
Deep	
 Neural	
 Networks	
 	

and	
 	

Graphical	
 Models	

1	

Matt	
 Gormley	

Lecture	
 26	

April	
 18,	
 2016	

	

School of Computer Science

Readings:	
 	

Deng	
 (2013)	

Bengio	
 (2009)	

Hinton	
 (2010)	

10-­‐708	
 Probabilistic	
 Graphical	
 Models	

Reminders	

•  HW4:	
 due	
 April	
 27	

•  Project	
 presentations:	
 April	
 29	

– Location:	
 Baker	
 Hall	
 A51	

– Session	
 1:	
 8:30	
 -­‐	
 12:30	
 (4	
 hrs)	

– Lunch	
 break:	
 12:30	
 -­‐	
 1:30	
 (1	
 hr)	

– Session	
 2:	
 1:30	
 -­‐	
 5:00	
 (3.5	
 hrs)	

	

2	

Why	
 is	
 everyone	
 talking	
 	

about	
 Deep	
 Learning?	

•  Because	
 a	
 lot	
 of	
 money	
 is	
 invested	
 in	
 it…	

– DeepMind:	
 	
 Acquired	
 by	
 Google	
 for	
 $400	

million	

– DNNResearch:	
 	
 Three	
 person	
 startup	

(including	
 Geoff	
 Hinton)	
 acquired	
 by	
 Google	

for	
 unknown	
 price	
 tag	

–  Enlitic,	
 Ersatz,	
 MetaMind,	
 Nervana,	
 Skylab:	
 	

Deep	
 Learning	
 startups	
 commanding	
 millions	

of	
 VC	
 dollars	

•  Because	
 it	
 made	
 the	
 front	
 page	
 of	
 the	

New	
 York	
 Times	

3	

Motivation	

Why	
 is	
 everyone	
 talking	
 	

about	
 Deep	
 Learning?	

Deep	
 learning:	
 	

– Has	
 won	
 numerous	
 pattern	
 recognition	

competitions	

– Does	
 so	
 with	
 minimal	
 feature	

engineering	

4	

Motivation	

1960s	

1980s	

1990s	

2006	

2016	

This	
 wasn’t	
 always	
 the	
 case!	

Since	
 1980s:	
 	
 Form	
 of	
 models	
 hasn’t	
 changed	
 much,	
 	

but	
 lots	
 of	
 new	
 tricks…	

–  More	
 hidden	
 units	

–  Better	
 (online)	
 optimization	

–  New	
 nonlinear	
 functions	
 (ReLUs)	

–  Faster	
 computers	
 (CPUs	
 and	
 GPUs)	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	

5	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

Face	
 Face	
 Not	
 a	
 face	

Examples:	
 Linear	
 regression,	

Logistic	
 regression,	
 Neural	
 Network	

Examples:	
 Mean-­‐squared	
 error,	

Cross	
 Entropy	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

6	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

7	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Gradients	

Backpropagation	
 can	
 compute	
 this	

gradient!	
 	

And	
 it’s	
 a	
 special	
 case	
 of	
 a	
 more	

general	
 algorithm	
 called	
 reverse-­‐
mode	
 automatic	
 differentiation	
 that	

can	
 compute	
 the	
 gradient	
 of	
 any	

differentiable	
 function	
 efficiently!	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

8	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Goals	
 for	
 Today’s	
 Lecture	

1.  Explore	
 a	
 new	
 class	
 of	
 decision	
 functions	
 	

(Deep	
 Nets)	

2.  Consider	
 variants	
 of	
 this	
 recipe	
 for	
 training	

Outline	

•  Motivation	

•  Deep	
 Neural	
 Networks	
 (DNNs)	

–  Background:	
 Decision	
 functions	

–  Background:	
 Neural	
 Networks	

–  Three	
 ideas	
 for	
 training	
 a	
 DNN	

–  Experiments:	
 MNIST	
 digit	
 classification	

•  Deep	
 Belief	
 Networks	
 (DBNs)	

–  Sigmoid	
 Belief	
 Network	

–  Contrastive	
 Divergence	
 learning	

–  Restricted	
 Boltzman	
 Machines	
 (RBMs)	

–  RBMs	
 as	
 infinitely	
 deep	
 Sigmoid	
 Belief	
 Nets	

–  Learning	
 DBNs	

•  Deep	
 Boltzman	
 Machines	
 (DBMs)	

–  Boltzman	
 Machines	

–  Learning	
 Boltzman	
 Machines	

–  Learning	
 DBMs	

9	

Outline	

•  Motivation	

•  Deep	
 Neural	
 Networks	
 (DNNs)	

–  Background:	
 Decision	
 functions	

–  Background:	
 Neural	
 Networks	

–  Three	
 ideas	
 for	
 training	
 a	
 DNN	

–  Experiments:	
 MNIST	
 digit	
 classification	

•  Deep	
 Belief	
 Networks	
 (DBNs)	

–  Sigmoid	
 Belief	
 Network	

–  Contrastive	
 Divergence	
 learning	

–  Restricted	
 Boltzman	
 Machines	
 (RBMs)	

–  RBMs	
 as	
 infinitely	
 deep	
 Sigmoid	
 Belief	
 Nets	

–  Learning	
 DBNs	

•  Deep	
 Boltzman	
 Machines	
 (DBMs)	

