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Reminders	
  

•  HW4:	
  due	
  April	
  27	
  
•  Project	
  presentations:	
  April	
  29	
  

– Location:	
  Baker	
  Hall	
  A51	
  
– Session	
  1:	
  8:30	
  -­‐	
  12:30	
  (4	
  hrs)	
  
– Lunch	
  break:	
  12:30	
  -­‐	
  1:30	
  (1	
  hr)	
  
– Session	
  2:	
  1:30	
  -­‐	
  5:00	
  (3.5	
  hrs)	
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Outline	
  
•  Motivation	
  
•  Hybrid	
  NN	
  +	
  HMM	
  	
  

–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Learning:	
  backprop	
  for	
  end-­‐to-­‐end	
  training	
  
–  Experiments:	
  phoneme	
  recognition	
  (Bengio	
  et	
  al.,	
  1992)	
  

•  Background:	
  Recurrent	
  Neural	
  Networks	
  (RNNs)	
  
–  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  LSTMs	
  
–  Connection	
  to	
  forward-­‐backward	
  algorithm	
  

•  Hybrid	
  RNN	
  +	
  HMM	
  
–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Experiments:	
  phoneme	
  recognition	
  (Graves	
  et	
  al.,	
  2013)	
  

•  Hybrid	
  CNN	
  +	
  CRF	
  
–  Model:	
  neural	
  net	
  for	
  factors	
  
–  Experiments:	
  natural	
  language	
  tasks	
  (Collobert	
  &	
  Weston,	
  2011)	
  
–  Experiments:	
  	
  pose	
  estimation	
  

•  Tricks	
  of	
  the	
  Trade	
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MOTIVATION	
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© Eric Xing @ CMU, 2015 5 

DL ML (e.g., GM) 

Empirical goal:  e.g., classification, feature 
learning 

e.g., transfer learning, latent 
variable inference 

Structure: Graphical Graphical 
 

Objective: Something aggregated from 
local functions 

Something aggregated from local 
functions  

Vocabulary:  Neuron, activation/gate function 
…  

Variables, potential function 

Algorithm: A single, unchallenged, 
inference algorithm -- BP 

A major focus of open research, 
many algorithms, and more to 
come 

Evaluation:  On a black-box score -- end 
performance 

On almost every intermediate 
quantity 

Implementation: Many untold-tricks More or less standardized  

Experiments: Massive, real data (GT 
unknown) 

Modest, often simulated data 
(GT known) 

<= ?>



A slippery slope to mythology? 
l  How to conclusively determine what an improve in 

performance could come from:  
l  Better model (architecture, activation, loss, size)? 
l  Better algorithm (more accurate, faster convergence)? 
l  Better training data? 

l  Current research in DL seem to get everything 
above mixed by evaluating on a black-box 
“performance score” that is not directly reflecting  
l  Correctness of inference 
l  Achievability/usefulness of model 
l  Variance due to stochasticity 

© Eric Xing @ CMU, 2015 6 



Although a single dimension (# of layers) is 
compared, many other dimensions may also 
change, to name a few: 
 
•  Per training-iteration time 
•  Tolerance to inaccurate inference 
•  Identifiability   
•  … 

An Example 

© Eric Xing @ CMU, 2015 7 



Inference quality 
l  Training error is the old concept of a classifier with 

no hidden states, no inference is involved, and thus 
inference accuracy is not an issue 

l  But a DNN is not just a classifier, some DNNs are 
not even fully supervised, there are MANY hidden 
states, why their inference quality is not taken 
seriously? 

l  In DNN, inference accuracy = visualizing features 
l  Study of inference accuracy is badly discouraged 
l  Loss/accuracy is not monitored  

© Eric Xing @ CMU, 2015 8 



Conclusion 
l  In GM: lots of efforts are directed to improving inference 

accuracy and convergence speed 
l  An advanced tutorial would survey dozen’s of inference algorithms/

theories, but few use cases on empirical tasks 

l  In DL: most effort is directed to comparing different 
architectures and gate functions (based on empirical 
performance on a downstream task) 
l  An advanced tutorial typically consist of a list of all designs of nets, 

many use cases, but a single name of algorithm: back prop of SGD 

l  The two fields are similar at the beginning (energy, structure, 
etc.), and soon diverge to their own signature pipelines 

l  A convergence might be necessary and fruitful  

© Eric Xing @ CMU, 2015 9 



Hybrids	
  of	
  Graphical	
  Models	
  	
  
and	
  Neural	
  Networks	
  

This	
  lecture	
  is	
  not	
  about	
  a	
  
convergence	
  of	
  the	
  two	
  fields.	
  	
