
School of Computer Science

A New Look at the System,
Algorithm and Theory
Foundations of Distributed
Machine Learning

1Eric P. Xing and 2Qirong Ho

1Carnegie Mellon University

2Institute for Infocomm Research, A*STAR

KDD 15 © Eric Xing @ CMU, 2015

Acknowledgements:
Wei Dai, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Jinliang Wei, Pengtao Xie, Xun Zheng

Yaoliang Yu, James Cipar, Henggang Cui,
and, Phil Gibbons, Greg Ganger, Garth Gibson

1

Trees Falling in the Forest

●  Nobody knows what’s in data unless it has been
processed and analyzed

●  Need a scalable way to automatically search, digest, index, and

understand contents

Data ≠ Knowledge

"If a tree falls in a forest and no one is around to hear it, does it
make a sound?" --- George Berkeley

KDD 15 © Eric Xing @ CMU, 2015 2

Machine Learning

KDD 15 © Eric Xing @ CMU, 2015 3

1B+ USERS
30+ PETABYTES

645 million users
500 million tweets / day

100+ hours video
uploaded every minute

32 million
pages

Massive Data

KDD 15 © Eric Xing @ CMU, 2015 4

The Scalability Challenge

Pathetic

Good!

Pr
oc

es
si

ng

po
w

er
/s

pe
ed

Number of “machines”

KDD 15 © Eric Xing @ CMU, 2015 5

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 	
 	
 	

	
 	
 doOtherThings()	

}	

An ML Program

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data

This computation needs to be scaled up !

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm

KDD 15 © Eric Xing @ CMU, 2015 6

Challenge 1 –
Massive Data Scale

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

Source: Cisco Global Cloud
Index

Source: The Connectivist

Δ θ(D)

KDD 15 © Eric Xing @ CMU, 2015 7

Challenge 2 –
Gigantic Model Size

Maybe Big Data needs Big Models to extract understanding?
But models with >1 trillion params also won’t fit!

Source: University of
Bonn

Δ θ(D)

KDD 15 © Eric Xing @ CMU, 2015 8

Classic algorithms used for decades

K-
means

Logistic
regression

Decision trees Naive Bayes

Challenge 3 – Inadequate support
for newer methods

KDD 15 © Eric Xing @ CMU, 2015 9

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

 Collaborative filtering
for Video recommendation:

1~10 Billion
 model

parameters

Multi-task Regression
 for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

Growing Need for Big and
Contemporary ML Programs

KDD 15 © Eric Xing @ CMU, 2015 10

The Need for Distributed ML

l  We had developed
l  a highly cost-effective model (MMTM [Ho et al., 2012]),
l  two generations of highly efficient algorithms

 (δ-subsampling Gibbs [Ho et al., 2012], SVI [Yin et al., 2013])
l  and highly specialized implementations

à State-of-the-art results: 1M node networks with 100 roles in a few hours, on
just one machine, 2-3 order’s of magnitudes speed-up

l  But when we tried to do 10K roles in a 100M-node network:
l  Memory: 100M * 10K = 1 trillion latent states = 4TB of RAM
l  Computation: 10K+ hrs on one machine, i.e. yrs!
l  Attempt with Hadoop failed while in FB (see later) !!!

Say we want to analyze 10K
roles in a 100M-node network,
using a mixed membership
model?

KDD 15 © Eric Xing @ CMU, 2015 11

Many Open Questions:

l  When is Big Data useful?

l  Are Big Models useful?

-- Both positive and negative answers exist …

l  Inference algorithms, or inference systems?

l  Theoretical guarantees, or empirical performance?

KDD 15 © Eric Xing @ CMU, 2015 12

Current Solutions to Scalable ML
l  Implementations of specific ML algorithms

l  YahooLDA, Vowpal Wabbit, Caffe, Torch, …
l  Provide a finely-tuned implementation of one (or a few) ML algorithms

l  Platforms for general-purpose ML
l  Hadoop, Spark, GraphLab, Petuum, …
l  Allow others to write new ML programs

l  Why this tutorial?
l  At first glance, ML problems seem radically different
l  We introduce a formal picture of ML to “bring order to the zoo”
l  We expose ML mathematical properties to be explored and later exploited
l  We note that many ML problems can be solved by a few “workhorse” algorithms
l  We explain how to design systems around these insights – thus achieving

scalability, with both speed and solution quality guarantees
l  We provide theoretical guarantees for the system designs, and lay out roadmap

for further analysis

KDD 15 © Eric Xing @ CMU, 2015 13

•  Nonparametric
Bayesian Models

•  Graphical
Models

•  Sparse Structured
I/O Regression •  Sparse Coding

•  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods •  Deep Learning •  Large-Margin

Machine Learning Models/Algorithms

•  Network switches
•  Infiniband

•  Network attached storage
•  Flash storage

•  Server machines
•  Desktops/Laptops
•  NUMA machines

•  GPUs •  Cloud compute
(e.g. Amazon EC2)

•  Virtual Machines

Hardware and infrastructure

Solution:

KDD 15 © Eric Xing @ CMU, 2015 14

•  Nonparametric
Bayesian Models

•  Graphical
Models

•  Sparse Structured
I/O Regression •  Sparse Coding

•  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods •  Deep Learning •  Large-Margin

Machine Learning Models/Algorithms

•  Network switches
•  Infiniband

•  Network attached storage
•  Flash storage

•  Server machines
•  Desktops/Laptops
•  NUMA machines

•  GPUs •  Cloud compute
(e.g. Amazon EC2)

•  Virtual Machines

Hardware and infrastructure

Solution:
An Alg/Sys INTERFACE for Big ML

KDD 15 © Eric Xing @ CMU, 2015 15

Outline

l  Overview of Modern ML

l  Distributed ML Algorithms

l  Open-Source Platforms for Distributed ML

l  Principles of Systems, Architectures for Distributed ML

l  Theory of Real Distributed ML Systems

l  Open Research Issues and Topics

KDD 15 © Eric Xing @ CMU, 2015 16

School of Computer Science

Overview of Modern ML

KDD 15 © Eric Xing @ CMU, 2015 17

A “Classification” of ML Models
and Tools

l  An ML program consists of:
l  A mathematical “ML model” (from one of many families)…
l  … which is solved by an “ML algorithm” (from one of a few types)

KDD 15 © Eric Xing @ CMU, 2015

•  Stochastic Versions of the above Algorithms

•  MC and MCMC •  Optimization •  Matrix and
Spectral

Algorithms

•  Nonparametric
Bayesian Models

•  Graphical Models

•  Sparse Structured
Input/Output
Regression

•  Sparse Coding •  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods

•  Deep Learning •  Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

18

A “Classification” of ML Models
and Tools

l  We can view ML programs as either
l  Probabilistic programs
l  Optimization programs

KDD 15 © Eric Xing @ CMU, 2015

Probabilistic Programs Optimization Programs

19

Key building blocks
of an ML program

l  ML program: f(θ,D) = L(θ,D) + r(θ)
l  Objective or Loss function: L(θ,D)

l  θ = model, D = data
l  Common examples:

l  Least squares difference between predicted value and data
l  Log-likelihood of data

l  Regularization / Prior / Structural Knowledge: r(θ)
l  Common examples:

l  L2 regularization on θ to prevent overfitting
l  L1 regularization on θ to obtain sparse solution
l  (log of) Gaussian or Laplace priors over θ
l  (log of) Dirichlet prior over θ for smoothing

l  Algorithm to solve for model given the data (cont’ next slide)

KDD 15 © Eric Xing @ CMU, 2015 20

Iterative-convergent view of ML

l  ML models solved via iterative-convergent ML algorithms
l  Iterative-convergent algorithms repeat until θ is stationary. Examples:

l  Probabilistic programs: MC, MCMC, Variational Inference
l  Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent

KDD 15 © Eric Xing @ CMU, 2015

New Model = Old Model +
Update(Data)

Δ θ(D) Δ θ(D)

21

Optimization Example:
Lasso Regression

l  Data, Model
l  D = {feature matrix X, response vector y}
l  θ = {parameter vector β)

l  Objective L(θ,D)
l  Least-squares difference between y and Xβ:

l  Regularization r(θ)
l  L1 penalty on β to encourage sparsity:
l  λ is a tuning parameter

l  Algorithms
l  Coordinate Descent
l  Stochastic Proximal Gradient Descent

KDD 15 © Eric Xing @ CMU, 2015 22

Optimization Example:
Lasso Regression

KDD 15 © Eric Xing @ CMU, 2015

Model (Parameter Vector)

Data (Feature + Response Matrices)

Update (CD algo)

23

Applications:
Genetic Assays, Online Advertising

Probabilistic Example:
Topic Models

l  Objective L(θ,D)
l  Log-likelihood of D = {document words xij} given unknown θ = {document word

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

l  Prior r(θ)
l  Dirichlet prior on θ = {doc-topic, word-topic distributions}

l  α, β are “hyperparameters” that control the Dirichet prior’s strength

l  Algorithm
l  Collapsed Gibbs Sampling

KDD 15 © Eric Xing @ CMU, 2015 24

Probabilistic Example:
Topic Models

KDD 15 © Eric Xing @ CMU, 2015

Model (Topics) = Bk Data (Docs) = xij

Applications: Natural Language Processing, Information Retrieval

Update (Collapsed Gibbs sampling)

25

 ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

Traditional Program:
operation-centric and
deterministic

KDD 15 © Eric Xing @ CMU, 2015 26

 Traditional Data Processing
needs operational correctness …

Example: Merge sort

Sorting
error: 2
after 5

Error persists and is
not corrected

KDD 15 © Eric Xing @ CMU, 2015 27

… but ML Algorithms
can Self-heal

KDD 15 © Eric Xing @ CMU, 2015 28

l  ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

l  Error tolerance: often robust against limited
 errors in intermediate calculations

l  Dynamic structural dependency:
 changing correlations between model parameters
 critical to efficient parallelization

l  Non-uniform convergence: parameters
 can converge in very different number of steps

l  Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

More Intrinsic Properties of ML
Programs

KDD 15 © Eric Xing @ CMU, 2015 29

Why come up with
an ML classification?

l  An ML classification helps to solve ML algorithm challenges
systematically
l  No need to invent new algorithms for each new ML model or variant
l  Instead, re-use a smaller number of “workhorse” algorithms (engines) to solve

entire classes of models
l  For each new ML model, determine which ML class it falls under
l  Then apply the most appropriate workhorse algorithm for that class

l  Next tutorial section: Distributed ML Algorithms
l  We present a number of “workhorse” algorithms:

l  Basic form
l  Which units can be parallelized
l  What risks are incurred by parallelization (e.g. error or non-convergence)
l  Examples of scalable realizations (software)

KDD 15 © Eric Xing @ CMU, 2015 30

School of Computer Science

Distributed ML Algorithms

KDD 15 © Eric Xing @ CMU, 2015 31

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 	
 	
 	

	
 	
 doOtherThings()	

}	

An ML Program

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data

This computation needs to be parallelized!