–  Boltzman	
 Machines	

–  Learning	
 Boltzman	
 Machines	

–  Learning	
 DBMs	

10	

Linear	
 Regression	

11	

Decision	

Functions	

…	

Output	

Input	

θ1 θ2 θ3 θM

Linear	
 Regression	

12	

Decision	

Functions	

…	

Output	

Input	

θ1 θ2 θ3 θM

Face	
 Face	
 Not	
 a	
 face	

Linear	
 Regression	

13	

Decision	

Functions	

…	

Output	

Input	

θ1 θ2 θ3 θM

1	
 1	
 0	

x1	

x2	

y	

Linear	
 Regression	

14	

Decision	

Functions	

…	

Output	

Input	

θ1 θ2 θ3 θM

Logistic	
 Regression	

15	

Decision	

Functions	

…	

Output	

Input	

θ1 θ2 θ3 θM

Neural	
 Network	

16	

Decision	

Functions	

…	

…	

Output	

Input	

Hidden	
 Layer	

Multi-­‐Class	
 Output	

17	

Decision	

Functions	

…	

…	

Output	

Input	

Hidden	
 Layer	

…	

Deeper	
 Networks	

This	
 lecture:	

18	

Decision	

Functions	

…

…

Output	

Input	

Hidden	
 Layer	
 1	

Deeper	
 Networks	

This	
 lecture:	

19	

Decision	

Functions	

…

…Input	

Hidden	
 Layer	
 1	

…

Output	

Hidden	
 Layer	
 2	

Deeper	
 Networks	

This	
 lecture:	

Making	
 the	

neural	

networks	

deeper	

20	

Decision	

Functions	

…

…Input	

Hidden	
 Layer	
 1	

…Hidden	
 Layer	
 2	

…

Output	

Hidden	
 Layer	
 3	

Why	
 go	
 Deep?	

21	

Decision	

Functions	

Slide	
 adapted	
 from	
 Honglak	
 Lee	
 (NIPS	
 2010)	

Neural	
 Nets	
 	

(One	
 Hidden	
 Layer)	

Deep	
 Networks	

(Two	
 or	
 more	
 Hidden	
 Layers)	

•  Already	
 universal	
 function	

approximators	

•  Can	
 be	
 representationally	

efficient	

•  Fewer	
 computational	
 units	

for	
 the	
 same	
 function	

•  Can	
 represent	
 non-­‐linear	

combinations	
 of	
 the	
 input	

features	

•  Might	
 allow	
 for	
 a	
 hierarchy	
 	

•  Allows	
 non-­‐local	

generalizations	

•  Work	
 well	
 •  Have	
 been	
 shown	
 to	
 work	

even	
 better	
 (vision,	
 audio,	

NLP,	
 etc.)!	

Different	
 Levels	
 of	

Abstraction	

•  We	
 don’t	
 know	

the	
 “right”	

levels	
 of	

abstraction	

•  So	
 let	
 the	
 model	

figure	
 it	
 out!	

22	

Decision	

Functions	

Example	
 from	
 Honglak	
 Lee	
 (NIPS	
 2010)	

Different	
 Levels	
 of	

Abstraction	

Face	
 Recognition:	

– Deep	
 Network	

can	
 build	
 up	

increasingly	

higher	
 levels	
 of	

abstraction	

– Lines,	
 parts,	

regions	

23	

Decision	

Functions	

Example	
 from	
 Honglak	
 Lee	
 (NIPS	
 2010)	

Different	
 Levels	
 of	

Abstraction	

24	

Decision	

Functions	

Example	
 from	
 Honglak	
 Lee	
 (NIPS	
 2010)	

…

…Input	

Hidden	
 Layer	
 1	

…Hidden	
 Layer	
 2	

…

Output	

Hidden	
 Layer	
 3	

A	
 Recipe	
 for	
 	

Machine	
 Learning	

1.	
 Given	
 training	
 data:	
 3.	
 Define	
 goal:	

25	

Background	

2.	
 Choose	
 each	
 of	
 these:	

–  Decision	
 function	

–  Loss	
 function	

4.	
 Train	
 with	
 SGD:	

(take	
 small	
 steps	

opposite	
 the	
 gradient)	

Goals	
 for	
 Today’s	
 Lecture	

1.  Explore	
 a	
 new	
 class	
 of	
 decision	
 functions	
 	

(Deep	
 Neural	
 Networks)	

2.  Consider	
 variants	
 of	
 this	
 recipe	
 for	
 training	

Idea	
 #1:	
 No	
 pre-­‐training	

26	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

Backpropagation	

27	

Training	

Backpropagation	

is	
 just	
 repeated	

application	
 of	
 the	

chain	
 rule	
 from	

Calculus	
 101.	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

Chain	
 Rule:	

Backpropagation	

28	

Training	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

…	

Output	

Input	

θ1 θ2 θ3 θM

Case	
 1:	

Logistic	

Regression	

Backpropagation	

29	

Training	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

(F) Loss
J =

1

2

(y � y(d)

)

2

(E) Output (sigmoid)
y =

1

1+exp(b)

(D) Output (linear)
b =

PD
j=0

�jzj

(C) Hidden (sigmoid)
zj =

1

1+exp(aj)
, 8j

(B) Hidden (linear)
aj =

PM
i=0

↵jixi, 8j

(A) Input
Given xi, 8i

Figure 2.1: Feed-forward topology of a 2-layer neural network.

go into some detail here in order to facilitate connections with backpropagation through in-
ference algorithms for graphical models—considered later in this chapter (Section 2.3.4.4).

The material presented here acts as a supplement to later uses of backpropagation such
as in Chapter 4 for training of a hybrid graphical model / neural network, and in Chapter 5
and Chapter 6 for approximation-aware training.

2.2.1 Topologies
A feed-forward neural network (Rumelhart et al., 1986) defines a decision function y =

h
✓

(x) where x is termed the input layer and y the output layer. A feed-forward neural
network has a statically defined topology. Figure 2.1 shows a simple 2-layer neural network
consisting of an input layer x, a hidden layer z, and an output layer y. In this example, the
output layer is of length 1 (i.e. just a single scalar y). The model parameters of the neural
network are a matrix ↵ and a vector �.