  
	
  
Rather,	
  it	
  is	
  about	
  state-­‐of-­‐the-­‐art	
  
collaboration	
  between	
  two	
  
complementary	
  techniques.	
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Motivation:	
  	
  
Hybrid	
  Models	
  

Graphical	
  models	
  let	
  you	
  
encode	
  domain	
  
knowledge	
  

Neural	
  nets	
  are	
  really	
  
good	
  at	
  fitting	
  the	
  data	
  
discriminatively	
  to	
  make	
  
good	
  predictions	
  

11	
  

Could	
  we	
  define	
  a	
  neural	
  net	
  	
  
that	
  incorporates	
  	
  

domain	
  knowledge?	
  

…	
  

…	
  

…	
  



Motivation:	
  	
  
Hybrid	
  Models	
  

Key	
  idea:	
  Use	
  a	
  NN	
  to	
  learn	
  features	
  for	
  a	
  GM,	
  
then	
  train	
  the	
  entire	
  model	
  by	
  backprop	
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…	
  

…	
  

…	
  

…"

…"

…"

…"

…"

…"

…"

Chart parser: 



A	
  Recipe	
  for	
  	
  
Neural	
  Networks	
  

1.	
  Given	
  training	
  data:	
  

13	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

Face	
   Face	
   Not	
  a	
  face	
  

Examples:	
  Linear	
  regression,	
  
Logistic	
  regression,	
  Neural	
  Network	
  

Examples:	
  Mean-­‐squared	
  error,	
  
Cross	
  Entropy	
  



A	
  Recipe	
  for	
  	
  
Neural	
  Networks	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  



A	
  Recipe	
  for	
  	
  
Machine	
  Learning	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Today’s	
  Lecture	
  
•  Suppose	
  our	
  decision	
  function	
  is	
  a	
  graphical	
  

model!	
  
•  We	
  know	
  how	
  to	
  compute	
  marginal	
  probabilities	
  

(inference),	
  but	
  how	
  to	
  do	
  make	
  a	
  prediction,	
  y?	
  



Minimum	
  Bayes	
  Risk	
  Decoding	
  
•  Suppose	
  we	
  given	
  a	
  loss	
  function	
  l(y’, y)	
  and	
  are	
  

asked	
  for	
  a	
  single	
  tagging	
  
•  How	
  should	
  we	
  choose	
  just	
  one	
  from	
  our	
  probability	
  

distribution	
  p(y|x)?	
  
•  A	
  minimum	
  Bayes	
  risk	
  (MBR)	
  decoder	
  h(x)	
  returns	
  

the	
  variable	
  assignment	
  with	
  minimum	
  expected	
  loss	
  
under	
  the	
  model’s	
  distribution	
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h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Recall…	
  



The	
  0-1	
  loss	
  function	
  returns	
  1	
  only	
  if	
  the	
  two	
  assignments	
  
are	
  identical	
  and	
  0	
  otherwise:	
  
	
  
	
  
The	
  MBR	
  decoder	
  is:	
  
	
  
	
  
	
  
	
  
	
  
which	
  is	
  exactly	
  the	
  MAP	
  inference	
  problem!	
  
	
  

Minimum	
  Bayes	
  Risk	
  Decoding	
  

Consider	
  some	
  example	
  loss	
  functions:	
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`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin

ŷ

X

y

p✓(y | x)(1� I(ˆy,y))

= argmax

ŷ
p✓(ˆy | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Recall…	
  



The	
  Hamming	
  loss	
  corresponds	
  to	
  accuracy	
  and	
  returns	
  the	
  number	
  
of	
  incorrect	
  variable	
  assignments:	
  
	
  
	
  
	
  
The	
  MBR	
  decoder	
  is:	
  
	
  
	
  
	
  
	
  
This	
  decomposes	
  across	
  variables	
  and	
  requires	
  the	
  variable	
  
marginals.	
  
