
Hybrid	
 Graphical	
 Models	
 	

and	
 Neural	
 Networks	

1	

Matt	
 Gormley	

Lecture	
 27	

April	
 20,	
 2016	

	

School of Computer Science

Readings:	
 	

Abdel-­‐Hamid,	
 Deng,	
 Yu,	
 Jiang	
 (2013)	

10-­‐708	
 Probabilistic	
 Graphical	
 Models	

Reminders	

•  HW4:	
 due	
 April	
 27	

•  Project	
 presentations:	
 April	
 29	

– Location:	
 Baker	
 Hall	
 A51	

– Session	
 1:	
 8:30	
 -­‐	
 12:30	
 (4	
 hrs)	

– Lunch	
 break:	
 12:30	
 -­‐	
 1:30	
 (1	
 hr)	

– Session	
 2:	
 1:30	
 -­‐	
 5:00	
 (3.5	
 hrs)	

	

2	

Outline	

•  Motivation	

•  Hybrid	
 NN	
 +	
 HMM	
 	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Learning:	
 backprop	
 for	
 end-­‐to-­‐end	
 training	

–  Experiments:	
 phoneme	
 recognition	
 (Bengio	
 et	
 al.,	
 1992)	

•  Background:	
 Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Hybrid	
 RNN	
 +	
 HMM	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Experiments:	
 phoneme	
 recognition	
 (Graves	
 et	
 al.,	
 2013)	

•  Hybrid	
 CNN	
 +	
 CRF	

–  Model:	
 neural	
 net	
 for	
 factors	

–  Experiments:	
 natural	
 language	
 tasks	
 (Collobert	
 &	
 Weston,	
 2011)	

–  Experiments:	
 	
 pose	
 estimation	

•  Tricks	
 of	
 the	
 Trade	

3	

MOTIVATION	

4	

© Eric Xing @ CMU, 2015 5

DL ML (e.g., GM)

Empirical goal: e.g., classification, feature
learning

e.g., transfer learning, latent
variable inference

Structure: Graphical Graphical

Objective: Something aggregated from
local functions

Something aggregated from local
functions

Vocabulary: Neuron, activation/gate function
…

Variables, potential function

Algorithm: A single, unchallenged,
inference algorithm -- BP

A major focus of open research,
many algorithms, and more to
come

Evaluation: On a black-box score -- end
performance

On almost every intermediate
quantity

Implementation: Many untold-tricks More or less standardized

Experiments: Massive, real data (GT
unknown)

Modest, often simulated data
(GT known)

<= ?>

A slippery slope to mythology?
l  How to conclusively determine what an improve in

performance could come from:
l  Better model (architecture, activation, loss, size)?
l  Better algorithm (more accurate, faster convergence)?
l  Better training data?

l  Current research in DL seem to get everything
above mixed by evaluating on a black-box
“performance score” that is not directly reflecting
l  Correctness of inference
l  Achievability/usefulness of model
l  Variance due to stochasticity

© Eric Xing @ CMU, 2015 6

Although a single dimension (# of layers) is
compared, many other dimensions may also
change, to name a few:

•  Per training-iteration time
•  Tolerance to inaccurate inference
•  Identifiability
•  …

An Example

© Eric Xing @ CMU, 2015 7

Inference quality
l  Training error is the old concept of a classifier with

no hidden states, no inference is involved, and thus
inference accuracy is not an issue

l  But a DNN is not just a classifier, some DNNs are
not even fully supervised, there are MANY hidden
states, why their inference quality is not taken
seriously?

l  In DNN, inference accuracy = visualizing features
l  Study of inference accuracy is badly discouraged
l  Loss/accuracy is not monitored

© Eric Xing @ CMU, 2015 8

Conclusion
l  In GM: lots of efforts are directed to improving inference

accuracy and convergence speed
l  An advanced tutorial would survey dozen’s of inference algorithms/

theories, but few use cases on empirical tasks

l  In DL: most effort is directed to comparing different
architectures and gate functions (based on empirical
performance on a downstream task)
l  An advanced tutorial typically consist of a list of all designs of nets,

many use cases, but a single name of algorithm: back prop of SGD

l  The two fields are similar at the beginning (energy, structure,
etc.), and soon diverge to their own signature pipelines

l  A convergence might be necessary and fruitful

© Eric Xing @ CMU, 2015 9

Hybrids	
 of	
 Graphical	
 Models	
 	

and	
 Neural	
 Networks	

This	
 lecture	
 is	
 not	
 about	
 a	

convergence	
 of	
 the	
 two	
 fields.	
 	

	

Rather,	
 it	
 is	
 about	
 state-­‐of-­‐the-­‐art	

collaboration	
 between	
 two	

complementary	
 techniques.	

10	

Motivation:	
 	

Hybrid	
 Models	

Graphical	
 models	
 let	
 you	

encode	
 domain	

knowledge	

Neural	
 nets	
 are	
 really	

good	
 at	
 fitting	
 the	
 data	

discriminatively	
 to	
 make	

good	
 predictions	

11	

Could	
 we	
 define	
 a	
 neural	
 net	
 	

that	
 incorporates	
 	

domain	
 knowledge?	

…	

…	

…	

Motivation:	
 	

Hybrid	
 Models	

Key	
 idea:	
 Use	
 a	
 NN	
 to	
 learn	
 features	
 for	
 a	
 GM,	

then	
 train	
 the	
 entire	
 model	
 by	
 backprop	

12	

…	

…	

…	

…"

…"

…"

…"

…"

…"

…"

Chart parser:

A	
 Recipe	
 for	
 	

Neural	
 Networks	

1.	
 Given	
 training	
 data:	

13	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

Face	
 Face	
 Not	
 a	
 face	

Examples:	
 Linear	
 regression,	

Logistic	
 regression,	
 Neural	
 Network	

Examples:	
 Mean-­‐squared	
 error,	

Cross	
 Entropy	

A	
 Recipe	
 for	
 	

Neural	
 Networks	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

14	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

15	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Today’s	
 Lecture	

•  Suppose	
 our	
 decision	
 function	
 is	
 a	
 graphical	

model!	

•  We	
 know	
 how	
 to	
 compute	
 marginal	
 probabilities	

(inference),	
 but	
 how	
 to	
 do	
 make	
 a	
 prediction,	
 y?	

Minimum	
 Bayes	
 Risk	
 Decoding	

•  Suppose	
 we	
 given	
 a	
 loss	
 function	
 l(y’, y)	
 and	
 are	

asked	
 for	
 a	
 single	
 tagging	

•  How	
 should	
 we	
 choose	
 just	
 one	
 from	
 our	
 probability	

distribution	
 p(y|x)?	

•  A	
 minimum	
 Bayes	
 risk	
 (MBR)	
 decoder	
 h(x)	
 returns	

the	
 variable	
 assignment	
 with	
 minimum	
 expected	
 loss	

under	
 the	
 model’s	
 distribution	

16	

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Recall…	

The	
 0-1	
 loss	
 function	
 returns	
 1	
 only	
 if	
 the	
 two	
 assignments	

are	
 identical	
 and	
 0	
 otherwise:	

	

	

The	
 MBR	
 decoder	
 is:	

	

	

	

	

	

which	
 is	
 exactly	
 the	
 MAP	
 inference	
 problem!	