The feed-forward computation proceeds as follows: we are given x as input (Fig. 2.1
(A)). Next, we compute an intermediate vector a, each entry of which is a linear combi-
nations of the input (Fig. 2.1 (B)). We then apply the sigmoid function �(a) =

1

1+exp(a)

element-wise to obtain z (Fig. 2.1 (C)). The output layer is computed in a similar fashion,
first taking a linear combination of the hidden layer to compute b (Fig. 2.1 (D)) then apply-
ing the sigmoid function to obtain the output y (Fig. 2.1 (E)). Finally we compute the loss
J (Fig. 2.1 (F)) as the squared distance to the true value y(d) from the training data.

We refer to this topology as an arithmetic circuit. It defines both a function mapping

12

…

…

Output	

Input	

Hidden	
 Layer	

What	
 does	
 this	
 picture	
 actually	
 mean?	

Backpropagation	

30	

Training	

Case	
 2:	

Neural	

Network	

2.2. NEURAL NETWORKS AND BACKPROPAGATION

The backward pass computes dJ
d✓j

8j.

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�a)

dJ

da
=

dJ

dq

dq

da
,
dq

da
=

exp(a)

(exp(a) + 1)

2

a =

DX

j=0

✓jxj
dJ

d✓j
=

dJ

da

da

d✓j
,
da

d✓j
= xj

dJ

dxj
=

dJ

da

da

dxj
,
da

dxj
= ✓j

2-Layer Neural Network Backpropagation for a 2-layer neural network looks very simi-
lar to the logistic regression example above. We have added a hidden layer z corresponding
to the latent features of the neural network. Note that our model parameters ✓ are defined
as the concatenation of the vector � (parameters for the output layer) with the vectorized
matrix ↵ (parameters for the hidden layer).

Forward Backward

J = y⇤
log q + (1 � y⇤

) log(1 � q)
dJ

dq
=

y⇤

q
+

(1 � y⇤
)

q � 1

q =
1

1 + exp(�b)

dJ

db
=

dJ

dy

dy

db
,
dy

db
=

exp(b)

(exp(b) + 1)

2

b =
DX

j=0

�jzj
dJ

d�j
=

dJ

db

db

d�j
,
db

d�j
= zj

dJ

dzj
=

dJ

db

db

dzj
,
db

dzj
= �j

zj =
1

1 + exp(�aj)

dJ

daj
=

dJ

dzj

dzj

daj
,
dzj

daj
=

exp(aj)

(exp(aj) + 1)

2

aj =

MX

i=0

↵jixi
dJ

d↵ji
=

dJ

daj

daj

d↵ji
,
daj

d↵ji
= xi

dJ

dxi
=

dJ

daj

daj

dxi
,
daj

dxi
=

DX

j=0

↵ji

Notice that this application of backpropagation computes both the derivatives with respect
to each model parameter dJ

d↵ji
and dJ

d�j
, but also the partial derivatives with respect to each

intermediate quantity dJ
daj

, dJ
dzj

, dJ
db ,

dJ
dy and the input dJ

dxi
.

14

Idea	
 #1:	
 No	
 pre-­‐training	

31	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

32	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

33	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Idea	
 #1:	
 No	
 pre-­‐training	

•  What	
 goes	
 wrong?	

A.  Gets	
 stuck	
 in	
 local	
 optima	

•  Nonconvex	
 objective	
 	

•  Usually	
 start	
 at	
 a	
 random	
 (bad)	
 point	
 in	
 parameter	
 space	

B.  Gradient	
 is	
 progressively	
 getting	
 more	
 dilute	

•  “Vanishing	
 gradients”	

34	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

0.0
0.5

1.0

-20
-15

-10
-5

-20

-15

-10

-5

0

Problem	
 A:	

Nonconvexity	

•  Where	
 does	
 the	
 nonconvexity	
 come	
 from?	

•  Even	
 a	
 simple	
 quadratic	
 z	
 =	
 xy	
 objective	
 is	

nonconvex:	

35	

Training	

z	

x	

y	

Problem	
 A:	

Nonconvexity	

•  Where	
 does	
 the	
 nonconvexity	
 come	
 from?	

•  Even	
 a	
 simple	
 quadratic	
 z	
 =	
 xy	
 objective	
 is	

nonconvex:	

36	

Training	

0.0
0.5

1.0

-20 -15 -10 -5

-20

-15

-10

-5

0

z	

x	

y	

37	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

38	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

39	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

40	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

41	

Stochastic	
 Gradient	

Descent…	

…climbs	
 to	
 the	
 top	

of	
 the	
 nearest	
 hill…	

	

…which	
 might	
 not	

lead	
 to	
 the	
 top	
 of	

the	
 mountain	

	

	

Problem	
 A:	

Nonconvexity	
 Training	

Problem	
 B:	

Vanishing	
 Gradients	

The	
 gradient	
 for	
 an	
 edge	

at	
 the	
 base	
 of	
 the	

network	
 depends	
 on	
 the	

gradients	
 of	
 many	
 edges	

above	
 it	

	

The	
 chain	
 rule	
 multiplies	

many	
 of	
 these	
 partial	

derivatives	
 together	

42	

Training	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…

Output	

Hidden	
 Layer	

Problem	
 B:	

Vanishing	
 Gradients	

The	
 gradient	
 for	
 an	
 edge	

at	
 the	
 base	
 of	
 the	

network	
 depends	
 on	
 the	

gradients	
 of	
 many	
 edges	

above	
 it	

	

The	
 chain	
 rule	
 multiplies	

many	
 of	
 these	
 partial	

derivatives	
 together	

43	

Training	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…

Output	

Hidden	
 Layer	

Problem	
 B:	

Vanishing	
 Gradients	

The	
 gradient	
 for	
 an	
 edge	

at	
 the	
 base	
 of	
 the	

network	
 depends	
 on	
 the	

gradients	
 of	
 many	
 edges	

above	
 it	

	

The	
 chain	
 rule	
 multiplies	

many	
 of	
 these	
 partial	

derivatives	
 together	

44	

Training	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…

Output	

Hidden	
 Layer	

0.1	

0.3	

0.2	

0.7	

Idea	
 #1:	
 No	
 pre-­‐training	

•  What	
 goes	
 wrong?	