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm

KDD 15 © Eric Xing @ CMU, 2015 32

Challenge
l  Optimization programs:

�

A huge number of parameters
(e.g.) J = 1B

XyN

M

M=

�
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi; ~✓)

A huge volume of data
(e.g.) N = 1B

KDD 15 © Eric Xing @ CMU, 2015 33

Challenge
l  Probabilistic programs

topic doc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)

KDD 15 © Eric Xing @ CMU, 2015 34

Parallelization Strategies

KDD 15 © Eric Xing @ CMU, 2015

Data Parallel

New Model = Old Model +
Update(Data)

Δ θ(D)

35

Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model +
Update(Data)

Δ θ(D) Δ θ(D)

KDD 15 © Eric Xing @ CMU, 2015 36

Outline:
Optimization & MCMC Algorithms

l  Optimization Algorithms
l  Stochastic gradient descent
l  Coordinate descent
l  Proximal gradient methods

l  ISTA, FASTA, Smoothing proximal gradient

l  ADMM

l  Markov Chain Monte Carlo Algorithms
l  Auxiliary Variable methods
l  Embarrassingly Parallel MCMC
l  Parallel Gibbs Sampling

l  Data parallel
l  Model parallel

KDD 15 © Eric Xing @ CMU, 2015 37

Example Optimization Program:
Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
Ω+− λ

Data fitting Regularization

Data fitting part:
 - find β that fits into the data
 - Squared loss, logistic loss, hinge loss, etc

Regularization part:

 - induces sparsity in β.
 - incorporates structured information into the model

© Eric Xing @ CMU, 2015 KDD 15 38

Example Optimization Program:
Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
Ω+− λ

Examples of regularization :)(βΩ

∑
=

=Ω
J

j
jlasso

1
)(ββ

∑
∈

=Ω
G

group
g

gββ
2

)(

)(βtreeΩ

)(βoverlapΩ

∑
∈

=
g

gβ
j

j
2

2
)(βwhere

Sparsity

Structured sparsity
(sparsity + structured information)

© Eric Xing @ CMU, 2015 KDD 15 39

Algorithm I:
Stochastic Gradient Descent

l  Consider an optimization problem:

l  Classical gradient descent:

l  Stochastic gradient descent:

l  Pick a random sample di

l  Update parameters based on noisy approximation of the true gradient

min
x

E{f(x, d)}

x

(t+1) x

(t) � �

1

n

nX

i=1

r
x

f(x(t)
, d

i

)

x

(t+1) x

(t) � �r
x

f(x(t)
, d

i

)

KDD 15 © Eric Xing @ CMU, 2015 40

l  SGD converges almost surely to
a global optimal for convex problems

l  Traditional SGD compute gradients based on a single
sample

l  Mini-batch version computes gradients based on multiple
samples
l  Reduce variance in gradients due to multiple samples
l  Multiple samples => represent as multiple vectors => use vector

computation => speedup in computing gradients

Stochastic Gradient Descent

KDD 15 © Eric Xing @ CMU, 2015 41

Parallel Stochastic Gradient
Descent

l  Parallel SGD: Partition data to different workers; all workers
update full parameter vector

l  Parallel SGD [Zinkevich et al., 2010]

l  PSGD runs SGD on local copy of params in each machine

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

Input
Data

Input
Data

Input
Data

KDD 15 © Eric Xing @ CMU, 2015 42

Hogwild!: Lock-free approach to
PSGD [Recht et al., 2011]

l  Goal is to minimize a function in the form of

l  e denotes a small subset of parameter indices
l  xe denotes parameter values indexed by xe

l  Key observation:
l  Cost functions of many ML problems can be represented by f(x)
l  In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is

applied only a small number of parameters in x

f(x) =
X

e2E

fe(xe)

© Eric Xing @ CMU, 2015 KDD 15 43

Hogwild!: Lock-free approach to
PSGD [Recht et al., 2011]

l  Example:
l  Sparse SVM

l  z is input vector, and y is a label; (z,y) is an elements of E
l  Assume that zα are sparse

l  Matrix Completion

l  Input A matrix is sparse

l  Graph cuts

l  W is a sparse similarity matrix, encoding a graph

min

x

X

↵2E

max(1� y

↵

x

T

z

↵

, 0) + � kxk22

min
W,H

X

(u,v)2E

(Auv �WuH
T
v)

2 + �1 kWk2F + �2 kHk2F

min

x

X

(u,v)2E

w

uv

kx
u

� x

v

k1 subject to x

v

2 S

D

, v = 1, . . . , n

KDD 15 © Eric Xing @ CMU, 2015 44

Hogwild! Algorithm [Recht et al., 2011]
l  Hogwild! algorithm: iterate in parallel for each core

l  Sample e uniformly at random from E
l  Read current parameter xe; evaluate gradient of function fe

l  Sample uniformly at random a coordinate v from subset e
l  Perform SGD on coordinate v with small constant step size

l  Advantages
l  Atomically update single coordinate, no mem-locking
l  Takes advantage of sparsity in ML problems
l  Near-linear speedup on various ML problems, on single machine

l  Excellent on single machine, less ideal for distributed
l  Atomic update on multi-machine challenging to implement; inefficient and slow
l  Delay among machines requires explicit control… why? (see next slide)

KDD 15 © Eric Xing @ CMU, 2015 45

The cost of uncontrolled delay –
slower convergence [Dai et al. 2015]

l  Theorem: Given lipschitz objective ft and step size ηt,

l  where
l  Where L is a lipschitz constant, and εm and εv are the mean and variance of the

delay

l  Intuition: distance between current estimate and optimal value
decreases exponentially with more iterations
l  But high variance in the delay εv incurs exponential penalty!

l  Distributed systems exhibit much higher delay variance,
compared to single machine

KDD 15 © Eric Xing @ CMU, 2015 46

The cost of uncontrolled delay –
unstable convergence [Dai et al. 2015]

l  Theorem: the variance in the parameter estimate is

l  Where
l  and represents 5th order or higher terms, as a function of the delay εt

l  Intuition: variance of the parameter estimate decreases near
the optimum
l  But delay εt increases parameter variance => instability during convergence

l  Distributed systems have much higher average delay,
compared to single machine

KDD 15 © Eric Xing @ CMU, 2015 47

Parallel SGD with
Key-Value Stores

l  We can parallelize SGD via
l  Distributed key-value store to share parameters
l  Synchronization scheme to synchronize parameters

l  Shared key-value store provides easy interface to read/write
shared parameters

l  Synchronization scheme determines how parameters are
shared among multiple workers
l  Bulk synchronous parallel (e.g., Hadoop)
l  Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014]

l  Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015]

KDD 15 © Eric Xing @ CMU, 2015 48

Parallel SGD with
Bounded Async KV-store

l  Stale synchronous parallel (SSP) is a synchronization model
with bounded staleness – “bounded async”

l  Fastest and the slowest workers are ≤s clocks apart

KDD 15 © Eric Xing @ CMU, 2015 49

Example KV-Store Program:
Lasso

l  Lasso example: want to optimize

l  Put β in KV-store to share among all workers
l  Step 1: SGD: each worker draws subset of samples Xi

l  Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient

l  Step 2: Proximal operator: perform soft thresholding on β

l  Can be done at workers, or at the key-value store itself

l  Bounded Asynchronous synchronization allows fast read/write
to β, even over slow or unreliable networks

© Eric Xing @ CMU, 2015 KDD 15 50

Bounded Async KV-store:
Faster and better convergence

KDD 15 © Eric Xing @ CMU, 2015 51

Algorithm II:
Coordinate Descent

Update each regression coefficient in a cyclic manner

1st iteration

1β 2β 3β Jβ
2st iteration

1β 2β 3β Jβ

l  Pros and cons
l  Unlike SGD, CD does not involve learning rate
l  If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
l  However, as sample size increases, time for each iteration also increases

KDD 15 © Eric Xing @ CMU, 2015 52

Example: Coordinate Descent for
Lasso

l  Set a subgradient to zero:

l  Assuming that , we can derive update rule:

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

0)(=+−− j
T
j tλXβyx

1=j
T
j
xx

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
≠

λββ),(
jl

ll
T
jj xS yx

Soft thresholding

+−=))((),(λλ xxsignxS

Standardization

KDD 15 © Eric Xing @ CMU, 2015 53

Example: Block Coordinate
Descent for Group Lasso

l  Set it to zero:

l  In a similar fashion, we can derive update rule for group g

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

gXβyx ∈∀=+−− ju j
T
j ,0)(λ

Iterate over each
group of coefficients

© Eric Xing @ CMU, 2015 KDD 15 54

Parallel Coordinate Descent
[Bradley et al. 2011]

l  Shotgun, a parallel coordinate descent algorithm
l  Choose parameters to update at random
l  Update the selected parameters in parallel
l  Iterate until convergence

l  When features are nearly independent, Shotgun scales
almost linearly
l  Shotgun scales linearly up to workers, where ρ is spectral radius of ATA
l  For uncorrelated features, ρ=1; for exactly correlated features ρ=d
l  No parallelism if features are exactly correlated!

P  d

2⇢

KDD 15 © Eric Xing @ CMU, 2015 55

Intuitions for Parallel Coordinate
Descent

l  Concurrent updates of parameters are useful when features
are uncorrelated

l  Updating parameters for correlated features may slow down

convergence, or diverge parallel CD in the worst case
l  To avoid updates of parameters for correlated features, block-greedy CD has

been proposed

KDD 15 © Eric Xing @ CMU, 2015 56

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]

Block-greedy Coordinate Descent
[Scherrer et al., 2012]

l  Block-greedy coordinate descent generalizes various parallel
CD strategies
l  e.g. Greedy-CD, Shotgun, Randomized-CD

l  Alg: partition p params into B blocks; iterate:
l  Randomly select P blocks
l  Greedily select one coordinate per P blocks
l  Update each selected coordinate

l  Sublinear convergence O(1/k) for separable regularizer r :

l  Big-O constant depends on the maximal correlation among the B blocks

l  Hence greedily cluster features (blocks) to reduce correlation

min
x

X
i

f

i

(x) + r(x
i

)

KDD 15 © Eric Xing @ CMU, 2015 57

Parallel Coordinate Descent with
Dynamic Scheduler
[Lee et al., 2014]

l  STRADS (STRucture-Aware Dynamic Scheduler) allows
scheduling of concurrent CD updates
l  STRADS is a general scheduler for ML problems
l  Applicable to CD, and other ML algorithms such as Gibbs sampling

l  STRADS improves CD performance via
l  Dependency checking

l  Update parameters which are nearly independent => small parallelization error

l  Priority-based updates
l  More frequently update those parameters which decrease objective function faster

KDD 15 © Eric Xing @ CMU, 2015 58

Example Scheduler Program:
Lasso

l  Schedule step:
l  Prioritization: choose next variables βj to update, with probability proportional to

their historical rate of change

l  Dependency checking: do not update βj, βk in parallel if feature dimensions j
and k are correlated

l  Update step:
l  For all βj chosen in Schedule step, in parallel, perform coordinate descent update

l  Repeat from Schedule step
KDD 15 © Eric Xing @ CMU, 2015 59

l  Priority-based scheduling converges faster than Shotgun
(random) scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

Comparison:
priority vs. random-scheduling

KDD 15 © Eric Xing @ CMU, 2015 60

Priority-based scheduling +
dep. checker

be
tte

r Shotgun scheduling [Bradley et al. 2011]

Advanced
Optimization Techniques

l  What if simple methods like SPG, CD are not adequate?

l  Advanced techniques at hand
l  Complex regularizer: PG
l  Complex loss: SPG
l  Overlapping loss/regularizer: ADMM

l  How to parallelize them? Must understand math behind
algorithms
l  Which terms should be computed at server
l  Which terms can be distributed to clients
l  …

KDD 15 © Eric Xing @ CMU, 2015 61

When Constraints Are Complex:
 -- Algorithm III: Proximal Gradient (a.k.a. ISTA)

l  f: loss term, smooth (continuously differentiable)
l  g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient
•  g represents some simple function

•  e.g., 1-norm, constraint C, etc.