	

Minimum	
 Bayes	
 Risk	
 Decoding	

Consider	
 some	
 example	
 loss	
 functions:	

17	

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin

ŷ

X

y

p✓(y | x)(1� I(ˆy,y))

= argmax

ŷ
p✓(ˆy | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Recall…	

The	
 Hamming	
 loss	
 corresponds	
 to	
 accuracy	
 and	
 returns	
 the	
 number	

of	
 incorrect	
 variable	
 assignments:	

	

	

	

The	
 MBR	
 decoder	
 is:	

	

	

	

	

This	
 decomposes	
 across	
 variables	
 and	
 requires	
 the	
 variable	

marginals.	

	

Minimum	
 Bayes	
 Risk	
 Decoding	

Consider	
 some	
 example	
 loss	
 functions:	

18	

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax

ŷi

p✓(ŷi | x)

h
✓

(x) = argmin
ŷ

E
y⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p
✓

(y | x)`(ŷ,y)

Recall…	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

19	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Today’s	
 Lecture	

•  Suppose	
 our	
 decision	
 function	
 is	
 a	
 graphical	

model!	

•  We	
 know	
 how	
 to	
 compute	
 marginal	
 probabilities	

(inference),	
 but	
 how	
 to	
 do	
 make	
 a	
 prediction,	
 y?	

•  Can	
 we	
 use	
 an	
 MBR	
 decoder	
 as	
 the	

decision	
 function	
 in	
 this	
 recipe?	

A	
 Recipe	
 for	
 	

Graphical	
 Models	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

20	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Outline	

•  Motivation	

•  Hybrid	
 NN	
 +	
 HMM	
 	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Learning:	
 backprop	
 for	
 end-­‐to-­‐end	
 training	

–  Experiments:	
 phoneme	
 recognition	
 (Bengio	
 et	
 al.,	
 1992)	

•  Background:	
 Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Hybrid	
 RNN	
 +	
 HMM	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Experiments:	
 phoneme	
 recognition	
 (Graves	
 et	
 al.,	
 2013)	

•  Hybrid	
 CNN	
 +	
 CRF	

–  Model:	
 neural	
 net	
 for	
 factors	

–  Experiments:	
 natural	
 language	
 tasks	
 (Collobert	
 &	
 Weston,	
 2011)	

–  Experiments:	
 	
 pose	
 estimation	

•  Tricks	
 of	
 the	
 Trade	

21	

HYBRID:	
 	

NEURAL	
 NETWORK	
 +	
 HMM	

22	

Markov	
 Random	
 Field	
 (MRF)	

23	

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0 <START>

p(n, v, p, d, n, time, flies, like, an, arrow) = (4	
 *	
 8	
 *	
 5	
 *	
 3	
 *	
 …)	

v n p d
v 1	
 6	
 3	
 4	

n 8	
 4	
 2	
 0.1	

p 1	
 3	
 1	
 3	

d 0.1	
 8	
 0	
 0	

v n p d
v 1	
 6	
 3	
 4	

n 8	
 4	
 2	
 0.1	

p 1	
 3	
 1	
 3	

d 0.1	
 8	
 0	
 0	

ti
m

e
fl

ie
s

lik
e

…

v 3	
 5	
 3	

n 4	
 5	
 2	

p 0.1	
 0.1	
 3	

d 0.1	
 0.2	
 0.1	

ti
m

e
fl

ie
s

lik
e

…

v 3	
 5	
 3	

n 4	
 5	
 2	

p 0.1	
 0.1	
 3	

d 0.1	
 0.2	
 0.1	

Joint	
 distribution	
 over	
 tags	
 Yi and	
 words	
 Xi	

The	
 individual	
 factors	
 aren’t	
 necessarily	
 probabilities.	

Recall…	

time flies like an arrow

n v p d n <START>

Hidden	
 Markov	
 Model	

24	

But	
 sometimes	
 we	
 choose	
 to	
 make	
 them	
 probabilities.	
 	
 	

Constrain	
 each	
 row	
 of	
 a	
 factor	
 to	
 sum	
 to	
 one.	
 	
 Now	
 Z = 1.	

v n p d
v .1	
 .4	
 .2	
 .3	

n .8	
 .1	
 .1	
 0	

p .2	
 .3	
 .2	
 .3	

d .2	
 .8	
 0	
 0	

v n p d
v .1	
 .4	
 .2	
 .3	

n .8	
 .1	
 .1	
 0	

p .2	
 .3	
 .2	
 .3	

d .2	
 .8	
 0	
 0	

ti
m

e
fl

ie
s

lik
e

…

v .2	
 .5	
 .2	

n .3	
 .4	
 .2	

p .1	
 .1	
 .3	

d .1	
 .2	
 .1	

ti
m

e
fl

ie
s

lik
e

…

v .2	
 .5	
 .2	

n .3	
 .4	
 .2	

p .1	
 .1	
 .3	

d .1	
 .2	
 .1	

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3	
 *	
 .8	
 *	
 .2	
 *	
 .5	
 *	
 …)	

Recall…	

Gaussian	
 emission:	

p(Yt|St = i) =

Hybrid:	
 NN	
 +	
 HMM	

25	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Discrete HMM state: St � {/p/, /t/, /k/, /b/, /d/, . . . , /g/}
Continuous HMM emission: Yt � RK

HMM: p(,) =
T�

t=1

p(Yt|St)p(St|St�1)

…

…

…

…

…

…

…	

(Beng
io	
 et	
 a

l.,	
 199
2)	

(Beng
io	
 et	
 a

l.,	
 199
2)	

Gaussian	
 emission:	

p(Yt|St = i) =

Hybrid:	
 NN	
 +	
 HMM	

26	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Discrete HMM state: St � {/p/, /t/, /k/, /b/, /d/, . . . , /g/}
Continuous HMM emission: Yt � RK

HMM: p(,) =
T�

t=1

p(Yt|St)p(St|St�1)

…

…

…

…

…

…

…	

Lots	
 of	
 oddities	
 to	
 this	
 picture:	

•  Clashing	
 visual	
 notations	

(graphical	
 model	
 vs.	
 neural	

net)	

•  HMM	
 generates	
 data	
 top-­‐
down,	
 NN	
 generates	

bottom-­‐up	
 and	
 they	
 meet	
 in	

the	
 middle.	

•  The	
 “observations”	
 of	
 the	

HMM	
 are	
 not	
 actually	

observed	
 (i.e.	
 x’s	
 appear	
 in	

NN	
 only)	

	

So	
 what	
 are	
 we	
 missing?	

Hybrid:	
 NN	
 +	
 HMM	

27	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

…

…

…

…

…

…

…	

ai,j = p(St = i|St�1 = j)

bi,t = p(Yt|St = i) Hybrid:	
 NN	
 +	
 HMM	

28	

…

…

…

…

…

…

…	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Forward-­‐backward	
 algorithm:	
 a	
 “feed-­‐forward”	

algorithm	
 for	
 computing	
 alpha-­‐beta	
 probabilities.	
 	

Log-­‐likelihood:	
 a	
 “feed-­‐forward”	

objective	
 function.	

p(,) = �END,T

A	
 Recipe	
 for	
 	

Graphical	
 Models	

1.	
 Given	
 training	
 data:	

3.	
 Define	
 goal:	

29	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Log-­‐likelihood:	
 a	
 “feed-­‐forward”	

objective	
 function.	

p(,) = �END,T

Decision	
 /	
 Loss	
 Function	
 for	

Hybrid	
 NN	
 +	
 HMM	

Forward-­‐backward	
 algorithm:	
 a	
 “feed-­‐forward”	

algorithm	
 for	
 computing	
 alpha-­‐beta	
 probabilities.	
 	

How	
 do	
 we	
 compute	

the	
 gradient?	