A.  Gets	
 stuck	
 in	
 local	
 optima	

•  Nonconvex	
 objective	
 	

•  Usually	
 start	
 at	
 a	
 random	
 (bad)	
 point	
 in	
 parameter	
 space	

B.  Gradient	
 is	
 progressively	
 getting	
 more	
 dilute	

•  “Vanishing	
 gradients”	

45	

Training	

�  Idea	
 #1:	
 (Just	
 like	
 a	
 shallow	
 network)	

�  Compute	
 the	
 supervised	
 gradient	
 by	
 backpropagation.	

�  Take	
 small	
 steps	
 in	
 the	
 direction	
 of	
 the	
 gradient	
 (SGD)	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

1.  Supervised	
 Pre-­‐training	

–  Use	
 labeled	
 data	

–  Work	
 bottom-­‐up	

•  Train	
 hidden	
 layer	
 1.	
 Then	
 fix	
 its	
 parameters.	

•  Train	
 hidden	
 layer	
 2.	
 Then	
 fix	
 its	
 parameters.	

•  …	

•  Train	
 hidden	
 layer	
 n.	
 Then	
 fix	
 its	
 parameters.	

2.  Supervised	
 Fine-­‐tuning	

–  Use	
 labeled	
 data	
 to	
 train	
 following	
 “Idea	
 #1”	

–  Refine	
 the	
 features	
 by	
 backpropagation	
 so	
 that	
 they	
 become	

tuned	
 to	
 the	
 end-­‐task	

46	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

47	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

…

…

Output	

Input	

Hidden	
 Layer	
 1	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

48	

Training	

…

…Input	

Hidden	
 Layer	
 1	

…

Output	

Hidden	
 Layer	
 2	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

49	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

…

…Input	

Hidden	
 Layer	
 1	

…Hidden	
 Layer	
 2	

…

Output	

Hidden	
 Layer	
 3	

Idea	
 #2:	
 Supervised	
 	

Pre-­‐training	

50	

Training	

�  Idea	
 #2:	
 (Two	
 Steps)	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

�  Then	
 use	
 our	
 original	
 idea	

…

…Input	

Hidden	
 Layer	
 1	

…Hidden	
 Layer	
 2	

…

Output	

Hidden	
 Layer	
 3	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

51	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

52	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Idea	
 #3:	
 Unsupervised	

Pre-­‐training	

1.  Unsupervised	
 Pre-­‐training	

–  Use	
 unlabeled	
 data	

–  Work	
 bottom-­‐up	

•  Train	
 hidden	
 layer	
 1.	
 Then	
 fix	
 its	
 parameters.	

•  Train	
 hidden	
 layer	
 2.	
 Then	
 fix	
 its	
 parameters.	

•  …	

•  Train	
 hidden	
 layer	
 n.	
 Then	
 fix	
 its	
 parameters.	

2.  Supervised	
 Fine-­‐tuning	

–  Use	
 labeled	
 data	
 to	
 train	
 following	
 “Idea	
 #1”	

–  Refine	
 the	
 features	
 by	
 backpropagation	
 so	
 that	
 they	
 become	

tuned	
 to	
 the	
 end-­‐task	

53	

Training	

�  Idea	
 #3:	
 (Two	
 Steps)	

�  Use	
 our	
 original	
 idea,	
 but	
 pick	
 a	
 better	
 starting	
 point	

�  Train	
 each	
 level	
 of	
 the	
 model	
 in	
 a	
 greedy	
 way	

The	
 solution:	

Unsupervised	
 pre-­‐training	

54	

…

…Input	

Hidden	
 Layer	

Output	

Unsupervised	
 pre-­‐
training	
 of	
 the	
 first	
 layer:	
 	

•  What	
 should	
 it	
 predict?	

•  What	
 else	
 do	
 we	

observe?	
 	

•  The	
 input!	

This	
 topology	
 defines	
 an	

Auto-­‐encoder.	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	
 of	
 the	
 first	
 layer:	
 	

•  What	
 should	
 it	
 predict?	

•  What	
 else	
 do	
 we	

observe?	
 	

•  The	
 input!	

This	
 topology	
 defines	
 an	

Auto-­‐encoder.	

55	

…

…Input	

Hidden	
 Layer	

…“Input”	
 ’	
 ’	
 ’	
 ’	

Auto-­‐Encoders	

Key	
 idea:	
 Encourage	
 z	
 to	
 give	
 small	
 reconstruction	
 error:	

–  x’	
 is	
 the	
 reconstruction	
 of	
 x	

–  Loss	
 =	
 ||	
 x	
 –	
 DECODER(ENCODER(x))	
 ||2	

–  Train	
 with	
 the	
 same	
 backpropagation	
 algorithm	
 for	
 2-­‐layer	

Neural	
 Networks	
 with	
 xm	
 as	
 both	
 input	
 and	
 output.	

56	

…

…Input	

Hidden	
 Layer	

…“Input”	
 ’	
 ’	
 ’	
 ’	

Slide	
 adapted	
 from	
 Raman	
 Arora	

DECODER:	
 	
 x’	
 =	
 h(W’z)	

ENCODER:	
 	
 z	
 =	
 h(Wx)	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

57	

…

…Input	

Hidden	
 Layer	

…“Input”	
 ’	
 ’	
 ’	
 ’	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

58	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…’	
 ’	
 ’	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

59	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…Hidden	
 Layer	

…’	
 ’	
 ’	

The	
 solution:	

Unsupervised	
 pre-­‐training	

Unsupervised	
 pre-­‐
training	

•  Work	
 bottom-­‐up	

–  Train	
 hidden	
 layer	
 1.	

Then	
 fix	
 its	
 parameters.	

–  Train	
 hidden	
 layer	
 2.	