Projected gradient
•  g represents some constraint

min
w

f(w) + g(w)

g(w) = ◆C(w) =

(
0, w 2 C

1, otherwise

w w � ⌘rf(w)

w argmin
z

1
2⌘kw � zk2 + ◆C(z)

= argmin
z2C

1
2kw � zk2

w w � ⌘rf(w) gradient

w argmin

z

1
2⌘kw � zk2 + g(z)

| {z }
proximal map

KDD 15 © Eric Xing @ CMU, 2015 62

Algorithm III:
Proximal Gradient (a.k.a. ISTA)

l  PG hinges on the proximal map [Moreau, 1965]:

l  Treated as black-box in PG
l  Need proximal map efficiently computable, better closed-form

l  True when g is separable and “simple”, e.g. 1-norm (separable in each
coordinate), non-overlapping group norm, etc.

l  Can be demanding if g = g1+g2, but vars in g1, g2 overlap
l  [Yu, 2013] gave sufficient conditions for when g = g1+g2 can

be easily handled:

l  Useful when and available in closed-forms
l  E.g. fused lasso (Friedman et al.'07):

P⌘
g(w) = argmin

z

1
2⌘kw � zk2 + g(z)

P⌘
g1 P⌘

g2

P⌘
g1+g2(w) = P⌘

g1

⇣
P⌘
g2(w)

⌘

P⌘
k·k1+k·ktv

(w) = P⌘
k·k1

⇣
P⌘
k·ktv

(w)
⌘

© Eric Xing @ CMU, 2015 KDD 15 63

Accelerated PG (a.k.a. FISTA)
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

l  PG convergence rate
l  Can be boosted to

l  Same Lipschitz gradient assumption on f; similar per-step complexity!
l  Lots of follow-up work to the papers cited above

P⌘
g(w) := argmin

z

1
2⌘kw � zk22 + g(z)

Proximal Gradient Accelerated Proximal Gradient

O(1/(⌘t))

O(1/(⌘t2))

vt wt � ⌘rf(wt)

ut P⌘

g

(vt)

wt+1 ut + 0|{z}
no

· (ut � ut�1)| {z }
momentum

vt wt � ⌘rf(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum

© Eric Xing @ CMU, 2015 KDD 15 64

Parallel (Accelerated) PG
l  Bulk Synchronous Parallel Accelerated PG (exact)

l  [Chen and Ozdaglar, 2012]

l  Asynchronous Parallel (non-accelerated) PG (inexact)
l  [Li et al., 2014] Parameter Server

l  General strategy:
1.  Compute gradients on workers
2.  Aggregate gradients on servers
3.  Compute proximal operator on servers
4.  Compute momentum on servers
5.  Send result wt+1 to workers and repeat

l  Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup
l  Open question: what about accelerated PG? What happens theoretically and

empirically to accelerated momentum under asynchrony?

vt wt � ⌘rf(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2| {z }
⇡1

(ut � ut�1)| {z }
momentum

KDD 15 © Eric Xing @ CMU, 2015 65

When Objective Is Not Smooth:
 -- Moreau Envelope Smoothing

l  So far need f to have Lipschitz cont grad, obtained O(1/t2)
l  What if not ?
l  Can use subgradient, with diminishing step size O(1/sqrt(t))

l  Huge gap !!

l  Smoothing comes into rescue, if f itself is H-Lipschitz cont
l  Approx f with something nicer, like Taylor expansion in calculus 101

l  Replace f with its Moreau envelope function

l  f(w) = |w|, envelope is Huber’s func (blue curve)
l  Minimizer gives the proximal map (red curve)

Prop.

M⌘
f

P⌘
f

M⌘
f (w) := min

z

1
2⌘kw � zk22 + f(z)

8w , 0  f(w)�M⌘
f (w)  ⌘H2/2

© Eric Xing @ CMU, 2015 KDD 15 66

Smoothing Proximal Gradient
[Chen et al., 2012]

l  Use Moreau envelope as smooth approximation
l  Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

l  Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]
l  Proximal point alg = PG, when

l  Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012]

l  With , SPG converges at

l  Improves subgradient
l  Requires both efficient and

f ⌘ 0

Smoothing Proximal Gradient
original

approx.

P⌘
f P⌘

g

min
w

f(w) + g(w)
⇡ min

w
M⌘

f (w) + g(w)

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

⌘ = O(1/t)

O(1/(⌘t2)) = O(1/t)
O(1/

p
t)

KDD 15 © Eric Xing @ CMU, 2015 67

Parallel SPG?
l  No known work yet
l  Possible strategy:

1.  Compute smoothed gradients on workers
2.  Aggregate smoothed gradients on servers
3.  Compute proximal operator on servers
4.  Compute momentum on servers
5.  Send result wt+1 to workers and repeat

l  The above strategy is exact under Bulk Synchronous Parallel
(just like accelerated PG).
l  Not clear how asynchronous updates impact smoothing+momentum
l  Open research topic

vt

=P⌘
f (w

t)
z }| {
wt � ⌘rM⌘

f

(wt)

ut P⌘

g

(vt)

wt+1 ut +
t� 1

t+ 2
(ut � ut�1)| {z }
momentum

KDD 15 © Eric Xing @ CMU, 2015 68

When Variables Are Coupled:
 -- Algorithm IV: ADMM

l  Numerically challenging because
l  Function f or g nonsmooth or constrained (i.e., can take value)
l  Linear constraint couples the variables w and z
l  Large scale, interior point methods NA

l  Naively alternating x and z does not work
l  Min w2 s.t. w + z = 1; optimum clearly is w = 0
l  Start with say w = 1 à z = 0 à w = 1 à z = 0 …

l  However, without coupling, can solve separately w and z
l  Idea: try to decouple vars in the constraint!

1

 uncoupled  coupled

where

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq

© Eric Xing @ CMU, 2015 KDD 15 69

Example: Empirical Risk
Minimization (ERM)

l  Each i corresponds to a training point (xi, yi)
l  Loss fi measures the fitness of the model parameter w

l  least squares:
l  support vector machines:
l  boosting:
l  logistic regression:

l  g is the regularization function, e.g. or
l  Vars coupled in obj, but not in constraint (none)

l  Reformulate: transfer coupling from obj to constraint
l  Arrive at canonical form, allow unified treatment later

min
w

g(w) +
nX

i=1

fi(w)

�nkwk22 �nkwk1

fi(w) = (yi � w

>
xi)

2

fi(w) = (1� yiw
>
xi)+

fi(w) = exp(�yiw
>
xi)

fi(w) = log(1 + exp(�yiw
>
xi))

 coupled

© Eric Xing @ CMU, 2015 KDD 15 70

How to: variable duplication
l  Duplicate variables to achieve canonical form

l  Global consensus constraint:

l  All wi must (eventually) agree

l  Downside: many extra variables, increase problem size
l  Implicitly maintain duplicated variables

min
w

g(w) +
nX

i=1

fi(w)

8i, wi = z

min
v,z

g(z) +
X

i
fi(wi)

| {z }
f(v)

, s.t. wi = z, 8i| {z }
v�[I,...,I]>z=0

v = [w1, . . . , wn]
>

© Eric Xing @ CMU, 2015 KDD 15 71

Augmented Lagrangian

l  Intro Lagrangian multiplier to decouple variables

l  : augmented Lagrangian
l  More complicated min-max problem, but no coupling constraints
Lµ

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)

�

where

Canonical form: min
w,z

f(w) + g(z), s.t. Aw +Bz = c,
w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq

© Eric Xing @ CMU, 2015 KDD 15 72

Algorithm IV:
ADMM

l  Fix dual , block coordinate descent on primal w, z

l  Fix primal w, z, gradient ascent on dual

l  Step size can be large, e.g.
l  Usually rescale to remove

⌘ ⌘ = µ
⌘

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz� c) + µ
2 kAw +Bz� ck22| {z }

Lµ(w,z;�)

�t+1 �t + ⌘(Awt+1 +Bzt+1 � c)

wt+1 argmin
w

Lµ(w, zt;�t)

zt+1 argmin
z

Lµ(w
t+1, z;�t)

⌘ f(w) + µ
2 kAw +Bzt � c+ �t/µk2

⌘ g(z) + µ
2 kAwt+1 +Bz� c+ �t/µk2

�

�

� �/⌘

KDD 15 © Eric Xing @ CMU, 2015 73

Row partition (data parallel)

l  each i corresponds to a (block of) training data Ai

l  all summands fi share the same global variable z
l  all ERM in this form: SVM, lasso, logistic regression, etc.
l  parallellize by duplicating z into w1, … wn

l  Exact Synchronization (bulk sync parallel) needed

min
z

g(z) +
nX

i=1

fi(Aiz � ci)

worker machine i server

min
w=[w1,...,wn],z

g(z) +
X

i

fi(Aiwi � c), s.t. z�wi = 0, 8i

KDD 15 © Eric Xing @ CMU, 2015 74

Column partition (model parallel)

l  in columns data , variables
l  Each function gj have its own variable wj

l  All variables wj coupled in f
l  parallelize by adding auxiliary variable

l  Exact Synchronization (bulk sync parallel) needed

worker machine j server

min
w

f
⇣ pX

j=1

Ajwj � c
⌘
+

pX

j=1

gj(wj)

w = [w1, . . . , wp]A = [A1, . . . , Ap]

z = [z1, . . . , zp]

min
w,z

f(
X

j
zj � c) +

X
j
gj(wj), s.t. Ajwj � zj = 0, 8j

KDD 15 © Eric Xing @ CMU, 2015 75

Asynchronous Parallel ADMM
[Zhang & Kwok, 2014]

l  Only simplified consensus problem being studied:

l  Can distribute the primal updates for each wi

l  But dual update can happen only after all
primal updates – barrier bottleneck

l  How to alleviate the barrier bottleneck?
l  Asynchronously execute dual update after seeing s out of n primal updates
l  Condition: no machine is too far behind

l  Can be achieved with bounded staleness [Ho et al., 2013]
l  Asynchronous convergence proved in [Zhang & Kwok, 2014]

min
w=[w1,...,wn],z

nX

i=1

fi(wi), s.t. wi � z = 0, 8i

(w1, . . . ,wn) argmin
w

Lµ(w, z;�)

� �+
P

i wi � z

© Eric Xing @ CMU, 2015 KDD 15 76

Outline:
Optimization & MCMC Algorithms

l  Optimization Algorithms
l  Stochastic gradient descent
l  Coordinate descent
l  Proximal gradient methods

l  ISTA, FASTA, Smoothing proximal gradient

l  ADMM

l  Markov Chain Monte Carlo Algorithms
l  Auxiliary Variable methods
l  Embarrassingly Parallel MCMC
l  Parallel Gibbs Sampling

l  Data parallel
l  Model parallel

KDD 15 © Eric Xing @ CMU, 2015 77

Example Probabilistic Program:
Topic Models

l  Generative model
l  Fit topics to each word xij in each doc i
l  Uses categorical distributions with parameters δ and B

l  Parameter priors
l  Induce sparsity in δ and B
l  Can also incorporate structure

l  E.g. asymmetric prior

KDD 15 © Eric Xing @ CMU, 2015

doc
(~ 1B)

topic

δi topic

word (~ 1M)

Bk

Generative
model of data

Priors on
parameters

78

Inference for Probabilistic
Programs: MCMC and SVI

δi	

zij	

	
 xij	
 	
 Β	

Ni	

N

	
 	
 K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Next set of slides on this

Variational Inference:
Gradient ascent on variables

Can be treated as an optimization problem

δi	

zij	

xij	
 	
 Β	

Ni	

N

	
 	
 K

KDD 15 © Eric Xing @ CMU, 2015 79

Preliminaries:
Speeding up sequential MCMC

l  Technique 1: Alias tables
l  Sample from categorical distribution in amortized O(1)
l  “Throw darts at a dartboard”
l  Ex: probability distribution [0.5, 0.25, 0.25]

l  => alias table {1, 1, 2, 3} => draw from table uniformly at random

l  Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015]
l  Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k)

l  Propose z1 from Pevidence(k)
l  Accept/Reject z1

l  Propose z2 from Pprior(k)
l  Accept/Reject z2 … repeat

l  Pprior(k), Pevi(k) cheap to compute with alias table

l  Other speedup techniques
l  Stochastic Gradient MCMC
l  Stochastic Variational Inference

KDD 15 © Eric Xing @ CMU, 2015 80

Pevidence(z = k) Pprior(z = k)

Parallel and Distributed MCMC:
Classic methods

l  Classic parallel MCMC solution 1
l  Take multiple chains in parallel, take average/consensus between chains.

l  But what if each chain is very slow to converge?
l  Need full dataset on each process – no data parallelism!