Backpropagation	

30	

Training	

Backpropagation	

is	
 just	
 repeated	

application	
 of	
 the	

chain	
 rule	
 from	

Calculus	
 101.	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

Chain	
 Rule:	

Recall…	

Graphical	
 Model	
 and	

Log-­‐likelihood	

Neural	

Network	

How	
 to	
 compute	
 these	
 partial	
 derivatives?	

Backpropagation	

31	

Training	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

(F) Loss
J =

1

2

(y � y(d)

)

2

(E) Output (sigmoid)
y =

1

1+exp(b)

(D) Output (linear)
b =

PD
j=0

�jzj

(C) Hidden (sigmoid)
zj =

1

1+exp(aj)
, 8j

(B) Hidden (linear)
aj =

PM
i=0

↵jixi, 8j

(A) Input
Given xi, 8i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

go into some detail here in order to facilitate connections with backpropagation through in-
ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such
as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5
and Chapter 6 for approximation-aware training.

2.2.1 Topologies
A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =

h
✓

(x) where x is termed the input layer and y the output layer. A feed-forward neural
network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network
consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the
output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural
network are a matrix ↵ and a vector �.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1
(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-
nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function �(a) =

1

1+exp(a)

element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,
first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-
ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss
J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping

12

…

…

Output	

Input	

Hidden	
 Layer	

What	
 does	
 this	
 picture	
 actually	
 mean?	

Recall…	

Backpropagation	

32	

Training	

Case	
 2:	

Neural	

Network	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

Recall…	

Hybrid:	
 NN	
 +	
 HMM	

33	

… …

…

…

…

…

…	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Computing	
 the	
 Gradient:	

p(,) = �END,T

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

ytk

Forward	
 computation	

�i,t = . . . (forward prob)
�i,t = . . . (backward prop)
�i,t = . . . (marginals)
ai,j = . . . (transitions)
bi,t = . . . (emissions)

Hybrid:	
 NN	
 +	
 HMM	

34	

… …

…

…

…

…

…	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

Computing	
 the	
 Gradient:	

p(,) = �END,T

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

ytk

Forward	
 computation	

�i,t = . . . (forward prob)
�i,t = . . . (backward prop)
�i,t = . . . (marginals)
ai,j = . . . (transitions)
bi,t = . . . (emissions)

J =

Hybrid:	
 NN	
 +	
 HMM	

35	

Computing	
 the	
 Gradient:	

Backward	
 computation	

p(,) = �END,T

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

ytk

Forward	
 computation	

�i,t = . . . (forward prob)
�i,t = . . . (backward prop)
�i,t = . . . (marginals)
ai,j = . . . (transitions)
bi,t = . . . (emissions)

J =

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

dJ

dbi,t
=

Hybrid:	
 NN	
 +	
 HMM	

36	

Computing	
 the	
 Gradient:	

Backward	
 computation	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

p(,) = �END,T

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

ytk

Forward	
 computation	

�i,t = . . . (forward prob)
�i,t = . . . (backward prop)
�i,t = . . . (marginals)
ai,j = . . . (transitions)
bi,t = . . . (emissions)

J =

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

dJ

dbi,t
=

dJ

dyt,k
=

�

bi,t

dJ

dbi,t

dbi,t

dyt,k

Hybrid:	
 NN	
 +	
 HMM	

37	

Computing	
 the	
 Gradient:	

Backward	
 computation	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

p(,) = �END,T

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

ytk

Forward	
 computation	

�i,t = . . . (forward prob)
�i,t = . . . (backward prop)
�i,t = . . . (marginals)
ai,j = . . . (transitions)
bi,t = . . . (emissions)

J =

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

dJ

dbi,t
=

dJ

dyt,k
=

�

bi,t

dJ

dbi,t

dbi,t

dyt,k

The	
 derivative	
 of	

the	
 log-­‐likelihood	

with	
 respect	
 to	
 the	

neural	
 network	

parameters!	

Hybrid:	
 NN	
 +	
 HMM	

Experimental	
 Setup:	

•  Task:	
 Phoneme	
 Recognition	

(aka.	
 speaker	
 independent	

recognition	
 of	
 plosive	

sounds)	

•  Eight	
 output	
 labels:	
 	

–  /p/,	
 /t/,	
 /k/,	
 /b/,	
 /d/,	
 /g/,	
 /dx/,	
 /

all	
 other	
 phonemes/	

–  These	
 are	
 the	
 HMM	
 hidden	

states	

•  Metric:	
 Accuracy	

•  3	
 Models:	

1.  NN	
 only	

2.  NN	
 +	
 HMM	
 	

(trained	
 independently)	

3.  NN	
 +	
 HMM	
 	

(jointly	
 trained)	

38	

…	
 …	

…	

…	

…	

…	

…	

Y1 Y2 Y3 Y4 Y5

S1 S2 S3 S4 S5

0	

20	

40	

60	

80	

100	

NN	
 NN	
 +	
 HMM	
 NN	
 +	
 HMM	

(joint)	

A
cc
ur

ac
y	

Model	

(Beng
io	
 et	
 a

l.,	
 199
2)	

Outline	

•  Motivation	

•  Hybrid	
 NN	
 +	
 HMM	
 	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Learning:	
 backprop	
 for	
 end-­‐to-­‐end	
 training	

–  Experiments:	
 phoneme	
 recognition	
 (Bengio	
 et	
 al.,	
 1992)	

•  Background:	
 Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Hybrid	
 RNN	
 +	
 HMM	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Experiments:	
 phoneme	
 recognition	
 (Graves	
 et	
 al.,	
 2013)	

•  Hybrid	
 CNN	
 +	
 CRF	

–  Model:	
 neural	
 net	
 for	
 factors	

–  Experiments:	
 natural	
 language	
 tasks	
 (Collobert	
 &	
 Weston,	
 2011)	

–  Experiments:	
 	
 pose	
 estimation	

•  Tricks	
 of	
 the	
 Trade	

39	

BACKGROUND:	

RECURRENT	
 NEURAL	
 NETWORKS	

40	

Recurrent	
 Neural	
 Networks	
 (RNNs)	

41	

xt

h

yt

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Recurrent	
 Neural	
 Networks	
 (RNNs)	

42	

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Recurrent	
 Neural	
 Networks	
 (RNNs)	

43	

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Recurrent	
 Neural	
 Networks	
 (RNNs)	

•  If	
 T=1,	
 then	
 we	
 have	
 a	
 standard	

feed-­‐forward	
 neural	
 net	
 with	

one	
 hidden	
 layer	

•  All	
 of	
 the	
 deep	
 nets	
 from	
 last	

lecture	
 (DNN,	
 DBN,	
 DBM)	

required	
 fixed	
 size	
 inputs/
outputs	

44	

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Recurrent	
 Neural	
 Networks	
 (RNNs)	

•  By	
 unrolling	
 the	
 RNN	
 through	

time,	
 we	
 can	
 share	
 parameters	

and	
 accommodate	
 arbitrary	

length	
 input/output	
 pairs	

•  Applications:	
 time-­‐series	
 data	

such	
 as	
 sentences,	
 speech,	

stock-­‐market,	
 signal	
 data,	
 etc.	

