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Nobody knows what’s in data unless it has been
processed and analyzed

o Need a scalable way to automatically search, digest, index, and
understand contents
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Massive Data oo
4 32 million
facebook. A
1B+ USERS o
30+ PETABYTES WIDI A
The Free Encyclopedia
o
Youlil": twitter¥
100+ hours video 645 million users

uploaded every minute 500 million tweets / day
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The Scalability Challenge

Processing
power/speed
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An ML Program

B

argmax = £({xi, i} 3 6) + 9(6)

0

Model Data Parameter

Solved by an iterative convergent algorithm

}

for (t =1 to T) ¢

doThings() | |
0" = g(0°, Af6(D))
doOtherThings() ‘
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This computation needs to be scaled up !
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LIONS OF DEVICES

Challenge 1 — sece

Massive Data Scale o2
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25% CAGR 2012-2017
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AN EXPLOSION OF CONNECTED POSSIBILITY .
421 BILLION B

Cloud Data Center (35% CAGR)

Traditional Data Center (12% CAGR)
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Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine
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Challenge 2 -

Gigantic Model Size oe

B

Convolution Fully connected

A
'a N A

Source: University of S
Bonn

LO (Input) L1 L2 L3 L4

Maybe Big Data needs Big Models to extract understanding?
But models with >1 trillion params also won'’t fit!
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Challenge 3 — Inadequate support | 32:

for newer methods

Classic algorithms used for decades
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K- Logistic
means regression

is sex male?

is age > 9.5? \survived

/ 073 36%
@ is sibsp > 2.5?
017 61%

0.05 2% 089 2%

Decision trees
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Growing Need for Big and o2
Contemporary ML Programs

OBAMA OFFERS LIBERAL VISION:
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=== | @he New ork Times : Topic Models

Google Brain
Deep Learning
for images:

1~10 Billion "

model parameters

+for news article

jp to 1 Trillion
model
parameters
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The Need for Distributed ML e

Say we want to analyze 10K
roles in a 100M-node network,
using a mixed membership
model?

e \We had developed

e a highly cost-effective model (MMTM [Ho et al., 2012]), | e —
e two generations of highly efficient algorithms ' gN;t ] i}dnzs = ]Rog%K l Th?ds l R:]f:hp]l
(6-subsampling Gibbs [Ho et al., 2012], SVI [Yin et al., 2013]) éiiiiﬁjftiiiljﬁiiiﬁ s o) 6#."

«  and highly specialized implementations e DS -
Youtube 1.IM | 3.0M 100 8 9.1h

- State-of-the-art results: 1M node networks with 100 roles in a few hours, on
just one machine, 2-3 order’s of magnitudes speed-up

e But when we tried to do 10K roles in a 100M-node network:
e Memory: 100M * 10K = 1 trillion latent states = 4TB of RAM
e Computation: 10K+ hrs on one machine, i.e. yrs!
e Attempt with Hadoop failed while in FB (see later) !!!
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Many Open Questions:

.

e When is Big Data useful?

e Are Big Models useful?

-- Both positive and negative answers exist ...

e Inference algorithms, or inference systems?

e Theoretical guarantees, or empirical performance?

KDD 15 © Eric Xing @ CMU, 2015 12



Current Solutions to Scalable ML |

¢ Implementations of specific ML algorithms
e YahoolLDA, Vowpal Wabbit, Caffe, Torch, ...
e Provide a finely-tuned implementation of one (or a few) ML algorithms

e Platforms for general-purpose ML
e Hadoop, Spark, GraphLab, Petuum, ...
e Allow others to write new ML programs

e \Why this tutorial?

e At first glance, ML problems seem radically different

e We introduce a formal picture of ML to “bring order to the zoo”

e \We expose ML mathematical properties to be explored and later exploited

e We note that many ML problems can be solved by a few “workhorse” algorithms

e We explain how to design systems around these insights — thus achieving
scalability, with both speed and solution quality guarantees

e We provide theoretical guarantees for the system designs, and lay out roadmap
for further analysis

KDD 15 © Eric Xing @ CMU, 2015 13



Solution: -4

Machine Learning Models/ Algorithms

» Graphical °+ Nonparametric < Regularized - Sparse Structured . * Spectral/Matrix
Models Bayesian Models Bayesian Methods Large-Margin |/0 Regression ° SParse Coding  Methods . peep Learning

\

RN

Hardware and infrastructure

* Network switches + Network attached storage « Server machines « GPUs + Cloud compute - Virtual Machines

* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

© Eric Xing @ CMU, 2015
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Solution: 444

Machine Learning Models/ Algorithms

» Graphical °+ Nonparametric + Regularized - Sparse Structured + Spectral/Matrix

Models Bayesian Models Bayesian Methods Large-Margin )0 Regression ~ SParse Coding Methods . peep Learning

Hardware and infrastructure

* Network switches + Network attached storage « Server machines « GPUs + Cloud compute - Virtual Machines
* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines
© Eric Xing @ CMU, 2015




Outline ot

e Overview of Modern ML

e Distributed ML Algorithms

e Open-Source Platforms for Distributed ML

e Principles of Systems, Architectures for Distributed ML
e Theory of Real Distributed ML Systems

e Open Research Issues and Topics

KDD 15 © Eric Xing @ CMU, 2015 16



School of Computer Science
Carnegie Mellon

Overview of Modern ML

KDD 15 © Eric Xing @ CMU, 2015
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A “Classification” of ML Models secs.

and Tools

e An ML program consists of:
e A mathematical “ML model” (from one of many families)...

e ... which is solved by an “ML algorithm” (from one of a few types)

Machine Learning Model Families

* Sparse Structured »
Input/Output . Sparse Coding

Machine Learning Algorithm Families

KDD 15 © Eric Xing @ CMU, 2015 18



A “Classification” of ML Models 3

and Tools oo

e \We can view ML programs as either
e Probabilistic programs
e Optimization programs

[ Machine Learning Mode! Families |
+ Sparse Structured L
Methods InputOutout . Sparse Coding
-
Machine Learning Algorithm Families

Probabilistic Programs

Seek gLII Bre(G t)Neces ities

Optimization Programs

R 1 !

N D
o112
Z Z hl]P)Categorzcal Lij | Zij, + Z Z 111]P)Categomcal Zij | 0i ) Z ||Uz - XZ‘3||2 + /\Z |f3j|
i=1 j=1

i=1 j=1 i=1j=1

i

IHn
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Key building blocks sect

of an ML program S

e ML program: f(6,D) = L(6,D) + r(0)

e Objective or Loss function: L(6,D)
e 0O =model, D =data

e Common examples:
Least squares difference between predicted value and data
Log-likelihood of data

e Regqularization / Prior / Structural Knowledge: r(0)

e Common examples:
L2 regularization on 8 to prevent overfitting
L1 regularization on 6 to obtain sparse solution
(log of) Gaussian or Laplace priors over 6
(log of) Dirichlet prior over 6 for smoothing

e Algorithm to solve for model given the data (cont’ next slide)

KDD 15 © Eric Xing @ CMU, 2015 20



Iterative-convergent view of ML -

New Model = Old Model +
Update(Data)

S

variable

dzstudents

=

e ML models solved via iterative-convergent ML algorithms

e lterative-convergent algorithms repeat until © is stationary. Examples:
Probabilistic programs: MC, MCMC, Variational Inference

Optimization programs: Stochastic Gradient Descent, ADMM, Proximal Methods, Coordinate Descent

KDD 15 © Eric Xing @ CMU, 2015 21



Optimization Example: i

Lasso Regression :

e Data, Model

e D = {feature matrix X, response vector y}
e 0 = {parameter vector B)

e Objective L(0,D) N
2112
e Least-squares difference between y and Xj3: Z ly: — XaBll5
i=1
e Regqularization r(0) b
e L1 penalty on B to encourage sparsity: )\ Z 15351
e Ais atuning parameter j=1
e Algorithms

e Coordinate Descent
e Stochastic Proximal Gradient Descent

KDD 15 © Eric Xing @ CMU, 2015 22



Optimization Example: i
Lasso Regression T
Applications: |

. . .. Data (Feature + Response Matrices)
Genetic Assays, Online Advertising

Model (Parameter Vector) Update (CD algo) m .E i

J _JSMFWWW&_
|_¢

(1) _ qt— 1) (t—1) 'l T v (t 1)
B3 = ] B; Smy—ZAA ,An)

A k#j
i

ot = 0t + A ,0(D)
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Probabilistic Example:  |© ——3
Topic Models e

A

e Objective L(8,D)

e Log-likelihood of D = {document words x;} given unknown 8 = {document word
topic indicators z;, doc-topic distributions 9, topic-word distributions By}:

N N;

E E lll]P)Categorzcal Lig | Zij, + E E 111]P)Categm‘zcal Zij |()

=1 j=1 i=1j=1
e Prior r(0)
e Dirichlet prior on 6 = {doc-topic, word-topic distributions}
N K
Zln PDirichlet(di | 0’) + Z In IP)Dz'rz'chlet(Bk | 3)
=1

i=k

e a, 3 are “hyperparameters” that control the Dirichet prior's strength

e Algorithm
e Collapsed Gibbs Sampling

KDD 15 © Eric Xing @ CMU, 2015 24



Probabilistic Example:
Topic Models

Applications: Natural Language Processing, Information Retrieval

Data (Docs) = x;; Model (Topics) = B,

gene 0.04
dna 0.02
genetic 0.01

Seeking Life’s Bare (Genetic) Necessities
‘Lw D SPRING HARBOR, ,:\:_:‘ YORK— ! !

1l

Update (Collapsed Gibbs sampling)
For each doc i, each token j:
Set kold = zij
Gibbs sample new value of z;;, according to P(z;; | x;;.0;, B)
Set knew = Zij
Perform updates to B, 0:

Bkoldywij = Bk'old7'w1'j —1

Bknew,wij:Bkneur,iia'1+1 6t+1 — et _l_ Af (D)

(5’577%141 = (Siakold
i k

slYnew

= i 1
Zaknew J, 2015



ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

KDD 15

© Eric Xing @ CMU, 2015

Traditional Program:
operation-centric and
deterministic

26



Traditional Data Processing cece

needs operational correctness ... |°

Example: Merge sort
116 7|13 S|4 8[| 2

' ' . '
116 3|7 4|5 2|8

N/
1/3]|6]7 1TEH B
'S

h _ goring
134567E

Error persists and is

KDD 15 © Eric Xing @ CMU, 2015 27




... but ML Algorithms
can Self-heal

KDD 15 © Eric Xing @ CMU, 2015 28



More Intrinsic Properties of ML i
Programs oo

e ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

.-

e Error tolerance: often robust against limited
errors in intermediate calculations

e Dynamic structural dependency:
changing correlations between model parameters
critical to efficient parallelization

e Non-uniform convergence: parameters

can converge in very different number of steps

e \Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

KDD 15 © Eric Xing @ CMU, 2015 29



Why come up with cecs

an ML classification? o2

An ML classification helps to solve ML algorithm challenges
systematically
e No need to invent new algorithms for each new ML model or variant

e Instead, re-use a smaller number of “workhorse” algorithms (engines) to solve
entire classes of models

For each new ML model, determine which ML class it falls under

Then apply the most appropriate workhorse algorithm for that class

Next tutorial section: Distributed ML Algorithms

e We present a number of “workhorse” algorithms:
Basic form
Which units can be parallelized
What risks are incurred by parallelization (e.g. error or non-convergence)
Examples of scalable realizations (software)

KDD 15 © Eric Xing @ CMU, 2015 30



School of Computer Science
Carnegie Mellon

Distributed ML Algorithms

KDD 15 © Eric Xing @ CMU, 2015

31



An ML Program :
arg max = L({x;, yi}, ; 6) + Q(0)
v,
Model Data Parémeter

Solved by an iterative convergent algorithm

for (t =1 to T) ¢
doThings() | |
0" = g(0°, Af6(D))
doOtherThings() ‘
}

This computation needs to be parallelized!

KDD 15 © Eric Xing @ CMU, 2015 32



Challenge

e Optimization programs:

Al d .