Then	
 fix	
 its	
 parameters.	

–  …	

–  Train	
 hidden	
 layer	
 n.	

Then	
 fix	
 its	
 parameters.	

Supervised	
 fine-­‐tuning	

Backprop	
 and	
 update	
 all	

parameters	

60	

…

…Input	

Hidden	
 Layer	

…Hidden	
 Layer	

…Hidden	
 Layer	

Output	

Deep	
 Network	
 Training	
 	

	

61	

�  Idea	
 #3:	

1.  Unsupervised	
 layer-­‐wise	
 pre-­‐training	

2.  Supervised	
 fine-­‐tuning	

�  Idea	
 #2:	

1.  Supervised	
 layer-­‐wise	
 pre-­‐training	

2.  Supervised	
 fine-­‐tuning	

�  Idea	
 #1:	

1.  Supervised	
 fine-­‐tuning	
 only	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

62	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Comparison	
 on	
 MNIST	

1.0	

1.5	

2.0	

2.5	

Shallow	
 Net	
 Idea	
 #1	

(Deep	
 Net,	
 no-­‐
pretraining)	
 	

Idea	
 #2	

(Deep	
 Net,	

supervised	
 pre-­‐
training)	

Idea	
 #3	

(Deep	
 Net,	

unsupervised	
 pre-­‐
training)	

%	

Er

ro
r	

63	

Training	

•  Results	
 from	
 Bengio	
 et	
 al.	
 (2006)	
 on	
 	

MNIST	
 digit	
 classification	
 task	

•  Percent	
 error	
 (lower	
 is	
 better)	
 	

Is	
 layer-­‐wise	
 pre-­‐training	

always	
 necessary?	

64	

Training	

In	
 2010,	
 a	
 record	
 on	
 a	
 hand-­‐writing	

recognition	
 task	
 was	
 set	
 by	
 standard	
 supervised	

backpropagation	
 (our	
 Idea	
 #1).	

	

How?	
 A	
 very	
 fast	
 implementation	
 on	
 GPUs.	

	

See	
 Ciresen	
 et	
 al.	
 (2010)	

Deep	
 Learning	

•  Goal:	
 learn	
 features	
 at	
 different	
 levels	
 of	

abstraction	

•  Training	
 can	
 be	
 tricky	
 due	
 to…	

– Nonconvexity	

– Vanishing	
 gradients	

•  Unsupervised	
 layer-­‐wise	
 pre-­‐training	
 can	

help	
 with	
 both!	

65	

Outline	

•  Motivation	

•  Deep	
 Neural	
 Networks	
 (DNNs)	

–  Background:	
 Decision	
 functions	

–  Background:	
 Neural	
 Networks	

–  Three	
 ideas	
 for	
 training	
 a	
 DNN	

–  Experiments:	
 MNIST	
 digit	
 classification	

•  Deep	
 Belief	
 Networks	
 (DBNs)	

–  Sigmoid	
 Belief	
 Network	

–  Contrastive	
 Divergence	
 learning	

–  Restricted	
 Boltzman	
 Machines	
 (RBMs)	

–  RBMs	
 as	
 infinitely	
 deep	
 Sigmoid	
 Belief	
 Nets	

–  Learning	
 DBNs	

•  Deep	
 Boltzman	
 Machines	
 (DBMs)	

–  Boltzman	
 Machines	

–  Learning	
 Boltzman	
 Machines	

–  Learning	
 DBMs	

66	

How	
 does	
 this	
 relate	
 to	
 	

Graphical	
 Models?	

The	
 first	
 “Deep	
 Learning”	
 papers	
 in	
 2006	
 were	

innovations	
 in	
 training	
 a	
 particular	
 flavor	
 of	

Belief	
 Network.	

	

Those	
 models	
 happen	
 to	
 also	
 be	
 neural	
 nets.	

67	

Question:	

MNIST	
 Digit	
 Generation	

•  This	
 section:	
 Suppose	
 you	

want	
 to	
 build	
 a	

generative	
 model	

capable	
 of	
 explaining	

handwritten	
 digits	

•  Goal:	
 	

–  To	
 have	
 a	
 model	
 p(x)	

from	
 which	
 we	
 can	

sample	
 digits	
 that	
 look	

realistic	

–  Learn	
 unsupervised	

hidden	
 representation	
 of	

an	
 image	

68	

DBNs	

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure	
 from	
 (Hinton	
 et	
 al.,	
 2006)	

what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid	
 Belief	
 Networks	

•  Directed	
 graphical	
 model	
 of	

binary	
 variables	
 in	
 fully	

connected	
 layers	
 	

•  Only	
 bottom	
 layer	
 is	
 observed	

•  Specific	
 parameterization	
 of	

the	
 conditional	
 probabilities:	

69	

DBNs	

p(xi|parents(xi)) =

1

1 + exp(�
�

j wijxj)

Figure	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Note:	
 this	
 is	
 a	
 GM	

diagram	
 not	
 a	
 NN!	

Contrastive	
 Divergence	

Training	

70	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

log likelihood of a dataset of v
log L = log P (D)

=

X

v2D
log P (v)

=

X

v2D
log

�
P

?

(v)/Z

�
 in terms of P

?

=

X

v2D

�
log P

?

(v) � log Z

�

/ 1

N

X

v2D
log P

?

(v)

| {z }
av. log likelihood per pattern

� log Z

The trick for finding the gradient of this: notice that
1 r

w

log P = (r
w

P)/P and conversely,
2 r

w

P = Pr
w

log P .

Each term uses this trick once, in each direction...
Marcus Frean (VUW) MLSS, ANU, 2010 16 / 75

Contrastive	
 Divergence	
 is	
 a	
 general	
 tool	
 for	
 learning	
 a	

generative	
 distribution,	
 where	
 the	
 derivative	
 of	
 the	
 log	
 partition	

function	
 is	
 intractable	
 to	
 compute.	

gradient as a whole
@

@w

log L /

1

N

X

v2D| {z }
data

X

h

P (h | v)

| {z }
av. over posterior

@

@w

log P

?