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

KDD 15 © Eric Xing @ CMU, 2015 81

Parallel and Distributed MCMC:
Classic methods

l  Classic parallel MCMC solution 2
l  Sequential Importance Sampling
l  Rewrite distribution over n variables as telescoping product over proposals q():

l  SIS algorithm:
●  Parallel draw samples xi

n ~ qn(xn|xi
1:n-1)

●  Parallel compute unnorm. wgts.

●  Compute normalized weights wi

n by normalizing ri
n

l  Drawback: variance of SIS samples increases exponentially with n
l  Need resampling + take many chains to control variance

l  Let us look at newer solutions to parallel MCMC…

KDD 15 © Eric Xing @ CMU, 2015

where

82

Solution I: Induced Independence
via Auxiliary Variables [Dubey et al. 2013, 2014]

l  Auxiliary Variable Inference: reformulate model as P
independent models
l  Example below: Dirichlet Process for mixture models
l  Also applies to Hierarchical Dirichlet Process for topic models

l  AV model (left) equivalent to standard DP model (right)

KDD 15 © Eric Xing @ CMU, 2015 83

Solution I: Induced Independence
via Auxiliary Variables [Dubey et al., 2013, 2014]

●  Why does it work? A mixture over Dirichlet processes is
equivalent to a Dirichlet processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over
Processor DPs 1...P

KDD 15 © Eric Xing @ CMU, 2015 84

Solution I: Induced Independence
via Auxiliary Variables [Dubey et al., 2013, 2014]

l  Parallel inference algorithm:
l  Initialization: assign data randomly across P Dirichlet Processes; assign each

Dirichlet Process to one worker p=1..P
l  Repeat until convergence:

l  Each worker performs Gibbs sampling on local data within its DP
l  Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:

§  For each cluster c, propose a new DP q=1..P
§  Compute proposal probability of c moving to p
§  Acceptance ratio depends on cluster size

l  Can be done asynchronously in parallel without affecting
performance

KDD 15 © Eric Xing @ CMU, 2015 85

Solution II: Embarrassingly Parallel
(but correct) MCMC [Neiswanger et al., 2014]

l  High-level idea:
l  Run MCMC in parallel on data subsets; no communication between machines.
l  Combine samples from machines to construct full posterior distribution samples.

l  Objective: recover full posterior distribution

l  Definitions:
l  Partition data into M subsets
l  Define m-th machine’s “subposterior” to be

l  Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.

KDD 15 © Eric Xing @ CMU, 2015 86

Embarassingly Parallel MCMC
l  Algorithm

1.  For m=1…M independently in parallel, draw samples from each subposterior
2.  Estimate subposterior density product (and thus the full

posterior) by “combining subposterior samples”

l  “Combine subposterior samples” via nonparametric estimation
1.  Given T samples from each subposterior :

l  Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2.  Combine subposterior KDEs:

l  where

KDD 15 © Eric Xing @ CMU, 2015 87

Embarassingly Parallel MCMC
l  Simulations:

l  More subposteriors = tighter estimates
l  EPMCMC recovers correct parameter
l  Naïve subposterior averaging does not!

KDD 15 © Eric Xing @ CMU, 2015 88

Solution III:
Parallel Gibbs Sampling

l  Many MCMC algorithms
l  Sequential Monte Carlo [Canini et al., 2009]
l  Hybrid VB-Gibbs [Mimno et al., 2012]
l  Langevin Monte Carlo [Patterson et al., 2013]
l  …

l  Common choice in tech/internet industry:
l  Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]
l  e.g. topic model Collapsed Gibbs sampler:

KDD 15 © Eric Xing @ CMU, 2015 89

Properties of
Collapsed Gibbs Sampling (CGS)

l  Simple equation: easy for system engineers to scale up
l  Good theoretical properties

l  Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naïve Gibbs sampling

l  Empirically robust
l  Errors in δ, B do not affect final stationary distribution by much

l  Updates are sparse: fewer parameters to send over network
l  Model parameters δ, B are sparse: less memory used

l  If it were dense, even 1M word * 10K topic ≈ 40GB already!

KDD 15 © Eric Xing @ CMU, 2015 90

CGS Example:
Topic Model sampler

docs i
(~ 1B)

topics k words v (~ 1M)

KDD 15 © Eric Xing @ CMU, 2015 91

“Word-topic
summary table”

B

δ

topics k topics k

Data Parallelization for
CGS Topic Model Sampler

doc
partition

words v (~ 1M)

doc
partition

doc
partition

model
replica

model
replica

model
replica

KDD 15 © Eric Xing @ CMU, 2015 92

δ1

δ2

δ3

B

B

B

topics k

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 1: broadcast central model

KDD 15 © Eric Xing @ CMU, 2015 93

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 1: broadcast central model

KDD 15 © Eric Xing @ CMU, 2015 94

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 2: Perform Gibbs sampling in parallel

KDD 15 © Eric Xing @ CMU, 2015 95

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 3: commit changes back to the central model

KDD 15 © Eric Xing @ CMU, 2015 96

Data-Parallel Strategy:
Approx. Distributed LDA
[Newman et al., 2009]

l  Approximate
l  Convergence not guaranteed – Markov Chain ergodicity broken
l  Results generally “good enough” for industrial use

l  Bulk synchronous parallel
l  CPU cycles are wasted while synchronizing the model
l  Asynchronous and bounded-asynchronous extensions possible [Smola et al.,

2010; Ahmed et al., 2012, Dai et al., 2015]

l  How to overlap communication and computation for better
efficiency?

KDD 15 © Eric Xing @ CMU, 2015 97

Error in data-parallel LDA
l  Consider the CGS equation:

l  Data-parallelism incurs error in B (the pink box) and the
summation term (the gray box)
l  Both quantities are duplicated onto workers; their values become stale as

sampling proceeds
l  True even for bulk synchronous parallel execution!

l  Asynchrony helps somewhat
l  Communicate very frequently to reduce staleness

l  Is there a better solution?

KDD 15 © Eric Xing @ CMU, 2015 98

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l  Think graphically: token = edge

docs
words

KDD 15 © Eric Xing @ CMU, 2015 99

Column
= topic k

Row =
topic k

Column
= topic k

Word-topic
summary table

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l  Model-parallel via graph structure

doc word

KDD 15 © Eric Xing @ CMU, 2015 100

Worker 1

Worker 2

Word-topic
summary table

(copy on worker 1)

Word-topic
summary table

(copy on worker 2)

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l  Asynchronous communication
l  Overlaps computation and communication – iterations are faster

l  Model-parallelism means each machine only stores a subset
of statistics
l  Less memory usage if implemented well

l  Drawback: need to convert problem into a graph
l  Vertex-cut duplicates lots of vertices, canceling out savings

l  Are there other ways to partition the problem?

KDD 15 © Eric Xing @ CMU, 2015 101

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Topic model matrix structure:

l  Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc
(~ 1B)

topic word (~ 1M)

topic

KDD 15 © Eric Xing @ CMU, 2015 102

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Non-overlapping partition of the word count matrix
l  Fix data at machines, send model to machines as needed

KDD 15 © Eric Xing @ CMU, 2015 103

Source: [Gemulla et al., 2011]

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  During preprocessing: determine set of words used in each
data block

l  Begin training: load each data block from disk

KDD 15 © Eric Xing @ CMU, 2015

disk

sequential
read

104

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Pull the set of words from Key-Value store

KDD 15 © Eric Xing @ CMU, 2015

disk

=

sequential
read

105

Local copy of word-
topic summary table

Key-value store

Local model copy

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Sample, write result to disk, send changes back to KV-store

KDD 15 © Eric Xing @ CMU, 2015

disk

sequential
read

sequential write

=

106

Local copy of word-
topic summary table

Key-value store

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Model-parallel advantage: disjoint words/docs on each
machine
l  Gibbs sampling almost equivalent to sequential case
l  More accurate than data-parallel LDA
l  Fast, asynchronous execution possible

l  Compared to GraphLab LDA:
l  Simple partitioning strategy – less system overheads, easier to implement
l  Need to be careful about load imbalance (some docs will touch a particular word

more times than others)
l  Solution: pre-group documents by word frequency

KDD 15 © Eric Xing @ CMU, 2015 107

Error in model-parallel LDA
l  Recall the CGS equation:

l  Model-parallelism only has error in summation term (gray box)
l  Summation term is very large for Big Data (billions of docs) => error negligible
l  Compared to data-parallelism: error due to B (pink box) eliminated

KDD 15 © Eric Xing @ CMU, 2015 108

Distributed ML Algorithms
Summary

l  Many parallel algorithms for both Optimization and MCMC
l  They share common parallelization themes

l  Embarrassingly parallel: combine results from multiple independent problems,
e.g. PSGD, EP-MCMC

l  Stochastic over data: approximate functions/ gradients with expectation over
subset of data, then parallelize over data subsets, e.g. SGD

l  Model-parallel: parallelize over model variables, e.g. Coordinate Descent
l  Auxiliary variables: decompose problem by decoupling dependent variables,

e.g. ADMM, Auxiliary Variable MCMC

l  Considerations
l  Regularizers, model structure: may need sequential proximal or projection

step, e.g. Stochastic Proximal Gradient
l  Data partitioning: for data-parallel, how to split data over machines?
l  Model partitioning: for model-parallel, how to split model over machines? Need

to be careful as model variables are not necessarily independent of each other.

