School of Computer Science
Carnegie Mellon

10-708 Probabilistic Graphical Models

Hybrid Graphical Models
and Neural Networks

Readings: Matt Gormley
Abdel-Hamid, Deng, Yu, Jiang (2013) Lecture 27
April 20,2016

Reminders

* HW4: due April 27
* Project presentations: April 29
— Location: Baker Hall A51
— Session 1: 8:30 - 12:30 (4 hrs)
— Lunch break: 12:30 - 1:30 (1 hr)
— Session 2:1:30 - 5:00 (3.5 hrs)

Outline

Motivation
Hybrid NN + HMM

— Model: neural net for emissions
— Learning: backprop for end-to-end training
— Experiments: phoneme recognition (Bengio et al., 1992)

Background: Recurrent Neural Networks (RNNs)
— Bidirectional RNNs
— Deep Bidirectional RNNs
— Deep Bidirectional LSTMs
— Connection to forward-backward algorithm

Hybrid RNN + HMM

— Model: neural net for emissions
— Experiments: phoneme recognition (Graves et al., 2013)

Hybrid CNN + CRF
— Model: neural net for factors
— Experiments: natural language tasks (Collobert & Weston, 2011)
— Experiments: pose estimation

Tricks of the Trade

MOTIVATION

S 9
> (]
Empirical goal: e.g., classification, feature e.g., transfer learning, latent
learning variable inference
Structure: Graphical Graphical
Objective: Something aggregated from Something aggregated from local
local functions functions
Vocabulary: Neuron, activation/gate function Variables, potential function
Algorithm: A single, unchallenged, A major focus of open research,
inference algorithm -- BP many algorithms, and more to
come
Evaluation: On a black-box score -- end On almost every intermediate
performance quantity
Implementation: Many untold-tricks More or less standardized
Experiments: Massive, real data (GT Modest, often simulated data
unknown) (GT known)

© Eric Xing @ CMU, 2015 5

A slippery slope to mythology?

e How to conclusively determine what an improve in
performance could come from:

e Better model (architecture, activation, loss, size)?
e Better algorithm (more accurate, faster convergence)?

e Better training data?
e Current research in DL seem to get everything

above mixed by evaluating on a black-box
“performance score” that is not directly reflecting

e Correctness of inference
e Achievability/usefulness of model
e Variance due to stochasticity

© Eric Xing @ CMU, 2015 6

(Y Y]
0000
0000
o000
o0
An Example o
" I | e L-»*_w«.w.em.-;‘:fim.::*-c_.:”_.’:‘,‘?_:if:_- g2 s o i ey
o oI N IR, P A AN AL S RS S, AT
= L i
é Although a single dimension (# of layers) is
E’ Mt ~ compared, many other dimensions may also)
< ! change, to name a few:
; ¥ » Per training-iteration time -
: * Tolerance to inaccurate inference
- * Identifiability ~=~1 hid. layer
| —e-2 hid. 1ayers |
4 ¢ .. —* 4 hid. layers
' —=—8 hid. layers
ozft TR “10 hid. layers |
] 1 i [1 i 1 12 hid. laygrs

60 oo
© Eric Xings@OMU, 2015 7

Inference quality

e Training error is the old concept of a classifier with
no hidden states, no inference is involved, and thus
inference accuracy is not an issue

e But a DNN is not just a classifier, some DNNs are
not even fully supervised, there are MANY hidden
states, why their inference quality is not taken
seriously?

e In DNN, inference accuracy = visualizing features
e Study of inference accuracy is badly discouraged
e Loss/accuracy is not monitored

© Eric Xing @ CMU, 2015 8

Conclusion

e In GM: lots of efforts are directed to improving inference
accuracy and convergence speed

e An advanced tutorial would survey dozen’s of inference algorithms/
theories, but few use cases on empirical tasks

e In DL: most effort is directed to comparing different
architectures and gate functions (based on empirical
performance on a downstream task)

e An advanced tutorial typically consist of a list of all designs of nets,
many use cases, but a single name of algorithm: back prop of SGD

e The two fields are similar at the beginning (energy, structure,
etc.), and soon diverge to their own signature pipelines

e A convergence might be necessary and fruitful

© Eric Xing @ CMU, 2015 9

Hybrids of Graphical Models
and Neural Networks

This lecture is not about a
convergence of the two fields.

Rather, it is about state-of-the-art
collaboration between two
complementary techniques.

Motivation:
Hybrid Models

Graphical models let you | Neural nets are really
encode domain good at fitting the data
knowledge discriminatively to make
good predictions

Could we define a neural net
that incorporates
domain knowledge?

Motivation:
Hybrid Models

Key idea: Use a NN to learn features for a GM,
then train the entire model by backprop

g
A
////@‘A?//\
/ (" N
T e ”
D AR TN
S
HEN II‘ o
A=
lll{
SSvd
[T
EEEE

IS
[TTTTTTT]

12

A Recipe for
Neural Networks

1. Given training data:

{2137;, Y, 7]:\;1

Not a face

2. Choose each of these:
— Decision function

A~ Examples: Linear regression,
y — fg (.’13@) Logistic regression, Neural Network
— Loss function

A Examples: Mean-squared error,
g(y, yz) E R Cross Entropy

A Recipe for
Neural Networks

1. Given training data: 3. Define goal:
{@i Y }is 3
i Yiri=1 " = argmin), Hfo(@i),yy)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (33@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)

~n:VE(fo(xi), ;)

Minimum Bayes Risk Decoding%

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder A(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

A

he (.’,E) — argmin 41y~p9(-|:13) [f(y, y)]
Y

argmin Y pe(y |)((,y)
£ Yy

Minimum Bayes Risk Decoding
ho(w) = argmin By, o) (5 ¥)

Consider some example loss functions:

Minimum Bayes Risk Decoding%

he(x) = argmin Eyp,(.x)[{(Y, Y)]
Yy

Consider some example loss functions:

The Hamming loss corresponds to accuracy and returns the number

of incorrect variable assignments:
v

Uy,y) = Z(l — I(9i, y:))

i=1
The MBR decoder is:

yi = he(x); = arginax pe(Yi |)
Yi

This decomposes across variables and requires the variable
marginals.

— VL fo(xs), y;)

A Recipe for
Graphical Models

1. Given training data: 3. Define goal:
{@i Y }is 3
i Yiri=1 " = argmin), Hfo(@i),yy)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (33@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)

Outline

 Hybrid NN + HMM
— Model: neural net for emissions
— Learning: backprop for end-to-end training
— Experiments: phoneme recognition (Bengio et al., 1992)

HYBRID:
NEURAL NETWORK + HMM

Markov Random Field (M RF)%

Joint distribution over tags Y, and words X;
The individual factors aren’t necessarily probabilities.

1
p(n,v,p,d,n,time,ﬂies,like,an, arrow) = 7(4 *8 * 5 *3 *)
vinp d v n p d
V| 1]/6(34 V| i1]/6|3]|4
ni8(4 204 |n|8(4 2|01
pj1/3/1]3 p|1/3/1]3
do18|0|0 dlo18 0|0
- O O O
Ol v g Ol ©nl o
0] : 0 :
g E ﬁ . ‘gE é .
VI 3|53 Vi3|5]|3
ni4|5|2 ni4, 5 2
p |0.1/0.1] 3 P |0.10.1| 3
d |0.1/0.2/0.1 d |0.1/0.2/0.1

Hidden Markov Model

But sometimes we choose to make them probabilities.
Constrain each row of a factor to sum to one. Now Z = |.

p(n, v, P, d, n, time, flies, like, an, arrow) — %{(3 * 8% 2% .5 *)
vinp d v n p d
v ia|.4l20.3 |[v]|.a].4].2].3
n/.8/.a1/4/o0 |n/.8/.1/.1]0
pl.2/.3/.2].3] |p|-2]|.3].2].3
d .2|.8/0/|0 d .2|.8/0|0

<START>

TER : 8
s=a = ' ==
n|.3|.4/.2 n|.3(.4/.2
pl.1|.1].3 pl.1].1].3
d .1].2].1 d .1].2].1 24

Hybrid: NN + HMM &
Discrete HMM state: S; € {/p/, /t/,/k/,/b/,/d/,..., g/}

Continuous HMM eTmission: Y; e RE
HMM: p(Y,S) = | [(V] Se)p(S:1S:-1)
t=1

L 1

(@ 3, e P g (Ve =)X (Ye =)

Gaussian emission:

p(Ya|Se =) = bis =)

k

a\ 3] \992)

Hybrid: NN + HMM e

Discrete HMM state: S, € {/p/, /t/,/k/.[b/. /d/. [a/} '
Lots of oddities to this picture:

Continuous HMM emission: Y; € R¥

T * Clashing visual notations
HMM: p(Y, S) = Hp(ﬁ|5t)p(5t|5t—1) (ngerzcz;phlcal model vs. neural
= 1z * HMM generates data top-

p(Y2|Se =) = biy = Z ((27)" | = [)1/2 ¢ down, NN generates
bottom-up and they meetin

k
@ @ @ the middle.

* The “observations” of the
HMM are not actually
observed (i.e. x’s appear in
NN only)

Hybrid: NN + HMM

a; ; = p(S¢ =1|Si—1 = J)

ba=pils=0""Hybrid: NN + HMM

Forward-backward algorithm: a “feed-forward”
algorithm for computing alpha-beta probabilities.
oy = PY Land S; =i | model) = b;, Z:“ji”j“*l
j

Bi¢ = P(Y ,Ill Sy = 1 and model) = Z(‘i‘jbj‘wl'j,j.wl

J

. o
Yie = P(S;=1|Y 1 andmodel) = a;, [y

Log-likelihood: a “feed-forward”
objective function.

logp(87 Y) — QEND, T

1. Given training data:
N

2. Choose each es
— Decision f ion

Yy = fo(x;)

— Loss functio

A Recipe for

Decision [Loss Function for
Hybrid NN + HMM

Forward-backward algorithm: a “feed-forward”
algorithm for computing alpha-beta probabilities.
a; . = PY i and Sy =i | model) = b;, 2:(1‘]'1‘(!]“1_1
J
B3¢ = P(Y ,I|| S; = 1 and model) = Z:(’ijb.j.wljj.wl
J
vii. =P(S;=1i|Y {andmodel) = a;,fBis

7 I'T /10T 10 | | NY T

Log-likelihood: a “feed-forward”
objective function.

lng(S, Y) — QEND,T nt)

((y,y,;) € How do we compute ":V(fo(xi),y;)
the gradient?

Training ~ Backpropagation

Backpropagation

is just repeated I

application of the Yy — and U = h(CE‘)

chain rule from
Calculus 101.

30

Training ~ Backpropagation

[(F) Loss]

What does this picture actually mean? J =5y —y9)?

[(E) Output (sigmoid)
Output y \ (V= m
%\ [(D) Output (linear)
D
Hidden Layer Z Z; Zp t b= Zj:O szj
% (C) Hidden (sigmoid)
\ 25 = ma V]
Input X4 X Xg Xy f

[(B) Hidden (linear)
a; = Zi]\io i, YV
[(A) Input]

Given z;, Vi

Training ~ Backpropagation

Case 2:
Neural
Network

Hybrid: NN + HMM

Computing the Gradient: V¢ (fg (:l?z) Y ,L)

33

Hybrid: NN + HMM

Computing the Gradient: V¢ (fg (:l?z) Y ,L)

34

Hybrid: NN + HMM

Computing the Gradient: V¢ (fg (CI}Z) Y ,L)

Hybrid: NN + HMM

Computing the Gradient: V¢ (fg (CI}Z) Y ,L)

Hybrid: NN + HMM

Computing the Gradient: Vf(fg (33@) ; yz)

Forward computation Backward computation
J = lng(S, Y) — QUEND, T dJ — Vit
dbz ,t b,’ {
a; ¢ = ... (forward prob)
= backward prop) Z 4] i
¥ = oo lBEE PTop dyt k db; ¢ dy r
vi.t = . ..(marginals)
- ab; Zr
. . V. = 2 (o) ;k 5O di (i — Yie)) e x.(——(n) S (Ve — k)
The derivative of o TR DR
the log-likelihood 4 _djdy dy _ __ exp(h)
) db dydb’ db (exp(b) + 1)2
with respect to the G_dids b
neural network -@ ag; — dbdp;’ dg;
| dJ _dJjdb &b
parameters. iz dbdz’ dz = 0;
dJ dJdz dz; = exp(a;)

N da; dzjda;’ da; (exp(a;) + 1)2
a; = Z&jil'i dJ . dJ daj daj
1=0

dijZ' dCLj dOéjZ'7 dOéji

Experimental Setup:

Task: Phoneme Recoghnition
(aka. speaker independent
recognition of plosive
sounds)

Eight output labels:
— Ipl, It], [Kl, o], [d], [g], [dx], |

all other phonemes/

— These are the HMM hidden
states

Metric: Accuracy

3 Models:
1. NNonly

2. NN+ HMM
(trained independently)

3. NN+ HMM
(jointly trained)

NN

NN + HMM

Model

NN + HMM
(joint)

Outline

* Background: Recurrent Neural Networks (RNNs)
— Bidirectional RNNs
— Deep Bidirectional RNNs
— Deep Bidirectional LSTMs
— Connection to forward-backward algorithm

BACKGROUND:
RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs)

inputs: x = (x1,22,...,27),2; € R’
hidden units: h = (hy, ho,...,h7),hi € R’

outputs: y = (y1,¥2,---,yr), ¥i € R™
nonlinearity: H

Definition of the RNN:
hy = H Wenze + Whnhi—1 + bp)
Yt — Whyht + by

Recurrent Neural Networks (RNNs)

inputs: x = (21, Z2,...,z7),2; € RY | Definition of the RNN:
hidden units: h = (hy, ko, ..., hy), hi € R | bt = H (Wenze + Whnhi—1 + by)

outputs: y = (y1,¥2,-.-,yr), % € R® | yr = Wpyhe + by,
nonlinearity: H

Recurrent Neural Networks (RNNs)

inputs: x = (21, Z2,...,z7),2; € RY | Definition of the RNN:
hidden units: h = (hy, ko, ..., hy), hi € R | bt = H (Wenze + Whnhi—1 + by)

outputs: y = (y1,¥2,-.-,yr), % € R® | yr = Wpyhe + by,
nonlinearity: H

Recurrent Neural Networks (RNNs)

Definition of the RNN:
he = H(Wenxy + Whnhi—1 + bp)
Yt = Whyht + by

inputs: x = (x1,x2,...,27),2; € R!
hidden units: h = (h1, ha,...,hr), h; € R’

outputs: y = (y1,¥2,...,yr),yi € R®
nonlinearity: H

44

Recurrent Neural Networks (RNNs)

inputs: x = (1, %2, ..., z7),2; € RT | Definition of the RNN:
hidden units: h = (h, ho, ..., he),hi € R7 | e = H (Wenxy + Whnhi—1 + bp)

outputs: y = (y1,¥2,-.-,yr), % € R® | yr = Whyhe + by,
nonlinearity: H

45

Recurrent neural
network:

cangider’
BPTT: e
1. Unroll the W
computation
over time

2. Run
backprop
through the
resulting feed-

- forward
X,

network

inputs:

hidden units:

outputs

nonlinearity:

Bidirectional RNN

Recursive Definition:

X = ($17$27 . JxT)axi S RI N N
R~ Bo=H(W,po+ Woph+bp

%
:y:(ylawa--ny),yiERK ht:H(Wx%xt_FW(ﬁ% t—{—l"‘b(ﬁ

Bidirectional RNN

Recursive Definition:

inputs: x = (z1,22,...,27),T; e R! N N
% p—
hidden units: h and (H hy="H (Wwﬁxt + Wﬁﬁ fria+ bﬁ)

— —
outputs: y = (y1,y2,-..,yr),yi €R* | he=H (Wx%xt + Wos hia + b%)

nonlinearity:

X

> ¢
yt:Wﬁyht—'—W(ﬁyht_*_by

< < < <
r+++

Bidirectional RNN

Recursive Definition:

inputs: x = (z1,22,...,27),T; e R! N N
% p—
hidden units: h and (H hy="H (Wwﬁxt + Wﬁﬁ fria+ bﬁ)

— —
outputs: y = (y1,y2,-..,yr),yi €R* | he=H (Wx%xt + Wos hia + b%)

nonlinearity:

X

> ¢
yt:Wﬁyht—'—W(ﬁyht_*_by

< < < <
r+++

Bidirectional RNN

Recursive Definition:

inputs: x = (z1,22,...,27),%; € R N —
he=H (Wxﬁfﬂt +Woo hir + bﬁ)

%
hidden units: h and E
— —
outputs: y = (y1,¥2,...,yr), 4 €ER* | hi=™H (Wml’t + Wos by + b%)

nonlinearity:

X

— —
ytZWﬁyht-l-W%yht-l—by

rl /|

50

Deep RNNSs

inputs: x = (21,22, ...,27),T; € RI Recursive Definition:

outputs: y = (y1,¥2,---,yr),¥i € R™ P =M (Whn-1pnhy ™ 4+ Whapn by + b}Y)

nonlinearity: H

Y = WhNyhiV + by

- Yt Yt [

s Lt—1 Lt Lt41 - - -

: .
Figure from (Graves et al., 2013)

Deep Bidirectional RNNs

inputs: x = (r1,22,...,27),%; € RI

outputs: y = (y1,92,...,yr), ¥ € R®
nonlinearity: H

Figure from (Graves et al., 2013)

52

Long Short-Term Memory (LSTM)

Motivation:

* Standard RNNs have trouble learning long
distance dependencies

e LSTMs combat this issue

Long Short-Term Memory (LSTM)

Motivation:
* Vanishing gradient problem for Standard RNNs

* Figure shows sensitivity (darker = more sensitive) to the input at
time t=1

Qutputs ’ Q | [..f { . .)
'._l-. -K._‘ ~ ‘ 4 ‘ “A
-) - | - - - !

¥ 4 'y P o i A

Figure from (Graves, 2012)

54

Long Short-Term Memory (LSTM)

Motivation:
e LSTM units have arich internal structure

* The various “gates” determine the propagation of information
and can choose to “remember” or “forget” information

TITTITTY

over ‘* -0 ‘* ‘*O‘* Q

e b b4

Time

Figure from (Graves, 2012)

Lon
g Sho
rt-
Term Mem
ory (L
STM)

56

Long Short-Term Memory (LSTM)

Tt Lt

L
/7

it = 0 (Waize + Whihe—1 + Weici—1 + b;)

ft =0 Wypze + Whrhi—1 + Weper—1 + by)
ct = frci—1 + iy tanh (Wiexy + Wihchi—1 + be)
or = 0 (Waoxs + Whohi—1 + Weocr + by)

h: = o tanh(cy)
Figure from (Graves et al., 2013)

57

Lon
g Sho
rt-
Term Mem
ory (L
STM)

58

* Figure: input/output
layers not shown

* Same general
topology as a Deep
Bidirectional RNN,

Deep Bidirectional LSTM (DBLSTM)
but with LSTM units

T %

% \T in the hidden layers
/

¥

T

A

i * No additional
/ representational
power over DBRNN,
- but easier to learn in

T practice

How important is this
particular architecture?

T

Jozefowicz et al. (2015)
evaluated 10,000

Deep Bidirectional LSTM (DBLSTM)
different LSTM-like

T %

%‘ \T architectures and
/

g

A

that worked just as
well on several tasks.

N
/ found several variants

—»

T

Outline

* Hybrid RNN + HMM

— Model: neural net for emissions
— Experiments: phoneme recognition (Graves et al., 2013)

HYBRID:
RNN + HMM

Hybrid: RNN + HMM ¢ ‘
@ @ @ Graves et al.

(2013) uses a
Deep

@ @ @ Bidirectional
LSTM
/N /N /N
VAN AN

AN Each hidden unit
L N\ L N L _—— N isan LSTM

Deep = More
1 than two layers

AN
I
|/
/

S ABs
1
a

ot 7’0\33

Hybrid: RNN + HMM &

The model, inference, and
learning can be analogous to
our NN + HMM hybrid O—O—O—E

* Objective: log-likelihood @ ® ® ©

* Model: HMM/Gaussian
emissions

* Inference: forward-
backward algorithm

* Learning: SGD with
gradient by
backpropagation

0\3\
ves exals >
(o

Experimental Setup:

* Task: Phoneme Recognition

e Dataset: TIMIT
* Metric: Phoneme

Error Rate

* Two classes of models:

1. Neural Net only
2. NN+ HMM hybrids

Hybrid: RNN + HMM

TRAINING METHOD TEST PER

CTC 21.57 £ 0.25
CTC (NOISE) 18.63 & 0.16
TRANSDUCER 18.07 = 0.24

1. Neural Net only

NETWORK DEV PER
TEST PER
19.91 +£0.22
DBRNN 21.92 +£0.35
17.44 4+ 0.156
DBLSTM 19.34 +£ 0.15
DBLSTM 16.11 £ 0.15
(NOISE) 17.99 £+ 0.13

2. NN + HMM hybrids

Outline

* Hybrid CNN + CRF
— Model: neural net for factors
— Experiments: natural language tasks (Collobert & Weston, 2011)
— Experiments: pose estimation

HYBRID:
CNN + CRF

Markov Random Field (M RF)%

Joint distribution over tags Y, and words X;

1
p(n,v,p,d,n,time,ﬂies,like,an, arrow) = 7(4 *8 * 5 *3 *)
vinp d v n p d
V| 1]/6(34 V| i1]/6|3]|4
ni8(4 204 |n|8(4 2|01
pj1/3/1]3 p|1/3/1]3
do18|0|0 dlo18 0|0
- O O O
Ol v g Ol ©nl o
0] : 0 :
g E ﬁ . ‘gE é .
VI 3|53 Vi3|5]|3
ni4|5|2 ni4, 5 2
p |0.1/0.1] 3 P |0.10.1| 3
d |0.1/0.2/0.1 d |0.1/0.2/0.1

Conditional Random Field (CRF%

Conditional distribution over tags Y, given words x..
The factors and Z are now specific to the sentence x.

p(n, Vv, p,d, n | time, flies, like, an, arrow) = % (4 *8 * 5 * 3 *)

Hybrid: Neural Net + CRF

* |n astandard CRF, each of the factor cells is a
parameter (e.g. transition or emission)

* Inthe hybrid model, these values are computed
by a neural network with its own parameters

Hybrid: Neural Net + CRF

Forward computation

(Co\\obeﬁ

Hybrid: CNN + CRF

Input Sentence

Text The cat sat on the mat
Featgrel ' wi wd o wh v
Featl;reK § wf wf w{\i §
v
Lookup Table v
For computer [T A D D D D D D D D
vision, : :
Convolutional
Neural Networks '
are in 2-dimensions
e For natural
language, the CNN
is 1-dimensional
\ ; 9
Max Over Time v
Linear .---"" Tt v
M? xc; ANS
,,/—’H —
HardTanh v
-/ NS
A
Linear | .--oo00 000ttt et - v
Mx6 My I

Figure from (Collobert & Weston, 2011)

Hybrid: CNN + CRF

Input Sentence

Text The cat sat on the mat
Feature 1 v wlowh wy g
. S S
. I I
Feature K S o wlf g

“NN + SLL” Lookup Table ’

e Model: Convolutional e
Neural Network o !
(CNN) with linear-
chain CRF

* Training objective: =
maximize sentence- R — Ly m—
level likelihood (SLL) T :

73
Figure from (Collobert & Weston, 2011)

oM
west
(’o\\O‘oe\’
(.
Hybrid: CNN + CRF
[
Input Sentence
Text The cat sat on the mat
Feat el ;u ’U/']L ur; u1\ ‘tl
« ” Feature K : wft f
N N + WLL Lookup Table

* Model: Convolutional
Neural Network

me B BEEEEBE

v
(CNN) with logistic
regression
* Training objective: 77 e
maximize word-level IR E ’
likelihood (WLL) T :
T oYU — ’

Figure from (Collobert & Weston, 2011)

Experimental Setup:

* Tasks:
— Part-of-speech tagging (POS),
— Noun-phrase and Verb-phrase Chunking,
— Named-entity recognition (NER)
— Semantic Role Labeling (SRL)
* Datasets [Metrics: Standard setups from NLP
literature (higher PWA/F1 is better)

e Models:

— Benchmark systems are typical - non-neural
network systems

— NN+WLL: hybrid CNN with logistic regression

Hybrid: CNN + CRF

— NN+SLL: hybrid CNN with linear-chain CRF

Approach POS | Chunking | NER | SRL

(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 | 77.92
NN+WLL 96.31 89.13 79.53 | 55.40
NN+SLL 96.37 90.33 81.47 | 70.99

Experimental Setup: 100
* Task: pose estimation
* Model: Deep CNN + MRF

Detection rate
(@)]
o

Part—-Model
Part and Spatial-Model |
Joint Training

0 2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels)

76

Outline

Tricks of the Trade

TRICKS OF THE TRADE

Backprop in Practice | Y LeCun
. | MA Ranzato

@l Use RelU non-linearities (tanh and logistic are falling out of favor)
Use cross-entropy loss for classification

8 Use Stochastic Gradient Descent on minibatches

Shuffle the training samples

@ Normalize the input variables (zero mean, unit variance)

Schedule to decrease the learning rate

Ml Use a bit of L1 or L2 reqgularization on the weights (or a combination)
» But it's best to turn it on after a couple of epochs

@l Use “dropout” for regularization
» Hinton et al 2012 http://arxiv.org/abs/1207.0580

@ Lots more in [LeCun et al. “Efficient Backprop” 1998]

@ Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Miiller (Springer)

© Eric Xing @ CMU, 2015 79

Deep Learning Tricks of the Trade

* Y. Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training f
Stochastic gradient descent and setting learning rates

Main hyper-parameters
* Learning rate schedule & early stopping
* Minibatches
e Parameter initialization
* Number of hidden units
* L1 or L2 weight decay
» Sparsity regularization

Debugging = use finite difference gradient checks

How to efficiently search for hyper-parameter configurations

205
Slide from Socher, MLSS 2014

Tricks of the Trade

Lots of them:
— Pre-training helps (but isn’t always necessary)

— Train with adaptive gradient variants of SGD (e.g.
AdaGrad, AdaDelta)

— Use max-margin loss function (i.e. hinge loss) - though
only sub-differentiable it often gives better results

A few years back, they were considered “poorly
documented” and “requiring great expertise”

Now there are lots of good tutorials that describe
(very important) specific implementation details

Many of them also apply to training graphical
models!

SUMMARY

Summary:
Hybrid Models

Graphical models let you | Neural nets are really
encode domain good at fitting the data
knowledge discriminatively to make
good predictions

Could we define a neural net
that incorporates
domain knowledge?

Summary:
Hybrid Models

Key idea: Use a NN to learn features for a GM,
then train the entire model by backprop

i
X SV
PPN
K/ '\;
D AR TN
B NN
HEN II. o
A=
III{
SSvd
[T
[LLL]
IRSSS

84