A huge number of parameters

A huge volume of data (e.9.)J=1B
(e.g)N=1B

© Eric Xing @ CMU, 2015 33



Challenge -

e Probabilistic programs

Zij ™~ p(zij = litl;ltij, 52 B) X @Lk + CYk:) :

topic

word (~ 1M)

doc
(~1B)

topic topic
(~ 1M)

KDD 15 © Eric Xing @ CMU, 2015 34



Parallelization Strategies

KDD 15

g+l

New Model =
Update(Data)

Old Model +
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Parallelization Strategies

New Model = Old Model +
Update(Data)

dents

e Variables
dzstu

AHD

l.l IUUb studen

>/

D — {D17D27 oo 7Dn} 9 p [9‘] 79 ng}T

KDD 15 © Eric Xing @ CMU, 2015
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Outline:
Optimization & MCMC Algorithms | :°

e Optimization Algorithms
Stochastic gradient descent

e Markov Chain Monte Carlo Algorithms

KDD 15

Coordinate descent
Proximal gradient methods

ISTA, FASTA, Smoothing proximal gradient

ADMM

Auxiliary Variable methods

Embarrassingly Parallel MCMC

Parallel Gibbs Sampling
Data parallel
Model parallel

© Eric Xing @ CMU, 2015
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Example Optimization Program: 43
Sparse Linear Regression

mm—Hy Xﬁ” +ﬂ.£2([3)

Data fitting Regularization

Data fitting part:
- find B that fits into the data
- Squared loss, logistic loss, hinge loss, etc

Regularization part:
- induces sparsity in B.
- incorporates structured information into the model

KDD 15 © Eric Xing @ CMU, 2015 38



Example Optimization Program: 43
Sparse Linear Regression

1
mﬂma Hy — X[iHi + AQ(P)

Examples of regularization Q(ﬁ) ;

[anw-3nl o

i Qgroup (l}) = gEEGHBguz where Hﬁg”z = 2\/ (/))j)z

7 Qtree (B) Structured sparsity
(sparsity + structured information)
_ 9. overlap (l3 )

KDD 15 © Eric Xing @ CMU, 2015 39




Algorithm I:

Stochastic Gradient Descent

e Consider an optimization problem:

min
€T

i f(z,d)}

1 n
e Classical gradient descent: """ + z(") — v Z Vo f (@, d;)

1=1

e Stochastic gradient descent:

e Pick a random sample d,

e Update parameters based on noisy approximation of the true gradient

T 2 A7 F (W) d)

KDD 15

© Eric Xing @ CMU, 2015
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Stochastic Gradient Descent o

K

e SGD converges almost surely to
a global optimal for convex problems

e Traditional SGD compute gradients based on a single
sample

e Mini-batch version computes gradients based on multiple
samples
e Reduce variance in gradients due to multiple samples

e Multiple samples => represent as multiple vectors => use vector
computation => speedup in computing gradients

KDD 15 © Eric Xing @ CMU, 2015 41



= g . o
Parallel Stochastic Gradient dai{ly e
Descent e

e Parallel SGD: Partition data to different workers; all workers
update full parameter vector

e Parallel SGD [Zinkevich et al., 2010]

|
L split Input Update local copy | aggregate
| Data of ALL params
Update ALL
| params
Input Update local copy
=
Data of ALL params
7

e PSGD runs SGD on local copy of params in each machine

KDD 15 © Eric Xing @ CMU, 2015 42



Hogwild!: Lock-free approach to |32

PSG D [Recht et al., 2011] : .

e (Goal is to minimize a function in the form of
f(z) = Z fe(ze)
ecF

e e denotes a small subset of parameter indices
e X, denotes parameter values indexed by x,

e Key observation:
e Cost functions of many ML problems can be represented by f(x)

e In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but f_ is
applied only a small number of parameters in x

KDD 15 © Eric Xing @ CMU, 2015 43



Hogwild!: Lock-free approach to

PS G D [Recht et al., 2011]

e Example:

KDD 15

Sparse SVM

. T 2
min Z max (1l — Yo" 2, 0) + Az]5
aclE
zis input vector, and y is a label; (z,y) is an elements of E
Assume that z, are sparse

Matrix Completion

min (Ao = W HDZ + M W5 + Ao | HI %

Input A matrix is sparse

Graph cuts

mmin Z Wyy ||Ty — Xy]||; subject to x, € Sp,v=1,...

(u,v)eE
W is a sparse similarity matrix, encoding a graph

© Eric Xing @ CMU, 2015
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HOQWlld' AlgOrlthm [Recht et al., 2011] ®

e Hogwild! algorithm: iterate in parallel for each core
e Sample e uniformly at random from E
e Read current parameter x,, evaluate gradient of function f,
e Sample uniformly at random a coordinate v from subset e
e Perform SGD on coordinate v with small constant step size

e Advantages
e Atomically update single coordinate, no mem-locking
e Takes advantage of sparsity in ML problems
e Near-linear speedup on various ML problems, on single machine

e Excellent on single machine, less ideal for distributed
e Atomic update on multi-machine challenging to implement; inefficient and slow
e Delay among machines requires explicit control... why? (see next slide)

KDD 15 © Eric Xing @ CMU, 2015 45



o00
The cost of uncontrolled delay — | 3¢
slower convergence oz os
e Theorem: Given lipschitz objective f, and step size n,
P [R;X] — \/1T (O’L2 - F?Q — 20’L26m> > 7':|
—T72
= exp { 25 7|€0 |+ %O’LQ(Q.S‘ + 1)PT}
o where RIX] = X[ fe(¥) — f(z*)
e Where L is a lipschitz constant, and €, and ¢, are the mean and variance of the
delay

e Intuition: distance between current estimate and optimal value

decreases exponentially with more iterations
e But high variance in the delay g, incurs exponential penalty!

e Distributed systems exhibit much higher delay variance,
compared to single machine

KDD 15 © Eric Xing @ CMU, 2015 46



The cost of uncontrolled delay — | s22¢

unstable convergence p. ...z :

e Theorem: the variance in the parameter estimate is
Var 1 = Var; — 2n.cov(xs, E2t[g]) + O(1:&;)
+O(nip}) + 0%

o Where cov(vy,v2) := E[vf va] —E[v]]|E[v,]
e and O;"t represents 5th order or higher terms, as a function of the delay ¢,

e Intuition: variance of the parameter estimate decreases near
the optimum
e Butdelay ¢ increases parameter variance => instability during convergence

e Distributed systems have much higher average delay,
compared to single machine

KDD 15 © Eric Xing @ CMU, 2015 47



Parallel SGD with 4

Key-Value Stores :

e We can parallelize SGD via
e Distributed key-value store to share parameters
e Synchronization scheme to synchronize parameters

e Shared key-value store provides easy interface to read/write
shared parameters

e Synchronization scheme determines how parameters are
shared among multiple workers

Bulk synchronous parallel (e.g., Hadoop)

Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014]

Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015]

KDD 15 © Eric Xing @ CMU, 2015 48



Parallel SGD with 444

Bounded Async KV-store

e Stale synchronous parallel (SSP) is a synchronization model
with bounded staleness — “bounded async”

e Fastest and the slowest workers are <s clocks apart

KDD 15

Stale Synchronous Parallel

| Th
Staleness Threshold 3 Thread 1 waits until

< : " >| I/ Thread 2 has reached iter 4
mreosr | =
L] hd | 4

1
I |
I |
Thread 2 I |
-
| |
Thread 3
I I I
| |
Thread 4 I
I |
_ | _
1 1 1 [ ] [ ] 1

—>
0 1 2 3 4 5 6 7 8 9 Iteration

© Eric Xing @ CMU, 2015 49



Example KV-Store Program: i
Lasso T

e Lasso example: want to optimize
N D
> v — XiBlls + 2> 1541
=1 j=1

e Put B in KV-store to share among all workers
e Step 1: SGD: each worker draws subset of samples X

e Compute gradient for each term ||y—XB||?> with respect to 3; update 3 with gradient
e Step 2: Proximal operator: perform soft thresholding on 3

e Can be done at workers, or at the key-value store itself

e Bounded Asynchronous synchronization allows fast read/write
to 3, even over slow or unreliable networks

KDD 15 © Eric Xing @ CMU, 2015 50



Bounded Async KV-store:
Faster and better convergence

Log-Likelihood

KDD 15

-9.00E+08
-9.50E+08
-1.00E+09
-1.05E+09
-1.10E+09
-1.15E+09
-1.20E+09
-1.25E+09
-1.30E+09

Objective function versus time
LDA 32 machines (256 threads), 10% data per iter

500

/ —+-BSP (stale 0)

-#-stale 32

—+—async

Seconds

© Eric Xing @ CMU, 2015
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Algorithm II: $E

Coordinate Descent o

Update each regression coefficient in a cyclic manner

£

1st jteration

b /3)2 /9’3 _____ /))J
b /3)2 /9’3 _____ /))J

2st iteration

e Pros and cons

KDD 15

Unlike SGD, CD does not involve learning rate

If CD can be used for a model, it is often comparable to the state-of-the-art
(e.g. lasso, group lasso)

However, as sample size increases, time for each iteration also increases

© Eric Xing @ CMU, 2015 52



Example: Coordinate Descent for | s32
Lasso

A ]
b= min 2|y~ X8+ 3

e Set a subgradient to zero:

—xf(y—Xﬁ)+/ltj =0

- Standardization
. T .
e Assuming that x X; = 1, we can derive update rule:
J

_ T (o P Soft thresholding
/9)j S][Xj (y ijz/jl),/l} S(x,A) =Sign(x)(‘x‘—/1)+

KDD 15 © Eric Xing @ CMU, 2015 53



Example: Block Coordinate 4+
Descent for Group Lasso

A ]
b= ly=XB+237,

e Setitto zero:
-X; (y-XB)+Au;, =0,V/Eg

e In a similar fashion, we can derive update rule for group g

Iterate over each
group of coefficients

KDD 15 © Eric Xing @ CMU, 2015 54




Parallel Coordinate Descent

[Bradley et al. 2011]

e Shotgun, a parallel coordinate descent algorithm
e Choose parameters to update at random
e Update the selected parameters in parallel
e lterate until convergence

e \When features are nearly independent, Shotgun scales
almost linearly
e Shotgun scales linearly up to p < 2i/loworkers, where p is spectral radius of ATA
e For uncorrelated features, p=1; for exactly correlated features p=d
e No parallelism if features are exactly correlated!

KDD 15 © Eric Xing @ CMU, 2015 55



Intuitions for Parallel Coordinate |22

Descent oo

e Concurrent updates of parameters are useful when features
are uncorrelated

Source:
0X;  [Bradley et al., 2011]

Uncorrelated features Correlated features

e Updating parameters for correlated features may slow down
convergence, or diverge parallel CD in the worst case

e To avoid updates of parameters for correlated features, block-greedy CD has
been proposed

KDD 15 © Eric Xing @ CMU, 2015 56



Block-greedy Coordinate Descent | 2:¢

[Scherrer et al., 2012]

e Block-greedy coordinate descent generalizes various parallel
CD strategies
e e.g. Greedy-CD, Shotgun, Randomized-CD

e Alg: partition p params into B blocks; iterate:

e Randomly select P blocks
e Greedily select one coordinate per P blocks
e Update each selected coordinate

e Sublinear convergence O(1/k) for separable regularizer r:

mmz fi(x) + r(x;)

e Big-O constant depends on the maximal correlation among the B blocks

e Hence greedily cluster features (blocks) to reduce correlation

KDD 15 © Eric Xing @ CMU, 2015 57



Parallel Coordinate Descent with | 22:.

Dynamic Scheduler see

[Lee et al., 2014]

e STRADS (STRucture-Aware Dynamic Scheduler) allows
scheduling of concurrent CD updates
e STRADS is a general scheduler for ML problems
e Applicable to CD, and other ML algorithms such as Gibbs sampling

e STRADS improves CD performance via

e Dependency checking
Update parameters which are nearly independent => small parallelization error

e Priority-based updates
More frequently update those parameters which decrease objective function faster

KDD 15 © Eric Xing @ CMU, 2015 58



Example Scheduler Program: i
Lasso T

e Schedule step:

e Prioritization: choose next variables f3; to update, with probability proportional to
their historical rate of change

P(select [35) ~ (|,3](-t_1) - .»3](-t_2)|)2

e Dependency checking: do not update {;, B, in parallel if feature dimensions j
and k are correlated

|a:§ack| < pforall j #k
e Update step:

e Forall B, chosen in Schedule step, in parallel, perform coordinate descent update

(t (t—1) H(t—1) T T H(t—1)
B = Y — BTV 1 s(X Ty =Y XS XkB Y M)
=7

e Repeat from Schedule step
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Comparison: '+
priority vs. random-scheduling

e Priority-based scheduling converges faster than Shotgun
(random) scheduling

100M features

9 machines
R
0.2-
| .
g 2
2| 80157
o]
O
7 0.1-
0.05 . .
0 500 1000

Seconds
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Advanced
Optimization Techniques o

e What if simple methods like SPG, CD are not adequate?

e Advanced techniques at hand

e Complex regularizer: PG
e Complex loss: SPG
e Overlapping loss/regularizer: ADMM

e How to parallelize them? Must understand math behind
algorithms
e Which terms should be computed at server
e Which terms can be distributed to clients
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When Constraints Are Complex:

-- Algorithm Ill: Proximal Gradient (a.k.a. ISTA)

min f(w) + g(w)

e f:loss term, smooth (continuously differentiable)

e (: regularizer, non-differentiable (e.g. 1-norm)

Projected gradient
* g represents some constraint

g(w) = sp(w) = {0’ wec

oo, otherwise

w <+ w —nVf(w)

w <+ argmin 5-|w — z|* + 1o(z)
/A n

_ -1 2
= argmin ;||w — z|

Proximal gradient
g represents some simple function
e.g., 1-norm, constraint C, etc.