(x) �
X

v,h

P (v,h)

| {z }
av. over joint

@

@w

log P

?

(x)

Both terms involve averaging over @

@w

log P

?

(x).

Another way to write it:
⌧

@

@w

log P

?

(x)

�

v2D, h⇠P (h|v)

�
⌧

@

@w

log P

?

(x)

�

x⇠P (x)

clamped / wake phase unclamped / sleep / free phase
""" conditioned hypotheses ### random fantasies

Marcus Frean (VUW) MLSS, ANU, 2010 19 / 75

Contrastive	
 Divergence	

Training	

71	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Contrastive	

Divergence	
 estimates	

the	
 second	
 term	
 with	

a	
 Monte	
 Carlo	

estimate	
 from	
 1-­‐step	

of	
 a	
 Gibbs	
 sampler!	

Contrastive	
 Divergence	

Training	

72	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

example: sigmoid belief nets
For a belief net the joint is automatically normalised: Z is a constant 1

2nd term is zero!

for the weight w

ij

from j into i, the gradient
@log L

@w

ij

= (x

i

� p

i

)x

j

stochastic gradient ascent:

�w

ij

/ (x

i

� p

i

)x

j| {z }
the ”delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

E step: get samples from the posterior
M step: apply the learning rule that makes them more likely

Marcus Frean (VUW) MLSS, ANU, 2010 20 / 75

what would a really interesting generative model for (say)
images look like?

stochastic
lots of units
several layers
easy to sample from

sigmoid belief net
an interesting generative model

Marcus Frean (VUW) MLSS, ANU, 2010 9 / 75

Sigmoid	
 Belief	
 Networks	

•  In	
 practice,	
 applying	
 CD	
 to	

a	
 Deep	
 Sigmoid	
 Belief	

Nets	
 fails	

•  Sampling	
 from	
 the	

posterior	
 of	
 many	
 (deep)	

hidden	
 layers	
 doesn’t	

approach	
 the	
 equilibrium	

distribution	
 quickly	

enough	

73	

DBNs	

Figure	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Note:	
 this	
 is	
 a	
 GM	

diagram	
 not	
 a	
 NN!	

Boltzman	
 Machines	

•  Undirected	
 graphical	

model	
 of	
 binary	

variables	
 with	

pairwise	
 potentials	

•  Parameterization	
 of	

the	
 potentials:	

74	

DBNs	

�ij(xi, xj) =

exp(xiWijxj)

(In	
 English:	
 higher	
 value	
 of	

parameter	
 Wij	
 leads	
 to	
 higher	

correlation	
 between	
 Xi	
 and	
 Xj	
 on	

value	
 1)	

Xi X1 X1

Xj

X1 X1

trick # 1: restrict the connections
Assume visible units are one layer, and hidden units are another.
Throw out all the connections within each layer.

h

j

?? h

k

| v

the posterior P (h | v) factors
c.f. in a belief net, the prior P (h) factors
no explaining away

Marcus Frean (VUW) MLSS, ANU, 2010 41 / 75

Restricted	
 Boltzman	

Machines	

75	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left �! right)

Marcus Frean (VUW) MLSS, ANU, 2010 42 / 75

Restricted	
 Boltzman	

Machines	

76	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Restricted	
 Boltzman	

Machines	

77	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

learning in an RBM

Repeat for all data:
1 start with a training vector on the visible units
2 then alternate between updating all the hidden units in parallel and

updating all the visible units in parallel

�w

ij

= ⌘

⇥
hv

i

h

j

i0 � hv
i

h

j

i1
⇤

restricted connectivity is trick #1:
it saves waiting for equilibrium in the clamped phase.

Marcus Frean (VUW) MLSS, ANU, 2010 43 / 75

Restricted	
 Boltzman	

Machines	

78	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

trick # 2: curtail the Markov chain during learning

Repeat for all data:
1 start with a training vector on the visible units
2 update all the hidden units in parallel
3 update all the visible units in parallel to get a “reconstruction”
4 update the hidden units again

�w

ij

= ⌘

⇥
hv

i

h

j

i0 � hv
i

h

j

i1
⇤

This is not following the correct gradient, but works well in practice. Geoff
Hinton calls it learning by “contrastive divergence”.

Marcus Frean (VUW) MLSS, ANU, 2010 44 / 75

1: RBMs are infinitely deep belief nets

sampling from this is the same as sampling
from the network on the right.

Marcus Frean (VUW) MLSS, ANU, 2010 52 / 75

Deep	
 Belief	
 Networks	

(DBNs)	

79	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

RBMs	
 are	
 equivalent	
 to	
 infinitely	
 deep	
 belief	
 networks	

Deep	
 Belief	
 Networks	

(DBNs)	

80	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

RBMs	
 are	
 equivalent	
 to	
 infinitely	
 deep	
 belief	
 networks	
 in fact, all of these are the same animal...

So when we train an RBM, we’re really training an1ly deep sigmoid
belief net!
It’s just that the weights of all layers are tied.

Marcus Frean (VUW) MLSS, ANU, 2010 53 / 75

un-tie the weights from layer 2 to1

If we freeze the first RBM,
and then train another RBM
atop it, we are untying the
weights of layers 2+ in the1
net (which remain tied
together).

Marcus Frean (VUW) MLSS, ANU, 2010 54 / 75

Deep	
 Belief	
 Networks	

(DBNs)	

81	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Un-­‐tie	
 the	
 weights	
 from	
 layers	
 2	
 to	
 infinity	

un-tie the weights from layer 3 to1

and ditto for the 3rd layer...