45	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition	
 of	
 the	
 RNN:	
 inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

xt

h

yt

Background:	
 Backprop	
 through	
 time	

Recurrent	
 neural	

network:	

BPTT:	
 	

1.	
 Unroll	
 the	

computation	

over	
 time	

46	

(Robi
nson	

&	
 Fall
side,	
 1

987)	

(Werbos
,	
 1988

)	

(Mozer,	

1995)

	

a xt

bt

xt+1

yt+1

a x1

b1

x2

b2

x3

b3

x4

y4

2.	
 Run	

backprop	

through	
 the	

resulting	
 feed-­‐
forward	

network	

Bidirectional	
 RNN	

47	

xt

h

yt

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h

Bidirectional	
 RNN	

48	

x1

h1

y1

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Bidirectional	
 RNN	

49	

x1

h1

y1

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Bidirectional	
 RNN	

50	

x1

h1

y1

Recursive	
 Definition:	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units:
��
h and

��
h

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

Is	
 there	
 an	
 analogy	
 to	

some	
 other	
 recursive	

algorithm(s)	
 we	
 know?	

Deep	
 RNNs	

51	

Recursive	
 Definition:	

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

inputs: x = (x1, x2, . . . , xT), xi � RI

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

Deep	
 Bidirectional	
 RNNs	

52	

inputs: x = (x1, x2, . . . , xT), xi � RI

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

xt

h

yt

h

h’

h’

•  Notice	
 that	
 the	
 upper	

level	
 hidden	
 units	
 have	

input	
 from	
 two	
 previous	

layers	
 (i.e.	
 wider	
 input)	

•  Likewise	
 for	
 the	
 output	

layer	

•  What	
 analogy	
 can	
 we	

draw	
 to	
 DNNs,	
 DBNs,	

DBMs?	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

Motivation:	

•  Standard	
 RNNs	
 have	
 trouble	
 learning	
 long	

distance	
 dependencies	

•  LSTMs	
 combat	
 this	
 issue	

53	

x1

h1

y1

x2

h2

y2

xT-1

hT-1

yT-1

xT

hT

yT …	

…	

…	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

Motivation:	

•  Vanishing	
 gradient	
 problem	
 for	
 Standard	
 RNNs	

•  Figure	
 shows	
 sensitivity	
 (darker	
 =	
 more	
 sensitive)	
 to	
 the	
 input	
 at	

time	
 t=1	

54	

Figure	
 from	
 (Graves,	
 2012)	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

Motivation:	

•  LSTM	
 units	
 have	
 a	
 rich	
 internal	
 structure	

•  The	
 various	
 “gates”	
 determine	
 the	
 propagation	
 of	
 information	

and	
 can	
 choose	
 to	
 “remember”	
 or	
 “forget”	
 information	

55	

Figure	
 from	
 (Graves,	
 2012)	

CHAPTER 4. LONG SHORT-TERM MEMORY 35

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

56	

x1

y1

x2

y2

x3

y3

x4

y4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

57	

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

•  Input	
 gate:	
 masks	
 out	
 the	

standard	
 RNN	
 inputs	

•  Forget	
 gate:	
 masks	
 out	

the	
 previous	
 cell	

•  Cell:	
 stores	
 the	
 input/
forget	
 mixture	

•  Output	
 gate:	
 masks	
 out	

the	
 values	
 of	
 the	
 next	

hidden	

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

Long	
 Short-­‐Term	
 Memory	
 (LSTM)	

58	

x1

y1

x2

y2

x3

y3

x4

y4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

nh
n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Deep	
 Bidirectional	
 LSTM	
 (DBLSTM)	

59	

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

•  Figure:	
 input/output	

layers	
 not	
 shown	

•  Same	
 general	

topology	
 as	
 a	
 Deep	

Bidirectional	
 RNN,	

but	
 with	
 LSTM	
 units	

in	
 the	
 hidden	
 layers	

•  No	
 additional	

representational	

power	
 over	
 DBRNN,	

but	
 easier	
 to	
 learn	
 in	

practice	

Deep	
 Bidirectional	
 LSTM	
 (DBLSTM)	

60	

Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each y

t

defines a probability distribution over the
K possible states: that is, yk

t

(the k

th element of y
t

) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �
TX

t=1

log y

zt
t

(13)

Which leads to the following error derivatives at the output
layer

� @ log Pr(z|x)
@ŷ

k

t

= y

k

t

� �

k,zt (14)

where ŷ

t

is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure	
 from	
 (Graves	
 et	
 al.,	
 2013)	

How	
 important	
 is	
 this	

particular	
 architecture?	

	

Jozefowicz	
 et	
 al.	
 (2015)	

evaluated	
 10,000	

different	
 LSTM-­‐like	

architectures	
 and	

found	
 several	
 variants	

that	
 worked	
 just	
 as	

well	
 on	
 several	
 tasks.	

Outline	

•  Motivation	

•  Hybrid	
 NN	
 +	
 HMM	
 	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Learning:	
 backprop	
 for	
 end-­‐to-­‐end	
 training	

–  Experiments:	
 phoneme	
 recognition	
 (Bengio	
 et	
 al.,	
 1992)	

•  Background:	
 Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Hybrid	
 RNN	
 +	
 HMM	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Experiments:	
 phoneme	
 recognition	
 (Graves	
 et	
 al.,	
 2013)	

•  Hybrid	
 CNN	
 +	
 CRF	

–  Model:	
 neural	
 net	
 for	
 factors	

–  Experiments:	
 natural	
 language	
 tasks	
 (Collobert	
 &	
 Weston,	
 2011)	

–  Experiments:	
 	
 pose	
 estimation	

•  Tricks	
 of	
 the	
 Trade	

61	

HYBRID:	

RNN	
 +	
 HMM	

62	

(Grav
es	
 et	

al.,	
 20
13)	

Hybrid:	
 RNN	
 +	
 HMM	

•  Graves	
 et	
 al.	

(2013)	
 uses	
 a	

Deep	

Bidirectional	

LSTM	

•  Each	
 hidden	
 unit	

is	
 an	
 LSTM	

•  Deep	
 è	
 More	

than	
 two	
 layers	

63	

Y1 Y2 Y3 Y4

S1 S2 S3 S4

x1

h1

y1

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4
are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT

), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT

) and output vector sequence y =

(y1, . . . , yT) by iterating the following equations from t = 1

to T :

h

t

= H (W

xh

x

t

+W

hh

h

t�1 + b

h

) (1)
y

t

= W

hy

h

t

+ b

y

(2)

where the W terms denote weight matrices (e.g. W
xh

is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. b

h

is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

i

t

= � (W

xi

x

t

+W

hi

h

t�1 +W

ci

c

t�1 + b

i

) (3)
f

t

= � (W

xf

x

t

+W

hf

h

t�1 +W

cf

c

t�1 + b

f

) (4)
c

t

= f

t

c

t�1 + i

t

tanh (W

xc

x

t

+W

hc

h

t�1 + b

c

) (5)
o

t

= � (W

xo

x

t

+W

ho

h

t�1 +W

co

c

t

+ b

o

) (6)
h

t

= o

t

tanh(c

t

) (7)

where � is the logistic sigmoid function, and i, f , o and c

are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. W

si

) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

y

(10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where we define h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

y

(12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden layer
receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Hybrid:	
 RNN	
 +	
 HMM	

64	

Y1 Y2 Y3 Y4

S1 S2 S3 S4

x1

h1

y1

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

The	
 model,	
 inference,	
 and	

learning	
 can	
 be	
 analogous	
 to	

our	
 NN	
 +	
 HMM	
 hybrid	

•  Objective:	
 log-­‐likelihood	

•  Model:	
 HMM/Gaussian	

emissions	

•  Inference:	
 forward-­‐
backward	
 algorithm	

•  Learning:	
 SGD	
 with	

gradient	
 by	

backpropagation	

(Grav
es	
 et	

al.,	
 20
13)	

Hybrid:	
 RNN	
 +	
 HMM	

65	

Experimental	
 Setup:	