KDD 15

\

w < w —nVf(w)

gradient

W < arg min %HW —z||* + g(2)
VA

J/

-~

proximal map
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Algorithm llI: cecs

Proximal Gradient (a.k.a. ISTA) o

e PG hinges on the proximal map [Moreau, 1965]:
Py (w) = argmin o |w — z|* + g(z)
e T[reated as black-box in PG

e Need proximal map efficiently computable, better closed-form

e True when g is separable and “simple”, e.g. 1-norm (separable in each
coordinate), non-overlapping group norm, etc.

e Can be demanding if g = g,+g,, but vars in g,, g, overlap

e [Yu, 2013] gave sufficient conditions for when g = g,+g, can
be easily handled: _
g Pg1—|—92( ) T Pn1 PZQ (W)

e Useful when PZ and Pg available in closed-forms
2
e E.g.fused lasso (Friedman et al.'07): P

- (W) = P ||1(Pﬁ e (W))
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Accelerated PG (a.k.a. FISTA) -

[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

e PG convergence rate O(1/(nt))

e Can be boosted to O(1/(nt?))

e Same Lipschitz gradient assumption on f; similar per-step complexity!

e Lots of follow-up work to the papers cited above

Proximal Gradient

Accelerated Proximal Gradient

vl wh —nVf(wh)

u’ «— PZ(Vt)

vl w' —nVf(wh)

u’ «— PZ(Vt)

Wt—l—l “— ut T 0 - (ut _ ut_l) Wt—|—1 — ut + t—1 (ut . ut—l)
v N N~ - t —|_ N " o
no momentum " momentum
~1
P1(w) = argmin 2w — 2[3 + g(2
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Parallel (Accelerated) PG

e Bulk Synchronous Parallel Accelerated PG (exact)

[Chen and Ozdaglar, 2012]

e Asynchronous Parallel (non-accelerated) PG (inexact)

e General strategy:

1.

2.

3.

4.

5.

nV f(w")

[Li et al., 2014] Parameter Server o
ﬁ — wt —
Compute gradients on workers

u «— PZ (Vt)

Aggregate gradients on servers /
Compute proximal operator on servers Wt

Compute momentum on servers _ _—>

Send result wi*' to workers and repeat

F—1

e ul 4 —
i+
v

Y
~Y

(u'

\ .

. ut—l)

J/

~

momentum

e Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup

KDD 15

Open question: what about accelerated PG? What happens theoretically and

empirically to accelerated momentum under asynchrony?
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When Objective Is Not Smooth: sece

-- Moreau Envelope Smoothing ®

e So far need fto have Lipschitz cont grad, obtained O(1/t?)

e What if not ?

e Can use subgradient, with diminishing step size = O(1/sqrt(t))
e Hugegap!

e Smoothing comes into rescue, if fitself is H-Lipschitz cont
e Approx f with something nicer, like Taylor expansion in calculus 101

e Replace fwith its Moreau envelope function ——

Prop.vw ,0 < f(w) — M} (w) < nH?/2

e f(w)=|w|, envelope M? is Huber’s func (blue curve)

e Minimizer gives the proximal map P;Z (red curve)
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Smoothing Proximal Gradient 4+

[Chen et al., 2012]

e Use Moreau envelope as smooth approximation
e Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

e |nspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]
e Proximal point alg = PG, when f =0

e Rediscovered in [Nesterov, 2005], led to SPG [Chen et al., 2012]

Smoothing Proximal Gradient

mlnf( ) +9(W) <= original

approx. |:> ~ IIllIl M"?( ) -+ g(w) :P?(wt)
t d t n t\
o With7 = O(1/%) SPG converges at Ve W — HVMf(W )
O(1/(nt*)) = O(1/1) u « P7(v!)
e Improves subgradient O(l/\[) F
e Requires both efficient P?7 and P" with e uf + —— (ut — ut_l)
g _|_ 2 R ~—
momentum
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Parallel SPG? oo

e No known work yet

e Possible strategy: / vl wh {npVM(w")
1. Compute smoothed gradients on workers ut « PZ (Vt)
2. Aggregate smoothed gradients on serverf )
3.  Compute proximal operator on servers witl « yt T t—1 (ut _ ut—l)
4. Compute momentum on servers ____— | t+ 2\ ~~ o
momentum
5. Send result wi*' to workers and repeat

e The above strategy is exact under Bulk Synchronous Parallel

(just like accelerated PG).
e Not clear how asynchronous updates impact smoothing+momentum
e Open research topic
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When Variables Are Coupled: i
-- Algorithm IV: ADMM oo
© uncoupled ® coupled

1 \

Canonical form: mMin f(w) + g(z)j s.t. Aw + Bz = C,

7 where w € R,z € RP,A: R™ —- RY, B: R - R?,¢c € R"

e Numerically challenging because
e Function f or g nonsmooth or constrained (i.e., can take value 0Q)
e Linear constraint couples the variables w and z
e Large scale, interior point methods NA

e Naively alternating x and z does not work
e Minw? s.t. w+z=1; optimumclearlyisw =20
e Startwithsayw=1->z=0->w=1->2z=0...

e However, without coupling, can solve separately w and z
e Idea: try to decouple vars in the constraint!
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Example: Empirical Risk
Minimization (ERM) o°
min g(w +Zfz

e Each i corresponds to a tralnlng pomt (X, V)

e Loss f measures the fitness of the model parameter w

least squares: f;(w) = (y; — wTCCz')2

support vector machines: fi(w) = (1 — yinxi)Jr
boosting: fz(w) — exp(—yinxi)
logistic regression: fi(w) = log(1 + exp(—yw ' z;))

e g is the regularization function, e.g. M\.|wl|Z or A, |jw|:
e Vars coupled in obj, but not in constraint (none)

e Reformulate: transfer coupling from obj to constraint
e Arrive at canonical form, allow unified treatment later
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How to: variable duplication :

e Duplicate variables to achieve canonical form

mui)n g(w) + Z fi(w)

P

min  g(z) + ZZ filwi), st w; =2,V

v,z

-~

v—I[I,....I]T z=0

f(v)
e Global consensus constraint: Vi, w; = 2
e All w, must (eventually) agree

e Downside: many extra variables, increase problem size
e Implicitly maintain duplicated variables
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Augmented Lagrangian

Canonical form: 11N f(W) + g(z), s.t. Aw + Bz = c,

Y

where w e R",ze RP,A: R™ - R?, B: RP - R% c e R

e Intro Lagrangian multiplier \ to decouple variables

minmaxf(w) +g(z)+ X' (Aw + Bz —c) + 5I|Aw + Bz — (:H%

W.,Z A

-~

LM(Waz;A)

e L, : augmented Lagrangian
e More complicated min-max problem, but no coupling constraints
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Algorithm IV: 3
ADMM

minmaxf(w) +g(z)+ X' (Aw + Bz —c) + 5I|Aw + Bz — (:H%

W.,Z A

-~

LM(Waz;A)

e Fix dual )\, block coordinate descent on primal w, z

w'T! « argmin L,(w, z'; AY) = fw) + 4]l Aw + Ba' —c+ X ul?
W

z'Tt < argmin L, (with z; )\t) =g(z) + §llAW + Bz — ¢ + X' /u)®
[ [ [ Z
e Fix primal w, z, gradient ascent on dual \

AL A (AWt 1 Bt )

e Step size M can be large, e.g. 1 = K
o Usually rescale X <— A/n toremove 7
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Row partition (data parallel) o

min () + 3 v -

e each i corresponds to a (block of) training data A,
e all summands f, share the same global variable z
e all ERM in this form: SVM, lasso, logistic regression, etc.

e parallellize by duplicating z into wy, ... w,

W=[W1,...,W,],2

min g(z) + Z fi(A;w; —c), st. z—w; =0,Vi
)
server worker machine i

e Exact Synchronization (bulk sync parallel) needed
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Column partition (model parallel)

p p
m“lfnf(ZAij — C) + Zgj(wj)
j=1 j=1

e incolumns datad=[A;,...,4,], variables W = (w1, ..., wp]
e Each function g; have its own variable w;

e All variables w; coupled in f

e parallelize by adding auxiliary variable z = [z1,..., 2]

mmf(z Zi—cC +Z gi(w;), st. Ajw; —z; =0,Vj

server worker machine j

e Exact Synchronization (bulk sync parallel) needed
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Asynchronous Parallel ADMM ces

[Zhang & Kwok, 2014]

e Only simplified consensus problem being studied:
ZfZ w;), st. w;—z=0,Vi

e Can distribute the pnmal updates for each w,

W= [Wl,

(W1,...,Wy,) < arg m“i/_n L,(w,z;\)

e But dual update A < X+, w; —z can happen only after all
primal updates — barrier bottleneck

e How to alleviate the barrier bottleneck?

e Asynchronously execute dual update after seeing s out of n primal updates

e Condition: no machine is too far behind
Can be achieved with bounded staleness [Ho et al., 2013]

e Asynchronous convergence proved in [Zhang & Kwok, 2014]
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Outline:
Optimization & MCMC Algorithms | :°

e Optimization Algorithms
Stochastic gradient descent

e Markov Chain Monte Carlo Algorithms

KDD 15

Coordinate descent
Proximal gradient methods

ISTA, FASTA, Smoothing proximal gradient

ADMM

Auxiliary Variable methods

Embarrassingly Parallel MCMC

Parallel Gibbs Sampling
Data parallel
Model parallel

© Eric Xing @ CMU, 2015
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Example Probabilistic Program: cecs

Topic Models

N N;
E g hl]P)Categorzcal Lij | Zijs + E E In ]PCategomcal Zij | O
i=1 j=1 i=1 j=1

J\

N K
+ Z M Ppirichiet (51 | Q) + Z In ]P)Di'richlet(Bk | 3)

i=1 i=k

e Generative model
e Fittopics to each word x; in each doc i

e Uses categorical distributions with parameters 6 and B
topic

e Parameter priors
e Induce sparsity in d and B

e Can also incorporate structure doc
(~1B)

topic
E.g. asymmetric prior

KDD 15 © Eric Xing @ CMU, 2015
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Inference for Probabilistic
Programs: MCMC and SVi

Markov Chain Monte Carlo:
Randomly sample each variable in sequence
Next set of slides on this

Variational Inference:
Gradient ascent on variables
Can be treated as an optimization problem

-
l

N

KDD 15 © Eric Xing @ CMU, 2015
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Preliminaries: sese

Speeding up sequential MCMC +-
e Technique 1: Alias tables u _Jﬂ

e Sample from categorical distribution in amortized O(1)

e Ex: probability distribution [0.5, 0.25, 0.25]
=> alias table {1, 1, 2, 3} => draw from table uniformly at random "

e “Throw darts at a dartboard” 4

e Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015]
e Exploit Bayesian form P(z=k) = P K) * Pprior(K)
Propose z, from P, jence(K)

evidence(

Accept/Reject z,
Propose z, from P_,..(k)
Accept/Reject z, ... repeat

prior(

I:’prior(z = k) I:,evidence(z = k)

. N R By + B 2.
p(zij = klwij, 0i. B) of Ok + ) f| —2
e Other speedup techniques  p(zij = klxij, i, B) of (dik + o) TEa

e Stochastic Gradient MCMC
e Stochastic Variational Inference K_/
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Parallel and Distributed MCMC:

Classic methods oo

e Classic parallel MCMC solution 1

KDD 15

& - g . :
Chain on core 1
28 L YT, \.;“‘M
o | TR TY
v." A\ ‘—4 ‘u‘. ! N ym
Teal \ h/

J r
,t‘ (‘ f/" ; \ A y wi Ul "‘f
P RUE A LR L |
; Wi, o
MM A Y ] chain on core 2
8- v \ ) My 1
) VW ~ “',‘ v Ay ,,"

Take multiple chains in parallel, take average/consensus between chains.
But what if each chain is very slow to converge?
Need full dataset on each process — no data parallelism!