	
  

Minimum	
  Bayes	
  Risk	
  Decoding	
  

Consider	
  some	
  example	
  loss	
  functions:	
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`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax

ŷi

p✓(ŷi | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Recall…	
  



A	
  Recipe	
  for	
  	
  
Machine	
  Learning	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Today’s	
  Lecture	
  
•  Suppose	
  our	
  decision	
  function	
  is	
  a	
  graphical	
  

model!	
  
•  We	
  know	
  how	
  to	
  compute	
  marginal	
  probabilities	
  

(inference),	
  but	
  how	
  to	
  do	
  make	
  a	
  prediction,	
  y?	
  

•  Can	
  we	
  use	
  an	
  MBR	
  decoder	
  as	
  the	
  
decision	
  function	
  in	
  this	
  recipe?	
  



A	
  Recipe	
  for	
  	
  
Graphical	
  Models	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  



Outline	
  
•  Motivation	
  
•  Hybrid	
  NN	
  +	
  HMM	
  	
  

–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Learning:	
  backprop	
  for	
  end-­‐to-­‐end	
  training	
  
–  Experiments:	
  phoneme	
  recognition	
  (Bengio	
  et	
  al.,	
  1992)	
  

•  Background:	
  Recurrent	
  Neural	
  Networks	
  (RNNs)	
  
–  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  LSTMs	
  
–  Connection	
  to	
  forward-­‐backward	
  algorithm	
  

•  Hybrid	
  RNN	
  +	
  HMM	
  
–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Experiments:	
  phoneme	
  recognition	
  (Graves	
  et	
  al.,	
  2013)	
  

•  Hybrid	
  CNN	
  +	
  CRF	
  
–  Model:	
  neural	
  net	
  for	
  factors	
  
–  Experiments:	
  natural	
  language	
  tasks	
  (Collobert	
  &	
  Weston,	
  2011)	
  
–  Experiments:	
  	
  pose	
  estimation	
  

•  Tricks	
  of	
  the	
  Trade	
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HYBRID:	
  	
  
NEURAL	
  NETWORK	
  +	
  HMM	
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Markov	
  Random	
  Field	
  (MRF)	
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time flies like an arrow 

n ψ2 v ψ4 p ψ6 d ψ8 n 

ψ1 ψ3 ψ5 ψ7 ψ9 

ψ0 <START> 

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (4	
  *	
  8	
  *	
  5	
  *	
  3	
  *	
  …)	
  

v n p d 
v 1	
   6	
   3	
   4	
  
n 8	
   4	
   2	
   0.1	
  
p 1	
   3	
   1	
   3	
  
d 0.1	
   8	
   0	
   0	
  

v n p d 
v 1	
   6	
   3	
   4	
  
n 8	
   4	
   2	
   0.1	
  
p 1	
   3	
   1	
   3	
  
d 0.1	
   8	
   0	
   0	
  

ti
m

e 
fl

ie
s 

lik
e 

…
 

v 3	
   5	
   3	
  
n 4	
   5	
   2	
  
p 0.1	
  0.1	
   3	
  
d 0.1	
  0.2	
  0.1	
  

ti
m

e 
fl

ie
s 

lik
e 

…
 

v 3	
   5	
   3	
  
n 4	
   5	
   2	
  
p 0.1	
  0.1	
   3	
  
d 0.1	
  0.2	
  0.1	
  

Joint	
  distribution	
  over	
  tags	
  Yi and	
  words	
  Xi	
  
The	
  individual	
  factors	
  aren’t	
  necessarily	
  probabilities.	
  

Recall…	
  



time flies like an arrow 

n v p d n <START> 

Hidden	
  Markov	
  Model	
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But	
  sometimes	
  we	
  choose	
  to	
  make	
  them	
  probabilities.	
  	