•  Task:	
 Phoneme	
 Recognition	

•  Dataset:	
 TIMIT	

•  Metric:	
 Phoneme	
 Error	
 Rate	

•  Two	
 classes	
 of	
 models:	

1.  Neural	
 Net	
 only	

2.  NN	
 +	
 HMM	
 hybrids	

vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh

units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10�4, momentum 0.9 and random initial weights
drawn uniformly from [�0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
in total. A biphone language model was estimated on the
training set, and a simple GMM-HMM system was used to
provide forced alignments. The posterior state probabilities
provided by the networks were not divided by the state oc-
cupancy priors, as this has been found to make no difference
on TIMIT [6]. Table 2 shows the phoneme error rates for
hybrid training with DBLSTM and Deep Bidirectional RNN
(DBRNN), along with the frame error rate (FER) and cross-
entropy error (CE) in units of nats per frame. The DBLSTM
networks had the same architecture as the CTC networks
described above, except that the output layer had 183 units
(one for each HMM state). As before, each randomly ini-
talised LSTM network was first trained to convergence, then
retrained with weight noise. The DBRNN network had 5
bidirectional levels with 500 tanh units in each, giving it ap-
proximately the same number of weights as the DBLSTM
networks. Retraining with weight noise was not found to
be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
is the best TIMIT result we know of in the literature. The
DBLSTM result without weight noise is better than the CTC

Table 1. TIMIT Results with End-To-End Training.

TRAINING METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2. TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN 19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM 17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

result without noise, and the DBRNN hybrid result is much
better than the DBRNN CTC result of 37.6 quoted in [1].

5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were

vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh

units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10�4, momentum 0.9 and random initial weights
drawn uniformly from [�0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
in total. A biphone language model was estimated on the
training set, and a simple GMM-HMM system was used to
provide forced alignments. The posterior state probabilities
provided by the networks were not divided by the state oc-
cupancy priors, as this has been found to make no difference
on TIMIT [6]. Table 2 shows the phoneme error rates for
hybrid training with DBLSTM and Deep Bidirectional RNN
(DBRNN), along with the frame error rate (FER) and cross-
entropy error (CE) in units of nats per frame. The DBLSTM
networks had the same architecture as the CTC networks
described above, except that the output layer had 183 units
(one for each HMM state). As before, each randomly ini-
talised LSTM network was first trained to convergence, then
retrained with weight noise. The DBRNN network had 5
bidirectional levels with 500 tanh units in each, giving it ap-
proximately the same number of weights as the DBLSTM
networks. Retraining with weight noise was not found to
be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
is the best TIMIT result we know of in the literature. The
DBLSTM result without weight noise is better than the CTC

Table 1. TIMIT Results with End-To-End Training.

TRAINING METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2. TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN 19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM 17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

result without noise, and the DBRNN hybrid result is much
better than the DBRNN CTC result of 37.6 quoted in [1].

5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were

vector was therefore size 123. The data were normalised so
that every element of the input vectors had zero mean and
unit variance over the training set. All 61 phoneme labels
were used during training and decoding (so K = 61), then
mapped to 39 classes for scoring [19]. All experiments were
repeated four times with different random initialisations, and
results are quoted as the mean ± the std. dev.

Table 1 shows the phoneme error rate (PER) for DBLSTM
trained with the two methods described in [1]: Connection-
ist Temporal Classification (‘CTC’) and Sequence Transduc-
tion (‘Transducer’). Both networks consisted of five bidirec-
tional hidden levels, each containing two LSTM layers of 250
cells, along with a size 62 softmax output layer (one unit
for each phoneme, plus an extra blank unit). The sequence
transduction network had an additional phoneme prediction
network with a single hidden layer of 250 LSTM cells, and
an output network with a single hidden layer of 250 tanh

units. The CTC network had approximately 6.8M weights
and the Transducer network had approximately 7.4M. All net-
works were trained using stochastic gradient descent, with
learning rate 10�4, momentum 0.9 and random initial weights
drawn uniformly from [�0.1, 0.1]. The CTC networks were
first trained to convergence with no noise, then retrained with
weight noise (std. dev. 0.075). The Transducer networks were
initialised with the weights of the CTC networks after retrain-
ing with noise. The Transducer phoneme error rate of 18.07
± 0.24 is consistent with the single result of 17.7 recorded
in [1]. Indeed, the single best Transducer run in this paper
(the one achieving lowest PER on the development set) also
returned 17.7 on the test set.

For hybrid training on TIMIT a phonetic dictionary was
used, with three states per phoneme, giving 183 target states
in total. A biphone language model was estimated on the
training set, and a simple GMM-HMM system was used to
provide forced alignments. The posterior state probabilities
provided by the networks were not divided by the state oc-
cupancy priors, as this has been found to make no difference
on TIMIT [6]. Table 2 shows the phoneme error rates for
hybrid training with DBLSTM and Deep Bidirectional RNN
(DBRNN), along with the frame error rate (FER) and cross-
entropy error (CE) in units of nats per frame. The DBLSTM
networks had the same architecture as the CTC networks
described above, except that the output layer had 183 units
(one for each HMM state). As before, each randomly ini-
talised LSTM network was first trained to convergence, then
retrained with weight noise. The DBRNN network had 5
bidirectional levels with 500 tanh units in each, giving it ap-
proximately the same number of weights as the DBLSTM
networks. Retraining with weight noise was not found to
be effective for the DBRNN, and the results are only quoted
without noise. The best result of 17.99 ± 0.13 is not sig-
nificantly different from the best transducer result, which
is the best TIMIT result we know of in the literature. The
DBLSTM result without weight noise is better than the CTC

Table 1. TIMIT Results with End-To-End Training.

TRAINING METHOD DEV PER TEST PER
CTC 19.05 ± 0.11 21.57 ± 0.25
CTC (NOISE) 16.34 ± 0.07 18.63 ± 0.16
TRANSDUCER 15.97 ± 0.28 18.07 ± 0.24

Table 2. TIMIT Results with Hybrid Training.

NETWORK
DEV PER DEV FER DEV CE
TEST PER TEST FER TEST CE

DBRNN 19.91 ± 0.22 30.82 ± 0.31 1.07 ± 0.010
21.92 ± 0.35 31.91 ± 0.47 1.12 ± 0.014

DBLSTM 17.44 ± 0.156 28.43 ± 0.14 0.93 ± 0.011
19.34 ± 0.15 29.55 ± 0.31 0.98 ± 0.019

DBLSTM 16.11 ± 0.15 26.64 ± 0.08 0.88 ± 0.008
(NOISE) 17.99 ± 0.13 27.88 ± 0.16 0.93 ± 0.004

result without noise, and the DBRNN hybrid result is much
better than the DBRNN CTC result of 37.6 quoted in [1].

5. WALL STREET JOURNAL EXPERIMENTS

The second set of experiments were carried out on the Wall
Street Journal (WSJ) speech corpus. Their main purpose was
to gauge the suitability of hybrid DBLSTM-HMM for large
vocabulary speech recognition, and in particular to compare
the approach with existing deep network and GMM bench-
marks.

We trained an sGMM-HMM baseline system on WSJ cor-
pus (available as LDC corpus LDC93S6B and LDC94S13B)
using Kaldi recipe s5 [20]. The training set used for the ex-
periments was the 14hour subset train-si84, rather than the
full 81 hour set. We used the dataset test-dev93 as the de-
velopment set. The audio data was preprocessed into 40 di-
mensional log mel filter-banks, with deltas and accelerations,
as with TIMIT. The trigram language model used for the task
was provided with the WSJ CD. The forced alignments were
generated from Kaldi recipe tri4b, corresponding to LDA pre-
processing of data, with MMLT and SAT for adaptation. See
Kaldi recipe s5 for further details. There were a total 3385
triphone states in the alignments.