\ k Chain on core 3

Not converged

© Eric Xing @ CMU, 2015
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Parallel and Distributed MCMC: 4

Classic methods o

e Classic parallel MCMC solution 2
e Sequential Importance Sampling
e Rewrite distribution over n variables as telescoping product over proposals q():

n P’(x]. )
V(X~,z):r(X) a(X) where an(x:n): , n\*ln
L - j!iZ[ A : | })n—l (xlzn—l )Qn (Xn | xl:n—l )

e SIS algorithm:

Parallel draw samples X ~ q,,(X,|X;.,.1) o i
Pn ('xl:n)

Parallel compute unnorm. wgts. 7, =7, @, (x,,,) =7, ——— —
Pn—] (x]:n—] )QH (xn ‘ xl:n—] )

n

Compute normalized weights w'. by normalizing r',

e Drawback: variance of SIS samples increases exponentially with n
Need resampling + take many chains to control variance

e Let us look at newer solutions to parallel MCMC...
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Solution I: Induced Independence | s3::

via Auxiliary Variables puey e 2020 | o°

e Auxiliary Variable Inference: reformulate model as P
iIndependent models

e Example below: Dirichlet Process for mixture models
e Also applies to Hierarchical Dirichlet Process for topic models

e AV model (left) equivalent to standard DP model (right)
D; ~ DP(S.H). j=1.....P

P D ~DP(a,H) .
,v .. Y Y .y
O ~ Dlrlchlet<ﬁ.....ﬁ) <:> 0, ~ D .
T~ (,j) i ™ f(ez)

el'ND’/T,'
xi~f(0;), i=1,...,N.
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Solution I: Induced Independence | s3::

via Auxiliary Variables puey e 205200 | o°

o Why does it work? A mixture over Dirichlet processes is
equivalent to a Dirichlet processes

Dirichlet Mixture over
Processor DPs 1...P

§ £ 4 £
‘ ‘ OOOQ MR
£ & &

DP on Processor 1

b ~ Dirichlet(%,...,%)

T~ O

DP on Processor P
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Solution I: Induced Independence | s3::

via Auxiliary Variables ey e 200200 | @

e Parallel inference algorithm:

e Initialization: assign data randomly across P Dirichlet Processes; assign each
Dirichlet Process to one worker p=1..P

e Repeat until convergence:
Each worker performs Gibbs sampling on local data within its DP

Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:

For each cluster c, propose a new DP g=1..P
Compute proposal probability of c moving to p
Acceptance ratio depends on cluster size

e Can be done asynchronously in parallel without affecting
performance
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Solution II: Embarrassingly Parallel eess

(but correct) MCMC cicvanger et s 2014 °°

e High-level idea:
e Run MCMC in parallel on data subsets; no communication between machines.
e Combine samples from machines to construct full posterior distribution samples.

e Obijective: recover full posterior distribution
N
p(0]z") o< p(0)p(z™16) = p(0) [T;=1 p(z:]0)

e Definitions:
e Partition data into M subsets {xnl, sy ﬂan}
1
o Define m-th machine’s “subposterior” to be  p,, (6) o< p(0) ™ p(z™™|0)

Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.
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Embarassingly Parallel MCMC oe

e Algorithm
1. For m=1...M independently in parallel, draw samples from each subposterior Pm

2. Estimate subposterior density product py---pas(8) o p(8]z?Y) (and thus the full
posterior p(0|z™) “combining subposterior samples”

e “Combine subposterior samples” via nonparametric estimation

1. Given T samples {6;* }{ _, from each subposterior Pm :

Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):
T

T
R 1 1 (6—op 1 .
Pm(0) =7 D 7K (” ht’"”) =7 D Nu(0167,, h*1a)

2. Combine subposterior KDEs:

M T
—_— ~ ~ 1 T T — 2
pro-pm(0) = pr-pum(0) = =7 [[ Y. Na(0167 ,1*1s) 2:1--- let./vd (e\ot.,%zd)
m=1tm=1 b=t =

where

1 Y o .
0, = e Sor we= I Na (67716:., *14)

m=1 m=1
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Embarassingly Parallel MCMC oe

e Simulations:
e More subposteriors = tighter estimates
e EPMCMC recovers correct parameter
e Naive subposterior averaging does not!

.....
. .

Dimension 2
*
~, -
Dimension 2
l' 0y
vES
~

.....

13 14 14 5 15 . 16
Dimension 1 Dimension 1

Subposteriors (M=10) Subposteriors (M=20)
Posterior P osterior
== === Subposterior Density Product === Subposterior Density Product
""" Subposterior Average ='='=' Subposterior Average
KDD 15 © Eric Xing @ CMU, 2015
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Solution lll: i

Parallel Gibbs Sampling :

e Many MCMC algorithms

Sequential Monte Carlo [Canini et al., 2009]
Hybrid VB-Gibbs [Mimno et al., 2012]
Langevin Monte Carlo [Patterson et al., 2013]

e Common choice in tech/internet industry:
e Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]
e e.g. topic model Collapsed Gibbs sampler:

,3331.]. + Bk,mij
7/ V
‘ "3 _'_ Z’U:l Bkv

p(;‘z’j o A'|;l'ij. (52 B) X ((Szk + Qk) .
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Properties of cece

Collapsed Gibbs Sampling (CGS) | :°

- . - A3 id + Bk. i
p('?z'j p— l'\.'l;lfz'j, ()z', B) o (()z'k + Ok‘) o S V -
‘/ "1.3 + Z’U:l Bk’rv

e Simple equation: easy for system engineers to scale up

e (Good theoretical properties

e Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naive Gibbs sampling

e Empirically robust

e Errorsin 0, B do not affect final stationary distribution by much
e Updates are sparse: fewer parameters to send over network

e Model parameters 0, B are sparse: less memory used
e Ifit were dense, even 1M word * 10K topic = 40GB already!
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CGS Example: cece

Topic Model sampler o

VB+SV_ | Bia
topics k words v (~ 1M)

topics k B topics k ?

“Word-topic
summary table”

docs i
(~1B)

KDD 15 © Eric Xing @ CMU, 2015 91



Data Parallelization for

CGS Topic Model Sampler

doc
partition

doc
partition

doc
partition

KDD 15

p(z “ij —/‘|‘%J

topics k

(@zk"‘ak

31'1_7 + Bk‘.l‘”

words v (~ 1M)

B

B

B

© Eric Xing @ CMU, 2015
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Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

e Step 1: broadcast central model

KDD 15 © Eric Xing @ CMU, 2015
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Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

e Step 1: broadcast central model

KDD 15 © Eric Xing @ CMU, 2015
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Data-Parallel Strategy:
Approx. Distributed LDA

[Newman et al., 2009]

o Step 2: Perform Gibbs sampling in parallel

CLNCT AL

KDD 15 © Eric Xing @ CMU, 2015
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Data-Parallel Strategy: ceeo

Approx. Distributed LDA cee

[Newman et al., 2009] °

e Step 3: commit changes back to the central model

(L (T RCE )

KDD 15 © Eric Xing @ CMU, 2015 9



Data-Parallel Strategy: cese

Approx. Distributed LDA 3'
[Newman et al., 2009]

e Approximate

e Convergence not guaranteed — Markov Chain ergodicity broken
e Results generally “good enough” for industrial use

e Bulk synchronous parallel
e CPU cycles are wasted while synchronizing the model

e Asynchronous and bounded-asynchronous extensions possible [Smola et al.,
2010; Ahmed et al., 2012, Dai et al., 2015]

e How to overlap communication and computation for better
efficiency?
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Error in data-parallel LDA :

e Consider the CGS equation:

‘31'1_7 + Bk‘,lfij
V4>V, B

e Data-parallelism incurs error in B (the pink box) and the
summation term (the gray box)

e Both quantities are duplicated onto workers; their values become stale as
sampling proceeds

p(zij = kl|xij, 05, B) o (@,k + ag)

e True even for bulk synchronous parallel execution!

e Asynchrony helps somewhat

e Communicate very frequently to reduce staleness

e |s there a better solution?
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Model-Parallel Strategy 1: i+

G ra p h La b L DA [Low et al., 2010; Gonzalez et al., 2012] : -

e Think graphically: token = edge

docs —

KDD 15

Column
= topic k

Word-topic
summary table

Row =
topic k

— words

Column
= topic k
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Model-Parallel Strategy 1: i+

G ra p h La b L DA [Low et al., 2010; Gonzalez et al., 2012] : -

e Model-parallel via graph structure Word-topic

summary table
(copy on worker 1)

word
Worker 1 \ C /
Worker 2 @ \

Word-topic
summary table
(copy on worker 2)
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Model-Parallel Strategy 1: i+

G ra p h La b L DA [Low et al., 2010; Gonzalez et al., 2012] : -

e Asynchronous communication
e Overlaps computation and communication — iterations are faster

e Model-parallelism means each machine only stores a subset
of statistics

e Less memory usage if implemented well

e Drawback: need to convert problem into a graph
e Vertex-cut duplicates lots of vertices, canceling out savings

e Are there other ways to partition the problem?
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Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)

[Yuan et al., 2015]

e Topic model matrix structure:

word (~ 1M)

topic

doc
(~1B)

e |dea: non-overlapping matrix partition:

KDD 15

Source: [Gemulla et al., 2011]

© Eric Xing @ CMU, 2015
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Model-Parallel Strategy 2: cese

LightLDA (Petuum LDA v2) -+

[Yuan et al., 2015]

e Non-overlapping partition of the word count matrix
e Fix data at machines, send model to machines as needed

Zl3 le Zl2 Z13 le Zl2 Z13 .

Source: [Gemulla et al., 2011]
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Model-Parallel Strategy 2: cese

LightLDA (Petuum LDA v2) §§:'
[Yuan et al., 2015]

e During preprocessing: determine set of words used in each
data block [

e Begin training: load each data block from disk

sequential
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Model-Parallel Strategy 2: cese

LightLDA (Petuum LDA v2) §§:'
[Yuan et al., 2015]

e Pull the set of words from Key-Value store

Key-value store

sequential

. T Local model copy

<\

Local copy of word-
topic summary table
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Model-Parallel Strategy 2: cese

LightLDA (Petuum LDA v2) §§:'
[Yuan et al., 2015]

e Sample, write result to disk, send changes back to KV-store

Key-value store

sequential

<\

Local copy of word-
topic summary table

sequential write
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Model-Parallel Strategy 2: cese

LightLDA (Petuum LDA v2) -+

[Yuan et al., 2015]

e Model-parallel advantage: disjoint words/docs on each
machine
e Gibbs sampling almost equivalent to sequential case
e More accurate than data-parallel LDA
e Fast, asynchronous execution possible

e Compared to GraphLab LDA:

e Simple partitioning strategy — less system overheads, easier to implement

e Need to be careful about load imbalance (some docs will touch a particular word
more times than others)

Solution: pre-group documents by word frequency
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Error in model-parallel LDA '+

K

e Recall the CGS equation:

‘31'1_7 + Bk‘.l‘”
1% '
Vi3 + Zv:l Bk,v

p(?;z'j = A.’l;lfij, (52 B) X @zk + ak‘) '

e Model-parallelism only has error in summation term (gray box)
e Summation term is very large for Big Data (billions of docs) => error negligible
e Compared to data-parallelism: error due to B (pink box) eliminated
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Distributed ML Algorithms i

Summary -

e Many parallel algorithms for both Optimization and MCMC

e They share common parallelization themes

Embarrassingly parallel: combine results from multiple independent problems,
e.g. PSGD, EP-MCMC

Stochastic over data: approximate functions/ gradients with expectation over
subset of data, then parallelize over data subsets, e.g. SGD

Model-parallel: parallelize over model variables, e.g. Coordinate Descent

Auxiliary variables: decompose problem by decoupling dependent variables,
e.g. ADMM, Auxiliary Variable MCMC

e Considerations

KDD 15

Regularizers, model structure: may need sequential proximal or projection
step, e.g. Stochastic Proximal Gradient

Data partitioning: for data-parallel, how to split data over machines?

Model partitioning: for model-parallel, how to split model over machines? Need
to be careful as model variables are not necessarily independent of each other.
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Implementing cecs

Distributed ML Algorithms os

35!

e Implementing high-performance distributed ML is not easy

e If not careful, can end up slower than single machine!

