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Reminders	
  

•  HW4:	
  due	
  April	
  27	
  
•  Project	
  presentations:	
  April	
  29	
  

– Location:	
  Baker	
  Hall	
  A51	
  
– Session	
  1:	
  8:30	
  -­‐	
  12:30	
  (4	
  hrs)	
  
– Lunch	
  break:	
  12:30	
  -­‐	
  1:30	
  (1	
  hr)	
  
– Session	
  2:	
  1:30	
  -­‐	
  5:00	
  (3.5	
  hrs)	
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Why	
  is	
  everyone	
  talking	
  	
  
about	
  Deep	
  Learning?	
  

•  Because	
  a	
  lot	
  of	
  money	
  is	
  invested	
  in	
  it…	
  
– DeepMind:	
  	
  Acquired	
  by	
  Google	
  for	
  $400	
  
million	
  

– DNNResearch:	
  	
  Three	
  person	
  startup	
  
(including	
  Geoff	
  Hinton)	
  acquired	
  by	
  Google	
  
for	
  unknown	
  price	
  tag	
  

–  Enlitic,	
  Ersatz,	
  MetaMind,	
  Nervana,	
  Skylab:	
  	
  
Deep	
  Learning	
  startups	
  commanding	
  millions	
  
of	
  VC	
  dollars	
  

•  Because	
  it	
  made	
  the	
  front	
  page	
  of	
  the	
  
New	
  York	
  Times	
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Motivation	
  



Why	
  is	
  everyone	
  talking	
  	
  
about	
  Deep	
  Learning?	
  

Deep	
  learning:	
  	
  
– Has	
  won	
  numerous	
  pattern	
  recognition	
  
competitions	
  

– Does	
  so	
  with	
  minimal	
  feature	
  
engineering	
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Motivation	
  

1960s	
  

1980s	
  

1990s	
  

2006	
  

2016	
  

This	
  wasn’t	
  always	
  the	
  case!	
  
Since	
  1980s:	
  	
  Form	
  of	
  models	
  hasn’t	
  changed	
  much,	
  	
  
but	
  lots	
  of	
  new	
  tricks…	
  

–  More	
  hidden	
  units	
  
–  Better	
  (online)	
  optimization	
  
–  New	
  nonlinear	
  functions	
  (ReLUs)	
  
–  Faster	
  computers	
  (CPUs	
  and	
  GPUs)	
  



A	
  Recipe	
  for	
  	
  
Machine	
  Learning	
  

1.	
  Given	
  training	
  data:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

Face	
   Face	
   Not	
  a	
  face	
  

Examples:	
  Linear	
  regression,	
  
Logistic	
  regression,	
  Neural	
  Network	
  

Examples:	
  Mean-­‐squared	
  error,	
  
Cross	
  Entropy	
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Machine	
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1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
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  data:	
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  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Gradients	
  

Backpropagation	
  can	
  compute	
  this	
  
gradient!	
  	
  
And	
  it’s	
  a	
  special	
  case	
  of	
  a	
  more	
  
general	
  algorithm	
  called	
  reverse-­‐
mode	
  automatic	
  differentiation	
  that	
  
can	
  compute	
  the	
  gradient	
  of	
  any	
  
differentiable	
  function	
  efficiently!	
  



A	
  Recipe	
  for	
  	
  
Machine	
  Learning	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Goals	
  for	
  Today’s	
  Lecture	
  

1.  Explore	
  a	
  new	
  class	
  of	
  decision	
  functions	
  	
  
(Deep	
  Nets)	
  

2.  Consider	
  variants	
  of	
  this	
  recipe	
  for	
  training	
  



Outline	
  
•  Motivation	
  
•  Deep	
  Neural	
  Networks	
  (DNNs)	
  

–  Background:	
  Decision	
  functions	
  
–  Background:	
  Neural	
  Networks	
  
–  Three	
  ideas	
  for	
  training	
  a	
  DNN	
  
–  Experiments:	
  MNIST	
  digit	
  classification	
  

•  Deep	
  Belief	
  Networks	
  (DBNs)	
  
–  Sigmoid	
  Belief	
  Network	
  
–  Contrastive	
  Divergence	
  learning	
  
–  Restricted	
  Boltzman	
  Machines	
  (RBMs)	
  