The DBLSTM network had five bidirectional hidden lev-
els, with 500 LSTM cells in each of the forward and backward
layers, and a size 3385 softmax output layer, giving a total of
29.9M weights. The training parameters for the DBLSTM
network were identical to those used for TIMIT. The deep
network (DNN) had a context window of 15 acoustic frames
(seven to either side of the centre frame being classified) It
had six hidden layers with 2000 sigmoidal units in each, and
a size 3385 softmax output layer. The DNN weights were

1.	
 Neural	
 Net	
 only	
 2.	
 NN	
 +	
 HMM	
 hybrids	

Y1 Y2 Y3 Y4

S1 S2 S3 S4

x1

h1

y1

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

(Grav
es	
 et	

al.,	
 20
13)	

Outline	

•  Motivation	

•  Hybrid	
 NN	
 +	
 HMM	
 	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Learning:	
 backprop	
 for	
 end-­‐to-­‐end	
 training	

–  Experiments:	
 phoneme	
 recognition	
 (Bengio	
 et	
 al.,	
 1992)	

•  Background:	
 Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Hybrid	
 RNN	
 +	
 HMM	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Experiments:	
 phoneme	
 recognition	
 (Graves	
 et	
 al.,	
 2013)	

•  Hybrid	
 CNN	
 +	
 CRF	

–  Model:	
 neural	
 net	
 for	
 factors	

–  Experiments:	
 natural	
 language	
 tasks	
 (Collobert	
 &	
 Weston,	
 2011)	

–  Experiments:	
 	
 pose	
 estimation	

•  Tricks	
 of	
 the	
 Trade	

66	

HYBRID:	

CNN	
 +	
 CRF	

67	

Markov	
 Random	
 Field	
 (MRF)	

68	

time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0 <START>

p(n, v, p, d, n, time, flies, like, an, arrow) = (4	
 *	
 8	
 *	
 5	
 *	
 3	
 *	
 …)	

v n p d
v 1	
 6	
 3	
 4	

n 8	
 4	
 2	
 0.1	

p 1	
 3	
 1	
 3	

d 0.1	
 8	
 0	
 0	

v n p d
v 1	
 6	
 3	
 4	

n 8	
 4	
 2	
 0.1	

p 1	
 3	
 1	
 3	

d 0.1	
 8	
 0	
 0	

ti
m

e
fl

ie
s

lik
e

…

v 3	
 5	
 3	

n 4	
 5	
 2	

p 0.1	
 0.1	
 3	

d 0.1	
 0.2	
 0.1	

ti
m

e
fl

ie
s

lik
e

…

v 3	
 5	
 3	

n 4	
 5	
 2	

p 0.1	
 0.1	
 3	

d 0.1	
 0.2	
 0.1	

Joint	
 distribution	
 over	
 tags	
 Yi and	
 words	
 Xi	

	

Recall…	

Conditional	
 Random	
 Field	
 (CRF)	

69	
 time flies like an arrow

n ψ2 v ψ4 p ψ6 d ψ8 n

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0 <START>

v 3	

n 4	

p 0.1	

d 0.1	

v n p d
v 1	
 6	
 3	
 4	

n 8	
 4	
 2	
 0.1	

p 1	
 3	
 1	
 3	

d 0.1	
 8	
 0	
 0	

v n p d
v 1	
 6	
 3	
 4	

n 8	
 4	
 2	
 0.1	

p 1	
 3	
 1	
 3	

d 0.1	
 8	
 0	
 0	

v 5	

n 5	

p 0.1	

d 0.2	

Conditional	
 distribution	
 over	
 tags	
 Yi given	
 words	
 xi.	

The	
 factors	
 and	
 Z	
 are	
 now	
 specific	
 to	
 the	
 sentence	
 x.	

p(n, v, p, d, n | time, flies, like, an, arrow) = (4	
 *	
 8	
 *	
 5	
 *	
 3	
 *	
 …)	

Recall…	

Hybrid:	
 Neural	
 Net	
 +	
 CRF	

70	

v n p d
v .1	
 .4	
 .2	
 .3	

n .8	
 .1	
 .1	
 0	

p .2	
 .3	
 .2	
 .3	

d .2	
 .8	
 0	
 0	

S1 ψ2 S2 ψ4 S3 ψ6 S4 ψ8 S5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0 <START>

v 3	

n 4	

p 0.1	

d 0.1	

v 5	

n 5	

p 0.1	

d 0.2	

v n p d
v .1	
 .4	
 .2	
 .3	

n .8	
 .1	
 .1	
 0	

p .2	
 .3	
 .2	
 .3	

d .2	
 .8	
 0	
 0	

time flies like an arrow

•  In	
 a	
 standard	
 CRF,	
 each	
 of	
 the	
 factor	
 cells	
 is	
 a	

parameter	
 (e.g.	
 transition	
 or	
 emission)	

•  In	
 the	
 hybrid	
 model,	
 these	
 values	
 are	
 computed	

by	
 a	
 neural	
 network	
 with	
 its	
 own	
 parameters	

Hybrid:	
 Neural	
 Net	
 +	
 CRF	

71	

…

…

…

…

…

…

S1 ψ2 S2 ψ4 S3 ψ6 S4 ψ8 S5

ψ1 ψ3 ψ5 ψ7 ψ9

ψ0 <START>

v 3	

n 4	

p 0.1	

d 0.1	

v n p d
v .1	
 .4	
 .2	
 .3	

n .8	
 .1	
 .1	
 0	

p .2	
 .3	
 .2	
 .3	

d .2	
 .8	
 0	
 0	

Forward	
 computation	

Hybrid:	
 CNN	
 +	
 CRF	

•  For	
 computer	

vision,	

Convolutional	

Neural	
 Networks	

are	
 in	
 2-­‐dimensions	

•  For	
 natural	

language,	
 the	
 CNN	

is	
 1-­‐dimensional	

72	

(Collo
bert	
 &

	
 Weston
,	
 2011)

	

ar
Xi
v

Collobert, Weston, Bottou, Karlen, Kavukcuoglu and Kuksa

Input Sentence

Lookup Table

Convolution

Max Over Time

Linear

HardTanh

Linear

Text The cat sat on the mat

Feature 1 w

1
1 w

1
2 . . . w

1
N...

Feature K w

K

1 w

K

2 . . . w

K

N

LT

W

1

...
LT

W

K

max(·)

M

2 ⇥ ·

M

3 ⇥ ·

d

P
addin

g

P
addin

g

n1

hu

M

1 ⇥ ·

n1

hu

n2

hu

n3

hu = #tags

Figure 2: Sentence approach network.

at row i and column j in the matrix. We also denote hAidwin

i

the vector obtained by
concatenating the d

win

column vectors around the i

th column vector of matrix A 2 Rd1⇥d2 :
h

hAidwin

i

iT

=
⇣

[A]
1, i�d

win

/2

. . . [A]
d1, i�d

win

/2

, . . . , [A]
1, i+d

win

/2

. . . [A]
d1, i+d

win

/2

⌘

.

As a special case, hAi1
i

represents the i

th column of matrix A. For a vector v, we denote
[v]

i

the scalar at index i in the vector. Finally, a sequence of element {x
1

, x

2

, . . . , x

T

} is
written [x]T

1

. The i

th element of the sequence is [x]
i

.