System bottlenecks (load imbalance, network bandwidth & latency) are not trivial
to engineer around

e Even if algorithm is theoretically sound and has attractive
properties, still need to pay attention to system aspects

KDD 15

Bandwidth (communication volume limits)
Latency (communication timing limits)

Data and Model partitioning (machine memory limitation, also affects comms
volume)

Data and Model scheduling (affects convergence rate, comms volume & timing)
Non-ideal systems behavior: uneven machine performance, other cluster users
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Implementing cecs

Distributed ML Algorithms os

e A number of ad-hoc or partial solutions, but sometimes
lacking theoretical analysis

e Major barrier: hard to analyze solutions because algorithm/systems sometimes
not fully/transparently described in papers

e Possible solution: a universal language and principles for design could facilitate
theoretical analysis of existing and new solutions

e Let uslook at some open-source platforms, which distributed
ML algorithms can be implemented upon

KDD 15 © Eric Xing @ CMU, 2015 111



Outline ot

e Overview of Modern ML

e Distributed ML Algorithms

e Open-Source Platforms for Distributed ML

e Principles of Systems, Architectures for Distributed ML
e Theory of Real Distributed ML Systems

e Open Research Issues and Topics
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Modern Systems for Big ML o

e Just now: data-, model-parallel ML algorithms for optimization,
MCMC

e One could write distributed implementations from scratch
e Perhaps better to use an existing open source platform?

s

PCTUUMN

\

Spa
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S pa rk Ove rV i eW [Zaharia et al., 2010] Spq

e General-purpose system for Big Data processing
o Shell/interpreter for Matlab/R-like analytics

e MLlib = Spark’s ready-to-run ML library

o Implemented on Spark’s API

Spark MLIib
Streamingfl (machine
learning)

Apache Spark
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S pa rk Ove rV i eW [Zaharia et al., 2010]

e MLIib algorithms (v1.4)

e Classification and regression
linear models (SVMs, logistic regression, linear regression)
naive Bayes
decision trees
ensembles of trees (Random Forests and Gradient-Boosted Trees)
isotonic regression
e Collaborative filtering
alternating least squares (ALS)
e Clustering
k-means
Gaussian mixture
power iteration clustering (PIC)
latent Dirichlet allocation (LDA)
streaming k-means
e Dimensionality reduction
singular value decomposition (SVD)
principal component analysis (PCA)
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S pa rk Ove rV i eW [Zaharia et al., 2010] Spq

e Key feature: Resilient Distributed Datasets (RDDs)

e Data processing = lineage graph of transforms
e RDDs = nodes
e Transforms = edges

e S S S
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S pa rk Ove rV i eW [Zaharia et al., 2010] Spa

K

e RDD-based programming model
e Similar in spirit to Hadoop Mapreduce

” 1]

e Functional style: manipulate RDDs via “transformations”, “actions”
E.g. map is a transformation, reduce is an action

e Example: load file, count total number of characters
val lines = sc.textFile("data.txt")

val lineLengths = lines.map(s => s.length)
val totallLength = lineLengths.reduce((a, b) => a + b)

e Other transformations and actions:

union(), intersection(), distinct()
count(), first(), take(), foreach()

e Can specify if an RDD should be “persisted” to disk
Allows for faster recovery during cluster faults
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S pa rk Ove rV i eW [Zaharia et al., 2010] Spq

e Benefits of Spark:
e Fault tolerant - RDDs immutable, just re-compute from lineage
e (Cacheable - keep some RDDs in RAM
o Faster than Hadoop MR at iterative algorithms

e Supports MapReduce as special case

\
I
I
I
I
|
I
I
I
I
|
I
I
I
I
I
I
I

Stage 3 ' source: Zaharia et al. (2012)

’

_____________________________
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Spark:

Faster MapR on Data-Parallel Spq

e Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data — load as RDD — apply transforms — output result

o RDD transforms strict superset of MapR
o RDDs cached in memory, avoid disk I/O

Iteration time

RDD(1 /’————s\ /,____\\ /,————\\
Memory
Input Data Resident RDD(2 RDD(1) Output
HDFS Text/ | Map Iteration 1> e Iteration N ) Memory Map ) HOFS Text/
Squence Resident Resident Squence
Files Files
RDD(1
ot \___/ -«
Memol
Residenrvt \ Can be spilled to disk
\ or recreated on read

160 -
120 -
80 -
40 -

Hadoop HadoopBM Spark

Logistic Regression

e Spark ML library supports data-parallel ML algos, like Hadoop

@)
@)

KDD 15

Spark and Hadoop: comparable first iter timings...

But Spark’s later iters are much faster
© Eric Xing @ CMU, 2015
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GraphLab Overview oweta. 201

e Known as “GraphLab PowerGraph v2.2"

e Different from commercial software “GraphLab Create” by Dato.com, who
formerly developed PowerGraph v2.2

e System for Graph Programming
e Think of ML algos as graph algos

e Comes with ready-to-run “toolkits”

e ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical
models

GraphLab API (C++)

MPI/TCP-IP PThreads Hadoop/HDFS

Linux Cluster Services (Amazon AWS)
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GraphLab Overview oweta. 201

e ML-related toolkits

e Clustering
e K-means
e Spectral
e Collaborative Filtering
e Matrix Factorization (including Non-negative, L1/L2-regularized)
e Graphical Models
e Factor graphs
e Belief propagation algorithm
e Topic Modeling
e LDA

e Other toolkits available for computer vision, graph analytics,
linear systems
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GraphLab Overview oweta. 201 .

e Key feature: Gather-Apply-Scatter Programming Model
o Write ML algos as vertex programs
o Run vertex programs in parallel on each graph node
o Graph nodes, edges can have data, parameters

O

Source: Gonzalez (2012)
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GraphLab Overview oweta. 201

e Programming Model: GAS Vertex Programs
o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Machine 1 Machine 2

/ Master
) Gather ‘
Mirror

o Y —
. 4‘}/ﬁrror Mir{or ‘

Machine 3 Machine4

Source: Gonzalez (2012)
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GraphLab Overview oweta. 201 .

e Programming Model: GAS Vertex Programs
o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Machine 1 Machine 2

: k / Master V
’ 2 ™ Mirror
Apply
oo [ >

Machine 3 Machine4

Source: Gonzalez (2012)
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GraphLab Overview oweta. 201

e Programming Model: GAS Vertex Programs
o 1) Gather(): Accumulate data, params from my neighbors + edges
o 2) Apply(): Transform output of Gather(), write to myself
o 3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Machine 1 Machine 2

Master
Gathet
Mirror
: Apply
~ '
Mirror ’
Mirror

Scatter
Machine 3 Machine4

4

Source: Gonzalez (2012)
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GraphLab Overview oweta. 201

e Example GAS program: Pagerank

e Programmer implements gather(), apply(), scatter() functions

// gather_nbrs: IN_NBRS
gather (D,, [%mﬂ' D,) :
return D,.rank / #outNbrs (v)
sum(a, b): return a + b
apply (D,, acc):
rnew = 0.15 + 0.85 % acc
D,.delta = (rnew - D,.rank)/
#outNbrs (u)
D,.rank = rnew
// scatter nbrs: OUT_NBRS
scatter([h,l%mﬁ,Lk):
if(|D,.delta|>€) Activate (v)
return delta

Source: Gonzalez et al. (OSDI 2012)

127
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GraphLab Overview oweta. 201

e Benefits of Graphlab
o Supports asynchronous execution - fast, avoids straggler problems
o Edge-cut partitioning - scales to large, power-law graphs
o Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)
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GraphlLab:
Model-Parallel via Graphs

e GraphLab Graph consistency models
o Guide search for “ideal” model-parallel execution order
o ML algo correct if input graph has all dependencies

Full Consistency

O8Ee = Ncy,
< ) Consisteo .
A\ (92

Runtime(s)

l“‘o.._ GraphLab

1 L L L 1 1 L 1
48 16 24 32 40 48 56 64
#Machines

e GraphlLab supports asynchronous (no-waiting) execution
o Correctness enforced by graph consistency model
o Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)
KDD 15 © Eric Xing @ CMU, 2015
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UUMN

A New Framework for Large Scale Parallel
Machine Learning

(Petuum.org)
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Petu u m OverVieW [Xing et al., 2015]

e Key modules
e Key-value store (Parameter Server) for data-parallel ML algos

B

e Scheduler for model-parallel ML algos

e Program ML algos in iterative-convergent style
e ML algo = (1) write update equations + (2) iterate eqns via schedule

Worker Worker PS server PS server Scheduler
Data Data Model Model Scheduling
Partition Partition Partition Partition Data
Consistency Consistency Dependency/
ML App Code ML App Code Controller Controller Priority Mgr.
PS Sched PS Sched Sched Za Sched A 1 PS
Client | Client || Client | Client Client Client Client
1y v O v 1 B
| parameter exchange channel |
v v < 2
| scheduling control channel |
Network Layer

KDD 15

© Eric Xing @ CMU, 2015
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Petuum OverVieW [Xing et al., 2015]

e ML Library (Petuum v1.1):

e  Topic Modeling
LDA
MedLDA (supervised topic models)
° Deep Learning
Fully-connected DNN
Convolutional Neural Network
° Matrix Factorization
Least-squares Collaborative Filtering (with regularization)
Non-negative Matrix Factorization
Sparse Coding
° Regression
Lasso Regression
° Metric Learning
Distance Metric Learning
° Clustering
K-means
e Classification
Random Forest
Logistic Regression and SVM
Multi-class Logistic Regression

KDD 15 © Eric Xing @ CMU, 2015
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Petuum OverVieW [Xing et al., 2015]

e Key-Value store (Parameter Server)
e Enables data-parallelism

e A type of Distributed Shared Memory (DSM)
Model parameters globally shared across workers

e Programming: replace local variables with PS calls

Single
Worker 1 Worker 2 Machine
/ (one or more
machines L.
) Distributed
Worker 3 Worker 4 with PS

KDD 15 © Eric Xing @ CMU, 2015

ProcessDataPoint (i) {
for j =1 toM{
old = model[j]
delta = f(model,data(i))
model[j] += delta
}
}

ProcessDataPoint (i) {
for j =1 toM{
old = PS.read(model, j)
delta = f(model,data(i))
PS.inc(model, j,delta)
}
}
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Petu u m OverVieW [Xing et al., 2015]

e Key-Value store features:
ML-tailored consistency model: Stale Synchronous Parallel (SSP)

Asynchronous-like speed
Bulk Synchronous Parallel-like correctness guarantees for ML

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

.

Thread 1 will always see
these updates

Thread 2 may not see
these updates (limited error)

>

KDD 15

I
i
3 4 5 6

© Eric Xing @ CMU, 2015
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Petuum OverVieW [Xing et al., 2015] ®

e Scheduler
e Enables correct model-parallelism
e Can analyze ML model structure for best execution order
e Programming: schedule(), push(), pull() abstraction

schedule () {
// Select U vars x[]j] to be sent
// to the workers for updating

b return (x[j_11, ..., x[3_U])
———— Parameter Pammeter Parameter }
Variable/Param Se“’er Servef server
R/W push (worker = p, vars = (x[j_1],...,x[3_U])) {

// Compute partial update z for U vars x[7j]
Pu"T Variable/Param

Push // at worker p

return z

pull (workers = [p], vars = (x[3_1],...,x[3_U])
updates = [z]) {

// Use partial updates z from workers p to
// update U vars x[j]. sync() is automatic.

-~
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Petuum OverVieW [Xing et al., 2015] ®

e Scheduler benefits:
e ML scheduling engine: Structure-Aware Parallelization (SAP)
e Scheduled ML algos require less computation to finish

5

Parameters
Variables

0
S

Sharp drop

Finding dynamic
due to SAP

block structures ‘
= Lo D —
% Re -grouping

Objective

Input data
N~ N

@ Dispatching ~ ~ | | TTmel
blocks to T R
workers ’

{

Dynamically revising 005

0 500 1000
Seconds
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Petuum:
ML props = 1st-class citizen

e Error tolerance via Stale Sync Parallel KV-store

KDD 15

8000
7000

6000 -
7]
O 5000 -
c
© 4000 -
o
3000 -
2000 -
1000 -

Se

System Insight 1: ML algos bottleneck on network comms
System Insight 2: More caching => less comms => faster execution

B Compute time

M Network waiting time |

0 8 16 24 32 40 48

More caching (more staleness)

© Eric Xing @ CMU, 2015
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Petuum:

ML props = 1st-class citizen

e Harness Block dependency structure via Scheduler
System Insight 1: Pipeline scheduler to hide latency

System Insight 2: Load-balance blocks to prevent stragglers

Blocks in Lasso
Regression problem

KDD 15

Check Variable
Dependencies

v

Generate Blocks

All Parameters and
Variables

Prioritize Params/Vars

<

Worker 1

for update

Worker 2

e

)

Worker 3

Worker 4

— Y

=

=

Round 1

© Eric Xing @ CMU, 2015

Round 2

J Y,
1 ] )
Round 3 Round 4

Blocks of
variables
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-
Petuum: +
| | .
ML props = 1st-class citizen
e Exploit Uneven Convergence via Prioritizer
e System Insight 1: Prioritize small # of vars => fewer deps to check
e System Insight 2: Lowers computational cost of Scheduling
v
@ Generate Blocks  [4C rioritize Params/Vars
"@ m -
@ o ! j[ I =
<« Large update vorera [ ] : ( ‘i ( )
message L L { J Z%l
\ / X8 « Small update ( ( I - 1
) o (AT P
Round 1 - Round 2 nd 3 Rund4l )
KDD 15 © Eric Xing @ CMU, 2015 139



Petuum Architecture and sect
Hadoop Ecosystem Integration os
. ~peruum 'l Hadoop Ecosystem

ML application library

Data-Parallel API

Model-Parallel API

Bounded-Async
KV-store (Bosen)

Dynamic Scheduler
(Strads)

s,cmr‘t'iZ & ocioo0)

HBASE '% f
SHIVE

and others ...