  	
  
Constrain	
  each	
  row	
  of	
  a	
  factor	
  to	
  sum	
  to	
  one.	
  	
  Now	
  Z = 1.	
  

v n p d 
v .1	
   .4	
   .2	
   .3	
  
n .8	
   .1	
   .1	
   0	
  
p .2	
   .3	
   .2	
   .3	
  
d .2	
   .8	
   0	
   0	
  

v n p d 
v .1	
   .4	
   .2	
   .3	
  
n .8	
   .1	
   .1	
   0	
  
p .2	
   .3	
   .2	
   .3	
  
d .2	
   .8	
   0	
   0	
  

ti
m

e 
fl

ie
s 

lik
e 

…
 

v .2	
   .5	
   .2	
  
n .3	
   .4	
   .2	
  
p .1	
   .1	
   .3	
  
d .1	
   .2	
   .1	
  

ti
m

e 
fl

ie
s 

lik
e 

…
 

v .2	
   .5	
   .2	
  
n .3	
   .4	
   .2	
  
p .1	
   .1	
   .3	
  
d .1	
   .2	
   .1	
  

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3	
  *	
  .8	
  *	
  .2	
  *	
  .5	
  *	
  …)	
  

Recall…	
  



Gaussian	
  emission:	
  

p(Yt|St = i) =

Hybrid:	
  NN	
  +	
  HMM	
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Y1 Y2 Y3 Y4 Y5 

S1 S2 S3 S4 S5 

Discrete HMM state: St � {/p/, /t/, /k/, /b/, /d/, . . . , /g/}
Continuous HMM emission: Yt � RK

HMM: p( , ) =
T�

t=1

p(Yt|St)p(St|St�1)

…

…

…

…

…

…

…	
  

(Beng
io	
  et	
  a

l.,	
  199
2)	
  



(Beng
io	
  et	
  a

l.,	
  199
2)	
  

Gaussian	
  emission:	
  

p(Yt|St = i) =

Hybrid:	
  NN	
  +	
  HMM	
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Y1 Y2 Y3 Y4 Y5 

S1 S2 S3 S4 S5 

Discrete HMM state: St � {/p/, /t/, /k/, /b/, /d/, . . . , /g/}
Continuous HMM emission: Yt � RK

HMM: p( , ) =
T�

t=1

p(Yt|St)p(St|St�1)

…

…

…

…

…

…

…	
  

Lots	
  of	
  oddities	
  to	
  this	
  picture:	
  
•  Clashing	
  visual	
  notations	
  

(graphical	
  model	
  vs.	
  neural	
  
net)	
  

•  HMM	
  generates	
  data	
  top-­‐
down,	
  NN	
  generates	
  
bottom-­‐up	
  and	
  they	
  meet	
  in	
  
the	
  middle.	
  

•  The	
  “observations”	
  of	
  the	
  
HMM	
  are	
  not	
  actually	
  
observed	
  (i.e.	
  x’s	
  appear	
  in	
  
NN	
  only)	
  

	
  
So	
  what	
  are	
  we	
  missing?	
  



Hybrid:	
  NN	
  +	
  HMM	
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Y1 Y2 Y3 Y4 Y5 

S1 S2 S3 S4 S5 

…

…

…

…

…

…

…	
  



ai,j = p(St = i|St�1 = j)

bi,t = p(Yt|St = i) Hybrid:	
  NN	
  +	
  HMM	
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…

…

…

…

…

…

…	
  

Y1 Y2 Y3 Y4 Y5 

S1 S2 S3 S4 S5 

Forward-­‐backward	
  algorithm:	
  a	
  “feed-­‐forward”	
  
algorithm	
  for	
  computing	
  alpha-­‐beta	
  probabilities.	
  	
  

Log-­‐likelihood:	
  a	
  “feed-­‐forward”	
  
objective	
  function.	
  

p( , ) = �END,T



A	
  Recipe	
  for	
  	
  
Graphical	
  Models	
  

1.	
  Given	
  training	
  data:	
  
3.	
  Define	
  goal:	
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2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Log-­‐likelihood:	
  a	
  “feed-­‐forward”	
  
objective	
  function.	
  

p( , ) = �END,T

Decision	
  /	
  Loss	
  Function	
  for	
  
Hybrid	
  NN	
  +	
  HMM	
  

Forward-­‐backward	
  algorithm:	
  a	
  “feed-­‐forward”	
  
algorithm	
  for	
  computing	
  alpha-­‐beta	
  probabilities.	
  	