8

Figure	
 from	
 (Collobert	
 &	
 Weston,	
 2011)	

Hybrid:	
 CNN	
 +	
 CRF	

73	

(Collo
bert	
 &

	
 Weston
,	
 2011)

	

ar
Xi
v

Collobert, Weston, Bottou, Karlen, Kavukcuoglu and Kuksa

Input Sentence

Lookup Table

Convolution

Max Over Time

Linear

HardTanh

Linear

Text The cat sat on the mat

Feature 1 w

1
1 w

1
2 . . . w

1
N...

Feature K w

K

1 w

K

2 . . . w

K

N

LT

W

1

...
LT

W

K

max(·)

M

2 ⇥ ·

M

3 ⇥ ·

d

P
addin

g

P
addin

g

n1

hu

M

1 ⇥ ·

n1

hu

n2

hu

n3

hu = #tags

Figure 2: Sentence approach network.

at row i and column j in the matrix. We also denote hAidwin

i

the vector obtained by
concatenating the d

win

column vectors around the i

th column vector of matrix A 2 Rd1⇥d2 :
h

hAidwin

i

iT

=
⇣

[A]
1, i�d

win

/2

. . . [A]
d1, i�d

win

/2

, . . . , [A]
1, i+d

win

/2

. . . [A]
d1, i+d

win

/2

⌘

.

As a special case, hAi1
i

represents the i

th column of matrix A. For a vector v, we denote
[v]

i

the scalar at index i in the vector. Finally, a sequence of element {x
1

, x

2

, . . . , x

T

} is
written [x]T

1

. The i

th element of the sequence is [x]
i

.

8

Figure	
 from	
 (Collobert	
 &	
 Weston,	
 2011)	

S1 ψ2 S2 ψ4 ψ6 S4 ψ8 S5

ψ1 ψ3 ψ7 ψ9
…

“NN	
 +	
 SLL”	

•  Model:	
 Convolutional	

Neural	
 Network	

(CNN)	
 with	
 linear-­‐
chain	
 CRF	

•  Training	
 objective:	

maximize	
 sentence-­‐
level	
 likelihood	
 (SLL)	

Hybrid:	
 CNN	
 +	
 CRF	

74	

(Collo
bert	
 &

	
 Weston
,	
 2011)

	

ar
Xi
v

Collobert, Weston, Bottou, Karlen, Kavukcuoglu and Kuksa

Input Sentence

Lookup Table

Convolution

Max Over Time

Linear

HardTanh

Linear

Text The cat sat on the mat

Feature 1 w

1
1 w

1
2 . . . w

1
N...

Feature K w

K

1 w

K

2 . . . w

K

N

LT

W

1

...
LT

W

K

max(·)

M

2 ⇥ ·

M

3 ⇥ ·

d

P
addin

g

P
addin

g

n1

hu

M

1 ⇥ ·

n1

hu

n2

hu

n3

hu = #tags

Figure 2: Sentence approach network.

at row i and column j in the matrix. We also denote hAidwin

i

the vector obtained by
concatenating the d

win

column vectors around the i

th column vector of matrix A 2 Rd1⇥d2 :
h

hAidwin

i

iT

=
⇣

[A]
1, i�d

win

/2

. . . [A]
d1, i�d

win

/2

, . . . , [A]
1, i+d

win

/2

. . . [A]
d1, i+d

win

/2

⌘

.

As a special case, hAi1
i

represents the i

th column of matrix A. For a vector v, we denote
[v]

i

the scalar at index i in the vector. Finally, a sequence of element {x
1

, x

2

, . . . , x

T

} is
written [x]T

1

. The i

th element of the sequence is [x]
i

.

8

Figure	
 from	
 (Collobert	
 &	
 Weston,	
 2011)	

S1 S2 S4 S5

ψ1 ψ3 ψ7 ψ9

…

“NN	
 +	
 WLL”	

•  Model:	
 Convolutional	

Neural	
 Network	

(CNN)	
 with	
 logistic	

regression	

•  Training	
 objective:	

maximize	
 word-­‐level	

likelihood	
 (WLL)	

Hybrid:	
 CNN	
 +	
 CRF	

75	

Experimental	
 Setup:	

•  Tasks:	
 	

–  Part-­‐of-­‐speech	
 tagging	
 (POS),	
 	

–  Noun-­‐phrase	
 and	
 Verb-­‐phrase	
 Chunking,	
 	

–  Named-­‐entity	
 recognition	
 (NER)	

–  Semantic	
 Role	
 Labeling	
 (SRL)	

•  Datasets	
 /	
 Metrics:	
 Standard	
 setups	
 from	
 NLP	

literature	
 (higher	
 PWA/F1	
 is	
 better)	

•  Models:	

–  Benchmark	
 systems	
 are	
 typical	
 –	
 non-­‐neural	

network	
 systems	

–  NN+WLL:	
 hybrid	
 CNN	
 with	
 logistic	
 regression	

–  NN+SLL:	
 hybrid	
 CNN	
 with	
 linear-­‐chain	
 CRF	

(Collo
bert	
 &

	
 Weston
,	
 2011)

	

ar
Xi
v

Natural Language Processing (almost) from Scratch

Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a
vanilla neural network (NN) approach, on POS, chunking, NER and SRL tasks. We report
results with both the word-level log-likelihood (WLL) and the sentence-level log-likelihood
(SLL). Generalization performance is reported in per-word accuracy rate (PWA) for POS
and F1 score for other tasks. The NN results are behind the benchmark results, in Section 4
we show how to improve these models using unlabeled data.

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS d

win

= 5 d

0 = 50 d

1 = 5 n

1

hu

= 300 � = 0.01

CHUNK ” ” ” ” ”

NER ” ” ” ” ”

SRL ” ” ”
n

1

hu

= 300

n

2

hu

= 500
”

Table 5: Hyper-parameters of our networks. We report for each task the window size
(or convolution size), word feature dimension, capital feature dimension, number of hidden
units and learning rate.

compute derivatives with respect to its inputs and with respect to its trainable parameters,
as proposed by Bottou and Gallinari (1991). This allows us to easily build variants of our
networks. For details about gradient computations, see Appendix A.

Remark 7 (Tricks) Many tricks have been reported for training neural networks (LeCun
et al., 1998). Which ones to choose is often confusing. We employed only two of them: the
initialization and update of the parameters of each network layer were done according to
the “fan-in” of the layer, that is the number of inputs used to compute each output of this
layer (Plaut and Hinton, 1987). The fan-in for the lookup table (1), the l

th linear layer (4)
and the convolution layer (6) are respectively 1, nl�1

hu

and d

win

⇥n

l�1

hu

. The initial parameters
of the network were drawn from a centered uniform distribution, with a variance equal to
the inverse of the square-root of the fan-in. The learning rate in (17) was divided by the
fan-in, but stays fixed during the training.

3.4 Supervised Benchmark Results

For POS, chunking and NER tasks, we report results with the window architecture described
in Section 3.2.1. The SRL task was trained using the sentence approach (Section 3.2.2).
Results are reported in Table 4, in per-word accuracy (PWA) for POS, and F1 score for all

17

Hybrid:	
 CNN	
 +	
 MRF	

76	

Experimental	
 Setup:	

•  Task:	
 pose	
 estimation	

•  Model:	
 Deep	
 CNN	
 +	
 MRF	

(Thom
pson	

et	
 al.,
	
 2014)

	

The impact of the number of resolution banks is shown in Fig 8c). As expected, we see a big
improvement when multiple resolution banks are added. Also note that the size of the receptive
fields as well as the number and size of the pooling stages in the network also have a large impact on
the performance. We tune the network hyper-parameters using coarse meta-optimization to obtain
maximal validation set performance within our computational budget (less than 100ms per forward-
propagation).