YARN (resource manager, fault tolerance)

KDD 15
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ML Programming Interface: i

Needs and Considerations ot

K

e An ideal ML programming interface should make it easy to
write correct data-parallel, model-parallel ML programs

e \What can be abstracted away?

KDD 15

Abstract away inter-worker communication/synchronization:

Automatic consistency models; bandwidth management through distributed shared
memory

Abstract scheduling away from update equations:

Easy to change scheduling strategy, or use dynamic schedules
Abstract away worker management:

Let ML system decide optimal number and configuration of workers

Ideally, reduce programmer burden to just 3 things:
Declare model, write updates, write schedule
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There Is No Ideal Distributed System! | :°

K

e Not quite that easy...

e Two distributed challenges:
e Networks are slow
e ‘“ldentical” machines rarely perform equally

Unequal :\'Ar, I/\/\ _./}Av ,
N N M /4\
performance | U, Ay % il

Low bandwidth,
High delay

KDD 15 © Eric Xing @ CMU, 2015

Async execution:

May diverge
/

0.2p \ /
é

BSP execution:
Long sync time

8000 1
7000 -

wn 6000 7
< 5000 - B Compute time

B Network waiting time

© 4000

U 3000
75}

2000 -

1000

0 -
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Issue: How to approach
distributed systems?

KDD 15

Idealist view

e Start with simplified view of distributed
systems; develop elaborate theory

Issues being explored:

e Information theoretic lower bounds for
communication [Zhang et al. 2013]

e Provably correct distributed
architectures, with mild assumptions
[Langford et al. 2009, Duchi and
Agarwal 2011]

How can we build practical solutions
using these ideas?

Pragmatist view

Start with real-world, complex
distributed systems, and develop a
combination of theoretical guarantees
and empirical evidence

Issues being explored:

Fault tolerance and recovery [Zaharia
et al. 2012, Spark, Li et al. 2014]

Impact of stragglers and delays on
inference, and robust solutions [Ho et
al. 2013, Dai et al. 2015, Petuum, Li et
al. 2014]

Scheduling of inference computations

for massive speedups [Low et al. 2012,
GraphLab, Kim et al. 2014, Petuum]

How can we connect these
phenomena to theoretical inference
correctness and speed?

© Eric Xing @ CMU, 2015
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Why need new Big ML systems? |-

MLer’s view

Focus on
e Correctness
o fewer iteration to converge,

but assuming an ideal system, e.g.,
e zero-cost sync,
e uniform local progress

for (t =11toT) {
doThings()

parallelUpdate(x,0)

doOtherThings()
}

KDD 15

Compute vs Network
LDA 32 machines (256 cores)

8000 1
7000 -
6000 T
5000 A
4000 -
3000 T
2000 A
1000 -

/\
&
Parallelize ov

worker threads

B Network waiting time

u Compute time

Seconds

o
!

Share global model
parameters via RAM

© Eric Xing @ CMU, 2015 145



Why need new Big ML systems? | :°

i
A Systems View:
/,
O 2 Shotgun with 4 machines flies away! e Focuson
<~ Shotgun with 2 machines ¢ high iteration throughput (more iter per sec)
Single machine (shooting algorithm) e strong fault-tolerant atomic operations,
e Dbut assume ML algo is a black box
e ML algos “still work” under different execution
models
0.1 | o ‘“easy to rewrite” in chosen abstraction
0 0.5
Agonistic of ML properties and objectives in system Synchronization model
design -»

= ed L -D-b-lb-b-bmb

Q? I I-»l O apuapmp mnp map mp

@’@ ) =) m) m) )

- message
o Zm"g:dd' Programming model

Non-uniform Dynamic Error
convergence structures tolerance
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Why need new Big ML systems? | :°

’ H 2 -
MLer’s view Systems View:
e Focus on e Focus on
e Correctness ¢ high iteration throughput (more iter per sec)
o fewer iteration to converge, e strong fault-tolerant atomic operations,
e Dbut assuming an ideal system, e.g., e Dbut assume ML algo is a black box
e Zzero-cost sync, e ML algos “still work™ under different execution
e uniform local progress models
o ‘“easy to rewrite” in chosen abstraction
for (t =11toT) {
doThings() -
parallelUpdate(x,0) = -b -> or ->->-'>'>-'>“>
doOtherThings() : -» --::Q?
}
- _ "\ /Oversimplify ML issues and/or
OVGfSlmpllfy systems issues ignore ML opportunities
y need_machines to perform o ML algos “just work” without proof
consistently o e Conversion of ML algos across
e need lots Of sanhroruzatlon different Lrogram models (graLh
\. or even try not to communicate at ay \_ programs, RDD) is easy )
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Solution: -4

Machine Learning Models/ Algorithms

» Graphical °+ Nonparametric < Regularized - Sparse Structured . * Spectral/Matrix
Models Bayesian Models Bayesian Methods Large-Margin |/0 Regression ° SParse Coding  Methods . peep Learning

\

RN

Hardware and infrastructure

* Network switches + Network attached storage « Server machines « GPUs + Cloud compute - Virtual Machines

* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

© Eric Xing @ CMU, 2015
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Solution: 444

Machine Learning Models/ Algorithms

» Graphical °+ Nonparametric + Regularized - Sparse Structured + Spectral/Matrix

Models Bayesian Models Bayesian Methods Large-Margin )0 Regression ~ SParse Coding Methods . peep Learning

Hardware and infrastructure

* Network switches + Network attached storage « Server machines « GPUs + Cloud compute - Virtual Machines
* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines
© Eric Xing @ CMU, 2015




The Big-ML “Stack” - More than
just software

6 / Degree of parallelism, convergence analysis, sub-sample complexit
\J \Theory:

OCRepresentation:

@CModel:

)

Generic building blocks: loss functions, structures, constraints,)

Compact and informative features

priors ...

System Building Blocks

C (Algorithm:

Parallelizable and stochastic MCMC, VI, Opt, Spectrum ... )
—

— _— e o mm e e e me Em Em o= omm mm o
— | High: Matlab/R
O Programming model & Interface: Medium: C/JAVA -
~— Low: MPI
PN
‘\System: Distributed architecture: DFS, KV-store, task scheduler. .. ) -
L /
O\]_]ardware: GPU, flash storage, cloud ... —

KDD 15 © Eric Xing @ CMU, 2015
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ML algorithms are 43
Iterative-Convergent

Markov Chain Monte Carlo Optimization

_l\

|/
;
<
)

N N
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A General Picture of ML set
Iterative-Convergent Algorithms
| /\ Updates
L Read +
— 1 Read Write
Y
— e—
Y
CY__D
—— Iterative Algorithm
] |A =AAYY D) A(t-1)
t) _ t—1
D AY =F (A( )a A) Model Parameters
F() ‘?g?"r:f%?:ﬁ* at iteration (t-1)
Data A Intermediate Updates
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Issues with Hadoop and
I-C ML Algorithms?

Iteraiion 1

Distributed File System

Distributed File System
Distributed File System

Image source: dzone.com
HDFS Bottleneck

Naive MapReduce not best for ML

e Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update A(D,)
o reduce() to combine updates A(D,)
o Iterative ML algo = repeat map()+reduce() again and again
e But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!
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Good Parallelization Strategy

Is important

for (t=11toT) {
doThings()
parallelUpdate(x,0)
doOtherThings()

}

KDD 15

0.2

0.1

8000 7
7000 A
% 6000
Barrier ? g 5000 1
© 4000

0]
O 3000 1

wn
2000

1000

.
\

=
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Data Parallelism

= =

Ay =A(A

] :megw?m =

Additive Updates

A :éAP

< >

Alt=1)

tlD3

Al) — F(A(t—l), A)
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Example Data Parallel: cece

Topic Models -

BIG DATA (billions of docs)

Update (MCMC Data (Docs)
algo)

dna 0.02 Seeking Life’s Bare (Genetic) Necessities

genetic .01 T S
e \

{1
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Example Data Parallel:
Topic Models




Model Parallelism

—
— |
e~

\ A

1—A1S1ES Atl

| == >®<}:>

— T — AS, e §,AY D

Concatenating updates
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Read +

Write

A ={A,} A®) — F(40¢-1)

)

EYS %@ >

A

Scheduling
Function

S = 5(4¢-V p)

|
;91€Ec5

Eb )

S¢S

Alt=1)

model parameters not
updated in this
iteration
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Example Model Parallel: sect
Lasso Regression T
’ N BIG MODEL (100 billions of params)
Model (Para@ ata (Feature + Response
ctor) Matrices)

Update (CD algo) m .E i
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Example Model Parallel:
Lasso Regression

Not as easy as this All Data
picture suggests -
will see why later

Al

CD algo

KDD 15 © Eric Xing @ CMU, 2015

Worker machines
with local model




A Dichotomy of Data and Model 43
in ML Programs

Data Parallelism Model Parallelism

(
(

(

360 (D G0
J
!

Shared Model Partitioned
Data_. Data-Parallel  podel Parallel Model
Partitions Workers States Workers States
D;,1D; | 0, Vi # j 0; £ 0, | D, 3(,7)
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Data & Model both big! | ®®®

Data+Model Parallel: Millions of images, | eeee

Billions of weights bt

Solving Big Data+Model  whattodo oc

Model (edge weights)

Update Data (images)

(backpropagation)

,/ O
o !
L1 L2 L3 14 | F5 | F6
256x256 | 128x128| 64x64 |32x32 (Dutput)

IO T
6" = 6"+ As6(D)
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Data+Model Parallel:
Solving Big Data+Model

Tackle Deep Learning scalability —
challenges by combining data 2_? - {:Dl ’_:D27 T LDn}
+model parallelism H = [91T7 92T7 - (ng}T

15 © Eric Xing U, 201



How difficult is
data/model-parallelism? -

e C(Certain mathematical conditions must be met

e Data-parallelism generally OK when data |ID (independent,
identically distributed)

e \Very close to serial execution, in most cases

e Naive Model-parallelism doesn’t work
e NOT equivalent to serial execution of ML algo

e Need carefully designed schedule
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Intrinsic Properties of ML Programs °

e ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

=

e Error tolerance: often robust against limited Sﬁf :
errors in intermediate calculations C :

e Dynamic structural dependency: changing correlations
between model parameters critical to efficient parallelization

e Non-uniform convergence: parameters

can converge in very different number of steps

e \Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

e Most existing platforms (e.g., Spark, GraphLab) have not yet systematically

explore and exploit above properties
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Challenges in Data Parallelism :

e Existing ways are either safe/slow (BSP), or fast/risky (Async)

e Challenge 1: Need “Partial” synchronicity
e Spread network comms evenly (don’t sync unless needed)
e Threads usually shouldn’t wait — but mustn’t drift too far apart!

e Challenge 2: Need straggler tolerance
e Slow threads must somehow catch up

BSP Async
Thre d1“ Thread 1
Thves 2D -» -‘» Thread 2 I HER) BEENE) I BEEEE) BER)
Thre d3 -» Thread 3 »#Q.’Q“
Thread 4K Thread + I HEN) EERp I EEE) OO
A , g Spqﬂ( Is persistent memory really necessary for ML?
b;l.admap © Eric Xing @ CMU, 2015 166



Is there a middle ground for data- | 322
parallel consistency?

e Challenge 1: “Partial” synchronicity
e Spread network comms evenly (don’t sync unless needed)
e Threads usually shouldn’t wait — but mustn’t drift too far apart!

e Challenge 2: Straggler tolerance

e Slow threads must somehow catch up

KDD 15

Force threads to sync

up

Thread 1 |

NE

Thread 2 »q-»
Thread 3 »q»
Thread 4 l}”l»

Thread 1 catches up by
reducing network comms

SeHeHerD
) ) )
RATENEN
) m)

© Eric Xing @ CMU, 2015
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000
( X X )
High-Performance Consistency Models ol
for Fast Data-Parallelism [Ho et al., 2013]
vvvvvv - m—
Staleness Threshold 3 g”?ﬂ 5”
I I 1 - >
] e
weee: = | 1D i
| I |
| | I Thread 2 may not see
Thread 4 _ : : : these updates (possible error)
I I I
i i i i i i i i i —>
0 1 2 3 4 5 6 7 8 9 Iteration