KDD 15 © Eric Xing @ CMU, 2015 109

Implementing
Distributed ML Algorithms

l  Implementing high-performance distributed ML is not easy
l  If not careful, can end up slower than single machine!

l  System bottlenecks (load imbalance, network bandwidth & latency) are not trivial
to engineer around

l  Even if algorithm is theoretically sound and has attractive
properties, still need to pay attention to system aspects
l  Bandwidth (communication volume limits)
l  Latency (communication timing limits)
l  Data and Model partitioning (machine memory limitation, also affects comms

volume)
l  Data and Model scheduling (affects convergence rate, comms volume & timing)
l  Non-ideal systems behavior: uneven machine performance, other cluster users

KDD 15 © Eric Xing @ CMU, 2015 110

Implementing
Distributed ML Algorithms

l  A number of ad-hoc or partial solutions, but sometimes
lacking theoretical analysis
l  Major barrier: hard to analyze solutions because algorithm/systems sometimes

not fully/transparently described in papers
l  Possible solution: a universal language and principles for design could facilitate

theoretical analysis of existing and new solutions

l  Let us look at some open-source platforms, which distributed
ML algorithms can be implemented upon

KDD 15 © Eric Xing @ CMU, 2015 111

Outline

l  Overview of Modern ML

l  Distributed ML Algorithms

l  Open-Source Platforms for Distributed ML

l  Principles of Systems, Architectures for Distributed ML

l  Theory of Real Distributed ML Systems

l  Open Research Issues and Topics

KDD 15 © Eric Xing @ CMU, 2015 112

School of Computer Science

Open-Source Platforms
for Distributed ML

KDD 15 © Eric Xing @ CMU, 2015 113

Modern Systems for Big ML
●  Just now: data-, model-parallel ML algorithms for optimization,

MCMC

●  One could write distributed implementations from scratch

●  Perhaps better to use an existing open source platform?

KDD 15 © Eric Xing @ CMU, 2015 114

Spark Overview [Zaharia et al., 2010]
●  General-purpose system for Big Data processing

o  Shell/interpreter for Matlab/R-like analytics

●  MLlib = Spark’s ready-to-run ML library

o  Implemented on Spark’s API

KDD 15 © Eric Xing @ CMU, 2015 115

Spark Overview [Zaharia et al., 2010]
l  MLlib algorithms (v1.4)

l  Classification and regression
l  linear models (SVMs, logistic regression, linear regression)
l  naive Bayes
l  decision trees
l  ensembles of trees (Random Forests and Gradient-Boosted Trees)
l  isotonic regression

l  Collaborative filtering
l  alternating least squares (ALS)

l  Clustering
l  k-means
l  Gaussian mixture
l  power iteration clustering (PIC)
l  latent Dirichlet allocation (LDA)
l  streaming k-means

l  Dimensionality reduction
l  singular value decomposition (SVD)
l  principal component analysis (PCA)

KDD 15 © Eric Xing @ CMU, 2015 116

Spark Overview [Zaharia et al., 2010]

●  Key feature: Resilient Distributed Datasets (RDDs)
●  Data processing = lineage graph of transforms
●  RDDs = nodes
●  Transforms = edges

KDD 15 © Eric Xing @ CMU, 2015 117

Source: Zaharia et al. (2012)

Spark Overview [Zaharia et al., 2010]
l  RDD-based programming model

l  Similar in spirit to Hadoop Mapreduce
l  Functional style: manipulate RDDs via “transformations”, “actions”

l  E.g. map is a transformation, reduce is an action

l  Example: load file, count total number of characters

l  Other transformations and actions:
l  union(), intersection(), distinct()
l  count(), first(), take(), foreach()
l  …

l  Can specify if an RDD should be “persisted” to disk
l  Allows for faster recovery during cluster faults

KDD 15 © Eric Xing @ CMU, 2015 118

val	
 lines	
 =	
 sc.textFile("data.txt")	

val	
 lineLengths	
 =	
 lines.map(s	
 =>	
 s.length)	

val	
 totalLength	
 =	
 lineLengths.reduce((a,	
 b)	
 =>	
 a	
 +	
 b)	

Spark Overview [Zaharia et al., 2010]

●  Benefits of Spark:
●  Fault tolerant - RDDs immutable, just re-compute from lineage
●  Cacheable - keep some RDDs in RAM

o  Faster than Hadoop MR at iterative algorithms
●  Supports MapReduce as special case

KDD 15 © Eric Xing @ CMU, 2015 119

Source: Zaharia et al. (2012)

Spark:
Faster MapR on Data-Parallel
●  Spark’s solution: Resilient Distributed Datasets (RDDs)

o  Input data → load as RDD → apply transforms → output result
o  RDD transforms strict superset of MapR
o  RDDs cached in memory, avoid disk I/O

●  Spark ML library supports data-parallel ML algos, like Hadoop
o  Spark and Hadoop: comparable first iter timings…
o  But Spark’s later iters are much faster

KDD 15 © Eric Xing @ CMU, 2015 120
Source: ebaytechblog.com

GraphLab Overview [Low et al., 2012]
l  Known as “GraphLab PowerGraph v2.2”

l  Different from commercial software “GraphLab Create” by Dato.com, who
formerly developed PowerGraph v2.2

l  System for Graph Programming
l  Think of ML algos as graph algos

l  Comes with ready-to-run “toolkits”
l  ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical

models

KDD 15 © Eric Xing @ CMU, 2015 121

GraphLab Overview [Low et al., 2012]
l  ML-related toolkits

l  Clustering
l  K-means
l  Spectral

l  Collaborative Filtering
l  Matrix Factorization (including Non-negative, L1/L2-regularized)

l  Graphical Models
l  Factor graphs
l  Belief propagation algorithm

l  Topic Modeling
l  LDA

l  Other toolkits available for computer vision, graph analytics,
linear systems

KDD 15 © Eric Xing @ CMU, 2015 122

●  Key feature: Gather-Apply-Scatter Programming Model
o  Write ML algos as vertex programs
o  Run vertex programs in parallel on each graph node
o  Graph nodes, edges can have data, parameters

KDD 15 © Eric Xing @ CMU, 2015 123

Source: Gonzalez (2012)

GraphLab Overview [Low et al., 2012]

●  Programming Model: GAS Vertex Programs
o  1) Gather(): Accumulate data, params from my neighbors + edges
o  2) Apply(): Transform output of Gather(), write to myself
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 124

GraphLab Overview [Low et al., 2012]

●  Programming Model: GAS Vertex Programs
o  1) Gather(): Accumulate data, params from my neighbors + edges
o  2) Apply(): Transform output of Gather(), write to myself
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 125

GraphLab Overview [Low et al., 2012]

●  Programming Model: GAS Vertex Programs
o  1) Gather(): Accumulate data, params from my neighbors + edges
o  2) Apply(): Transform output of Gather(), write to myself
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 126

GraphLab Overview [Low et al., 2012]

GraphLab Overview [Low et al., 2012]
l  Example GAS program: Pagerank

l  Programmer implements gather(), apply(), scatter() functions

KDD 15 © Eric Xing @ CMU, 2015

Source: Gonzalez et al. (OSDI 2012)

127

●  Benefits of Graphlab
o  Supports asynchronous execution - fast, avoids straggler problems
o  Edge-cut partitioning - scales to large, power-law graphs
o  Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)

KDD 15 © Eric Xing @ CMU, 2015 128

GraphLab Overview [Low et al., 2012]

●  GraphLab Graph consistency models
o  Guide search for “ideal” model-parallel execution order
o  ML algo correct if input graph has all dependencies

●  GraphLab supports asynchronous (no-waiting) execution
o  Correctness enforced by graph consistency model
o  Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)
KDD 15 © Eric Xing @ CMU, 2015 129

GraphLab:
Model-Parallel via Graphs

A	
 New	
 Framework	
 for	
 Large	
 Scale	
 Parallel	

Machine	
 Learning	

(Petuum.org)	

KDD 15 © Eric Xing @ CMU, 2015 130

Petuum Overview [Xing et al., 2015]
l  Key modules

l  Key-value store (Parameter Server) for data-parallel ML algos
l  Scheduler for model-parallel ML algos

l  Program ML algos in iterative-convergent style
l  ML algo = (1) write update equations + (2) iterate eqns via schedule

KDD 15 © Eric Xing @ CMU, 2015 131

Petuum Overview [Xing et al., 2015]
l  ML Library (Petuum v1.1):

l  Topic Modeling
l  LDA
l  MedLDA (supervised topic models)

l  Deep Learning
l  Fully-connected DNN
l  Convolutional Neural Network

l  Matrix Factorization
l  Least-squares Collaborative Filtering (with regularization)
l  Non-negative Matrix Factorization
l  Sparse Coding

l  Regression
l  Lasso Regression

l  Metric Learning
l  Distance Metric Learning

l  Clustering
l  K-means

l  Classification
l  Random Forest
l  Logistic Regression and SVM
l  Multi-class Logistic Regression

KDD 15 © Eric Xing @ CMU, 2015 132

Petuum Overview [Xing et al., 2015]
l  Key-Value store (Parameter Server)

l  Enables data-parallelism
l  A type of Distributed Shared Memory (DSM)

l  Model parameters globally shared across workers

l  Programming: replace local variables with PS calls

KDD 15 © Eric Xing @ CMU, 2015 133

KV-
store

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

ProcessDataPoint(i)	
 {	

	
 	
 for	
 j	
 =	
 1	
 to	
 M	
 {	

	
 	
 	
 	
 old	
 =	
 model[j]	

	
 	
 	
 	
 delta	
 =	
 f(model,data(i))	

	
 	
 	
 	
 model[j]	
 +=	
 delta	

	
 	
 }	

}	

Single
Machine

ProcessDataPoint(i)	
 {	

	
 	
 for	
 j	
 =	
 1	
 to	
 M	
 {	

	
 	
 	
 	
 old	
 =	
 PS.read(model,j)	

	
 	
 	
 	
 delta	
 =	
 f(model,data(i))	

	
 	
 	
 	
 PS.inc(model,j,delta)	

	
 	
 }	

}	

Distributed
with PS

Petuum Overview [Xing et al., 2015]
l  Key-Value store features:

l  ML-tailored consistency model: Stale Synchronous Parallel (SSP)
l  Asynchronous-like speed
l  Bulk Synchronous Parallel-like correctness guarantees for ML

KDD 15 © Eric Xing @ CMU, 2015 134

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (limited error)

Petuum Overview [Xing et al., 2015]
l  Scheduler

l  Enables correct model-parallelism
l  Can analyze ML model structure for best execution order
l  Programming: schedule(), push(), pull() abstraction

KDD 15 © Eric Xing @ CMU, 2015 135

Petuum Overview [Xing et al., 2015]
l  Scheduler benefits:

l  ML scheduling engine: Structure-Aware Parallelization (SAP)
l  Scheduled ML algos require less computation to finish

KDD 15 © Eric Xing @ CMU, 2015 136

Sharp drop
due to SAP

Petuum:
ML props = 1st-class citizen

l  Error tolerance via Stale Sync Parallel KV-store
l  System Insight 1: ML algos bottleneck on network comms
l  System Insight 2: More caching => less comms => faster execution

KDD 15 © Eric Xing @ CMU, 2015 137

More caching (more staleness)

Petuum:
ML props = 1st-class citizen

l  Harness Block dependency structure via Scheduler
l  System Insight 1: Pipeline scheduler to hide latency
l  System Insight 2: Load-balance blocks to prevent stragglers

KDD 15 © Eric Xing @ CMU, 2015 138

Blocks in Lasso
Regression problem

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and
Variables

Generate Blocks

Blocks of
variables

Check Variable
Dependencies

Petuum:
ML props = 1st-class citizen

l  Exploit Uneven Convergence via Prioritizer
l  System Insight 1: Prioritize small # of vars => fewer deps to check
l  System Insight 2: Lowers computational cost of Scheduling

KDD 15 © Eric Xing @ CMU, 2015 139

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and
Variables

Generate Blocks

Blocks of
variables

Check Variable
Dependencies

Petuum Architecture and
Hadoop Ecosystem Integration

KDD 15 © Eric Xing @ CMU, 2015

HDFS (distributed storage)

YARN (resource manager, fault tolerance)

Bounded-Async
KV-store (Bösen)