–  RBMs	
  as	
  infinitely	
  deep	
  Sigmoid	
  Belief	
  Nets	
  
–  Learning	
  DBNs	
  

•  Deep	
  Boltzman	
  Machines	
  (DBMs)	
  
–  Boltzman	
  Machines	
  
–  Learning	
  Boltzman	
  Machines	
  
–  Learning	
  DBMs	
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  Regression	
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Decision	
  
Functions	
  

…	
  

Output	
  

Input	
  

θ1 θ2 θ3 θM 
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  Regression	
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Decision	
  
Functions	
  

…	
  

Output	
  

Input	
  

θ1 θ2 θ3 θM 

Face	
   Face	
   Not	
  a	
  face	
  



Linear	
  Regression	
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Decision	
  
Functions	
  

…	
  

Output	
  

Input	
  

θ1 θ2 θ3 θM 

1	
   1	
   0	
  

x1	
  

x2	
  

y	
  



Linear	
  Regression	
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Decision	
  
Functions	
  

…	
  

Output	
  

Input	
  

θ1 θ2 θ3 θM 



Logistic	
  Regression	
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Decision	
  
Functions	
  

…	
  

Output	
  

Input	
  

θ1 θ2 θ3 θM 



Neural	
  Network	
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Decision	
  
Functions	
  

…	
  

…	
  

Output	
  

Input	
  

Hidden	
  Layer	
  



Multi-­‐Class	
  Output	
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Decision	
  
Functions	
  

…	
  

…	
  

Output	
  

Input	
  

Hidden	
  Layer	
  

…	
  



Deeper	
  Networks	
  

This	
  lecture:	
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Decision	
  
Functions	
  

…

…

Output	
  

Input	
  

Hidden	
  Layer	
  1	
  



Deeper	
  Networks	
  

This	
  lecture:	
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Decision	
  
Functions	
  

…

…Input	
  

Hidden	
  Layer	
  1	
  

…

Output	
  

Hidden	
  Layer	
  2	
  



Deeper	
  Networks	
  

This	
  lecture:	
  
Making	
  the	
  
neural	
  
networks	
  
deeper	
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Decision	
  
Functions	
  

…

…Input	
  

Hidden	
  Layer	
  1	
  

…Hidden	
  Layer	
  2	
  

…

Output	
  

Hidden	
  Layer	
  3	
  



Why	
  go	
  Deep?	
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Decision	
  
Functions	
  

Slide	
  adapted	
  from	
  Honglak	
  Lee	
  (NIPS	
  2010)	
  

Neural	
  Nets	
  	
  
(One	
  Hidden	
  Layer)	
  

Deep	
  Networks	
  
(Two	
  or	
  more	
  Hidden	
  Layers)	
  

•  Already	
  universal	
  function	
  
approximators	
  

•  Can	
  be	
  representationally	
  
efficient	
  

•  Fewer	
  computational	
  units	
  
for	
  the	
  same	
  function	
  

•  Can	
  represent	
  non-­‐linear	
  
combinations	
  of	
  the	
  input	
  
features	
  

•  Might	
  allow	
  for	
  a	
  hierarchy	
  	
  
•  Allows	
  non-­‐local	
  

generalizations	
  
•  Work	
  well	
   •  Have	
  been	
  shown	
  to	
  work	
  

even	
  better	
  (vision,	
  audio,	
  
NLP,	
  etc.)!	
  



Different	
  Levels	
  of	
  
Abstraction	
  

•  We	
  don’t	
  know	
  
the	
  “right”	
  
levels	
  of	
  
abstraction	
  

•  So	
  let	
  the	
  model	
  
figure	
  it	
  out!	
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Decision	
  
Functions	
  

Example	
  from	
  Honglak	
  Lee	
  (NIPS	
  2010)	
  



Different	
  Levels	
  of	
  
Abstraction	
  

Face	
  Recognition:	
  
– Deep	
  Network	
  
can	
  build	
  up	
  
increasingly	
  
higher	
  levels	
  of	
  
abstraction	
  

– Lines,	
  parts,	
  
regions	
  

23	
  

Decision	
  
Functions	
  

Example	
  from	
  Honglak	
  Lee	
  (NIPS	
  2010)	
  



Different	
  Levels	
  of	
  
Abstraction	
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Decision	
  
Functions	
  

Example	
  from	
  Honglak	
  Lee	
  (NIPS	
  2010)	
  

…

…Input	
  

Hidden	
  Layer	
  1	
  

…Hidden	
  Layer	
  2	
  

…

Output	
  

Hidden	
  Layer	
  3	
  



A	
  Recipe	
  for	
  	
  
Machine	
  Learning	
  

1.	
  Given	
  training	
  data:	
   3.	
  Define	
  goal:	
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Background	
  

2.	
  Choose	
  each	
  of	
  these:	
  
–  Decision	
  function	
  

–  Loss	
  function	
  

4.	
  Train	
  with	
  SGD:	
  
(take	
  small	
  steps	
  
opposite	
  the	
  gradient)	
  

Goals	
  for	
  Today’s	
  Lecture	
  

1.  Explore	
  a	
  new	
  class	
  of	
  decision	
  functions	
  	
  
(Deep	
  Neural	
  Networks)	
  

2.  Consider	
  variants	
  of	
  this	
  recipe	
  for	
  training	
  



Idea	
  #1:	
  No	
  pre-­‐training	
  

26	
  

Training	
  

�  Idea	
  #1:	
  (Just	
  like	
  a	
  shallow	
  network)	
  
�  Compute	
  the	
  supervised	
  gradient	
  by	
  backpropagation.	
  
�  Take	
  small	
  steps	
  in	
  the	
  direction	
  of	
  the	
  gradient	
  (SGD)	
  



Backpropagation	
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Training	
  

Backpropagation	
  
is	
  just	
  repeated	
  
application	
  of	
  the	
  
chain	
  rule	
  from	
  
Calculus	
  101.	
  

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)
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The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.
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(F) Loss
J =

1

2

(y � y(d)

)

2

(E) Output (sigmoid)
y =

1

1+exp(b)

(D) Output (linear)
b =

PD
j=0

�jzj

(C) Hidden (sigmoid)
zj =

1

1+exp(aj)
, 8j

(B) Hidden (linear)
aj =

PM
i=0

↵jixi, 8j

(A) Input
Given xi, 8i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

go into some detail here in order to facilitate connections with backpropagation through in-
ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such
as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5
and Chapter 6 for approximation-aware training.

2.2.1 Topologies
A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =

h
✓

(x) where x is termed the input layer and y the output layer. A feed-forward neural
network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network
consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the
output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural
network are a matrix ↵ and a vector �.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1
(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-
nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function �(a) =

1

1+exp(a)

element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,
first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-
ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss
J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping

12

…

…
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Hidden	
  Layer	
  

What	
  does	
  this	
  picture	
  actually	
  mean?	
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The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.
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Idea	
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  pre-­‐training	
  

•  What	
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  stuck	
  in	
  local	
  optima	
  

•  Nonconvex	
  objective	
  	
  
•  Usually	
  start	
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  point	
  in	
  parameter	
  space	
  

B.  Gradient	
  is	
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  getting	
  more	
  dilute	
  
•  “Vanishing	
  gradients”	
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�  Idea	
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  (Just	
  like	
  a	
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�  Compute	
  the	
  supervised	
  gradient	
  by	
  backpropagation.	
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  small	
  steps	
  in	
  the	
  direction	
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Idea	
  #2:	
  Supervised	
  	
  
Pre-­‐training	
  

1.  Supervised	
  Pre-­‐training	
  
–  Use	
  labeled	
  data	
  
–  Work	
  bottom-­‐up	
  

•  Train	
  hidden	
  layer	
  1.	
  Then	
  fix	
  its	
  parameters.	
  
•  Train	
  hidden	
  layer	
  2.	
  Then	
  fix	
  its	
  parameters.	
  
•  …	
  
•  Train	
  hidden	
  layer	
  n.	
  Then	
  fix	
  its	
  parameters.	
  

2.  Supervised	
  Fine-­‐tuning	
  
–  Use	
  labeled	
  data	
  to	
  train	
  following	
  “Idea	
  #1”	
  
–  Refine	
  the	
  features	
  by	
  backpropagation	
  so	
  that	
  they	
  become	
  

tuned	
  to	
  the	
  end-­‐task	
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  original	
  idea	
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  #3:	
  Unsupervised	
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1.  Unsupervised	
  Pre-­‐training	
  
–  Use	
  unlabeled	
  data	
  
–  Work	
  bottom-­‐up	
  

•  Train	
  hidden	
  layer	
  1.	
  Then	
  fix	
  its	
  parameters.	
  
•  Train	
  hidden	
  layer	
  2.	
  Then	
  fix	
  its	
  parameters.	
  
•  …	
  
•  Train	
  hidden	
  layer	
  n.	
  Then	
  fix	
  its	
  parameters.	
  

2.  Supervised	
  Fine-­‐tuning	
  
–  Use	
  labeled	
  data	
  to	
  train	
  following	
  “Idea	
  #1”	
  
–  Refine	
  the	
  features	
  by	
  backpropagation	
  so	
  that	
  they	
  become	
  

tuned	
  to	
  the	
  end-­‐task	
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Auto-­‐Encoders	
  

Key	
  idea:	
  Encourage	
  z	
  to	
  give	
  small	
  reconstruction	
  error:	
  
–  x’	
  is	
  the	
  reconstruction	
  of	
  x	
  
–  Loss	
  =	
  ||	
  x	
  –	
  DECODER(ENCODER(x))	
  ||2	
  
–  Train	
  with	
  the	
  same	
  backpropagation	
  algorithm	
  for	
  2-­‐layer	
  

Neural	
  Networks	
  with	
  xm	
  as	
  both	
  input	
  and	
  output.	
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–  …	
  
–  Train	
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  layer	
  n.	
  

Then	
  fix	
  its	
  parameters.	
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  parameters.	
  
Supervised	
  fine-­‐tuning	
  
Backprop	
  and	
  update	
  all	
  
parameters	
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  Net,	
  no-­‐
pretraining)	
  	
  

Idea	
  #2	
  
(Deep	
  Net,	
  

supervised	
  pre-­‐
training)	
  

Idea	
  #3	
  
(Deep	
  Net,	
  

unsupervised	
  pre-­‐
training)	
  

%	
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r	
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Training	
  

•  Results	
  from	
  Bengio	
  et	
  al.	
  (2006)	
  on	
  	
  
MNIST	
  digit	
  classification	
  task	
  

•  Percent	
  error	
  (lower	
  is	
  better)	
  	
  



Is	
  layer-­‐wise	
  pre-­‐training	
  
always	
  necessary?	
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Training	
  

In	
  2010,	
  a	
  record	
  on	
  a	
  hand-­‐writing	
  
recognition	
  task	
  was	
  set	
  by	
  standard	
  supervised	
  
backpropagation	
  (our	
  Idea	
  #1).	
  

	
  
How?	
  A	
  very	
  fast	
  implementation	
  on	
  GPUs.	
  

	
  
See	
  Ciresen	
  et	
  al.	
  (2010)	
  



Deep	
  Learning	
  

•  Goal:	
  learn	
  features	
  at	
  different	
  levels	
  of	
  
abstraction	
  

•  Training	
  can	
  be	
  tricky	
  due	
  to…	
  
– Nonconvexity	
  
– Vanishing	
  gradients	
  

•  Unsupervised	
  layer-­‐wise	
  pre-­‐training	
  can	
  
help	
  with	
  both!	
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Outline	
  
•  Motivation	
  
•  Deep	
  Neural	
  Networks	
  (DNNs)	
  

–  Background:	
  Decision	
  functions	
  
–  Background:	
  Neural	
  Networks	
  
–  Three	
  ideas	
  for	
  training	
  a	
  DNN	
  
–  Experiments:	
  MNIST	
  digit	
  classification	
  

•  Deep	
  Belief	
  Networks	
  (DBNs)	
  
–  Sigmoid	
  Belief	
  Network	
  
–  Contrastive	
  Divergence	
  learning	
  
–  Restricted	
  Boltzman	
  Machines	
  (RBMs)	
  
–  RBMs	
  as	
  infinitely	
  deep	
  Sigmoid	
  Belief	
  Nets	
  
–  Learning	
  DBNs	
  

•  Deep	
  Boltzman	
  Machines	
  (DBMs)	
  
–  Boltzman	
  Machines	
  
–  Learning	
  Boltzman	
  Machines	
  
–  Learning	
  DBMs	
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How	
  does	
  this	
  relate	
  to	
  	
  
Graphical	
  Models?	
  

The	
  first	
  “Deep	
  Learning”	
  papers	
  in	
  2006	
  were	
  
innovations	
  in	
  training	
  a	
  particular	
  flavor	
  of	
  
Belief	
  Network.	
  
	
  
Those	
  models	
  happen	
  to	
  also	
  be	
  neural	
  nets.	
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MNIST	
  Digit	
  Generation	
  

•  This	
  section:	
  Suppose	
  you	
  
want	
  to	
  build	
  a	
  
generative	
  model	
  
capable	
  of	
  explaining	
  
handwritten	
  digits	
  

•  Goal:	
  	
  
–  To	
  have	
  a	
  model	
  p(x)	
  

from	
  which	
  we	
  can	
  
sample	
  digits	
  that	
  look	
  
realistic	
  

–  Learn	
  unsupervised	
  
hidden	
  representation	
  of	
  
an	
  image	
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A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure	
  from	
  (Hinton	
  et	
  al.,	
  2006)	
  



what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid	
  Belief	
  Networks	
  

•  Directed	
  graphical	
  model	
  of	
  
binary	
  variables	
  in	
  fully	
  
connected	
  layers	
  	
  

•  Only	
  bottom	
  layer	
  is	
  observed	
  
•  Specific	
  parameterization	
  of	
  

the	
  conditional	
  probabilities:	
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p(xi|parents(xi)) =

1

1 + exp(�
�

j wijxj)

Figure	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

Note:	
  this	
  is	
  a	
  GM	
  
diagram	
  not	
  a	
  NN!	
  



Contrastive	
  Divergence	
  
Training	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

log likelihood of a dataset of v
log L = log P (D)

=

X

v2D
log P (v)

=

X

v2D
log

�
P

?

(v)/Z

�
 in terms of P

?

=

X

v2D

�
log P

?

(v) � log Z

�

/ 1

N

X

v2D
log P

?

(v)

| {z }
av. log likelihood per pattern

� log Z

The trick for finding the gradient of this: notice that
1 r

w

log P = (r
w

P )/P and conversely,
2 r

w

P = Pr
w

log P .

Each term uses this trick once, in each direction...
Marcus Frean (VUW) MLSS, ANU, 2010 16 / 75

Contrastive	
  Divergence	
  is	
  a	
  general	
  tool	
  for	
  learning	
  a	
  
generative	
  distribution,	
  where	
  the	
  derivative	
  of	
  the	
  log	
  partition	
  
function	
  is	
  intractable	
  to	
  compute.	
  



gradient as a whole
@

@w

log L /

1

N

X

v2D| {z }
data

X

h

P (h | v)

| {z }
av. over posterior

@

@w

log P

?

(x) �
X

v,h

P (v,h)

| {z }
av. over joint

@

@w

log P

?

(x)

Both terms involve averaging over @

@w

log P

?

(x).

Another way to write it:
⌧

@

@w

log P

?

(x)

�

v2D, h⇠P (h|v)

�
⌧

@

@w

log P

?

(x)

�

x⇠P (x)

clamped / wake phase unclamped / sleep / free phase
""" conditioned hypotheses ### random fantasies

Marcus Frean (VUW) MLSS, ANU, 2010 19 / 75

Contrastive	
  Divergence	
  
Training	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

Contrastive	
  
Divergence	
  estimates	
  
the	
  second	
  term	
  with	
  
a	
  Monte	
  Carlo	
  
estimate	
  from	
  1-­‐step	
  
of	
  a	
  Gibbs	
  sampler!	
  



Contrastive	
  Divergence	
  
Training	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

example: sigmoid belief nets
For a belief net the joint is automatically normalised: Z is a constant 1

2nd term is zero!

for the weight w

ij

from j into i, the gradient
@log L

@w

ij

= (x

i

� p

i

)x

j

stochastic gradient ascent:

�w

ij

/ (x

i

� p

i

)x

j| {z }
the ”delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

E step: get samples from the posterior
M step: apply the learning rule that makes them more likely

Marcus Frean (VUW) MLSS, ANU, 2010 20 / 75



what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid	
  Belief	
  Networks	
  

•  In	
  practice,	
  applying	
  CD	
  to	
  
a	
  Deep	
  Sigmoid	
  Belief	
  
Nets	
  fails	
  

•  Sampling	
  from	
  the	
  
posterior	
  of	
  many	
  (deep)	
  
hidden	
  layers	
  doesn’t	
  
approach	
  the	
  equilibrium	
  
distribution	
  quickly	
  
enough	
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Figure	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

Note:	
  this	
  is	
  a	
  GM	
  
diagram	
  not	
  a	
  NN!	
  



Boltzman	
  Machines	
  

•  Undirected	
  graphical	
  
model	
  of	
  binary	
  
variables	
  with	
  
pairwise	
  potentials	
  

•  Parameterization	
  of	
  
the	
  potentials:	
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�ij(xi, xj) =

exp(xiWijxj)

(In	
  English:	
  higher	
  value	
  of	
  
parameter	
  Wij	
  leads	
  to	
  higher	
  
correlation	
  between	
  Xi	
  and	
  Xj	
  on	
  
value	
  1)	
  

Xi X1 X1 

Xj 

X1 X1 



trick # 1: restrict the connections
Assume visible units are one layer, and hidden units are another.
Throw out all the connections within each layer.

h

j

?? h

k

| v

the posterior P (h | v) factors
c.f. in a belief net, the prior P (h) factors
no explaining away

Marcus Frean (VUW) MLSS, ANU, 2010 41 / 75

Restricted	
  Boltzman	
  
Machines	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  



Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left �! right)

Marcus Frean (VUW) MLSS, ANU, 2010 42 / 75

Restricted	
  Boltzman	
  
Machines	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  



Restricted	
  Boltzman	
  
Machines	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

learning in an RBM

Repeat for all data:
1 start with a training vector on the visible units
2 then alternate between updating all the hidden units in parallel and

updating all the visible units in parallel

�w

ij

= ⌘

⇥
hv

i

h

j

i0 � hv
i

h

j

i1
⇤

restricted connectivity is trick #1:
it saves waiting for equilibrium in the clamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 43 / 75



Restricted	
  Boltzman	
  
Machines	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

trick # 2: curtail the Markov chain during learning

Repeat for all data:
1 start with a training vector on the visible units
2 update all the hidden units in parallel
3 update all the visible units in parallel to get a “reconstruction”
4 update the hidden units again

�w

ij

= ⌘

⇥
hv

i

h

j

i0 � hv
i

h

j

i1
⇤

This is not following the correct gradient, but works well in practice. Geoff
Hinton calls it learning by “contrastive divergence”.

Marcus Frean (VUW) MLSS, ANU, 2010 44 / 75



1: RBMs are infinitely deep belief nets

sampling from this is the same as sampling
from the network on the right.

Marcus Frean (VUW) MLSS, ANU, 2010 52 / 75

Deep	
  Belief	
  Networks	
  
(DBNs)	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

RBMs	
  are	
  equivalent	
  to	
  infinitely	
  deep	
  belief	
  networks	
  



Deep	
  Belief	
  Networks	
  
(DBNs)	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

RBMs	
  are	
  equivalent	
  to	
  infinitely	
  deep	
  belief	
  networks	
  in fact, all of these are the same animal...

So when we train an RBM, we’re really training an1ly deep sigmoid
belief net!
It’s just that the weights of all layers are tied.

Marcus Frean (VUW) MLSS, ANU, 2010 53 / 75



un-tie the weights from layer 2 to1

If we freeze the first RBM,
and then train another RBM
atop it, we are untying the
weights of layers 2+ in the1
net (which remain tied
together).

Marcus Frean (VUW) MLSS, ANU, 2010 54 / 75

Deep	
  Belief	
  Networks	
  
(DBNs)	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

Un-­‐tie	
  the	
  weights	
  from	
  layers	
  2	
  to	
  infinity	
  



un-tie the weights from layer 3 to1

and ditto for the 3rd layer...

Marcus Frean (VUW) MLSS, ANU, 2010 55 / 75

Deep	
  Belief	
  Networks	
  
(DBNs)	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

Un-­‐tie	
  the	
  weights	
  from	
  layers	
  3	
  to	
  infinity	
  



Deep	
  Belief	
  Networks	
  
(DBNs)	
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Slide	
  from	
  Marcus	
  Frean,	
  MLSS	
  Tutorial	
  2010	
  

fine-tuning with the wake-sleep algorithm
So far, the up and down weights have been symmetric, as required by the
Boltzmann machine learning algorithm. And we didn’t change the lower
levels after “freezing” them.

wake: do a bottom-up pass, starting with a pattern from the training
set. Use the delta rule to make this more likely under the generative
model.
sleep: do a top-down pass, starting from an equilibrium sample from
the top RBM. Use the delta rule to make this more likely under the
recognition model.

[CD version: start top RBM at the sample from the wake phase, and don’t
wait for equilibrium before doing the top-down pass].

wake-sleep learning algorithm
unties the recognition weights from the generative ones

Marcus Frean (VUW) MLSS, ANU, 2010 66 / 75



Unsupervised	
  Learning	
  
of	
  DBNs	
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Figure	
  from	
  (Hinton	
  &	
  Salakhutinov,	
  2006)	
  

Setting	
  A:	
  DBN	
  Autoencoder	
  
I.  Pre-­‐train	
  a	
  stack	
  of	
  RBMs	
  in	
  

greedy	
  layerwise	
  fashion	
  	
  
II.  Unroll	
  the	
  RBMs	
  to	
  create	
  

an	
  autoencoder	
  (i.e.	
  
bottom-­‐up	
  and	
  top-­‐down	
  
weights	
  are	
  untied)	
  

III.  Fine-­‐tune	
  the	
  parameters	
  
using	
  backpropagation	
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Figure	
  from	
  (Hinton	
  &	
  Salakhutinov,	
  2006)	
  

Setting	
  A:	
  DBN	
  Autoencoder	
  
I.  Pre-­‐train	
  a	
  stack	
  of	
  RBMs	
  in	
  

greedy	
  layerwise	
  fashion	
  	
  
II.  Unroll	
  the	
  RBMs	
  to	
  create	
  

an	
  autoencoder	
  (i.e.	
  
bottom-­‐up	
  and	
  top-­‐down	
  
weights	
  are	
  untied)	
  

III.  Fine-­‐tune	
  the	
  parameters	
  
using	
  backpropagation	
  

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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  from	
  (Hinton	
  &	
  Salakhutinov,	
  2006)	
  

Setting	
  A:	
  DBN	
  Autoencoder	
  
I.  Pre-­‐train	
  a	
  stack	
  of	
  RBMs	
  in	
  

greedy	
  layerwise	
  fashion	
  	
  
II.  Unroll	
  the	
  RBMs	
  to	
  create	
  

an	
  autoencoder	
  (i.e.	
  
bottom-­‐up	
  and	
  top-­‐down	
  
weights	
  are	
  untied)	
  

III.  Fine-­‐tune	
  the	
  parameters	
  
using	
  backpropagation	
  

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Setting	
  A:	
  DBN	
  Autoencoder	
  
I.  Pre-­‐train	
  a	
  stack	
  of	
  RBMs	
  in	
  

greedy	
  layerwise	
  fashion	
  	
  
II.  Unroll	
  the	
  RBMs	
  to	
  create	
  

an	
  autoencoder	
  (i.e.	
  
bottom-­‐up	
  and	
  top-­‐down	
  
weights	
  are	
  untied)	
  

III.  Fine-­‐tune	
  the	
  parameters	
  
using	
  backpropagation	
  

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[ procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[ units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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Setting	
  B:	
  DBN	
  classifier	
  
I.  Pre-­‐train	
  a	
  stack	
  of	
  RBMs	
  

in	
  greedy	
  layerwise	
  
fashion	
  (unsupervised)	
  	
  

II.  Fine-­‐tune	
  the	
  parameters	
  
using	
  backpropagation	
  by	
  
minimizing	
  classification	
  
error	
  on	
  the	
  training	
  data	
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  Digit	
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89	
  

DBNs	
  

•  Comparison	
  of	
  deep	
  autoencoder,	
  logistic	
  PCA,	
  and	
  PCA	
  
•  Each	
  method	
  projects	
  the	
  real	
  data	
  down	
  to	
  a	
  vector	
  of	
  

30	
  real	
  numbers	
  
•  Then	
  reconstructs	
  the	
  data	
  from	
  the	
  low-­‐dimensional	
  

projection	
  

Figure	
  from	
  Hinton,	
  NIPS	
  Tutorial	
  2007	
  

A comparison of methods for compressing

digit images to 30 real numbers.

real

data

30-D

deep auto

30-D logistic

PCA

30-D

PCA
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Setting	
  B:	
  DBN	
  Autoencoder	
  
I.  Pre-­‐train	
  a	
  stack	
  of	
  RBMs	
  in	
  

greedy	
  layerwise	
  fashion	
  	
  
II.  Unroll	
  the	
  RBMs	
  to	
  create	
  

an	
  autoencoder	
  (i.e.	
  
bottom-­‐up	
  and	
  top-­‐down	
  
weights	
  are	
  untied)	
  

III.  Fine-­‐tune	
  the	
  parameters	
  
using	
  backpropagation	
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•  This	
  section:	
  Suppose	
  you	
  
want	
  to	
  build	
  a	
  
generative	
  model	
  
capable	
  of	
  explaining	
  
handwritten	
  digits	
  

•  Goal:	
  	
  
–  To	
  have	
  a	
  model	
  p(x)	
  

from	
  which	
  we	
  can	
  
sample	
  digits	
  that	
  look	
  
realistic	
  

–  Learn	
  unsupervised	
  
hidden	
  representation	
  of	
  
an	
  image	
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A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure	
  from	
  (Hinton	
  et	
  al.,	
  2006)	
  

Samples	
  from	
  a	
  DBN	
  trained	
  on	
  MNIST	
  

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has
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Examples of correctly recognized handwritten digits

that the neural network had never seen before

Its very

good

Experimental	
  
evaluation	
  of	
  
DBN	
  with	
  
greedy	
  layer-­‐
wise	
  pre-­‐
training	
  and	
  
fine-­‐tuning	
  
via	
  the	
  wake-­‐
sleep	
  
algorithm	
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How well does it discriminate on MNIST test set with

no extra information about geometric distortions?

• Generative model based on RBM’s                   1.25%

• Support Vector Machine  (Decoste et. al.)    1.4%

• Backprop with 1000 hiddens (Platt)                 ~1.6%

• Backprop with 500 -->300 hiddens                  ~1.6%

• K-Nearest Neighbor                                        ~ 3.3%

• See Le Cun et. al. 1998 for more results

• Its better than backprop and much more neurally plausible

because the neurons only need to send one kind of signal,

and the teacher can be another sensory input.

Experimental	
  
evaluation	
  of	
  
DBN	
  with	
  
greedy	
  layer-­‐
wise	
  pre-­‐
training	
  and	
  
fine-­‐tuning	
  
via	
  the	
  wake-­‐
sleep	
  
algorithm	
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How to compress the count vector

• We train the neural

network to reproduce its

input vector as its output

• This forces it to

compress as much

information as possible

into the 10 numbers in

the central bottleneck.

• These 10 numbers are

then a good way to

compare documents.

 2000  reconstructed counts

500 neurons

     2000  word counts

500 neurons

250 neurons

250 neurons

10

input

vector

output

vector
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Performance of the autoencoder at

document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.

– First train a stack of RBM’s. Then fine-tune with
backprop.

• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document.



Document	
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  Retrieval	
  

Retrieval	
  Results	
  
•  Goal:	
  given	
  a	
  

query	
  
document,	
  
retrieve	
  the	
  
relevant	
  test	
  
documents	
  

•  Figure	
  shows	
  
accuracy	
  for	
  
varying	
  
numbers	
  of	
  
retrieved	
  test	
  
docs	
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Fig. S5: Accuracy curves when a query document from the test set is used to retrieve other test set
documents, averaged over all 7,531 possible queries.
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s
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stack of RBM’s one layer at a time. After the stack of
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machine which is an undirected graphical model, but the
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model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
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∑
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∑

n p(h1|vn;W1). Since the second RBM is re-
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to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
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p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model
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Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden
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units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation
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Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the
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Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.
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• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the
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Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.
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P

∑
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Jjmhj
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, (4)
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(
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∑
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)

, (5)
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,
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chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.
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Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model
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Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model
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