  

How	
  do	
  we	
  compute	
  
the	
  gradient?	
  



Backpropagation	
  

30	
  

Training	
  

Backpropagation	
  
is	
  just	
  repeated	
  
application	
  of	
  the	
  
chain	
  rule	
  from	
  
Calculus	
  101.	
  

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:
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x to J , but also a manner of carrying out that computation in terms of the intermediate
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network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2
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(F) Loss
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)
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, 8j

(B) Hidden (linear)
aj =
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↵jixi, 8j

(A) Input
Given xi, 8i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

go into some detail here in order to facilitate connections with backpropagation through in-
ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such
as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5
and Chapter 6 for approximation-aware training.

2.2.1 Topologies
A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =

h
✓

(x) where x is termed the input layer and y the output layer. A feed-forward neural
network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network
consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the
output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural
network are a matrix ↵ and a vector �.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1
(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-
nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function �(a) =

1

1+exp(a)

element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,
first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-
ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss
J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping
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The backward pass computes dJ
d✓j

8j.
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2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).
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Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.
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2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).
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2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).
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2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).
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lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
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matrix ↵ (parameters for the hidden layer).
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  NN	
  +	
  HMM	
  
Experimental	
  Setup:	
  
•  Task:	
  Phoneme	
  Recognition	
  

(aka.	
  speaker	
  independent	
  
recognition	
  of	
  plosive	
  
sounds)	
  

•  Eight	
  output	
  labels:	
  	
  
–  /p/,	
  /t/,	
  /k/,	
  /b/,	
  /d/,	
  /g/,	
  /dx/,	
  /

all	
  other	
  phonemes/	
  
–  These	
  are	
  the	
  HMM	
  hidden	
  

states	
  
•  Metric:	
  Accuracy	
  
•  3	
  Models:	
  

1.  NN	
  only	
  
2.  NN	
  +	
  HMM	
  	
  

(trained	
  independently)	
  
3.  NN	
  +	
  HMM	
  	
  

(jointly	
  trained)	
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Outline	
  
•  Motivation	
  
•  Hybrid	
  NN	
  +	
  HMM	
  	
  

–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Learning:	
  backprop	
  for	
  end-­‐to-­‐end	
  training	
  
–  Experiments:	
  phoneme	
  recognition	
  (Bengio	
  et	
  al.,	
  1992)	
  

•  Background:	
  Recurrent	
  Neural	
  Networks	
  (RNNs)	
  
–  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  RNNs	
  
–  Deep	
  Bidirectional	
  LSTMs	
  
–  Connection	
  to	
  forward-­‐backward	
  algorithm	
  

•  Hybrid	
  RNN	
  +	
  HMM	
  
–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Experiments:	
  phoneme	
  recognition	
  (Graves	
  et	
  al.,	
  2013)	
  

•  Hybrid	
  CNN	
  +	
  CRF	
  
–  Model:	
  neural	
  net	
  for	
  factors	
  
–  Experiments:	
  natural	
  language	
  tasks	
  (Collobert	
  &	
  Weston,	
  2011)	
  
–  Experiments:	
  	
  pose	
  estimation	
  

•  Tricks	
  of	
  the	
  Trade	
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are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :

h
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT
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(y1, . . . , yT ) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
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is the
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
  of	
  the	
  RNN:	
  inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2 

h2 

y2 

x3 

h3 

y3 

x4 

h4 

y4 

x5 

h5 

y5 



Recurrent	
  Neural	
  Networks	
  (RNNs)	
  

43	
  

x1 

h1 

y1 

are given in Section 7.