Dynamic Scheduler
(Strads)

Data-Parallel API Model-Parallel API

ML application library

Hadoop Ecosystem

and others …

140

ML Programming Interface:
Needs and Considerations

l  An ideal ML programming interface should make it easy to
write correct data-parallel, model-parallel ML programs

l  What can be abstracted away?
l  Abstract away inter-worker communication/synchronization:

l  Automatic consistency models; bandwidth management through distributed shared
memory

l  Abstract scheduling away from update equations:
l  Easy to change scheduling strategy, or use dynamic schedules

l  Abstract away worker management:
l  Let ML system decide optimal number and configuration of workers

l  Ideally, reduce programmer burden to just 3 things:
l  Declare model, write updates, write schedule

KDD 15 © Eric Xing @ CMU, 2015 141

School of Computer Science

Systems, Architectures
for Distributed ML

KDD 15 © Eric Xing @ CMU, 2015 142

There Is No Ideal Distributed System!

l  Not quite that easy…
l  Two distributed challenges:

l  Networks are slow
l  “Identical” machines rarely perform equally

Low bandwidth,
High delay

Unequal
performance

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48
Se

co
n

d
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

KDD 15 © Eric Xing @ CMU, 2015

BSP execution:
Long sync time

Async execution:
May diverge

143

Issue: How to approach
distributed systems?

l  Idealist view
l  Start with simplified view of distributed

systems; develop elaborate theory

l  Issues being explored:
l  Information theoretic lower bounds for

communication [Zhang et al. 2013]
l  Provably correct distributed

architectures, with mild assumptions
[Langford et al. 2009, Duchi and
Agarwal 2011]

l  How can we build practical solutions
using these ideas?

l  Pragmatist view
l  Start with real-world, complex

distributed systems, and develop a
combination of theoretical guarantees
and empirical evidence

l  Issues being explored:
l  Fault tolerance and recovery [Zaharia

et al. 2012, Spark, Li et al. 2014]
l  Impact of stragglers and delays on

inference, and robust solutions [Ho et
al. 2013, Dai et al. 2015, Petuum, Li et
al. 2014]

l  Scheduling of inference computations
for massive speedups [Low et al. 2012,
GraphLab, Kim et al. 2014, Petuum]

l  How can we connect these
phenomena to theoretical inference
correctness and speed?

KDD 15 © Eric Xing @ CMU, 2015 144

Why need new Big ML systems?
MLer’s view

�  Focus on
�  Correctness
�  fewer iteration to converge,

�  but assuming an ideal system, e.g.,
�  zero-cost sync,
�  uniform local progress

 for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 parallelUpdate(x,θ)	

	
 	
 doOtherThings()	

}	

θ
θ θ

θ
θ

θ θ θ

θ θ
θ θ θ

Parallelize over
worker threads

Share global model
parameters via RAM

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

Se
co

nd
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

KDD 15 © Eric Xing @ CMU, 2015 145

Why need new Big ML systems?
Systems View:

�  Focus on
�  high iteration throughput (more iter per sec)
�  strong fault-tolerant atomic operations,

�  but assume ML algo is a black box
�  ML algos “still work” under different execution

models
�  “easy to rewrite” in chosen abstraction

Non-uniform
convergence

Dynamic
structures

Error
tolerance

Agonistic of ML properties and objectives in system
design

1

1

1

1

2

2

2

2

3

3

3

3

1
1
1

1

2
2

2

3
3

3

4
4

4

5
5

5 6
6

6or

Synchronization model

Programming model

Shotgun with 2 machines
Single machine (shooting algorithm)

Shotgun with 4 machines flies away!

KDD 15 © Eric Xing @ CMU, 2015 146

Why need new Big ML systems?
MLer’s view

�  Focus on
�  Correctness
�  fewer iteration to converge,

�  but assuming an ideal system, e.g.,
�  zero-cost sync,
�  uniform local progress

 Oversimplify systems issues
�  need machines to perform

consistently
�  need lots of synchronization
�  or even try not to communicate at all

Systems View:
�  Focus on

�  high iteration throughput (more iter per sec)
�  strong fault-tolerant atomic operations,

�  but assume ML algo is a black box
�  ML algos “still work” under different execution

models
�  “easy to rewrite” in chosen abstraction

 Oversimplify ML issues and/or
ignore ML opportunities
�  ML algos “just work” without proof
�  Conversion of ML algos across

different program models (graph
programs, RDD) is easy

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 parallelUpdate(x,θ)	

	
 	
 doOtherThings()	

}	

1

1

1

1

2

2

2

2

3

3

3

3

1
1
1

1

2
2

2

3
3

3

4
4

4

5
5

5 6
6

6or

KDD 15 © Eric Xing @ CMU, 2015 147

•  Nonparametric
Bayesian Models

•  Graphical
Models

•  Sparse Structured
I/O Regression •  Sparse Coding

•  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods •  Deep Learning •  Large-Margin

Machine Learning Models/Algorithms

•  Network switches
•  Infiniband

•  Network attached storage
•  Flash storage

•  Server machines
•  Desktops/Laptops
•  NUMA machines

•  GPUs •  Cloud compute
(e.g. Amazon EC2)

•  Virtual Machines

Hardware and infrastructure

Solution:

KDD 15 © Eric Xing @ CMU, 2015 148

•  Nonparametric
Bayesian Models

•  Graphical
Models

•  Sparse Structured
I/O Regression •  Sparse Coding

•  Spectral/Matrix
Methods

•  Regularized
Bayesian Methods •  Deep Learning •  Large-Margin

Machine Learning Models/Algorithms

•  Network switches
•  Infiniband

•  Network attached storage
•  Flash storage

•  Server machines
•  Desktops/Laptops
•  NUMA machines

•  GPUs •  Cloud compute
(e.g. Amazon EC2)

•  Virtual Machines

Hardware and infrastructure

Solution:
An Alg/Sys INTERFACE for Big ML

KDD 15 © Eric Xing @ CMU, 2015 149

The Big-ML “Stack” - More than
just software

Theory: Degree of parallelism, convergence analysis, sub-sample complexity
…

System: Distributed architecture: DFS, KV-store, task scheduler…

Model: Generic building blocks: loss functions, structures, constraints,
priors …

Algorithm: Parallelizable and stochastic MCMC, VI, Opt, Spectrum …

Representation: Compact and informative features

Programming model & Interface:
High: Matlab/R
Medium: C/JAVA
Low: MPI

Hardware: GPU, flash storage, cloud …

KDD 15 © Eric Xing @ CMU, 2015 150

Markov Chain Monte Carlo Optimization

ML algorithms are
Iterative-Convergent

© Eric Xing @ CMU, 2015 KDD 15 151

δi	

zij	

	
 xij	
 	
 Β	

Ni	

N

	
 	
 K

δi	

zij	

xij	
 	
 Β	

Ni	

N

	
 	
 K

Read
Read +
Write

Data

Model Parameters
at iteration (t-1)

Iterative Algorithm

Intermediate Updates

Aggregate +
Transform

Updates

A General Picture of ML
Iterative-Convergent Algorithms

© Eric Xing @ CMU, 2015 KDD 15 152

Issues with Hadoop and
I-C ML Algorithms?

Naïve MapReduce not best for ML

●  Hadoop can execute iterative-convergent, data-parallel ML...

o  map() to distribute data samples i, compute update Δ(Di)
o  reduce() to combine updates Δ(Di)
o  Iterative ML algo = repeat map()+reduce() again and again

●  But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck
Image source: dzone.com

Iteration 1 Iteration 2

KDD 15 © Eric Xing @ CMU, 2015 153

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 parallelUpdate(x,θ)	

	
 	
 doOtherThings()	

}	

θ
θ θ

θ
θ

θ θ θ

θ θ
θ θ θ

Good Parallelization Strategy
is important

ML on
epoch 1

ML on
epoch 2

ML on
epoch 3

ML on
epoch m

Barrier ?

Write
outcome to

KV store

Write
outcome to
KV store

Write
outcome to
KV store

Write
outcome to
KV store

Collect
outcomes and
aggregate

Do nothing Do nothing Do nothing 0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32 40 48

Se
co

n
d

s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

KDD 15 © Eric Xing @ CMU, 2015 154

Data Parallelism

Additive Updates

KDD 15 © Eric Xing @ CMU, 2015 155

Model
(Topics)

Data (Docs) Update (MCMC
algo)

BIG DATA (billions of docs)

Example Data Parallel:
Topic Models

© Eric Xing @ CMU, 2015 KDD 15 156

Example Data Parallel:
Topic Models

KDD 15 © Eric Xing @ CMU, 2015

MCMC algo MCMC algo MCMC algo MCMC algo MCMC algo

Global shared model

157

Concatenating updates

Model Parallelism
Scheduling
Function

Read +
Write

model parameters not
updated in this
iteration KDD 15 © Eric Xing @ CMU, 2015 158

Model (Parameter
Vector)

Data (Feature + Response
Matrices)

Update (CD algo)

BIG MODEL (100 billions of params)

Example Model Parallel:
Lasso Regression

© Eric Xing @ CMU, 2015 KDD 15 159

Example Model Parallel:
Lasso Regression

KDD 15 © Eric Xing @ CMU, 2015
160

160

A Dichotomy of Data and Model
in ML Programs

Di?Dj | ✓, 8i 6= j ~✓i 6? ~✓j | D, 9(i, j)

Data Parallelism Model Parallelism

KDD 15 © Eric Xing @ CMU, 2015 161

Data+Model Parallel:
Solving Big Data+Model

Model (edge weights)
Data (images)

Update
(backpropagation)

Data & Model both big!
Millions of images,
Billions of weights

What to do?

© Eric Xing @ CMU, 2015 KDD 15 162

Data+Model Parallel:
Solving Big Data+Model

KDD 15 © Eric Xing @ CMU, 2015

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo

Parameter Synchronization Channel

Tackle Deep Learning scalability
challenges by combining data

+model parallelism

163

How difficult is
data/model-parallelism?

l  Certain mathematical conditions must be met

l  Data-parallelism generally OK when data IID (independent,
identically distributed)
l  Very close to serial execution, in most cases

l  Naive Model-parallelism doesn’t work
l  NOT equivalent to serial execution of ML algo
l  Need carefully designed schedule

© Eric Xing @ CMU, 2015 KDD 15 164

Intrinsic Properties of ML Programs

l  ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution
l  Error tolerance: often robust against limited

 errors in intermediate calculations

l  Dynamic structural dependency: changing correlations
 between model parameters critical to efficient parallelization

l  Non-uniform convergence: parameters
 can converge in very different number of steps

l  Whereas traditional programs are transaction-centric, thus only

guaranteed by atomic correctness at every step

l  Most existing platforms (e.g., Spark, GraphLab) have not yet systematically
explore and exploit above properties

KDD 15 © Eric Xing @ CMU, 2015 165

Challenges in Data Parallelism
l  Existing ways are either safe/slow (BSP), or fast/risky (Async)

l  Challenge 1: Need “Partial” synchronicity
l  Spread network comms evenly (don’t sync unless needed)
l  Threads usually shouldn’t wait – but mustn’t drift too far apart!

l  Challenge 2: Need straggler tolerance
l  Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML?
KDD 15 © Eric Xing @ CMU, 2015 166

Is there a middle ground for data-
parallel consistency?

l  Challenge 1: “Partial” synchronicity
l  Spread network comms evenly (don’t sync unless needed)
l  Threads usually shouldn’t wait – but mustn’t drift too far apart!