Marcus Frean (VUW) MLSS, ANU, 2010 55 / 75

Deep	
 Belief	
 Networks	

(DBNs)	

82	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

Un-­‐tie	
 the	
 weights	
 from	
 layers	
 3	
 to	
 infinity	

Deep	
 Belief	
 Networks	

(DBNs)	

83	

DBNs	

Slide	
 from	
 Marcus	
 Frean,	
 MLSS	
 Tutorial	
 2010	

fine-tuning with the wake-sleep algorithm
So far, the up and down weights have been symmetric, as required by the
Boltzmann machine learning algorithm. And we didn’t change the lower
levels after “freezing” them.

wake: do a bottom-up pass, starting with a pattern from the training
set. Use the delta rule to make this more likely under the generative
model.
sleep: do a top-down pass, starting from an equilibrium sample from
the top RBM. Use the delta rule to make this more likely under the
recognition model.

[CD version: start top RBM at the sample from the wake phase, and don’t
wait for equilibrium before doing the top-down pass].

wake-sleep learning algorithm
unties the recognition weights from the generative ones

Marcus Frean (VUW) MLSS, ANU, 2010 66 / 75

Unsupervised	
 Learning	

of	
 DBNs	

84	

DBNs	

Figure	
 from	
 (Hinton	
 &	
 Salakhutinov,	
 2006)	

Setting	
 A:	
 DBN	
 Autoencoder	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	
 in	

greedy	
 layerwise	
 fashion	
 	

II.  Unroll	
 the	
 RBMs	
 to	
 create	

an	
 autoencoder	
 (i.e.	

bottom-­‐up	
 and	
 top-­‐down	

weights	
 are	
 untied)	

III.  Fine-­‐tune	
 the	
 parameters	

using	
 backpropagation	

Unsupervised	
 Learning	

of	
 DBNs	

85	

DBNs	

Figure	
 from	
 (Hinton	
 &	
 Salakhutinov,	
 2006)	

Setting	
 A:	
 DBN	
 Autoencoder	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	
 in	

greedy	
 layerwise	
 fashion	
 	

II.  Unroll	
 the	
 RBMs	
 to	
 create	

an	
 autoencoder	
 (i.e.	

bottom-­‐up	
 and	
 top-­‐down	

weights	
 are	
 untied)	

III.  Fine-­‐tune	
 the	
 parameters	

using	
 backpropagation	

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Unsupervised	
 Learning	

of	
 DBNs	

86	

DBNs	

Figure	
 from	
 (Hinton	
 &	
 Salakhutinov,	
 2006)	

Setting	
 A:	
 DBN	
 Autoencoder	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	
 in	

greedy	
 layerwise	
 fashion	
 	

II.  Unroll	
 the	
 RBMs	
 to	
 create	

an	
 autoencoder	
 (i.e.	

bottom-­‐up	
 and	
 top-­‐down	

weights	
 are	
 untied)	

III.  Fine-­‐tune	
 the	
 parameters	

using	
 backpropagation	

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Unsupervised	
 Learning	

of	
 DBNs	

87	

DBNs	

Figure	
 from	
 (Hinton	
 &	
 Salakhutinov,	
 2006)	

Setting	
 A:	
 DBN	
 Autoencoder	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	
 in	

greedy	
 layerwise	
 fashion	
 	

II.  Unroll	
 the	
 RBMs	
 to	
 create	

an	
 autoencoder	
 (i.e.	

bottom-­‐up	
 and	
 top-­‐down	

weights	
 are	
 untied)	

III.  Fine-­‐tune	
 the	
 parameters	

using	
 backpropagation	

to transform the high-dimensional data into a
low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two
networks, they can be trained together by
minimizing the discrepancy between the orig-
inal data and its reconstruction. The required
gradients are easily obtained by using the chain
rule to backpropagate error derivatives first
through the decoder network and then through
the encoder network (1). The whole system is

called an Bautoencoder[and is depicted in
Fig. 1.

It is difficult to optimize the weights in
nonlinear autoencoders that have multiple
hidden layers (2–4). With large initial weights,
autoencoders typically find poor local minima;
with small initial weights, the gradients in the
early layers are tiny, making it infeasible to
train autoencoders with many hidden layers. If
the initial weights are close to a good solution,
gradient descent works well, but finding such
initial weights requires a very different type of
algorithm that learns one layer of features at a
time. We introduce this Bpretraining[procedure
for binary data, generalize it to real-valued data,
and show that it works well for a variety of
data sets.

An ensemble of binary vectors (e.g., im-
ages) can be modeled using a two-layer net-
work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels
are connected to stochastic, binary feature
detectors using symmetrically weighted con-
nections. The pixels correspond to Bvisible[
units of the RBM because their states are
observed; the feature detectors correspond to
Bhidden[units. A joint configuration (v, h) of
the visible and hidden units has an energy (7)
given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where vi and hj are the binary states of pixel i
and feature j, bi and bj are their biases, and wij

is the weight between them. The network as-
signs a probability to every possible image via
this energy function, as explained in (8). The
probability of a training image can be raised by

Department of Computer Science, University of Toronto, 6
King’s College Road, Toronto, Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed; E-mail:
hinton@cs.toronto.edu

W

W

W +ε

W

W

W

W

W +ε

W +ε

W +ε

W

W +ε

W +ε

W +ε

+ε

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine-tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 505

Supervised	
 Learning	
 	

of	
 DBNs	

88	

DBNs	

Figure	
 from	
 (Hinton	
 &	
 Salakhutinov,	
 2006)	

Setting	
 B:	
 DBN	
 classifier	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	

in	
 greedy	
 layerwise	

fashion	
 (unsupervised)	
 	