Stale Synchronous Parallel (SSP), a “bounded-asycnhronous” model

+ Allow threads to run at their own pace, without synchronization
* Fastest/slowest threads not allowed to drift >S iterations apart
 Threads cache local (stale) versions of the parameters, to reduce network syncing

Consequence:

+ Asynchronous-like speed, BSP-like ML correctness guarantees

+ Guaranteed age bound (staleness) on reads

+ Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached
KDD 15 © Eric Xing @ CMU, 2015
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Improving Bounded-Async via sect
Eager Updates v.i ... 205 o

K

e Eager SSP (ESSP) protocol

e Use spare bandwidth to push
fresh parameters sooner

e Figure: difference in stale
reads between SSP and ESSP

e ESSP has fewer stale reads;
lower staleness variance

e Faster, more stable
convergence (theorems later)

KDD 15 © Eric Xing @ CMU, 2015

0.4

0.3

0.1

0
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Log-Likelihood

Enjoys Async Speed, yet BSP sece

Guarantee, across algorithms o

£

e Scale up Data Parallelism without being limited by long BSP
synchronization time

e Effective across different algorithms, e.g. LDA, Lasso, Matrix
Factorization:

LDA on NYtimes Dataset Objective function versus time
Objective function versus time :
LDA 32 machines (256 cores), 10% docs per iter l.:ssn 16 machines (128 threads) =—BSP (stale 0) MEF 32 machines (256 threads)
-9.00E+08 T T T T T T T T T | 1.40E+09
0 200 400 600 800 1000 1200 1400 1600 1800 2000 4.80E-01 T T “®stale 10
9.50E+08 T t T t i - | le 20 1.20E+09 7 I [ I |
4.70E-01 T sta .
-1.00E+09 1 \ stale 1.00E+09 I ! ~*=BSP (stale 0)
)
. 4.60E-01 ““stale 40 B -
1.0SE+09 . L | | | stale 7
’ B 8.00E+08
-1.10E+09 T 1 4.50E-00 w7 | “stale 80 :.%6 00E+08 -
LASE+09 i i i | —BSP (stale 0) : \ ©
4.40E-01 S 4.00E+08
-1.20E+09 1 1 1 1 1 1 “=giale 32 ) \ ) | | e |
4.30E-01 e 2.00E+08
1256409 1 —— ’ ~
async 4.20E-01 t T ! t ' 0.00E+00
-1.30E+09 * . ) 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000
Seconds
Seconds Seconds

LDA LASSO Matrix Fact.
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Challenges in Model Parallelism

e Recall Lasso regression:

min |y — XAl + A ) 161
J

KDD 15

e

X )
8

A huge number of parameters

(e.g.) J =100M

© Eric Xing @ CMU, 2015 171



Challenge 1:
Model Dependencies -

e Concurrent updates of 5 may induce errors

Sequential updates Concurrent updates

51 51 Ba

62 51 62 Need to check x,x,

before updating
/ parameters

T t—1
%S(le—X1X26§ ),)\)

(t)
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Challenge 2: Uneven secs

Convergence Rate on Parameters | :°

>

Parameters converge at different rates Parameters converge at similar rates
Q) Q)
o) o)
=) =)
< <
(1) (12)
= =
Q Q
® ®
Q Q
Remaining time to convergence Remaining time to convergence

Convergence time determined by slowest parameters

- How to make slowest parameters converge more
quickly?
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Is there a middle ground for
model-parallel consistency? o

e Existing ways are either safe but slow, or fast but risky

e Challenge 1: need approximate but fast model partition

e Full representation of data/model, and explicitly compute all
dependencies via graph cut is not feasible

e Challenge 2: need dynamic load balancing
e Capture and explore transient model dependencies
e Explore uneven parameter convergence

Graph Partition Random Partition

S 299

GraphLab] p
T><‘ necessary for ML?

v v

r/;%' Is full consistency really
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000
- - 0000
Structure-Aware Parallelization
o000
SAP T
( ) [Lee et al., 2014; Kumar et al., 2014] o
O Careful model-parallel execution: 0 Simple programming:
N U Structure-aware scheduling O Schedule()
\_/ - - - - -
data U Variable prioritization U Push()
partition 4 Load-balancing Q Pull()
~—
S
model schedule () {
partition // Select U vars x[j] to be sent
S // to the workers for updating
worker e
return: ([ J Al s el § UL
~— 1 }
data push (worker = p, vars = (x[j_11,...,x[]J_Ul)) {
partition // Compute partial update z for U vars x[j]
—— // at worker p
model return z
partition }
~—
pull (workers = [p], vars = (x[j_11,...,x[]_U])
worker updates = [z]) {
// Use partial updates z from workers p to
J— // update U vars x[j]. sync() is automatic.
~— 1
data )
partition
~—
S
model
partition
e
worker
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Schedule 1: Priority-based i.......

e Choose params to update based on convergence progress
e Example: sample params with probability proportional to their recent change
e Approximately maximizes the convergence progress per round

Shotgun [Bradley et al. 2011] Priority-based scheduling
Uniform distribution p(j) x <5x§t_1))2 + €
N ] N
B1 o B3 ba
b1 B, B1 By ]
B3 Pa B3 Ba ]

W © Eric Xing ® CMU,W 176



Schedule 2: Block-based
(with load balancing) wumareta. 201

Partition data & model into d * d blocks

Run different-colored blocks in parallel

Vi

Vs

Vs

U,

R

Vi Va Vs

U,

7

U

Us

Blocks with less data/para or experience less

Automatic load-balancing + better convergence

KDD 15

Us

Us

straggling run more iterations

© Eric Xing @ CMU, 2015
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Vi

Va

Vs

s

Us
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Structure-aware Dynamic Scheduler oo
(STRADS) [Lee et al., 2014, Kumar et al., 2014]

STRADS
Check Al Variables * Priority Scheduling
Variable
Dependency X
. 2
. (t—1)
Generate Sample Variables {63} <5ﬂ3 1
Blocks of |€ .
Variables to be Updated ~ p(/)
TS .
* Block scheduling
Blocks of variables
l I I Va | W
| ] | | /
| barrier
Worker 2 I ] —> U, i
! .
( Z'(l)
Worker 3 : : '::> Us i
[ [Kumar, Beutel, Ho and Xing, Fugue:
Worker 4 — g T e e

Round 1 Round 2 Round 3 Round 4 )
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Avoids dependent parallel updates, :
attains near-ideal convergence speed

e STRADS+SAP achieves better speed and objective

80 ranks 2.5M vocab, 5K topics

100M features
9 machines 9 machines -
025 e Y — Lo xi0  O2machines
—STRADS —STRADS &
---Lasso-RR ---Graphlabj | .-
0.2 e P S ey e
o |\ N sy
= -
T T R B B B T N R —
o]
(@]
0.1+
—STRADS
.’ ---YahooLDA
0.05 w T 0.5 T T r -3.5F T T T w T
0 500 1000 0 50 100 150 0 1 2 3 4 5
Seconds Seconds Seconds % 10*
Lasso MF LDA
179
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Efficient for large models :

e Model is partitioned => can run larger models on same

hardware
Lasso MF LDA
<10° 9 machines 64 machines
6_ .......................................................................... S I | L e = EEERE
BSTRADS 1400 BGTRADS 6620 -~ 34194
Bl LassoRR 1200- Il GraphLab
1000
(4 0
'g B 800
o g 7 | E—
n 0

10M 50M 100M 0 40 80 160 320 1000 2000 25M/5k  2.5M/10k 21.8M/5k 21.8M/10k
Vocab/Topics

Features Ranks
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X

School of Computer Science
Carnegie Mellon

Theory of Real
Distributed ML Systems




Why study parallel ML theory? :

e \What sequential guarantees still hold in parallel setting?
e Under what conditions?

e Growing body of literature for “ideal” parallel systems
e Serializable— equivalent to single-machine execution in some sense
e Focused on per-iteration analysis

Abstract away computational/comms cost
Predicting real-world running time requires these costs to be put back

e “Real-world” parallel systems a work in progress
e Asynchronous or bounded-async approaches can empirically work better than
synchronous approaches
Need additional theoretical analysis to understand why
Async => no serializability... why does it still work?

e Parallelization requires data and/or model partitioning... many strategies exist
Want partitioning strategies that are provably correct

Need to determine when/where independence is violated, and what impact such violation
has on algorithm correctness
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Challenges in real-world secs

distributed system :

e Real-world systems need asynchronous execution and load
balancing
e Synchronous system: load imbalances => slow workers => waiting at barriers
e Need load balancing to reduce load at slow workers
e Need asynchronous execution so faster workers can proceed without waiting

e Solution 1: key-value stores
e Automatically manages communication with bounded asynchronous guarantees

e Solution 2: scheduling systems

e Automatically balances workload across workers; also performs prioritization and
dependency checking
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Communication strategies :

e Data parallel

e Partition data across workers
Or fetch small batches of data in an online/streaming fashion

e Communicate model as needed to workers
e.g. key-value store with bounded asynchronous model — theoretical consequences?

e Model parallel

e Partition model across workers
Model partitions can change dynamically during execution — theoretical consequences?

e Send data to workers as needed (e.g. from shared database)
Or place full copy of data on each worker (since data is immutable)

e Data + Model parallel?

e Partition both data and model across workers

e \Wide space of strategies; need to reduce model and data communication
Reduce model communication by exploiting independence between variables
Reduce data and model communication via broadcast strategies, e.g. Halton sequence

KDD 15 © Eric Xing @ CMU, 2015 184



Bridging Models sect

for Parallel Programming &

e Bulk Synchronous Parallel [valiant, 1990] is a bridging model

e Bridging model specifies how/when parallel workers should compute, and how/
when workers should communicate

e Key concept: barriers ? =) =)
No communication before barrier, only computation s =) ) ———
=) )

Thread 4

No computation inside barrier, only communication

e Computation is “serializable” — many sequential theoretical guarantees can be
applied with no modification

e Bounded Asynchronous Parallel (BAP) bridging model

e Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]
Workers re-use old version of parameters, up to s iterations old — no need to barrier
Workers wait if parameter version older than s iterations

Staleness Threshold 3

I i
ol e
| |
i I
Thread 2 ' | 1
!
Thread 3 E
|
| i
Thread 4 * !
i I
+ + —>
6 7 8 Iteration
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Types of Convegence i
Guarantees +-

e Regret/Expectation bounds on parameters
e Better bounds => better convergence progress per iteration

e Probabilistic bounds on parameters
e Similar meaning to regret/expectation bounds, usually stronger in guarantee

e Variance bounds on parameters

e Lower variance => higher stability near optimum => easier to determine
convergence

e For data parallel?
e For Model parallel?
e For Data + model parallel?
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BAP Data Parallel: secs

Can we do value-bounding? :

e Idea: limit model parameter Worker 3
difference AB,; = |6, — 6,|| between
machines i,j to < a threshold Worker 2 Worker 4

e Does not work in practice! \
e To guarantee that AB,; has not AB,,
exceeded the threshold, machines must
wait to communicate with each other

e No improvement over synchronous

execution! Worker 5

i

e Rather than controlling parameter AB4 5

difference via magnitude, what
about via iteration count?

e Thisis the (E)SSP communication Worker 7
model...
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BAP Data Parallel:
(E)SSP mOdeI [Ho et al., 2013; Dai et al., 2015]

Staleness Threshold 3

| | |
| | |
I I I _
Thread 2 _ I I I Thread 1 will always see
| I I these updates
| | |
| | I Thread 2 may not see
| | i
Thread 4 _ : : : these updates (possible error)
| | |
i i i i i i i i i —>

0 1 2 3 4 5 6 7 8 9 Iteration
Stale Synchronous Parallel (SSP)

+ Allow threads to run at their own pace, without synchronization
* Fastest/slowest threads not allowed to drift >S iterations apart
 Threads cache local (stale) versions of the parameters, to reduce network syncing

Consequence:

+ Asynchronous-like speed, BSP-like ML correctness guarantees
+ Guaranteed age bound (staleness) on reads
+ Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached
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BAP Data Parallel: secs

(E)SSP Regret Bound ;... 201 o

e Goal: minimize convex f(x) = L3, fu(x)
(Example: Stochastic Gradient)

e L-Lipschitz, problem diameter bounded by F?

e Staleness s, using P threads across all machines

o Usestep size m = 75 witho = —L\/Q(I;Lil)p

e (E)SSP converges according to
e Where T is the number of iterations e st = previous st « ey gradent

Difference between
SSP estimate and true optimum

—
1< 2(s+1)P
— ft(Xt)w — f(x¥) <4FL

T2 /

R[X]:= T

e Note the RHS interrelation between (L, F) and (s, P)
e An interaction between model and systems parameters

e Stronger guarantees on means and variances can also be proven
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Intuition: 43
Why does (E)SSP converge?