l  Challenge 2: Straggler tolerance
l  Slow threads must somehow catch up

KDD 15 © Eric Xing @ CMU, 2015

1	

1	

1	

1

Thread	
 1	

Thread	
 2	

Thread	
 3	

Thread	
 4	

2	

2	

2	

3	

3	

3	

4	

4	

4	

5	

5	

5	
 6	

6	

6	

Force	
 threads	
 to	
 sync	

up	

2	
 3	
 4	
 5	
 6	

Thread	
 1	
 catches	
 up	
 by	

reducing	
 network	
 comms	

Time	

167

High-Performance Consistency Models
for Fast Data-Parallelism [Ho et al., 2013]

Stale Synchronous Parallel (SSP), a “bounded-asycnhronous” model

•  Allow threads to run at their own pace, without synchronization
•  Fastest/slowest threads not allowed to drift >S iterations apart
•  Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (possible error)

Consequence:

•  Asynchronous-like speed, BSP-like ML correctness guarantees
•  Guaranteed age bound (staleness) on reads
•  Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

KDD 15 © Eric Xing @ CMU, 2015 168

Improving Bounded-Async via
Eager Updates [Dai et al., 2015]

l  Eager SSP (ESSP) protocol
l  Use spare bandwidth to push

fresh parameters sooner

l  Figure: difference in stale
reads between SSP and ESSP
l  ESSP has fewer stale reads;

lower staleness variance
l  Faster, more stable

convergence (theorems later)

KDD 15 © Eric Xing @ CMU, 2015 169

Enjoys Async Speed, yet BSP
Guarantee, across algorithms

l  Scale up Data Parallelism without being limited by long BSP
synchronization time

l  Effective across different algorithms, e.g. LDA, Lasso, Matrix
Factorization:

KDD 15 © Eric Xing @ CMU, 2015

LASSO Matrix Fact. LDA

170

Challenges in Model Parallelism
l  Recall Lasso regression:

KDD 15 © Eric Xing @ CMU, 2015

�

A huge number of parameters
(e.g.) J = 100M

XyN

J

J

Model

=

min
�

ky �X�k22 + �
X

j

|�j |

171

l  Concurrent updates of may induce errors �

�1

�2

�1 �2

�1 �2

Sync

Sequential updates Concurrent updates

�(t)
1 S(xT

1 y � x

T
1 x2�

(t�1)
2 ,�)

Induces parallelization error

Need to check x1
Tx2

before updating
parameters

Challenge 1:
Model Dependencies

KDD 15 © Eric Xing @ CMU, 2015 172

Challenge 2: Uneven
Convergence Rate on Parameters

•  Convergence time determined by slowest parameters
•  How to make slowest parameters converge more

quickly?

KDD 15 © Eric Xing @ CMU, 2015

Parameters converge at similar rates Parameters converge at different rates

C
onverged

C
onverged

Remaining time to convergence Remaining time to convergence

173

Is there a middle ground for
model-parallel consistency?

l  Existing ways are either safe but slow, or fast but risky
l  Challenge 1: need approximate but fast model partition

l  Full representation of data/model, and explicitly compute all
dependencies via graph cut is not feasible

l  Challenge 2: need dynamic load balancing
l  Capture and explore transient model dependencies
l  Explore uneven parameter convergence

KDD 15 © Eric Xing @ CMU, 2015

???

Graph Partition Random Partition

Is full consistency really
necessary for ML?

174

 Structure-Aware Parallelization
(SAP) [Lee et al., 2014; Kumar et al., 2014] schedulerkey-value

store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Careful model-parallel execution:
q  Structure-aware scheduling
q  Variable prioritization
q  Load-balancing

schedulerkey-value
store

data
partition

model
partition

worker

data
partition

model
partition

worker

data
partition

model
partition

worker

q Simple programming:
q  Schedule()
q  Push()
q  Pull()

KDD 15 © Eric Xing @ CMU, 2015 175

Schedule 1: Priority-based [Lee et al., 2014]
l  Choose params to update based on convergence progress

l  Example: sample params with probability proportional to their recent change
l  Approximately maximizes the convergence progress per round

KDD 15 © Eric Xing @ CMU, 2015

Priority-based scheduling Shotgun [Bradley et al. 2011]

�1 �2

�3 �4

�1 �2

�3 �4

�1 �2 �4

Uniform distribution

�3

p(j) /
⇣
�x

(t�1)
j

⌘2
+ ✏

176

Schedule 2: Block-based
(with load balancing) [Kumar et al., 2014]

KDD 15 © Eric Xing @ CMU, 2015

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data/para or experience less
straggling run more iterations

Automatic load-balancing + better convergence

177

Structure-aware Dynamic Scheduler
(STRADS) [Lee et al., 2014, Kumar et al., 2014]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables
to be Updated ~ p(j)

Check
Variable

Dependency

All Variables

Generate
Blocks of
Variables

STRADS
•  Priority Scheduling

•  Block scheduling

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
learning, AISTATS 2014]

KDD 15 © Eric Xing @ CMU, 2015 178

Avoids dependent parallel updates,
attains near-ideal convergence speed

l  STRADS+SAP achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109
2.5M vocab, 5K topics

32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

STRADS
YahooLDA

Lasso MF LDA

KDD 15 © Eric Xing @ CMU, 2015 179

Efficient for large models

l  Model is partitioned => can run larger models on same
hardware

KDD 15 © Eric Xing @ CMU, 2015

Lasso MF LDA

180

School of Computer Science

Theory of Real
Distributed ML Systems

KDD 15 © Eric Xing @ CMU, 2015 181

Why study parallel ML theory?
l  What sequential guarantees still hold in parallel setting?

l  Under what conditions?

l  Growing body of literature for “ideal” parallel systems
l  Serializable– equivalent to single-machine execution in some sense
l  Focused on per-iteration analysis

l  Abstract away computational/comms cost
l  Predicting real-world running time requires these costs to be put back

l  “Real-world” parallel systems a work in progress
l  Asynchronous or bounded-async approaches can empirically work better than

synchronous approaches
l  Need additional theoretical analysis to understand why
l  Async => no serializability… why does it still work?

l  Parallelization requires data and/or model partitioning… many strategies exist
l  Want partitioning strategies that are provably correct
l  Need to determine when/where independence is violated, and what impact such violation

has on algorithm correctness
KDD 15 © Eric Xing @ CMU, 2015 182

Challenges in real-world
distributed systems

l  Real-world systems need asynchronous execution and load
balancing
l  Synchronous system: load imbalances => slow workers => waiting at barriers
l  Need load balancing to reduce load at slow workers
l  Need asynchronous execution so faster workers can proceed without waiting

l  Solution 1: key-value stores
l  Automatically manages communication with bounded asynchronous guarantees

l  Solution 2: scheduling systems
l  Automatically balances workload across workers; also performs prioritization and

dependency checking

KDD 15 © Eric Xing @ CMU, 2015 183

Communication strategies
l  Data parallel

l  Partition data across workers
l  Or fetch small batches of data in an online/streaming fashion

l  Communicate model as needed to workers
l  e.g. key-value store with bounded asynchronous model – theoretical consequences?

l  Model parallel
l  Partition model across workers

l  Model partitions can change dynamically during execution – theoretical consequences?

l  Send data to workers as needed (e.g. from shared database)
l  Or place full copy of data on each worker (since data is immutable)

l  Data + Model parallel?
l  Partition both data and model across workers
l  Wide space of strategies; need to reduce model and data communication

l  Reduce model communication by exploiting independence between variables
l  Reduce data and model communication via broadcast strategies, e.g. Halton sequence

KDD 15 © Eric Xing @ CMU, 2015 184

Bridging Models
for Parallel Programming

l  Bulk Synchronous Parallel [Valiant, 1990] is a bridging model
l  Bridging model specifies how/when parallel workers should compute, and how/

when workers should communicate
l  Key concept: barriers

l  No communication before barrier, only computation
l  No computation inside barrier, only communication

l  Computation is “serializable” – many sequential theoretical guarantees can be
applied with no modification

l  Bounded Asynchronous Parallel (BAP) bridging model
l  Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]

l  Workers re-use old version of parameters, up to s iterations old – no need to barrier
l  Workers wait if parameter version older than s iterations

KDD 15 © Eric Xing @ CMU, 2015

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

185

Types of Convegence
Guarantees

l  Regret/Expectation bounds on parameters
l  Better bounds => better convergence progress per iteration

l  Probabilistic bounds on parameters
l  Similar meaning to regret/expectation bounds, usually stronger in guarantee

l  Variance bounds on parameters
l  Lower variance => higher stability near optimum => easier to determine

convergence

l  For data parallel?
l  For Model parallel?
l  For Data + model parallel?

KDD 15 © Eric Xing @ CMU, 2015 186

BAP Data Parallel:
Can we do value-bounding?

l  Idea: limit model parameter
difference Δθi-j = ||θi – θj|| between
machines i,j to < a threshold

l  Does not work in practice!
l  To guarantee that Δθi-j has not

exceeded the threshold, machines must
wait to communicate with each other

l  No improvement over synchronous
execution!

l  Rather than controlling parameter
difference via magnitude, what
about via iteration count?
l  This is the (E)SSP communication

model…

KDD 15 © Eric Xing @ CMU, 2015

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5 Worker 6

Worker 7

Δθ1-2

Δθ1-3

Δθ1-4

Δθ1-5
Δθ1-6

Δθ1-7

187

BAP Data Parallel:
(E)SSP model [Ho et al., 2013; Dai et al., 2015]

KDD 15 © Eric Xing @ CMU, 2015

Stale Synchronous Parallel (SSP)

•  Allow threads to run at their own pace, without synchronization
•  Fastest/slowest threads not allowed to drift >S iterations apart
•  Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 2 may not see
these updates (possible error)

Consequence:

•  Asynchronous-like speed, BSP-like ML correctness guarantees
•  Guaranteed age bound (staleness) on reads
•  Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

188

BAP Data Parallel:
(E)SSP Regret Bound [Ho et al., 2013]

l  Goal: minimize convex
(Example: Stochastic Gradient)
l  L-­‐Lipschitz, problem diameter bounded by F2	

l  Staleness s, using P threads across all machines
l  Use step size

l  (E)SSP converges according to
l  Where T is the number of iterations

l  Note the RHS interrelation between (L, F) and (s, P)	

l  An interaction between model and systems parameters

l  Stronger guarantees on means and variances can also be proven

Difference between
SSP estimate and true optimum

KDD 15 © Eric Xing @ CMU, 2015 189

Intuition:
Why does (E)SSP converge?

l  Number of missing updates bounded
l  Partial, but bounded, loss of serializability

l  Hence numeric error in parameter also bounded
l  Later in this tutorial – formal theorem
KDD 15 © Eric Xing @ CMU, 2015 190

SSP versus ESSP:
What is the difference?

l  ESSP is a systems improvement over SSP communication
l  Same maximum staleness guarantee as SSP
l  Whereas SSP waits until the last second to communicate…
l  … ESSP communicates updates as early as possible

l  What impact does ESSP have on convergence speed and
stability?

KDD 15 © Eric Xing @ CMU, 2015 191

Theorem: Given L-Lipschitz objective ft and stepsize ht,

	

BAP Data Parallel:
(E)SSP Probability Bound
[Dai et al., 2015]

Let	
 real	
 staleness	
 observed	
 by	
 system	
 be	

Let	
 its	
 mean,	
 variance	
 be	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,	
 	

Explana>on:	
 the	
 (E)SSP	
 distance	
 between	
 true	
 opKma	
 and	
 current	

esKmate	
 decreases	
 exponenKally	
 with	
 more	
 iteraKons.	
 Lower	
 staleness	

mean,	
 variance	
 	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 	
 improve	
 the	
 convergence	
 rate.	

