returns with more data. 

Estimator eventually becomes “good enough”, and additional data/computation is 
unnecessary 

l  Positive examples 
l  Topic models (internet/tech industry) 
l  DNNs (Google, Baidu, Microsoft, Facebook, etc.) 
l  Collaborative filtering (internet/tech industry) 
l  Personalized models 
l  Industry practitioners sometimes increase model size with more data 

l  Conjecture: how much data is useful really depends on model 
size/capacity 
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Issue: Are Big Models useful? 
l  In theory 

l  Possibly, but be careful not to 
over-extend 

l  Beware “statistical strength” 
l  “When you have large 

amounts of data, your appetite 
for hypotheses tends to get 
even larger. And if it’s growing 
faster than the statistical 
strength of the data, then many 
of your inferences are likely to 
be false. They are likely to be 
white noise.” –Michael Jordan 

l  In practice 
l  Some success stories - could 

there be theory justification? 

l  Many topics in topic models 
l  Capture long-tail effects of 

interest; improved real-world 
task performance 

l  Many parameters in DNNs 
l  Improved accuracy in vision 

and speech tasks 
l  Publicly-visible success (e.g. 

Google Brain) 
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Issue: Inference Algorithms, or 
Inference Systems? 

l  View: focus on inference algorithm 
 

l  Scale up by refining the algorithm 
l  Given fixed computation, finish 

inference faster 

l  Some examples 
l  Quasi-Newton algorithms for 

optimization 
l  Fast Gibbs samplers for topic 

models [Yao et al. 2009, Li et al. 
2014, Yuan et al. 2015, Zheng et 
al, 2015] 

l  Locality sensitive hashing for 
graphical models [Ahmed et al. 
2012] 

l  View: focus on distributed systems 
for inference 

l  Scale up by using more machines 
l  Not trivial: real clusters are 

imperfect and unreliable; Hadoop 
not a fix-all 

l  Some examples 
l  Spark 
l  GraphLab 
l  Petuum 
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Issue: Theoretical Guarantees 
and Empirical Performance 

l  View: establishing theoretical 
guarantees gives practitioners 
confidence 
l  Motivated by empirical science, 

where guarantees are paramount 

l  Example: Lasso sparsistency and 
consistency [Wainwright, 2009] 
l  Theory predicts how many 

samples n needed for a Lasso 
problem with p dimensions and k 
non-zero elements 

l  Simulation experiments show very 
close match with theory 

l  Is there a way to analyze more 
complex models? 

l  View: empirical, industrial 
evidence can provide strong 
driving force for experimental 
research 
l  Motivated by industrial practice, 

particularly at internet companies 

l  Example: AB testing in industry 
l  Principled means of testing new 

algorithms, feature engineering; by 
experimenting on user base 

l  Determine if new method makes a 
significant difference to click-
through rate, user adoption, etc. 
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Open research topics 
l  Future of data-, model-parallelism, and other ML properties  

l  New properties, principles still undiscovered 
l  Potential to accelerate ML beyond naive strategies 

l  Deep analysis of BigML systems still limited to few ML algos 
l  Model of ML execution under error due to imperfect system? 

l  How to express more ML algorithms in table form (Spark, 
Petuum), or graph form (GraphLab) 
l  Tree-structured algorithms? Infinite-dimensional Bayesian nonparametrics? 
l  What are the key elements of a generic ML programming interface? 

KDD 15 © Eric Xing @ CMU, 2015 212 



Acknowledgements 

Garth Gibson Greg Ganger 

Jin Kyu Kim Seunghak Lee Jinliang Wei 

Wei Dai Pengtao Xie 
Xun Zheng 

Abhimanu 
Kumar 

Phillip Gibbons James Cipar 

KDD 15 © Eric Xing @ CMU, 2015 213 



 
Thank You! 
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