Fig 9 shows the predicted joint locations for a variety of inputs in the FLIC and LSP test-sets. Our
network produces convincing results on the FLIC dataset (with low joint position error), however,
because our simple Spatial-Model is less effective for a number of the highly articulated poses in
the LSP dataset, our detector results in incorrect joint predictions for some images. We believe that
increasing the size of the training set will improve performance for these difficult cases.

Figure 9: Predicted Joint Positions, Top Row: FLIC Test-Set, Bottom Row: LSP Test-Set

5 Conclusion

We have shown that the unification of a novel ConvNet Part-Detector and an MRF inspired Spatial-
Model into a single learning framework significantly outperforms existing architectures on the task
of human body pose recognition. Training and inference of our architecture uses commodity level
hardware and runs at close to real-time frame rates, making this technique tractable for a wide variety
of application areas.

For future work we expect to further improve upon these results by increasing the complexity and
expressiveness of our simple spatial model (especially for unconstrained datasets like LSP).

6 Acknowledgments

The authors would like to thank Mykhaylo Andriluka for his support. This research was funded in
part by the Office of Naval Research ONR Award N000141210327.

References
[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated

pose estimation. In CVPR, 2009.

8

The FLIC-full dataset contains 20928 training images, however many of these training set
images contain samples from the 1016 test set scenes and so would allow unfair over-
training on the FLIC test set. Therefore, we propose a new dataset - called FLIC-plus
(http://cims.nyu.edu/⇠tompson/flic plus.htm) - which is a 17380 image subset from the FLIC-plus
dataset. To create this dataset, we produced unique scene labels for both the FLIC test set and FLIC-
plus training sets using Amazon Mechanical Turk. We then removed all images from the FLIC-plus
training set that shared a scene with the test set. Since 253 of the sample images from the original
3987 FLIC training set came from the same scene as a test set sample (and were therefore removed
by the above procedure), we added these images back so that the FLIC-plus training set is a superset
of the original FLIC training set. Using this procedure we can guarantee that the additional samples
in FLIC-plus are sufficiently independent to the FLIC test set samples.

For evaluation of the test-set performance we use the measure suggested by Sapp et. al. [27]. For a
given normalized pixel radius (normalized by the torso height of each sample) we count the number
of images in the test-set for which the distance of the predicted UV joint location to the ground-truth
location falls within the given radius.

Fig 7a and 7b show our model’s performance on the the FLIC test-set for the elbow and wrist joints
respectively and trained using both the FLIC and FLIC-plus training sets. Performance on the LSP
dataset is shown in Fig 7c and 8a. For LSP evaluation we use person-centric (or non-observer-
centric) coordinates for fair comparison with prior work [30, 8]. Our model outperforms existing
state-of-the-art techniques on both of these challenging datasets with a considerable margin.

(a) FLIC: Elbow (b) FLIC: Wrist (c) LSP: Wrist and Elbow

Figure 7: Model Performance

Fig 8b illustrates the performance improvement from our simple Spatial-Model. As expected the
Spatial-Model has little impact on accuracy for low radii threshold, however, for large radii it in-
creases performance by 8 to 12%. Unified training of both models (after independent pre-training)
adds an additional 4-5% detection rate for large radii thresholds.

(a) LSP: Ankle and Knee

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

Part−Model
Part and Spatial−Model
Joint Training

(b) FLIC: Wrist

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Normalized distance error (pixels)

D
e

te
ct

io
n

 r
a

te

1 Bank
2 Banks
3 Banks

(c) FLIC: Wrist

Figure 8: (a) Model Performance (b) With and Without Spatial-Model (c) Part-Detector Performance
Vs Number of Resolution Banks (FLIC subset)

7

Outline	

•  Motivation	

•  Hybrid	
 NN	
 +	
 HMM	
 	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Learning:	
 backprop	
 for	
 end-­‐to-­‐end	
 training	

–  Experiments:	
 phoneme	
 recognition	
 (Bengio	
 et	
 al.,	
 1992)	

•  Background:	
 Recurrent	
 Neural	
 Networks	
 (RNNs)	

–  Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 RNNs	

–  Deep	
 Bidirectional	
 LSTMs	

–  Connection	
 to	
 forward-­‐backward	
 algorithm	

•  Hybrid	
 RNN	
 +	
 HMM	

–  Model:	
 neural	
 net	
 for	
 emissions	

–  Experiments:	
 phoneme	
 recognition	
 (Graves	
 et	
 al.,	
 2013)	

•  Hybrid	
 CNN	
 +	
 CRF	

–  Model:	
 neural	
 net	
 for	
 factors	

–  Experiments:	
 natural	
 language	
 tasks	
 (Collobert	
 &	
 Weston,	
 2011)	

–  Experiments:	
 	
 pose	
 estimation	

•  Tricks	
 of	
 the	
 Trade	

77	

TRICKS	
 OF	
 THE	
 TRADE	

78	

©	
 Eric	
 Xing	
 @	
 CMU,	
 2015	
 79	

80	

Deep Learning Tricks of the Trade
• Y. Bengio (2012), “Practical Recommendations for Gradient-

Based Training of Deep Architectures”
• Unsupervised pre-training
• Stochastic gradient descent and setting learning rates
• Main hyper-parameters

• Learning rate schedule & early stopping
• Minibatches
• Parameter initialization
• Number of hidden units
• L1 or L2 weight decay
• Sparsity regularization

• Debugging Æ use finite difference gradient checks
• How to efficiently search for hyper-parameter configurations

205

Slide	
 from	
 Socher,	
 MLSS	
 2014	

Tricks	
 of	
 the	
 Trade	

•  Lots	
 of	
 them:	

–  Pre-­‐training	
 helps	
 (but	
 isn’t	
 always	
 necessary)	

–  Train	
 with	
 adaptive	
 gradient	
 variants	
 of	
 SGD	
 (e.g.	

AdaGrad,	
 AdaDelta)	

–  Use	
 max-­‐margin	
 loss	
 function	
 (i.e.	
 hinge	
 loss)	
 –	
 though	

only	
 sub-­‐differentiable	
 it	
 often	
 gives	
 better	
 results	

– …	

•  A	
 few	
 years	
 back,	
 they	
 were	
 considered	
 “poorly	

documented”	
 and	
 “requiring	
 great	
 expertise”	

•  Now	
 there	
 are	
 lots	
 of	
 good	
 tutorials	
 that	
 describe	

(very	
 important)	
 specific	
 implementation	
 details	

•  Many	
 of	
 them	
 also	
 apply	
 to	
 training	
 graphical	

models!	

81	

SUMMARY	

82	

Summary:	
 	

Hybrid	
 Models	

Graphical	
 models	
 let	
 you	

encode	
 domain	

knowledge	

Neural	
 nets	
 are	
 really	

good	
 at	
 fitting	
 the	
 data	

discriminatively	
 to	
 make	

good	
 predictions	

83	

Could	
 we	
 define	
 a	
 neural	
 net	
 	

that	
 incorporates	
 	

domain	
 knowledge?	

…	

…	

…	

Summary:	
 	

Hybrid	
 Models	

Key	
 idea:	
 Use	
 a	
 NN	
 to	
 learn	
 features	
 for	
 a	
 GM,	

then	
 train	
 the	
 entire	
 model	
 by	
 backprop	

84	

…	

…	

…	

…"

…"

…"

…"

…"

…"

…"

Chart parser:

