

#### 10-708 Probabilistic Graphical Models

# Hybrid Graphical Models and Neural Networks

**Readings:** 

Abdel-Hamid, Deng, Yu, Jiang (2013)

Matt Gormley Lecture 27 April 20, 2016

#### Reminders

- HW4: due April 27
- Project presentations: April 29
  - Location: Baker Hall A51
  - Session 1: 8:30 12:30 (4 hrs)
  - Lunch break: 12:30 1:30 (1 hr)
  - Session 2: 1:30 5:00 (3.5 hrs)

### Outline

- Motivation
- Hybrid NN + HMM
  - Model: neural net for emissions
  - Learning: backprop for end-to-end training
  - Experiments: phoneme recognition (Bengio et al., 1992)
- Background: Recurrent Neural Networks (RNNs)
  - Bidirectional RNNs
  - Deep Bidirectional RNNs
  - Deep Bidirectional LSTMs
  - Connection to forward-backward algorithm
- Hybrid RNN + HMM
  - Model: neural net for emissions
  - Experiments: phoneme recognition (Graves et al., 2013)
- Hybrid CNN + CRF
  - Model: neural net for factors
  - Experiments: natural language tasks (Collobert & Weston, 2011)
  - Experiments: pose estimation
- Tricks of the Trade

### **MOTIVATION**

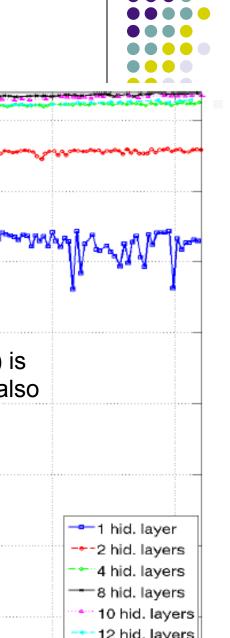
|                           | DL                                             | <b>⋚?</b> ML (e.g., GM)                                           |
|---------------------------|------------------------------------------------|-------------------------------------------------------------------|
| Empirical goal:           | e.g., classification, feature learning         | e.g., transfer learning, latent variable inference                |
| Structure:                | Graphical                                      | Graphical                                                         |
| Objective:                | Something aggregated from local functions      | Something aggregated from local functions                         |
|                           |                                                |                                                                   |
| Vocabulary:               | Neuron, activation/gate function               | Variables, potential function                                     |
| Algorithm:                | A single, unchallenged, inference algorithm BP | A major focus of open research, many algorithms, and more to come |
| Evaluation:               | On a black-box score end performance           | On almost every intermediate quantity                             |
| Implementation:           | Many untold-tricks                             | More or less standardized                                         |
| Experiments:              | Massive, real data (GT unknown)                | Modest, often simulated data (GT known)                           |
| © Eric Xing @ CMU, 2015 5 |                                                |                                                                   |

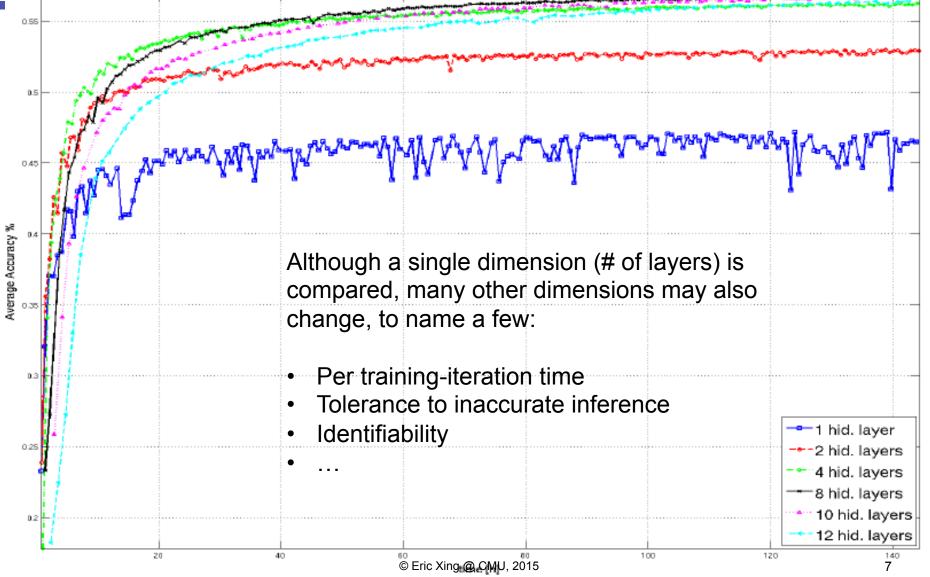
### A slippery slope to mythology?



- How to conclusively determine what an improve in performance could come from:
  - Better model (architecture, activation, loss, size)?
  - Better algorithm (more accurate, faster convergence)?
  - Better training data?
- Current research in DL seem to get everything above mixed by evaluating on a black-box "performance score" that is not directly reflecting
  - Correctness of inference
  - Achievability/usefulness of model
  - Variance due to stochasticity

An Example





### Inference quality



- Training error is the old concept of a classifier with no hidden states, no <u>inference</u> is involved, and thus inference accuracy is not an issue
- But a DNN is not just a classifier, some DNNs are not even fully supervised, there are MANY hidden states, why their inference quality is not taken seriously?
- In DNN, inference accuracy = visualizing features
  - Study of inference accuracy is badly discouraged
  - Loss/accuracy is not monitored

#### Conclusion



- In GM: lots of efforts are directed to improving inference accuracy and convergence speed
  - An advanced tutorial would survey dozen's of inference algorithms/ theories, but few use cases on empirical tasks
- In DL: most effort is directed to comparing different architectures and gate functions (based on empirical performance on a downstream task)
  - An advanced tutorial typically consist of a list of all designs of nets, many use cases, but a single name of algorithm: back prop of SGD
- The two fields are similar at the beginning (energy, structure, etc.), and soon diverge to their own signature pipelines
- A convergence might be necessary and fruitful

# Hybrids of Graphical Models and Neural Networks

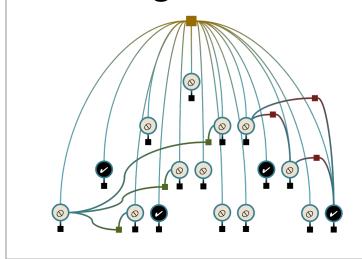
This lecture is not about a convergence of the two fields.

Rather, it is about state-of-the-art collaboration between two complementary techniques.

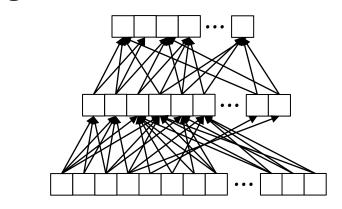
#### **Motivation:**

Hybrid Models

**Graphical models** let you encode domain knowledge



Neural nets are really good at fitting the data discriminatively to make good predictions

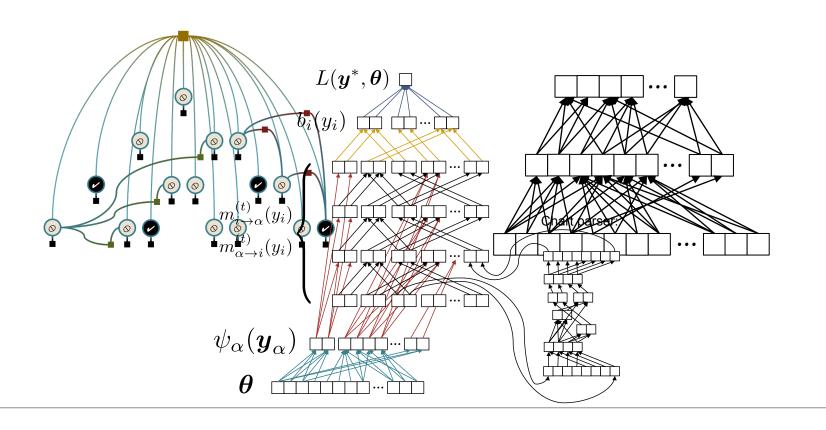


Could we define a neural net that incorporates domain knowledge?

### Motivation:

#### **Hybrid Models**

Key idea: Use a NN to learn features for a GM, then train the entire model by backprop



# A Recipe for Neural Networks

#### 1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

#### 2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$



**Examples:** Linear regression, Logistic regression, Neural Network

**Examples:** Mean-squared error, Cross Entropy

# A Recipe for Neural Networks

#### 1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

#### 2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

### A Recipe for

# Today's Lecture

- Suppose our decision function is a graphical model!
  - We know how to compute marginal probabilities (inference), but how to do make a prediction, y?
    - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Train with SGD:

ke small steps
opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - oldsymbol{\eta}_t 
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Recall...

# Minimum Bayes Risk Decoding

- Suppose we given a loss function l(y', y) and are asked for a single tagging
- How should we choose just one from our probability distribution p(y|x)?
- A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum **expected** loss under the model's distribution

$$h_{m{ heta}}(m{x}) = \underset{\hat{m{y}}}{\operatorname{argmin}} \ \mathbb{E}_{m{y} \sim p_{m{ heta}}(\cdot | m{x})}[\ell(\hat{m{y}}, m{y})]$$

$$= \underset{\hat{m{y}}}{\operatorname{argmin}} \ \sum_{m{y}} p_{m{ heta}}(m{y} \mid m{x})\ell(\hat{m{y}}, m{y})$$

Recall...

# Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

Consider some example loss functions:

The  $\theta$ -1 loss function returns 1 only if the two assignments are identical and  $\theta$  otherwise:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = 1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})$$

The MBR decoder is:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x}) (1 - \mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y}))$$
$$= \underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})$$

which is exactly the MAP inference problem!

Recall...

# Minimum Bayes Risk Decoding

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \ \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot | \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]$$

#### Consider some example loss functions:

The **Hamming loss** corresponds to accuracy and returns the number of incorrect variable assignments:

$$\ell(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \sum_{i=1}^{V} (1 - \mathbb{I}(\hat{y}_i, y_i))$$

The MBR decoder is:

$$\hat{y}_i = h_{\boldsymbol{\theta}}(\boldsymbol{x})_i = \underset{\hat{y}_i}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{y}_i \mid \boldsymbol{x})$$

This decomposes across variables and requires the variable marginals.

### A Recipe for

# Today's Lecture

- Suppose our decision function is a graphical model!
  - We know how to compute marginal probabilities (inference), but how to do make a prediction, y?
    - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

Train with SGD:

ke small steps
opposite the gradient)

 Can we use an MBR decoder as the decision function in this recipe?

$$-\eta_t 
abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$$

# A Recipe for Graphical Models

#### 1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

#### 2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

#### 3. Define goal:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

#### 4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

### Outline

- Motivation
- Hybrid NN + HMM
  - Model: neural net for emissions
  - Learning: backprop for end-to-end training
  - Experiments: phoneme recognition (Bengio et al., 1992)
- Background: Recurrent Neural Networks (RNNs)
  - Bidirectional RNNs
  - Deep Bidirectional RNNs
  - Deep Bidirectional LSTMs
  - Connection to forward-backward algorithm
- Hybrid RNN + HMM
  - Model: neural net for emissions
  - Experiments: phoneme recognition (Graves et al., 2013)
- Hybrid CNN + CRF
  - Model: neural net for factors
  - Experiments: natural language tasks (Collobert & Weston, 2011)
  - Experiments: pose estimation
- Tricks of the Trade

# HYBRID: NEURAL NETWORK + HMM

### Markov Random Field (MRF)

Joint distribution over tags  $Y_i$  and words  $X_i$ The individual factors aren't necessarily probabilities.

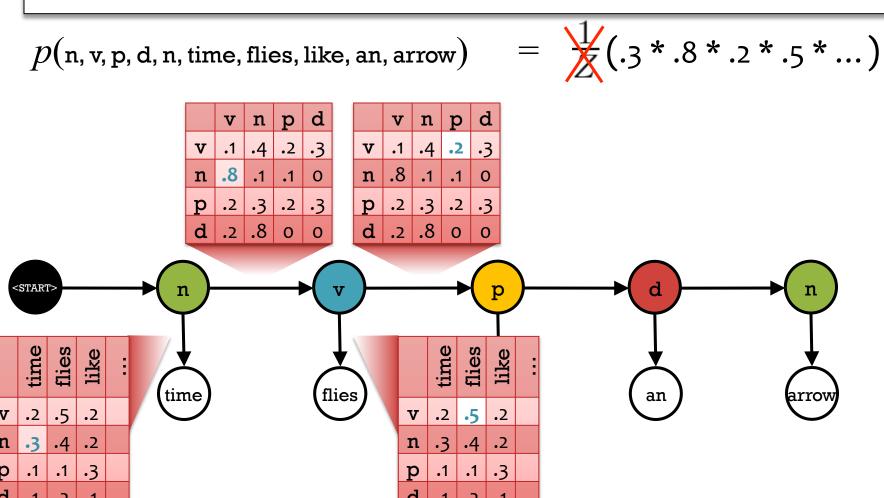
0.1 0.2 0.1

0.1 0.2 0.1



#### Hidden Markov Model

But sometimes we *choose* to make them probabilities. Constrain each row of a factor to sum to one. Now Z = 1.



(Bengio et al., 1992)

Discrete HMM state:  $S_t \in \{/p/,/t/,/k/,/b/,/d/,\dots,/g/\}$ 

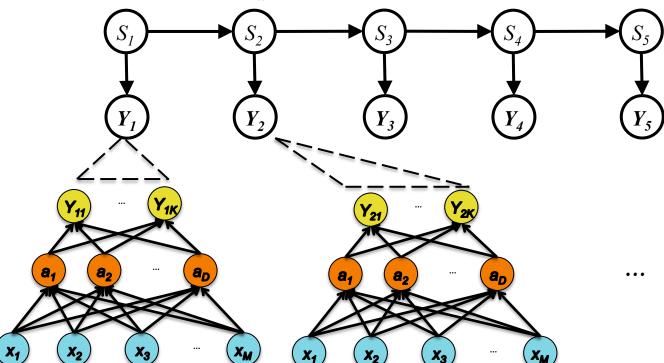
Continuous HMM emission:  $Y_t \in \mathcal{R}^K$ 

$$\Gamma$$

HMM: 
$$p(\mathbf{Y}, \mathbf{S}) = \prod_{t=1}^{p(Y_t|S_t)} p(S_t|S_{t-1})$$

#### Gaussian emission:

$$p(Y_t|S_t = i) = b_{i,t} = \sum_k \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} \exp(-\frac{1}{2}(Y_t - \mu_k)\Sigma_k^{-1}(Y_t - \mu_k)^T)$$



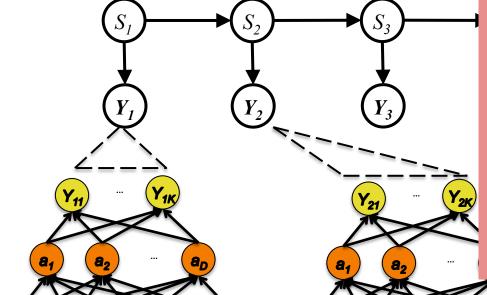
(Bengio et al., 1992)

Discrete HMM state:  $S_t \in \{/p/, /t/, /k/, /b/, /d/, ..., /a/\}$ 

Continuous HMM emission:  $Y_t \in \mathcal{R}^K$ 

HMM: 
$$p(\mathbf{Y}, \mathbf{S}) = \prod_{t=1}^{t} p(Y_t|S_t) p(S_t|S_{t-1})$$

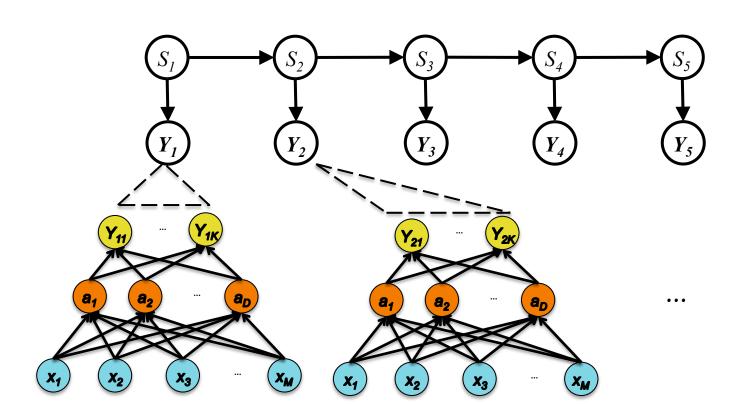
$$p(Y_t|S_t = i) = b_{i,t} = \sum_k \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} \epsilon$$



Lots of oddities to this picture:

- Clashing visual notations (graphical model vs. neural net)
- HMM generates data topdown, NN generates bottom-up and they meet in the middle.
- The "observations" of the HMM are not actually observed (i.e. x's appear in NN only)

So what are we missing?



$$a_{i,j} = p(S_t = i | S_{t-1} = j)$$
  
 $b_{i,t} = p(Y_t | S_t = i)$  Hybrid: NN + HMM

**Forward-backward algorithm:** a "feed-forward" algorithm for computing alpha-beta probabilities.

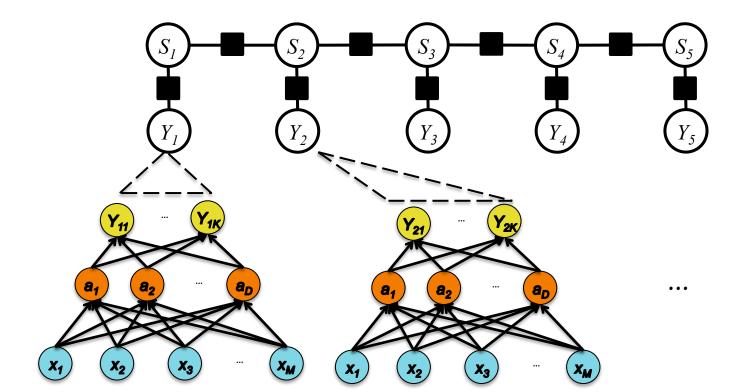
$$\alpha_{i,t} = P(Y_1^t \text{ and } S_t = i \mid model) = b_{i,t} \sum_j a_{ji} \alpha_{j,t-1}$$

$$\beta_{i,t} = P(Y_{t+1}^T \mid S_t = i \text{ and } model) = \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1}$$

$$\gamma_{i,t} = P(S_t = i \mid Y_1^t \text{ and } model) = \alpha_{i,t} \beta_{i,t}$$

**Log-likelihood:** a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$



# A Recipe for

Decision / Loss Function for Hybrid NN + HMM

#### 1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

# 2. Choose each of nes

Decision fy Lion

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

**Forward-backward algorithm:** a "feed-forward" algorithm for computing alpha-beta probabilities.

$$\alpha_{i,t} = P(Y_1^t \text{ and } S_t = i \mid model) = b_{i,t} \sum_j a_{ji} \alpha_{j,t-1}$$

$$\beta_{i,t} = P(Y_{t+1}^T \mid S_t = i \text{ and } model) = \sum_j a_{ij} b_{j,t+1} \beta_{j,t+1}$$

$$\gamma_{i,t} = P(S_t = i \mid Y_1^t \text{ and } model) = \alpha_{i,t} \beta_{i,t}$$

**Log-likelihood:** a "feed-forward" objective function.

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

nt)

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{I}$$
 How do we compute the gradient?



### **Training**

### Backpropagation

Graphical Model and Log-likelihood

Neural Network

Backpropagation is just repeated application of the chain rule from

Calculus 101.

$$y = g(u)$$
 and  $u = h(x)$ .

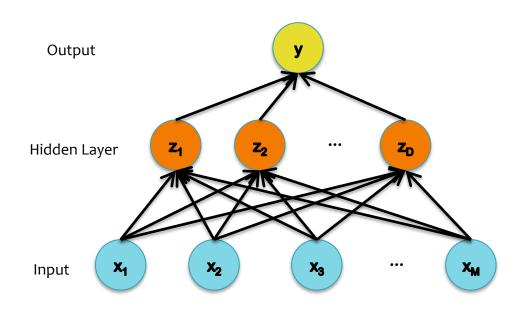
How to compute these partial derivatives?

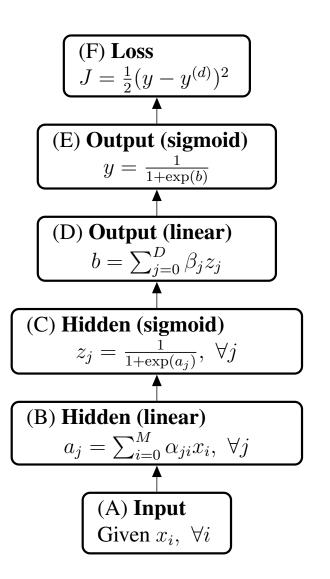
Chain Rule: 
$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



# Training Backpropagation

What does this picture actually mean?







### **Training**

### Backpropagation

#### Case 2: Neural Network

#### **Forward**

$$J = y^* \log q + (1 - y^*) \log(1 - q)$$
$$q = \frac{1}{1 + \exp(-b)}$$
$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

#### Backward

$$\frac{dJ}{dq} = \frac{y^*}{q} + \frac{(1 - y^*)}{q - 1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j) + 1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \frac{dJ}{da_j} \frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \sum_{j=0}^{D} \alpha_{ji}$$

Computing the Gradient:  $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$ 

#### Forward computation

$$\log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$

$$\alpha_{i,t} = \dots$$
 (forward prob)

$$\beta_{i,t} = \dots$$
 (backward prop)

$$\gamma_{i,t} = \dots$$
 (marginals)

$$a_{i,j} = \dots$$
 (transitions)

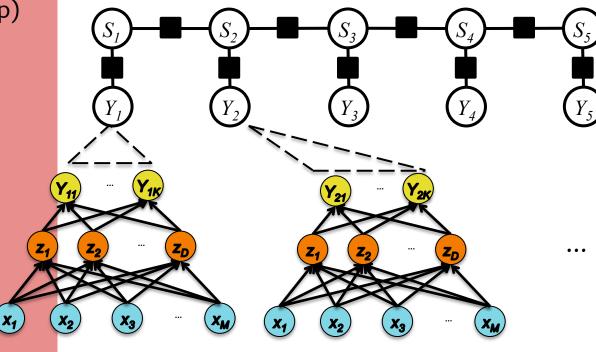
$$b_{i,t} = \dots$$
 (emissions)

$$y_{tk} = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

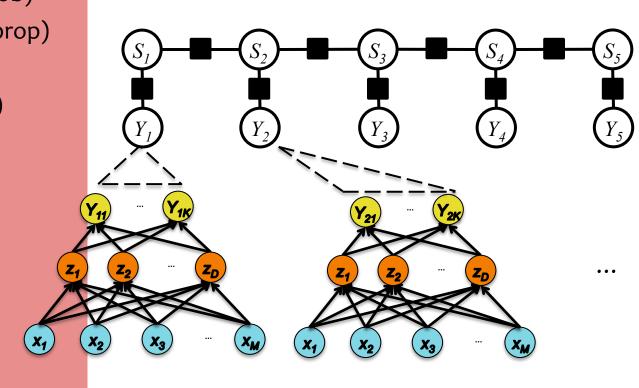
$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$



Computing the Gradient:  $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$ 

#### Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END},T}$$
 $lpha_{i,t} = \ldots$  (forward prob)
 $eta_{i,t} = \ldots$  (backward prop)
 $\gamma_{i,t} = \ldots$  (marginals)
 $a_{i,j} = \ldots$  (transitions)
 $b_{i,t} = \ldots$  (emissions)
 $y_{tk} = rac{1}{1 + \exp(-b)}$ 
 $b = \sum_{j=0}^{D} eta_{j} z_{j}$ 
 $z_{j} = rac{1}{1 + \exp(-a_{j})}$ 
 $a_{j} = \sum_{i=0}^{M} lpha_{ji} x_{i}$ 



Computing the Gradient:  $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$ 

#### Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END},T}$$
 $lpha_{i,t} = \ldots$  (forward prob)
 $eta_{i,t} = \ldots$  (backward prop)
 $\gamma_{i,t} = \ldots$  (marginals)
 $a_{i,j} = \ldots$  (transitions)
 $b_{i,t} = \ldots$  (emissions)
 $y_{tk} = \frac{1}{1 + \exp(-b)}$ 
 $b = \sum_{j=0}^{D} \beta_j z_j$ 
 $z_j = \frac{1}{1 + \exp(-a_j)}$ 
 $a_j = \sum_{i=0}^{M} lpha_{ji} x_i$ 

#### **Backward computation**

$$\frac{dJ}{db_{i,t}} = \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{i,t}} \frac{\partial \alpha_{i,t}}{\partial b_{i,t}} = \left(\sum_{j} \frac{\partial \alpha_{j,t+1}}{\partial \alpha_{i,t}} \frac{\partial L_{model}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji}\alpha_{j,t-1}\right)$$
$$= \left(\sum_{j} b_{j,t+1} a_{ji} \frac{\partial \alpha_{F_{model},T}}{\partial \alpha_{j,t+1}}\right) \left(\sum_{j} a_{ji}\alpha_{j,t-1}\right) = \beta_{i,t} \frac{\alpha_{i,t}}{b_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

Computing the Gradient:  $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$ 

#### Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = lpha_{\mathsf{END},T}$$
 $lpha_{i,t} = \ldots$  (forward prob)
 $eta_{i,t} = \ldots$  (backward prop)
 $\gamma_{i,t} = \ldots$  (marginals)
 $a_{i,j} = \ldots$  (transitions)
 $b_{i,t} = \ldots$  (emissions)
 $y_{tk} = \frac{1}{1 + \exp(-b)}$ 
 $b = \sum_{j=0}^{D} \beta_j z_j$ 
 $z_j = \frac{1}{1 + \exp(-a_j)}$ 
 $a_j = \sum_{j=0}^{M} lpha_{ji} x_i$ 

#### **Backward computation**

$$\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

$$\frac{dJ}{dy_{t,k}} = \sum_{b_{i,t}} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$$

$$\frac{\partial^{b_{i,t}}}{\partial Y_{jt}} = \sum_{k} \frac{Z_{k}}{((2\pi)^{n} + \sum_{k} |)^{1/2}} (\sum_{i} d_{k,lj}(\mu_{kl} - Y_{lt})) \exp(-\frac{1}{2}(Y_{t} - \mu_{k})\sum_{k}^{-1}(Y_{t} - \mu_{k})^{T})$$

$$\frac{dJ}{db} = \frac{dJ}{dy} \frac{dy}{db}, \quad \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^{2}}$$

$$\frac{dJ}{d\beta_{j}} = \frac{dJ}{db} \frac{db}{d\beta_{j}}, \quad \frac{db}{d\beta_{j}} = z_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{db} \frac{db}{dz_{j}}, \quad \frac{db}{dz_{j}} = \beta_{j}$$

$$\frac{dJ}{da_{j}} = \frac{dJ}{dz_{j}} \frac{dz_{j}}{da_{j}}, \quad \frac{dz_{j}}{da_{j}} = \frac{\exp(a_{j})}{(\exp(a_{j}) + 1)^{2}}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_{j}} \frac{da_{j}}{d\alpha_{ji}}, \quad \frac{da_{j}}{d\alpha_{ji}} = x_{i}$$
36

#### Hybrid: NN + HMM

Computing the Gradient:  $abla \ell(f_{m{ heta}}(m{x}_i), m{y}_i)$ 

#### Forward computation

$$J = \log p(\mathbf{S}, \mathbf{Y}) = \alpha_{\mathsf{END}, T}$$
  $\alpha_{i,t} = \ldots$  (forward prob)  $\beta_{i,t} = \ldots$  (backward prop)  $\gamma_{i,t} = \ldots$  (marginals)

The derivative of the log-likelihood with respect to the neural network parameters!

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

#### Backward computation

$$\frac{dJ}{db_{i,t}} = \frac{\gamma_{i,t}}{b_{i,t}}$$

$$\frac{dJ}{dy_{t,k}} = \sum_{b_{i,t}} \frac{dJ}{db_{i,t}} \frac{db_{i,t}}{dy_{t,k}}$$

$$\frac{\partial b_{i,t}}{\partial Y_{jt}} = \sum_{k} \frac{Z_k}{((2\pi)^n \mid \Sigma_k \mid)^{1/2}} \left( \sum_{l} d_{k,lj} (\mu_{kl} - Y_{lt}) \right) \exp\left(-\frac{1}{2} (Y_t - \mu_k) \Sigma_k^{-1} (Y_t - \mu_k)^T\right)$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(b)}{(\exp(b) + 1)^2}$$



$$\frac{dJ}{d\beta_j} = \frac{dJ}{db}\frac{db}{d\beta_j}, \, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_i} = \frac{dJ}{db}\frac{db}{dz_i}, \, \frac{db}{dz_i} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(a_j)}{(\exp(a_j) + 1)^2}$$

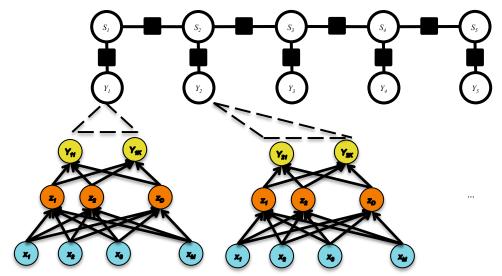
$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$$

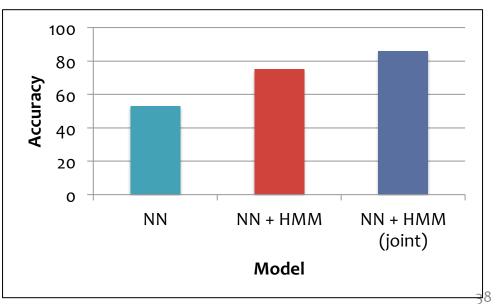


#### Hybrid: NN + HMM

#### **Experimental Setup:**

- Task: Phoneme Recognition (aka. speaker independent recognition of plosive sounds)
- Eight output labels:
  - /p/, /t/, /k/, /b/, /d/, /g/, /dx/, / all other phonemes/
  - These are the HMM hidden states
- Metric: Accuracy
- 3 Models:
  - 1. NN only
  - 2. NN + HMM (trained independently)
  - 3. NN + HMM (jointly trained)





#### Outline

- Motivation
- Hybrid NN + HMM
  - Model: neural net for emissions
  - Learning: backprop for end-to-end training
  - Experiments: phoneme recognition (Bengio et al., 1992)

#### Background: Recurrent Neural Networks (RNNs)

- Bidirectional RNNs
- Deep Bidirectional RNNs
- Deep Bidirectional LSTMs
- Connection to forward-backward algorithm

#### Hybrid RNN + HMM

- Model: neural net for emissions
- Experiments: phoneme recognition (Graves et al., 2013)

#### Hybrid CNN + CRF

- Model: neural net for factors
- Experiments: natural language tasks (Collobert & Weston, 2011)
- Experiments: pose estimation
- Tricks of the Trade

### BACKGROUND: RECURRENT NEURAL NETWORKS

inputs: 
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

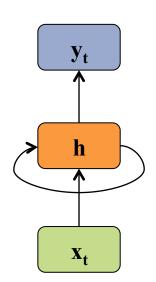
hidden units: 
$$\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$$

outputs: 
$$\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$$
  $y_t = W_{hy}h_t + b_y$ 

nonlinearity:  $\mathcal{H}$ 

$$h_t = \mathcal{H}\left(W_{xh}x_t + W_{hh}h_{t-1} + b_h\right)$$

$$y_t = W_{hy}h_t + b_y$$



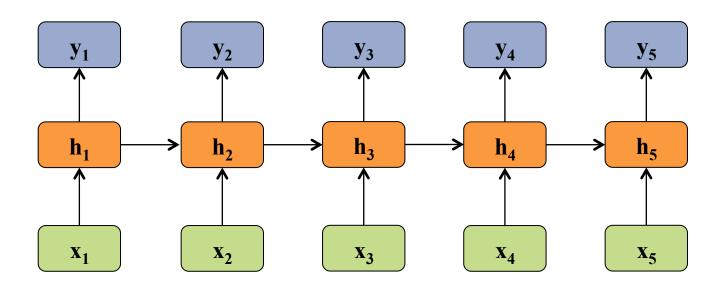
inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

hidden units:  $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$ 

outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

nonlinearity:  $\mathcal{H}$ 

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$



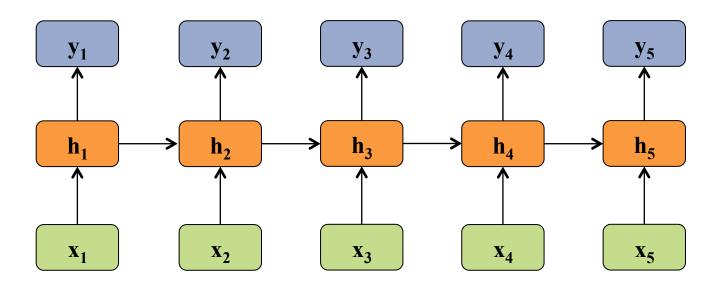
inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

hidden units:  $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$ 

outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

nonlinearity:  $\mathcal{H}$ 

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

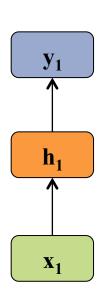


inputs: 
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$
  
hidden units:  $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$ 

outputs: 
$$\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$$

nonlinearity:  $\mathcal{H}$ 

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

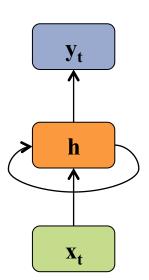


- If T=1, then we have a standard feed-forward neural net with one hidden layer
- All of the deep nets from last lecture (DNN, DBN, DBM) required fixed size inputs/ outputs

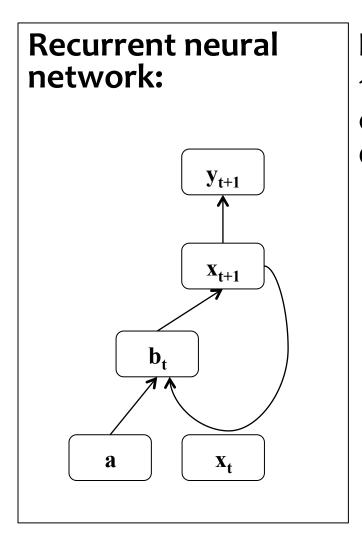
inputs: 
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$
  
hidden units:  $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$   
outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$   
nonlinearity:  $\mathcal{H}$ 

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

- By unrolling the RNN through time, we can share parameters and accommodate arbitrary length input/output pairs
- Applications: time-series data such as sentences, speech, stock-market, signal data, etc.



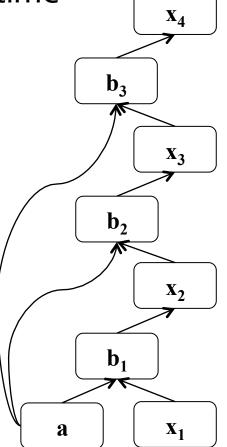
# Background: Backprop through time



#### **BPTT:**

1. Unroll the computation over time  $x_4$ 





2. Run backprop through the resulting feed-forward network

inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

hidden units:  $\overrightarrow{\mathbf{h}}$  and  $\overleftarrow{\mathbf{h}}$ 

nonlinearity:  $\mathcal{H}$ 

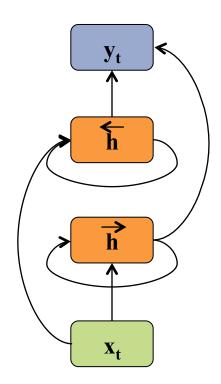
Inputs: 
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}$$
Len units:  $\mathbf{h}$  and  $\mathbf{h}$ 
Outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

linearity:  $\mathcal{H}$ 

$$\vec{h}_t = \mathcal{H} \left( W_x \vec{h} x_t + W_{\overrightarrow{h}} \vec{h}_t \vec{h}_{t-1} + b_{\overrightarrow{h}} \right)$$

$$\vec{h}_t = \mathcal{H} \left( W_x \vec{h}_t x_t + W_{\overleftarrow{h}} \vec{h}_t \vec{h}_{t+1} + b_{\overleftarrow{h}} \right)$$

$$y_t = W_{\overrightarrow{h}_y} \vec{h}_t + W_{\overleftarrow{h}_y} \vec{h}_t + b_y$$



inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

hidden units:  $\overrightarrow{\mathbf{h}}$  and  $\overleftarrow{\mathbf{h}}$ 

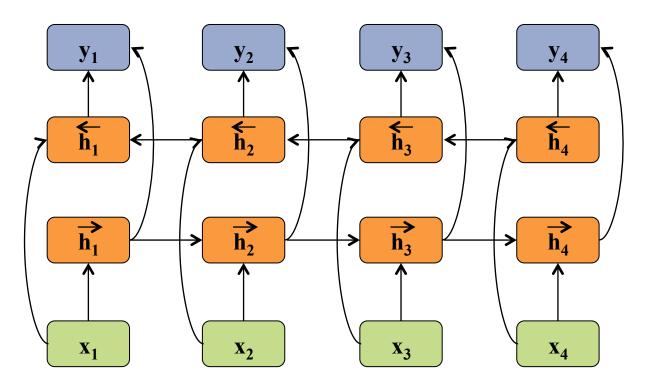
outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

nonlinearity:  $\mathcal{H}$ 

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{y}$$



inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

hidden units:  $\overrightarrow{\mathbf{h}}$  and  $\overleftarrow{\mathbf{h}}$ 

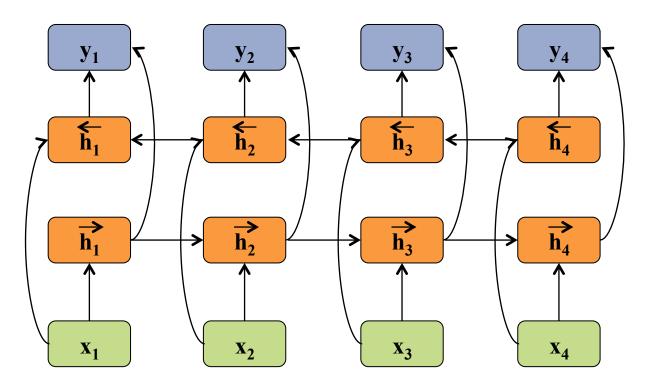
outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

nonlinearity:  $\mathcal{H}$ 

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{y}$$



inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

hidden units:  $\overrightarrow{\mathbf{h}}$  and  $\overleftarrow{\mathbf{h}}$ 

outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

nonlinearity:  $\mathcal{H}$ 

$$\overrightarrow{h}_{t} = \mathcal{H}\left(W_{x\overrightarrow{h}}x_{t} + W_{\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$$

$$\overleftarrow{h}_{t} = \mathcal{H}\left(W_{x\overleftarrow{h}}x_{t} + W_{\overleftarrow{h}}\overleftarrow{h}\overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$$

$$y_{t} = W_{\overrightarrow{h}y}\overrightarrow{h}_{t} + W_{\overleftarrow{h}y}\overleftarrow{h}_{t} + b_{y}$$



#### Deep RNNs

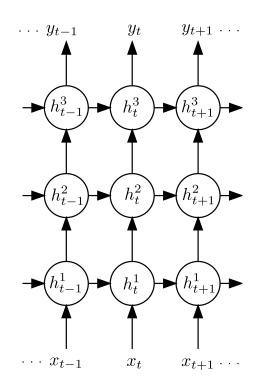
inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

nonlinearity:  $\mathcal{H}$ 

$$h_t^n = \mathcal{H}\left(W_{h^{n-1}h^n}h_t^{n-1} + W_{h^nh^n}h_{t-1}^n + b_h^n\right)$$

$$y_t = W_{h^N y} h_t^N + b_y$$



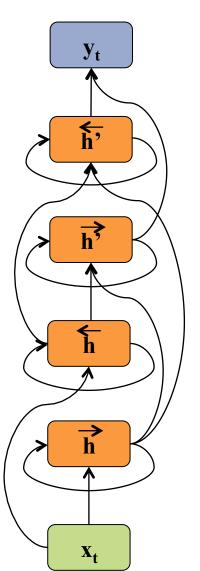
#### Deep Bidirectional RNNs

inputs:  $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ 

outputs:  $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ 

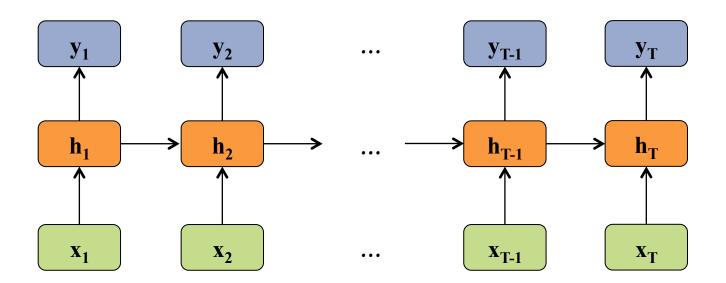
nonlinearity:  $\mathcal{H}$ 

- Notice that the upper level hidden units have input from two previous layers (i.e. wider input)
- Likewise for the output layer
- What analogy can we draw to DNNs, DBNs, DBMs?



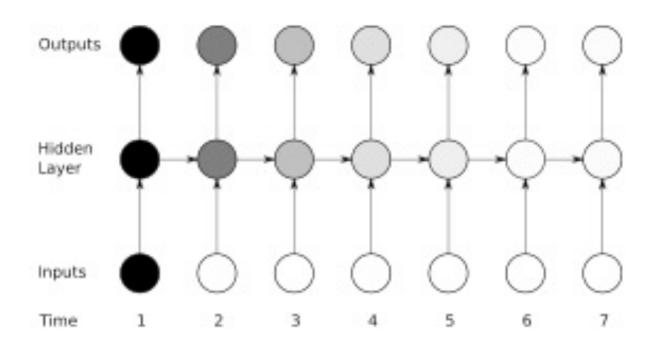
#### Motivation:

- Standard RNNs have trouble learning long distance dependencies
- LSTMs combat this issue



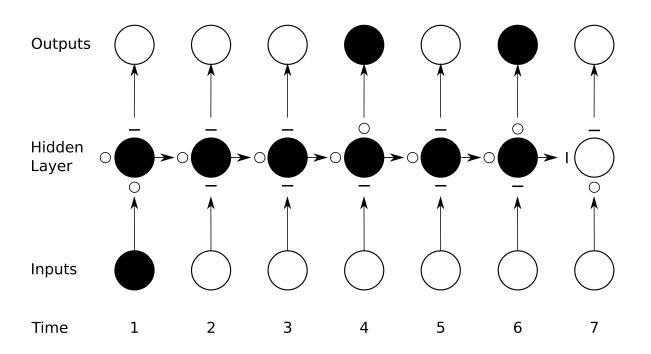
#### Motivation:

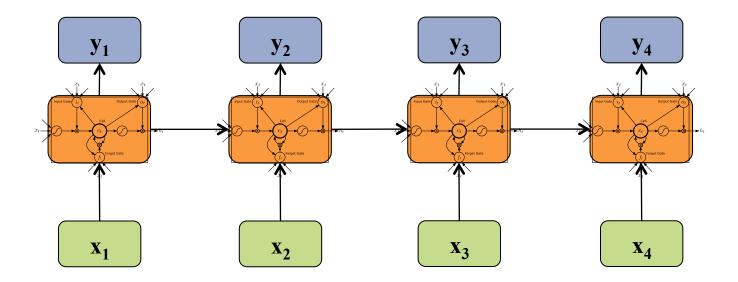
- Vanishing gradient problem for Standard RNNs
- Figure shows sensitivity (darker = more sensitive) to the input at time t=1



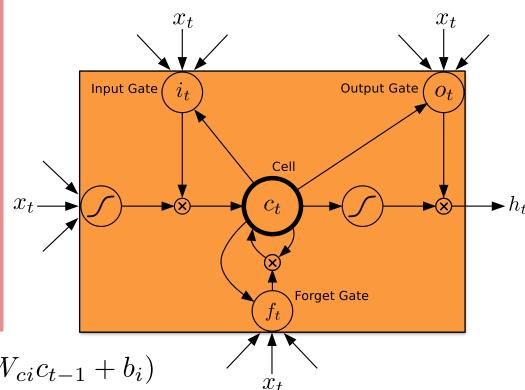
#### **Motivation:**

- LSTM units have a rich internal structure
- The various "gates" determine the propagation of information and can choose to "remember" or "forget" information





- Input gate: masks out the standard RNN inputs
- Forget gate: masks out the previous cell
- Cell: stores the input/ forget mixture
- Output gate: masks out the values of the next hidden



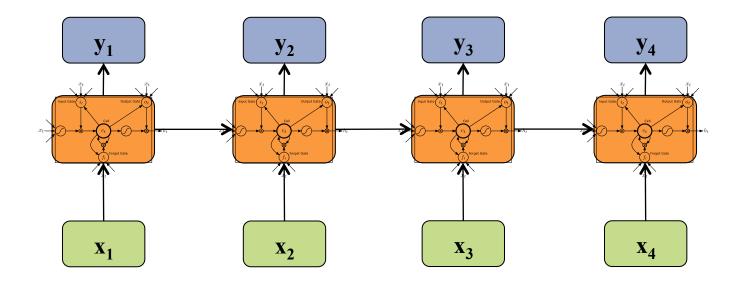
$$i_{t} = \sigma (W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma (W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

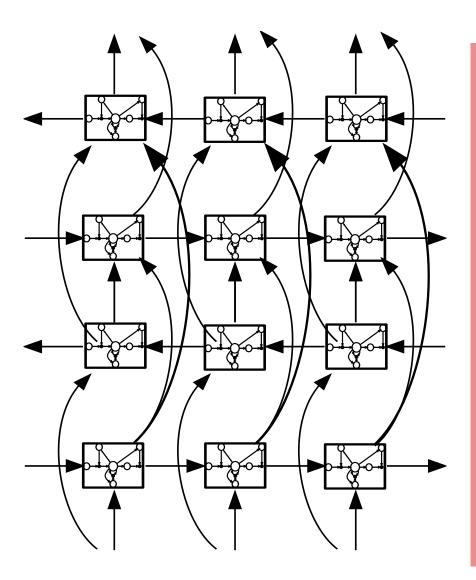
$$c_{t} = f_{t}c_{t-1} + i_{t} \tanh (W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma (W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t} \tanh(c_{t})$$

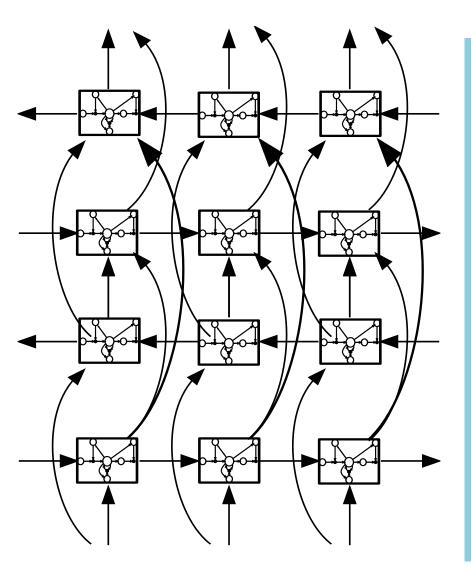


### Deep Bidirectional LSTM (DBLSTM)



- Figure: input/output layers not shown
- Same general topology as a Deep Bidirectional RNN, but with LSTM units in the hidden layers
- No additional representational power over DBRNN, but easier to learn in practice

### Deep Bidirectional LSTM (DBLSTM)



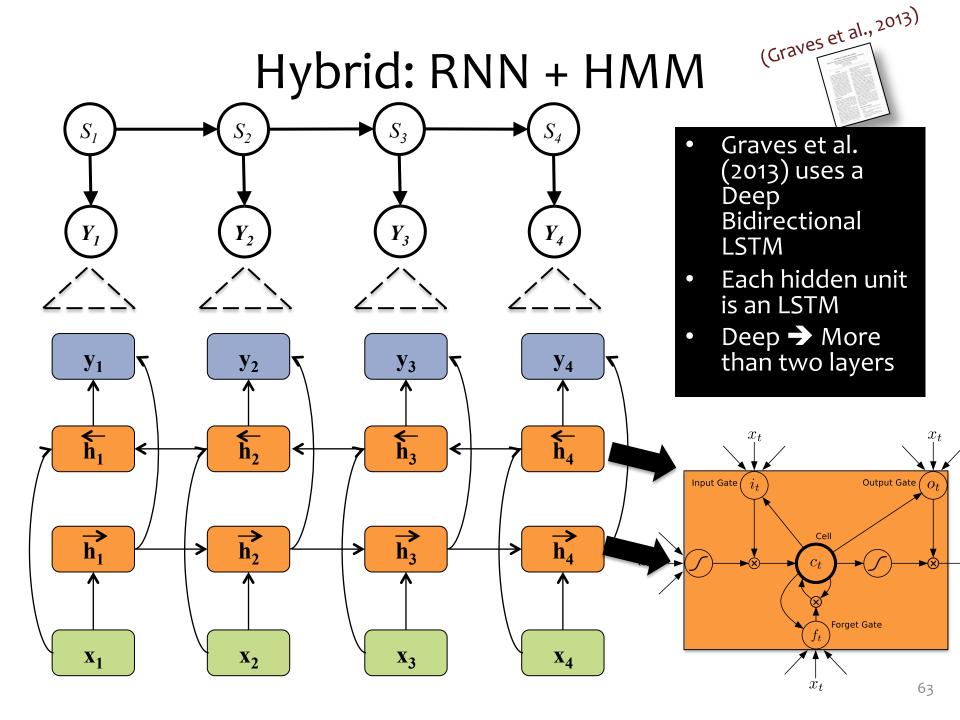
How important is this particular architecture?

Jozefowicz et al. (2015)
evaluated 10,000
different LSTM-like
architectures and
found several variants
that worked just as
well on several tasks.

#### Outline

- Motivation
- Hybrid NN + HMM
  - Model: neural net for emissions
  - Learning: backprop for end-to-end training
  - Experiments: phoneme recognition (Bengio et al., 1992)
- Background: Recurrent Neural Networks (RNNs)
  - Bidirectional RNNs
  - Deep Bidirectional RNNs
  - Deep Bidirectional LSTMs
  - Connection to forward-backward algorithm
- Hybrid RNN + HMM
  - Model: neural net for emissions
  - Experiments: phoneme recognition (Graves et al., 2013)
- Hybrid CNN + CRF
  - Model: neural net for factors
  - Experiments: natural language tasks (Collobert & Weston, 2011)
  - Experiments: pose estimation
- Tricks of the Trade

### HYBRID: RNN + HMM

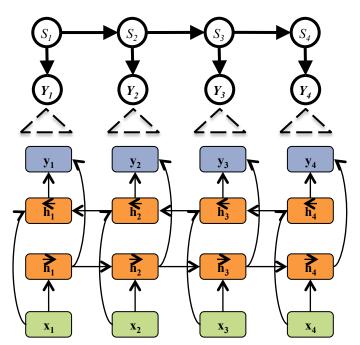


### Hybrid: RNN + HMM



The model, inference, and learning can be **analogous** to our NN + HMM hybrid

- Objective: log-likelihood
- Model: HMM/Gaussian emissions
- Inference: forwardbackward algorithm
- Learning: SGD with gradient by backpropagation





#### Hybrid: RNN + HMM

#### **Experimental Setup:**

Task: Phoneme Recognition

Dataset: TIMIT

Metric: Phoneme Error Rate

Two classes of models:

1. Neural Net only

2. NN + HMM hybrids

| TRAINING METHOD | TEST PER                           |  |
|-----------------|------------------------------------|--|
| CTC             | $21.57 \pm 0.25$                   |  |
| CTC (NOISE)     | $18.63 \pm 0.16$                   |  |
| TRANSDUCER      | $\textbf{18.07} \pm \textbf{0.24}$ |  |

1. Neural Net only

| Network | DEV PER<br>TEST PER                  |
|---------|--------------------------------------|
| DBRNN   | $19.91 \pm 0.22$<br>$21.92 \pm 0.35$ |
| DBLSTM  | $17.44 \pm 0.156$ $19.34 \pm 0.15$   |
| DBLSTM  | $16.11 \pm 0.15$                     |
| (NOISE) | $17.99 \pm 0.13$                     |

2. NN + HMM hybrids

#### Outline

- Motivation
- Hybrid NN + HMM
  - Model: neural net for emissions
  - Learning: backprop for end-to-end training
  - Experiments: phoneme recognition (Bengio et al., 1992)
- Background: Recurrent Neural Networks (RNNs)
  - Bidirectional RNNs
  - Deep Bidirectional RNNs
  - Deep Bidirectional LSTMs
  - Connection to forward-backward algorithm
- Hybrid RNN + HMM
  - Model: neural net for emissions
  - Experiments: phoneme recognition (Graves et al., 2013)
- Hybrid CNN + CRF
  - Model: neural net for factors
  - Experiments: natural language tasks (Collobert & Weston, 2011)
  - Experiments: pose estimation
- Tricks of the Trade

### HYBRID: CNN + CRF

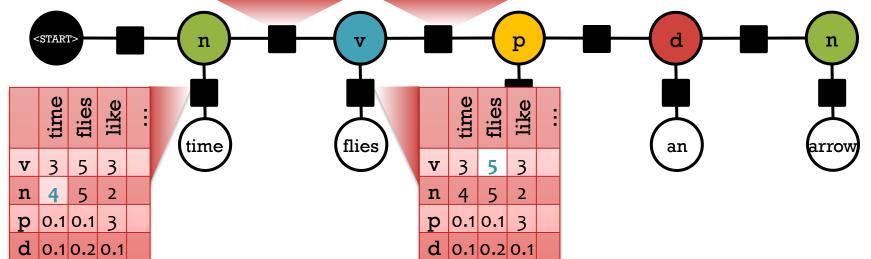
#### Markov Random Field (MRF)

Joint distribution over tags  $Y_i$  and words  $X_i$ 

$$p(n, v, p, d, n, time, flies, like, an, arrow) = \frac{1}{Z} (4*8*5*3*...)$$

|   | v   | n | р | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | O | O   |

|   | v   | n | р | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | 0 | 0   |



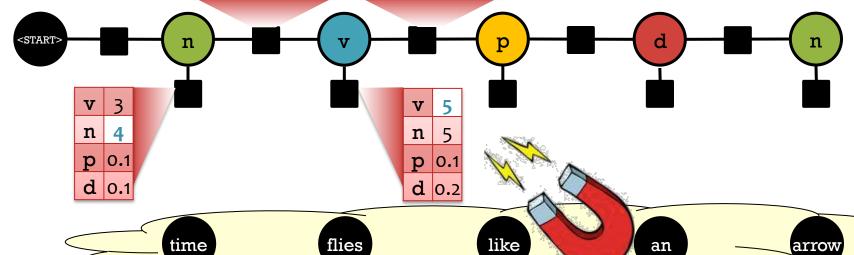
# Conditional Random Field (CRF)

Conditional distribution over tags  $Y_i$  given words  $x_i$ . The factors and Z are now specific to the sentence x.

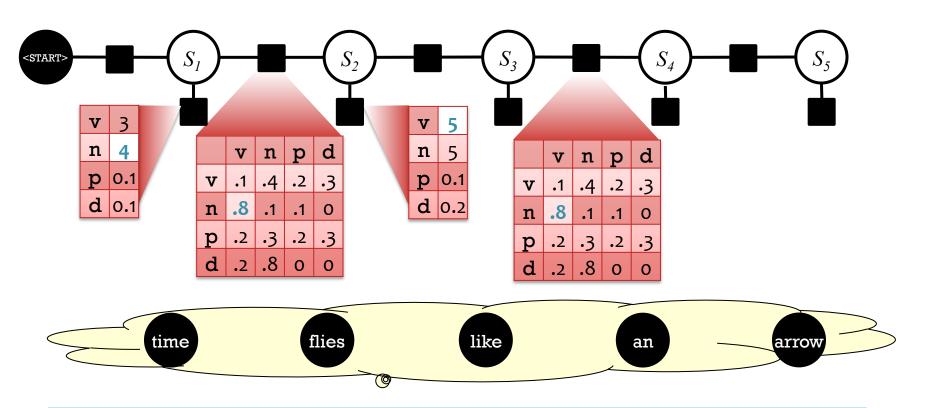
$$p(n, v, p, d, n \mid time, flies, like, an, arrow) = \frac{1}{Z} (4*8*5*3*...)$$

|   | v   | n | р | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | O | O   |

|   | v   | n | р | d   |
|---|-----|---|---|-----|
| v | 1   | 6 | 3 | 4   |
| n | 8   | 4 | 2 | 0.1 |
| р | 1   | 3 | 1 | 3   |
| d | 0.1 | 8 | 0 | 0   |



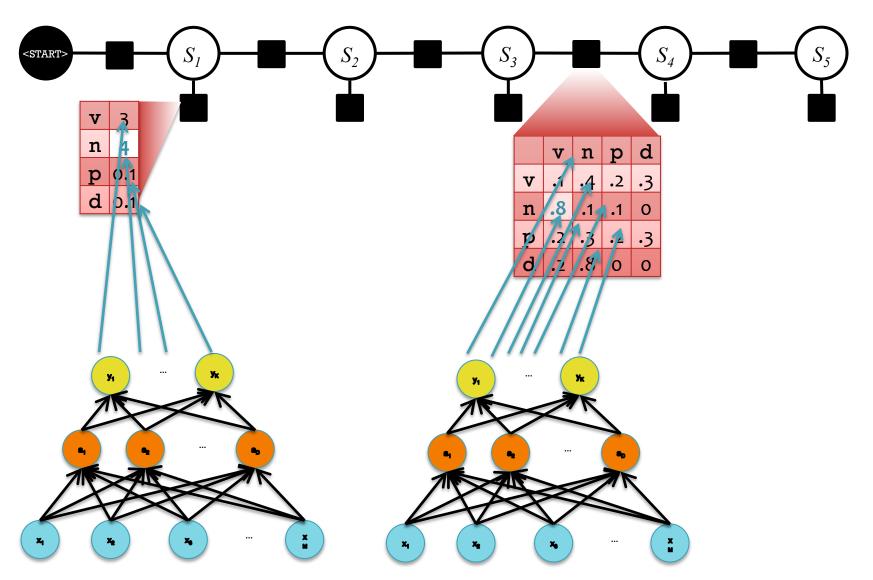
#### Hybrid: Neural Net + CRF



- In a standard CRF, each of the factor cells is a parameter (e.g. transition or emission)
- In the hybrid model, these values are computed by a neural network with its own parameters

### Hybrid: Neural Net + CRF

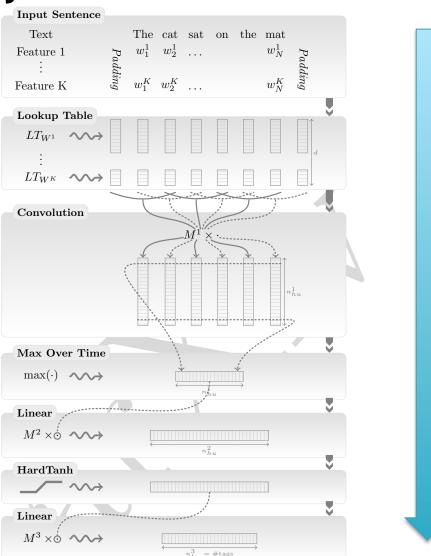
#### Forward computation





### Hybrid: CNN + CRF

- For computer
   vision,
   Convolutional
   Neural Networks
   are in 2-dimensions
- For natural language, the CNN is 1-dimensional

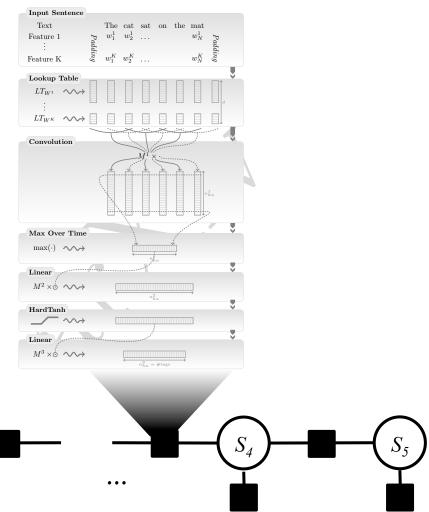




# Hybrid: CNN + CRF

#### "NN + SII"

- Model: Convolutional **Neural Network** (CNN) with linearchain CRF
- Training objective: maximize sentencelevel likelihood (SLL)







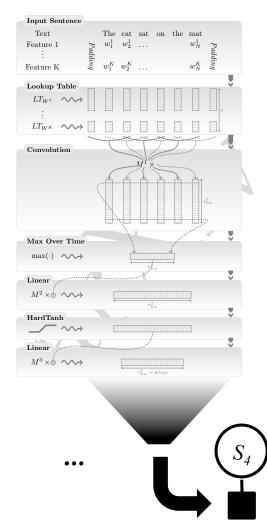
# Hybrid: CNN + CRF

#### "NN + WLL"

- Model: Convolutional Neural Network (CNN) with logistic regression
- Training objective: maximize word-level likelihood (WLL)











# Hybrid: CNN + CRF

#### **Experimental Setup:**

- Tasks:
  - Part-of-speech tagging (POS),
  - Noun-phrase and Verb-phrase Chunking,
  - Named-entity recognition (NER)
  - Semantic Role Labeling (SRL)
- Datasets / Metrics: Standard setups from NLP literature (higher PWA/F1 is better)
- Models:
  - Benchmark systems are typical non-neural network systems
  - NN+WLL: hybrid CNN with logistic regression
  - NN+SLL: hybrid CNN with linear-chain CRF

| ${f Approach}$    | POS   | Chunking | NER   | SRL   |
|-------------------|-------|----------|-------|-------|
|                   | (PWA) | (F1)     | (F1)  | (F1)  |
| Benchmark Systems | 97.24 | 94.29    | 89.31 | 77.92 |
| NN+WLL            | 96.31 | 89.13    | 79.53 | 55.40 |
| NN+SLL            | 96.37 | 90.33    | 81.47 | 70.99 |

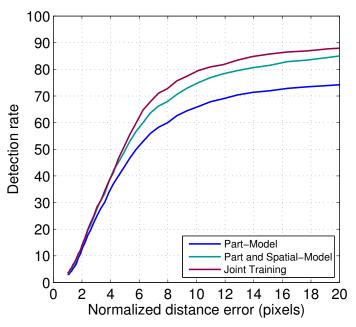


# Hybrid: CNN + MRF

### **Experimental Setup:**

- Task: pose estimation
- Model: Deep CNN + MRF





### Outline

- Motivation
- Hybrid NN + HMM
  - Model: neural net for emissions
  - Learning: backprop for end-to-end training
  - Experiments: phoneme recognition (Bengio et al., 1992)
- Background: Recurrent Neural Networks (RNNs)
  - Bidirectional RNNs
  - Deep Bidirectional RNNs
  - Deep Bidirectional LSTMs
  - Connection to forward-backward algorithm
- Hybrid RNN + HMM
  - Model: neural net for emissions
  - Experiments: phoneme recognition (Graves et al., 2013)
- Hybrid CNN + CRF
  - Model: neural net for factors
  - Experiments: natural language tasks (Collobert & Weston, 2011)
  - Experiments: pose estimation
- Tricks of the Trade

## TRICKS OF THE TRADE



#### **Backprop in Practice**

- Use ReLU non-linearities (tanh and logistic are falling out of favor)
- Use cross-entropy loss for classification
- Use Stochastic Gradient Descent on minibatches
- Shuffle the training samples
- Normalize the input variables (zero mean, unit variance)
- Schedule to decrease the learning rate
- Use a bit of L1 or L2 regularization on the weights (or a combination)
  - But it's best to turn it on after a couple of epochs
- Use "dropout" for regularization
  - Hinton et al 2012 http://arxiv.org/abs/1207.0580
- Lots more in [LeCun et al. "Efficient Backprop" 1998]
- Lots, lots more in "Neural Networks, Tricks of the Trade" (2012 edition) edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

## **Deep Learning Tricks of the Trade**

- Y. Bengio (2012), "Practical Recommendations for Gradient-Based Training of Deep Architectures"
  - Unsupervised pre-training
  - Stochastic gradient descent and setting learning rates
  - Main hyper-parameters
    - Learning rate schedule & early stopping
    - Minibatches
    - Parameter initialization
    - Number of hidden units
    - L1 or L2 weight decay
    - Sparsity regularization

  - How to efficiently search for hyper-parameter configurations

### Tricks of the Trade

#### Lots of them:

- Pre-training helps (but isn't always necessary)
- Train with adaptive gradient variants of SGD (e.g. AdaGrad, AdaDelta)
- Use max-margin loss function (i.e. hinge loss) though only sub-differentiable it often gives better results

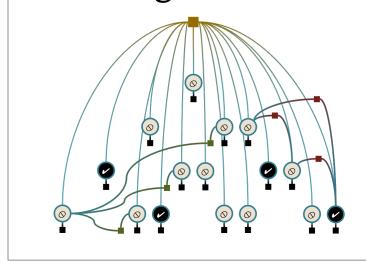
**–** ...

- A few years back, they were considered "poorly documented" and "requiring great expertise"
- Now there are lots of good tutorials that describe (very important) specific implementation details
- Many of them also apply to training graphical models!

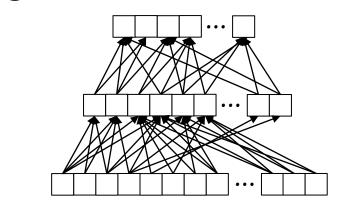
## **SUMMARY**

# Summary: Hybrid Models

**Graphical models** let you encode domain knowledge



Neural nets are really good at fitting the data discriminatively to make good predictions



Could we define a neural net that incorporates domain knowledge?

## Summary: Hybrid Models

Key idea: Use a NN to learn features for a GM, then train the entire model by backprop