SSP approximates sequential execution

italeness Threshold?; € S 0(28 L 1)

Thread 1 >
Thread 2 -2 Sequential execution
Possible error
Thread 3 > windows for this
update: : """
Thread 4
} } i } t t ! l >
0 1 2 3 4 5 6 7 8 9 Clock

e Number of missing updates bounded
e Partial, but bounded, loss of serializability

e Hence numeric error in parameter also bounded
e Later in this tutorial — formal theorem
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SSP versus ESSP: 35

What is the difference? e

e ESSP is a systems improvement over SSP communication

e Same maximum staleness guarantee as SSP
e Whereas SSP waits until the last second to communicate...
e ... ESSP communicates updates as early as possible

e \What impact does ESSP have on convergence speed and
stability?
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BAP Data Parallel:

0.4t |—ESSP

(E)SSP Probability Bound

0.2
[Dai et al., 2015]

0.1

oo 876548210

Let real staleness observed by system be 7Vt
Let its mean, variance be 1, = E[y], 0y = var(y)

Theorem: Given L-Lipschitz objective f, and stepsize h,

R|X 1 F? i
P ! RY _ (77[,2-}——+27]L2;L7> ZT] < expq — ~ }
n 277T0-W

T VT + 2nL2(2s + 1) Pr
Gap between current Penalty due to high Penalty due to high
estimate and optimum avg. staleness ug,,, staleness var. o,
2714
. T - — _ n°L(InT+1)
RIX] = 2y fel@e) — f(&¥) nr = T =o(T)

Explanation: the (E)SSP distance between true optima and current
estimate decreases exponentially with more iterations. Lower staleness
mean, variance kv ,%y improve the convergence rate.

Take-away: controlling staleness mean #iy, variance o+ (on top of max
staleness s) is needed for faster ML convergence, which ESSP does.
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BAP Data Parallel:

0.4t |—ESSP

(E)SSP Variance Bound -

[Dai et al., 2015] 0.1

—90—9 -8-7-6-5-4-3-2-1 0
Clock Differential

Theorem: the variance in the (E)SSP estimate is

Var t+1 — Var t — 2771;CO’U<xt, EAt [QtD + O(ntft)
+O(n;p;) + 02,

where
cov(a,b) := Ela’b] — Ela’|E[b]

and O3, represents 5th order or higher terms in ~y;

Explanation: The variance in the (E)SSP parameter estimate monotonically
decreases when close to an optimum.

Lower (E)SSP staleness "t => Lower variance in parameter => Less
oscillation in parameter => More confidence in estimate quality and
stopping criterion.

Take-away: Lower average staleness (via ESSP) not only improves
convergence speed, but also yields better parameter estimates
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ESSP vs SSP: Increased stability
helps empirical performance

B

e Low-staleness SSP and ESSP converge equally well
e But at higher staleness, ESSP is more stable than SSP

e ESSP communicates updates early, whereas SSP waits until the last second

e ESSP better suited to real-world clusters, with straggler and multi-user issues

MF, Convergence per second

x 10

9  (10% minibatch)

SSP s=0
—SSP s=2
—SSP s=3

SSP s=5
—SSP s=10
-~ ESSP s=0
-- ESSP s=10

200 400

600 800

Seconds
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Scheduled Model Parallel:
Dynamic/Block Scheduling

[Lee et al. 2014, Kumar et al. 2014]

STRADS

Check
Variable
Dependency

v

Generate
Blocks of |€

\

Variables

TS

&

Sample Variables
to be Updated ~p(f)

| \
| | ‘
Worker 1 I ] | :>
I <
Worker 2 l ] :>
! .
Worker 3 : : '::>
Worker 4 :>
Round 1 Round 2 Round 3 Round 4
KDD 15 © Eric Xing @ CMU, 2015

>

\ Blocks of variables
l

Sync.
barrier

* Priority Scheduling

(B} ~ <56§t—1)>2 o

* Block scheduling

Va Vs
U; < 1
Us <
Us; Zigl)
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o
(N

Scheduled Model Parallel:

Dynamic Scheduling Expectation Bound °

[Lee et al. 2014] 0 500 1000

Objective
o
>

0.1+

. 2
e Goal: solve sparse regression problem mﬁm ly — XB5 + A Z |51
e Via coordinate descent over “SAP blocks” XW, X, ..., X(®) J
X®) are the data columns (features) in block (b)

e P parallel workers, M-dimensional data

e p = Spectral Radius[BlockDiag[(X(V)TX(D, ..., (X(V)TX(®¥]]; this block-diagonal
matrix quantifies the maximum level of correlation (and hence problem
difficulty) within all the SAP blocks X)), X, ..., X(V

e SAP converges according to
e Where tis # of iterations

Gap between current SAP explicitly minimizes p, ensuring
parameter estimate and optimum as close to 1/P convergence as possible
A A

) \ “owmn) 1 1
E[f(X©) - f(x)] < P—(O(ﬁ? ° <ﬁ>
M

e Take-away: SAP minimizes p by searching for feature subsets X(¥,
X®@, ..., X(B) without cross-correlation => as close to P-fold speedup as
possible
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Scheduled Model Parallel: 4

o000
Dynamic Scheduling Expectation Bound is near-ideal o0
[Xing et al. 2015]

Let S’ideal() be an ideal model-parallel schedule
Let Bzdeal be the parameter trajectory due to ideal scheduling
Let 5dyn be the parameter trajectory due to SAP scheduling

Theorem: After t iterations, we have

2M
El|Boa — B < C

XX
(t+1)2

Explanation: Under dynamic scheduling, algorithmic progress is
nearly as good as ideal model-parallelism.

Intuitively, this is because both ideal and SAP model-parallelism
minimize the parameter dependencies between parallel workers.
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Scheduled Model Parallel:

Dynamic Scheduling Empirical Performance

e Dynamic Scheduling for Lasso regression (SMP-Lasso):
almost-ideal convergence rate, much faster than random

scheduling (Shotgun-Lasso)

KDD 15

objective value

0.016¢
0.012+
0.008
0.004 -

0

Shotéun-Lasslo,m=8 |
SMP-Lasso,m=08

2000 4000 6000 8000
time (seconds)
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Scheduled Data+Model Parallel:

Block-based Scheduling (with load balancing)

[Kumar et al. 2014]

Partition data & model into d * d blocks

Run different-colored blocks in parallel

Vi

Vs

Vs

U,

R

Vi Va Vs

Us

7

U

Us

Blocks with less data/para or experience less

Automatic load-balancing + better convergence

KDD 15

U,

Us

straggling run more iterations
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Scheduled Data+Model Parallel: | s:2:

Block-based Scheduling Variance Bound 1 | «»

[Kumar et al. 2014]

e Variance between iterations S +1 and S, is:

Var(\I/sn_H)

=Var(¥s, ) —I2ns, Z niQéVaT(iﬁfqn)

=1

—|27s,, Z niQéCoVa'r(d)iSn : Sgn) + nén Z n: Q% HO(As,)

1=1 1=1

e EXplanation:

e higher order terms (red) are negligible
e => parameter variance decreases every iteration

e Every iteration, the parameter estimates become more stable
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Scheduled Data+Model Parallel: coso

Block-based Scheduling Variance Bound 2 | -

[Kumar et al. 2014]

e Intra-block variance: Within blocks, suppose we update the
parameters % using " data points. Then, variance of % after
those n; updates is:

Va?”(l/)t+ni) :V‘”’(W) - QUtniQO(VWWt))
— i QoCoVar(vy, ;) HnPnil

[+ O(m;e) + Olmp) + O(;) + 0(77?/)?}]
A

e EXplanation:

e Higher order terms (red) are negligible
e =>doing more updates within each block decreases parameter variance, leading
to more stable convergence

e Load balancing by doing extra updates is effective
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Scheduled Data+Model Parallel: | g2::
Block-Scheduling Empirical Performance oo

e Slow-worker Agnostic Block-Scheduling (Fugue) faster than:

e Embarrassingly Parallel SGD (PSGD)
e Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

e Slow-worker Agnostic Block-Scheduling converges to a better
optimum than asynchronous GraphLab
e Reason: more stable convergence due to block-scheduling

0.8 Fugue —e—
e Task: Imagenet Dictionary Learning o] BG"FéGB"‘
e 630k images, 1k features z o7

> 0.65 |

"E 0.6

S 055 —
0.5 ~ -
0.45

0 4000 8000 12000 16000 20000
Time (seconds)
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BAP Model-Parallel Guarantees oo

B

e Model-parallel under synchronous setting:
e Dynamic scheduling
e Slow-worker block-based scheduling

e Synchronous slow-worker problem solved by:
e Load balancing (for dynamic scheduling)
e Allow additional iters while waiting for other workers (slow-worker scheduling)

e Work in progress: theoretical guarantees for bounded-async

model-parallel execution

e Intuition: model-parallel sub-problems are nearly independent (thanks to
scheduling)

e Perhaps better per-iteration convergence than bounded-async data-parallel
learning?
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The Landscape of Big ML
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The Landscape of Big ML

[
Q

=
ov-l

Number of Model Parameters
=
o

I~

[

(
(=)

5

[
=

=
<,

KDD 15

MF - Matrix Factorization

© Eric Xing @ CMU, 2015

] CNN - Convolutional Neural
Network
COTS* *GPU cores
(CNN) _
.
/'/ )
Spark (MF) . / Trend over last 5 years:
Microsoft Z. : More cores, bigger models
Adam (CNN) / (CN .
7/
' :
GraphLab —— / N .
ffe*
(MF) 7 (C(?Nﬁ)
PR | A A A(‘lll A " deda s a Adod
a4
100 7 10 10 10°
Number of Cores

206



The Landscape of Big ML
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Issue: When is Big Data useful? :

e Negative examples

“Simple” regression and classification models, with fixed parameter size

Intuition: decrease estimator variance has diminishing returns with more data.
Estimator eventually becomes “good enough”, and additional data/computation is
unnecessary

e Positive examples

Topic models (internet/tech industry)

DNNs (Google, Baidu, Microsoft, Facebook, etc.)

Collaborative filtering (internet/tech industry)

Personalized models

Industry practitioners sometimes increase model size with more data

e Conjecture: how much data is useful really depends on model
size/capacity

KDD 15
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(Y X

o000

o000

. st
Issue: Are Big Models useful? :
e [ntheory e |n practice
e Possibly, but be careful not to e Some success stories - could

over-extend there be theory justification?

e Beware “statistical strength” e Many topics in topic models

e “When you have large e Capture long-tail effects of
amounts of data, your appetite interest; improved real-world
for hypotheses tends to get task performance

even larger. And if it’s growing

faster than the statistical

strength of the data, then many ® Many parameters in DNNs
of your inferences are likely to e Improved accuracy in vision
be false. They are likely to be and speech tasks

white noise.” —Michael Jordan : -
e Publicly-visible success (e.g.

Google Brain)
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Issue: Inference Algorithms, or
Inference Systems?

KDD 15

View: focus on inference algorithm

Scale up by refining the algorithm

e Given fixed computation, finish
inference faster

Some examples

e Quasi-Newton algorithms for
optimization

e Fast Gibbs samplers for topic
models [Yao et al. 2009, Li et al.
2014, Yuan et al. 2015, Zheng et
al, 2015]

e Locality sensitive hashing for
graphical models [Ahmed et al.
2012]

View: focus on distributed systems
for inference

Scale up by using more machines

e Not trivial: real clusters are
imperfect and unreliable; Hadoop
not a fix-all

Some examples

e Spark
e GraphLab
e Petuum
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Issue: Theoretical Guarantees 0o

and Empirical Performance :

e View: establishing theoretical e View: empirical, industrial
guarantees gives practitioners evidence can provide strong
confidence driving force for experimental
e Motivated by empirical science, research

where guarantees are paramount e Motivated by industrial practice,

particularly at internet companies

e Example: Lasso sparsistency and

consistency [Wainwright, 2009] e Example: AB testing in industry

e Theory predicts how many e Principled means of testing new
samples n needed for a Lasso algorithms, feature engineering; by
problem with p dimensions and k experimenting on user base
non-zero elements e Determine if new method makes a

e Simulation experiments show very significant difference to click-
close match with theory through rate, user adoption, etc.

e Is there a way to analyze more
complex models?
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Open research topics :

e Future of data-, model-parallelism, and other ML properties
e New properties, principles still undiscovered
e Potential to accelerate ML beyond naive strategies

e Deep analysis of BigML systems still limited to few ML algos
e Model of ML execution under error due to imperfect system?

e How to express more ML algorithms in table form (Spark,
Petuum), or graph form (GraphLab)
e Tree-structured algorithms? Infinite-dimensional Bayesian nonparametrics?
e What are the key elements of a generic ML programming interface?
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