	

Take-­‐away:	
 controlling	
 staleness	
 mean	
 	
 	
 	
 	
 	
 ,	
 variance	
 	
 	
 	
 	
 	
 	
 	
 (on	
 top	
 of	
 max	

staleness	
 s)	
 is	
 needed	
 for	
 faster	
 ML	
 convergence,	
 which	
 ESSP	
 does.	

KDD 15 © Eric Xing @ CMU, 2015 192

Gap between current
estimate and optimum

Penalty due to high
avg. staleness ustale	

Penalty due to high
staleness var. σstale

BAP Data Parallel:
(E)SSP Variance Bound
[Dai et al., 2015]

	
 Theorem:	
 the	
 variance	
 in	
 the	
 (E)SSP	
 esKmate	
 is	

	

	

	

	
 where	

	

	
 and	
 	
 	
 	
 	
 	
 	
 	
 	
 represents	
 5th	
 order	
 or	
 higher	
 terms	
 in	

	
 Explana>on:	
 The	
 variance	
 in	
 the	
 (E)SSP	
 parameter	
 esKmate	
 monotonically	

decreases	
 when	
 close	
 to	
 an	
 opKmum.	

Lower	
 (E)SSP	
 staleness	
 	
 	
 	
 	
 	
 	
 	
 =>	
 Lower	
 variance	
 in	
 parameter	
 =>	
 Less	

oscilla<on	
 in	
 parameter	
 =>	
 More	
 confidence	
 in	
 es<mate	
 quality	
 and	

stopping	
 criterion.	

Take-­‐away:	
 Lower	
 average	
 staleness	
 (via	
 ESSP)	
 not	
 only	
 improves	

convergence	
 speed,	
 but	
 also	
 yields	
 beNer	
 parameter	
 esKmates	

KDD 15 © Eric Xing @ CMU, 2015 193

ESSP vs SSP: Increased stability
helps empirical performance

l  Low-staleness SSP and ESSP converge equally well
l  But at higher staleness, ESSP is more stable than SSP

l  ESSP communicates updates early, whereas SSP waits until the last second
l  ESSP better suited to real-world clusters, with straggler and multi-user issues

KDD 15 © Eric Xing @ CMU, 2015 194

Scheduled Model Parallel:
Dynamic/Block Scheduling
[Lee et al. 2014, Kumar et al. 2014]

KDD 15 © Eric Xing @ CMU, 2015

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables
to be Updated ~ p(j)

Check
Variable

Dependency

All Variables

Generate
Blocks of
Variables

STRADS
•  Priority Scheduling

•  Block scheduling

{�j} ⇠
⇣
��(t�1)

j

⌘2
+ ⌘

195

l  Goal: solve sparse regression problem
l  Via coordinate descent over “SAP blocks” X(1),	
 X(2),	
 …,	
 X(B)	

l  X(b) are the data columns (features) in block (b)	

l  P parallel workers, M-dimensional data
l  ρ = Spectral	
 Radius[BlockDiag[(X(1))TX(1),	
 …,	
 (X(t))TX(t)]]; this block-diagonal

matrix quantifies the maximum level of correlation (and hence problem
difficulty) within all the SAP blocks X(1),	
 X(2),	
 …,	
 X(t)	

l  SAP converges according to
l  Where t is # of iterations

l  Take-away: SAP minimizes ρ by searching for feature subsets X(1),	

X(2),	
 …,	
 X(B) without cross-correlation => as close to P-fold speedup as
possible	

Scheduled Model Parallel:

Dynamic Scheduling Expectation Bound

[Lee et al. 2014]

Gap between current
parameter estimate and optimum

min
�

ky �X�k22 + �
X

j

|�j |

SAP explicitly minimizes ρ, ensuring
as close to 1/P convergence as possible

KDD 15 © Eric Xing @ CMU, 2015 196

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound is near-ideal
[Xing et al. 2015]

Let be an ideal model-parallel schedule
Let be the parameter trajectory due to ideal scheduling
Let be the parameter trajectory due to SAP scheduling

Explanation: Under dynamic scheduling, algorithmic progress is
nearly as good as ideal model-parallelism.
Intuitively, this is because both ideal and SAP model-parallelism
minimize the parameter dependencies between parallel workers.

Theorem: After t iterations, we have

E[|�(t)
ideal � �(t)

dyn|]  C
2M

(t+ 1)2
X>X

Sideal()
�(t)
ideal

�(t)
dyn

KDD 15 © Eric Xing @ CMU, 2015 197

Scheduled Model Parallel:
Dynamic Scheduling Empirical Performance

l  Dynamic Scheduling for Lasso regression (SMP-Lasso):
almost-ideal convergence rate, much faster than random
scheduling (Shotgun-Lasso)

KDD 15 © Eric Xing @ CMU, 2015 198

Scheduled Data+Model Parallel:
Block-based Scheduling (with load balancing)
[Kumar et al. 2014]

KDD 15 © Eric Xing @ CMU, 2015

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data/para or experience less
straggling run more iterations

Automatic load-balancing + better convergence

199

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 1
[Kumar et al. 2014]

l  Variance between iterations Sn+1 and Sn is:

l  Explanation:
l  higher order terms (red) are negligible
l  => parameter variance decreases every iteration

l  Every iteration, the parameter estimates become more stable

KDD 15 © Eric Xing @ CMU, 2015 200

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 2
[Kumar et al. 2014]

l  Intra-block variance: Within blocks, suppose we update the
parameters using data points. Then, variance of after
those updates is:

l  Explanation:
l  Higher order terms (red) are negligible
l  => doing more updates within each block decreases parameter variance, leading

to more stable convergence

l  Load balancing by doing extra updates is effective
KDD 15 © Eric Xing @ CMU, 2015 201

Scheduled Data+Model Parallel:
Block-Scheduling Empirical Performance

l  Slow-worker Agnostic Block-Scheduling (Fugue) faster than:
l  Embarrassingly Parallel SGD (PSGD)
l  Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

l  Slow-worker Agnostic Block-Scheduling converges to a better
optimum than asynchronous GraphLab
l  Reason: more stable convergence due to block-scheduling

l  Task: Imagenet Dictionary Learning
l  630k images, 1k features

KDD 15 © Eric Xing @ CMU, 2015 202

BAP Model-Parallel Guarantees
l  Model-parallel under synchronous setting:

l  Dynamic scheduling
l  Slow-worker block-based scheduling

l  Synchronous slow-worker problem solved by:
l  Load balancing (for dynamic scheduling)
l  Allow additional iters while waiting for other workers (slow-worker scheduling)

l  Work in progress: theoretical guarantees for bounded-async
model-parallel execution
l  Intuition: model-parallel sub-problems are nearly independent (thanks to

scheduling)
l  Perhaps better per-iteration convergence than bounded-async data-parallel

learning?

KDD 15 © Eric Xing @ CMU, 2015 203

School of Computer Science

Open Research
Issues and Topics

KDD 15 © Eric Xing @ CMU, 2015 204

The Landscape of Big ML

KDD 15 © Eric Xing @ CMU, 2015 205

The Landscape of Big ML

Trend over last 5 years:
More cores, bigger models

KDD 15 © Eric Xing @ CMU, 2015 206

The Landscape of Big ML

Possible to learn bigger, more
powerful models with only
reasonable # of cores?

KDD 15 © Eric Xing @ CMU, 2015 207

Issue: When is Big Data useful?
l  Negative examples

l  “Simple” regression and classification models, with fixed parameter size
l  Intuition: decrease estimator variance has diminishing returns with more data.

Estimator eventually becomes “good enough”, and additional data/computation is
unnecessary

l  Positive examples
l  Topic models (internet/tech industry)
l  DNNs (Google, Baidu, Microsoft, Facebook, etc.)
l  Collaborative filtering (internet/tech industry)
l  Personalized models
l  Industry practitioners sometimes increase model size with more data

l  Conjecture: how much data is useful really depends on model
size/capacity

KDD 15 © Eric Xing @ CMU, 2015 208

Issue: Are Big Models useful?
l  In theory

l  Possibly, but be careful not to
over-extend

l  Beware “statistical strength”
l  “When you have large

amounts of data, your appetite
for hypotheses tends to get
even larger. And if it’s growing
faster than the statistical
strength of the data, then many
of your inferences are likely to
be false. They are likely to be
white noise.” –Michael Jordan

l  In practice
l  Some success stories - could

there be theory justification?

l  Many topics in topic models
l  Capture long-tail effects of

interest; improved real-world
task performance

l  Many parameters in DNNs
l  Improved accuracy in vision

and speech tasks
l  Publicly-visible success (e.g.

Google Brain)

KDD 15 © Eric Xing @ CMU, 2015 209

Issue: Inference Algorithms, or
Inference Systems?

l  View: focus on inference algorithm

l  Scale up by refining the algorithm
l  Given fixed computation, finish

inference faster

l  Some examples
l  Quasi-Newton algorithms for

optimization
l  Fast Gibbs samplers for topic

models [Yao et al. 2009, Li et al.
2014, Yuan et al. 2015, Zheng et
al, 2015]

l  Locality sensitive hashing for
graphical models [Ahmed et al.
2012]

l  View: focus on distributed systems
for inference

l  Scale up by using more machines
l  Not trivial: real clusters are

imperfect and unreliable; Hadoop
not a fix-all

l  Some examples
l  Spark
l  GraphLab
l  Petuum

KDD 15 © Eric Xing @ CMU, 2015 210

Issue: Theoretical Guarantees
and Empirical Performance

l  View: establishing theoretical
guarantees gives practitioners
confidence
l  Motivated by empirical science,

where guarantees are paramount

l  Example: Lasso sparsistency and
consistency [Wainwright, 2009]
l  Theory predicts how many

samples n needed for a Lasso
problem with p dimensions and k
non-zero elements

l  Simulation experiments show very
close match with theory

l  Is there a way to analyze more
complex models?

l  View: empirical, industrial
evidence can provide strong
driving force for experimental
research
l  Motivated by industrial practice,

particularly at internet companies

l  Example: AB testing in industry
l  Principled means of testing new

algorithms, feature engineering; by
experimenting on user base

l  Determine if new method makes a
significant difference to click-
through rate, user adoption, etc.

KDD 15 © Eric Xing @ CMU, 2015 211

Open research topics
l  Future of data-, model-parallelism, and other ML properties

l  New properties, principles still undiscovered
l  Potential to accelerate ML beyond naive strategies

l  Deep analysis of BigML systems still limited to few ML algos
l  Model of ML execution under error due to imperfect system?

l  How to express more ML algorithms in table form (Spark,
Petuum), or graph form (GraphLab)
l  Tree-structured algorithms? Infinite-dimensional Bayesian nonparametrics?
l  What are the key elements of a generic ML programming interface?

KDD 15 © Eric Xing @ CMU, 2015 212

Acknowledgements

Garth Gibson Greg Ganger

Jin Kyu Kim Seunghak Lee Jinliang Wei

Wei Dai Pengtao Xie
Xun Zheng

Abhimanu
Kumar

Phillip Gibbons James Cipar

KDD 15 © Eric Xing @ CMU, 2015 213

Thank You!

KDD 15 © Eric Xing @ CMU, 2015 214