2. NETWORK ARCHITECTURE
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rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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by iterating the backward layer from t = T to 1, the forward
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units:
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h and

��
h

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

h1 

x2 

h2 

y2 

h2 

x3 

h3 

y3 

h3 

x4 

h4 

y4 

h4 



Bidirectional	
  RNN	
  

49	
  

x1 

h1 

y1 

Recursive	
  Definition:	
  

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT ) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh
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(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is hidden bias vector) and H is the hidden layer func-
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t
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k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W
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) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is hidden bias vector) and H is the hidden layer func-
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,
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by iterating the backward layer from t = T to 1, the forward
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
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Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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2. NETWORK ARCHITECTURE
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), a standard recur-
rent neural network (RNN) computes the hidden vector se-
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where the W terms denote weight matrices (e.g. W
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is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b
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is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences
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n and
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n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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by iterating the backward layer from t = T to 1, the forward
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
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h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
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zt
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Which leads to the following error derivatives at the output
layer
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where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y
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through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =
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H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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where we define h

0
= x. The network outputs y

t

are
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh

units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10�4, momentum 0.9 and random initial weights
drawn uniformly from [�0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
in total. A biphone language model was estimated on the
training set, and a simple GMM-HMM system was used to
provide forced alignments. The posterior state probabilities
provided by the networks were not divided by the state oc-
cupancy priors, as this has been found to make no difference
on TIMIT [6]. Table 2 shows the phoneme error rates for
hybrid training with DBLSTM and Deep Bidirectional RNN
(DBRNN), along with the frame error rate (FER) and cross-
entropy error (CE) in units of nats per frame. The DBLSTM
networks had the same architecture as the CTC networks
described above, except that the output layer had 183 units
(one for each HMM state). As before, each randomly ini-
talised LSTM network was first trained to convergence, then
retrained with weight noise. The DBRNN network had 5
bidirectional levels with 500 tanh units in each, giving it ap-
proximately the same number of weights as the DBLSTM
networks. Retraining with weight noise was not found to
be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
is the best TIMIT result we know of in the literature. The
DBLSTM result without weight noise is better than the CTC

Table 1. TIMIT Results with End-To-End Training.

TRAINING METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2. TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN 19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM 17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

result without noise, and the DBRNN hybrid result is much
better than the DBRNN CTC result of 37.6 quoted in [1].

5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were
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be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
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5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were

vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh

units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10�4, momentum 0.9 and random initial weights
drawn uniformly from [�0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
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Experimental	
  Setup:	
  
•  Tasks:	
  	
  

–  Part-­‐of-­‐speech	
  tagging	
  (POS),	
  	
  
–  Noun-­‐phrase	
  and	
  Verb-­‐phrase	
  Chunking,	
  	
  
–  Named-­‐entity	
  recognition	
  (NER)	
  
–  Semantic	
  Role	
  Labeling	
  (SRL)	
  

•  Datasets	
  /	
  Metrics:	
  Standard	
  setups	
  from	
  NLP	
  
literature	
  (higher	
  PWA/F1	
  is	
  better)	
  

•  Models:	
  
–  Benchmark	
  systems	
  are	
  typical	
  –	
  non-­‐neural	
  

network	
  systems	
  
–  NN+WLL:	
  hybrid	
  CNN	
  with	
  logistic	
  regression	
  
–  NN+SLL:	
  hybrid	
  CNN	
  with	
  linear-­‐chain	
  CRF	
  

(Collo
bert	
  &

	
  Weston
,	
  2011)

	
  

ar
Xi
v

Natural Language Processing (almost) from Scratch

Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a
vanilla neural network (NN) approach, on POS, chunking, NER and SRL tasks. We report
results with both the word-level log-likelihood (WLL) and the sentence-level log-likelihood
(SLL). Generalization performance is reported in per-word accuracy rate (PWA) for POS
and F1 score for other tasks. The NN results are behind the benchmark results, in Section 4
we show how to improve these models using unlabeled data.

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS d

win

= 5 d

0 = 50 d

1 = 5 n

1

hu

= 300 � = 0.01

CHUNK ” ” ” ” ”

NER ” ” ” ” ”

SRL ” ” ”
n

1

hu

= 300

n

2

hu

= 500
”

Table 5: Hyper-parameters of our networks. We report for each task the window size
(or convolution size), word feature dimension, capital feature dimension, number of hidden
units and learning rate.

compute derivatives with respect to its inputs and with respect to its trainable parameters,
as proposed by Bottou and Gallinari (1991). This allows us to easily build variants of our
networks. For details about gradient computations, see Appendix A.

Remark 7 (Tricks) Many tricks have been reported for training neural networks (LeCun
et al., 1998). Which ones to choose is often confusing. We employed only two of them: the
initialization and update of the parameters of each network layer were done according to
the “fan-in” of the layer, that is the number of inputs used to compute each output of this
layer (Plaut and Hinton, 1987). The fan-in for the lookup table (1), the l

th linear layer (4)
and the convolution layer (6) are respectively 1, nl�1

hu

and d

win

⇥n

l�1

hu

. The initial parameters
of the network were drawn from a centered uniform distribution, with a variance equal to
the inverse of the square-root of the fan-in. The learning rate in (17) was divided by the
fan-in, but stays fixed during the training.

3.4 Supervised Benchmark Results

For POS, chunking and NER tasks, we report results with the window architecture described
in Section 3.2.1. The SRL task was trained using the sentence approach (Section 3.2.2).
Results are reported in Table 4, in per-word accuracy (PWA) for POS, and F1 score for all

17
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Experimental	
  Setup:	
  
•  Task:	
  pose	
  estimation	
  
•  Model:	
  Deep	
  CNN	
  +	
  MRF	
  

(Thom
pson	
  

et	
  al.,
	
  2014)

	
  

The impact of the number of resolution banks is shown in Fig 8c). As expected, we see a big
improvement when multiple resolution banks are added. Also note that the size of the receptive
fields as well as the number and size of the pooling stages in the network also have a large impact on
the performance. We tune the network hyper-parameters using coarse meta-optimization to obtain
maximal validation set performance within our computational budget (less than 100ms per forward-
propagation).

Fig 9 shows the predicted joint locations for a variety of inputs in the FLIC and LSP test-sets. Our
network produces convincing results on the FLIC dataset (with low joint position error), however,
because our simple Spatial-Model is less effective for a number of the highly articulated poses in
the LSP dataset, our detector results in incorrect joint predictions for some images. We believe that
increasing the size of the training set will improve performance for these difficult cases.

Figure 9: Predicted Joint Positions, Top Row: FLIC Test-Set, Bottom Row: LSP Test-Set

5 Conclusion

We have shown that the unification of a novel ConvNet Part-Detector and an MRF inspired Spatial-
Model into a single learning framework significantly outperforms existing architectures on the task
of human body pose recognition. Training and inference of our architecture uses commodity level
hardware and runs at close to real-time frame rates, making this technique tractable for a wide variety
of application areas.

For future work we expect to further improve upon these results by increasing the complexity and
expressiveness of our simple spatial model (especially for unconstrained datasets like LSP).
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The FLIC-full dataset contains 20928 training images, however many of these training set
images contain samples from the 1016 test set scenes and so would allow unfair over-
training on the FLIC test set. Therefore, we propose a new dataset - called FLIC-plus
(http://cims.nyu.edu/⇠tompson/flic plus.htm) - which is a 17380 image subset from the FLIC-plus
dataset. To create this dataset, we produced unique scene labels for both the FLIC test set and FLIC-
plus training sets using Amazon Mechanical Turk. We then removed all images from the FLIC-plus
training set that shared a scene with the test set. Since 253 of the sample images from the original
3987 FLIC training set came from the same scene as a test set sample (and were therefore removed
by the above procedure), we added these images back so that the FLIC-plus training set is a superset
of the original FLIC training set. Using this procedure we can guarantee that the additional samples
in FLIC-plus are sufficiently independent to the FLIC test set samples.

For evaluation of the test-set performance we use the measure suggested by Sapp et. al. [27]. For a
given normalized pixel radius (normalized by the torso height of each sample) we count the number
of images in the test-set for which the distance of the predicted UV joint location to the ground-truth
location falls within the given radius.

Fig 7a and 7b show our model’s performance on the the FLIC test-set for the elbow and wrist joints
respectively and trained using both the FLIC and FLIC-plus training sets. Performance on the LSP
dataset is shown in Fig 7c and 8a. For LSP evaluation we use person-centric (or non-observer-
centric) coordinates for fair comparison with prior work [30, 8]. Our model outperforms existing
state-of-the-art techniques on both of these challenging datasets with a considerable margin.

(a) FLIC: Elbow (b) FLIC: Wrist (c) LSP: Wrist and Elbow

Figure 7: Model Performance

Fig 8b illustrates the performance improvement from our simple Spatial-Model. As expected the
Spatial-Model has little impact on accuracy for low radii threshold, however, for large radii it in-
creases performance by 8 to 12%. Unified training of both models (after independent pre-training)
adds an additional 4-5% detection rate for large radii thresholds.

(a) LSP: Ankle and Knee
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(b) FLIC: Wrist
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Figure 8: (a) Model Performance (b) With and Without Spatial-Model (c) Part-Detector Performance
Vs Number of Resolution Banks (FLIC subset)
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Outline	
  
•  Motivation	
  
•  Hybrid	
  NN	
  +	
  HMM	
  	
  

–  Model:	
  neural	
  net	
  for	
  emissions	
  
–  Learning:	
  backprop	
  for	
  end-­‐to-­‐end	
  training	
  
–  Experiments:	
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  algorithm	
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–  Model:	
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  net	
  for	
  emissions	
  
–  Experiments:	
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  recognition	
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  2013)	
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  CNN	
  +	
  CRF	
  
–  Model:	
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  net	
  for	
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–  Experiments:	
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  (Collobert	
  &	
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  2011)	
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Deep Learning Tricks of the Trade
• Y. Bengio (2012), “Practical Recommendations for Gradient-

Based Training of Deep Architectures” 
• Unsupervised pre-training
• Stochastic gradient descent and setting learning rates
• Main hyper-parameters

• Learning rate schedule & early stopping 
• Minibatches
• Parameter initialization
• Number of hidden units
• L1 or L2 weight decay
• Sparsity regularization

• Debugging Æ use finite difference gradient checks
• How to efficiently search for hyper-parameter configurations

205

Slide	
  from	
  Socher,	
  MLSS	
  2014	
  



Tricks	
  of	
  the	
  Trade	
  
•  Lots	
  of	
  them:	
  

–  Pre-­‐training	
  helps	
  (but	
  isn’t	
  always	
  necessary)	
  
–  Train	
  with	
  adaptive	
  gradient	
  variants	
  of	
  SGD	
  (e.g.	
  

AdaGrad,	
  AdaDelta)	
  
–  Use	
  max-­‐margin	
  loss	
  function	
  (i.e.	
  hinge	
  loss)	
  –	
  though	
  

only	
  sub-­‐differentiable	
  it	
  often	
  gives	
  better	
  results	
  
– …	
  

•  A	
  few	
  years	
  back,	
  they	
  were	
  considered	
  “poorly	
  
documented”	
  and	
  “requiring	
  great	
  expertise”	
  

•  Now	
  there	
  are	
  lots	
  of	
  good	
  tutorials	
  that	
  describe	
  
(very	
  important)	
  specific	
  implementation	
  details	
  

•  Many	
  of	
  them	
  also	
  apply	
  to	
  training	
  graphical	
  
models!	
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Summary:	
  	
  
Hybrid	
  Models	
  

Graphical	
  models	
  let	
  you	
  
encode	
  domain	
  
knowledge	
  

Neural	
  nets	
  are	
  really	
  
good	
  at	
  fitting	
  the	
  data	
  
discriminatively	
  to	
  make	
  
good	
  predictions	
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Could	
  we	
  define	
  a	
  neural	
  net	
  	
  
that	
  incorporates	
  	
  

domain	
  knowledge?	
  

…	
  

…	
  

…	
  



Summary:	
  	
  
Hybrid	
  Models	
  

Key	
  idea:	
  Use	
  a	
  NN	
  to	
  learn	
  features	
  for	
  a	
  GM,	
  
then	
  train	
  the	
  entire	
  model	
  by	
  backprop	
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