II.  Fine-­‐tune	
 the	
 parameters	

using	
 backpropagation	
 by	

minimizing	
 classification	

error	
 on	
 the	
 training	
 data	

MNIST	
 Digit	
 Generation	

89	

DBNs	

•  Comparison	
 of	
 deep	
 autoencoder,	
 logistic	
 PCA,	
 and	
 PCA	

•  Each	
 method	
 projects	
 the	
 real	
 data	
 down	
 to	
 a	
 vector	
 of	

30	
 real	
 numbers	

•  Then	
 reconstructs	
 the	
 data	
 from	
 the	
 low-­‐dimensional	

projection	

Figure	
 from	
 Hinton,	
 NIPS	
 Tutorial	
 2007	

A comparison of methods for compressing

digit images to 30 real numbers.

real

data

30-D

deep auto

30-D logistic

PCA

30-D

PCA

Learning	
 Deep	
 Belief	

Networks	
 (DBNs)	

90	

DBNs	

Figure	
 from	
 (Hinton	
 &	
 Salakhutinov,	
 2006)	

Setting	
 B:	
 DBN	
 Autoencoder	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	
 in	

greedy	
 layerwise	
 fashion	
 	

II.  Unroll	
 the	
 RBMs	
 to	
 create	

an	
 autoencoder	
 (i.e.	

bottom-­‐up	
 and	
 top-­‐down	

weights	
 are	
 untied)	

III.  Fine-­‐tune	
 the	
 parameters	

using	
 backpropagation	

MNIST	
 Digit	
 Generation	

•  This	
 section:	
 Suppose	
 you	

want	
 to	
 build	
 a	

generative	
 model	

capable	
 of	
 explaining	

handwritten	
 digits	

•  Goal:	
 	

–  To	
 have	
 a	
 model	
 p(x)	

from	
 which	
 we	
 can	

sample	
 digits	
 that	
 look	

realistic	

–  Learn	
 unsupervised	

hidden	
 representation	
 of	

an	
 image	

91	

DBNs	

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

Figure	
 from	
 (Hinton	
 et	
 al.,	
 2006)	

Samples	
 from	
 a	
 DBN	
 trained	
 on	
 MNIST	

A Fast Learning Algorithm for Deep Belief Nets 1545

Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

stochastic binary states. The second is to repeat the stochastic up-pass
20 times and average either the label probabilities or the label log prob-
abilities over the 20 repetitions before picking the best one. The two types
of average give almost identical results, and these results are also very sim-
ilar to using a single deterministic up-pass, which was the method used for
the reported results.

7 Looking into the Mind of a Neural Network

To generate samples from the model, we perform alternating Gibbs sam-
pling in the top-level associative memory until the Markov chain converges
to the equilibrium distribution. Then we use a sample from this distribution
as input to the layers below and generate an image by a single down-pass
through the generative connections. If we clamp the label units to a partic-
ular class during the Gibbs sampling, we can see images from the model’s
class-conditional distributions. Figure 8 shows a sequence of images for
each class that were generated by allowing 1000 iterations of Gibbs sam-
pling between samples.

We can also initialize the state of the top two layers by providing a
random binary image as input. Figure 9 shows how the class-conditional
state of the associative memory then evolves when it is allowed to run freely,
but with the label clamped. This internal state is “observed” by performing
a down-pass every 20 iterations to see what the associative memory has

MNIST	
 Digit	
 Recognition	

92	

DBNs	

Slide	
 from	
 Hinton,	
 NIPS	
 Tutorial	
 2007	

Examples of correctly recognized handwritten digits

that the neural network had never seen before

Its very

good

Experimental	

evaluation	
 of	

DBN	
 with	

greedy	
 layer-­‐
wise	
 pre-­‐
training	
 and	

fine-­‐tuning	

via	
 the	
 wake-­‐
sleep	

algorithm	
 	

MNIST	
 Digit	
 Recognition	

93	

DBNs	

Slide	
 from	
 Hinton,	
 NIPS	
 Tutorial	
 2007	

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?

• Generative model based on RBM’s 1.25%

• Support Vector Machine (Decoste et. al.) 1.4%

• Backprop with 1000 hiddens (Platt) ~1.6%

• Backprop with 500 -->300 hiddens ~1.6%

• K-Nearest Neighbor ~ 3.3%

• See Le Cun et. al. 1998 for more results

• Its better than backprop and much more neurally plausible

because the neurons only need to send one kind of signal,

and the teacher can be another sensory input.

Experimental	

evaluation	
 of	

DBN	
 with	

greedy	
 layer-­‐
wise	
 pre-­‐
training	
 and	

fine-­‐tuning	

via	
 the	
 wake-­‐
sleep	

algorithm	
 	

Document	
 Clustering	

and	
 Retrieval	

94	

DBNs	

Slide	
 from	
 Hinton,	
 NIPS	
 Tutorial	
 2007	

How to compress the count vector

• We train the neural

network to reproduce its

input vector as its output

• This forces it to

compress as much

information as possible

into the 10 numbers in

the central bottleneck.

• These 10 numbers are

then a good way to

compare documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

10

input

vector

output

vector

Document	
 Clustering	

and	
 Retrieval	

95	

DBNs	

Slide	
 from	
 Hinton,	
 NIPS	
 Tutorial	
 2007	

Performance of the autoencoder at

document retrieval

• Train on bags of 2000 words for 400,000 training cases
of business documents.

– First train a stack of RBM’s. Then fine-tune with
backprop.

• Test on a separate 400,000 documents.

– Pick one test document as a query. Rank order all the
other test documents by using the cosine of the angle
between codes.

– Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

• Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document.

Document	
 Clustering	

and	
 Retrieval	

Retrieval	
 Results	

•  Goal:	
 given	
 a	

query	

document,	

retrieve	
 the	

relevant	
 test	

documents	

•  Figure	
 shows	

accuracy	
 for	

varying	

numbers	
 of	

retrieved	
 test	

docs	

96	

DBNs	

 1 3 7 15 31 63 127 255 511 1023 2047 4095 7531
0

0.05

0.1

0.15

0.2

0.25

20 Newsgroup Dataset

Number of Retrieved Documents

Ac
cu

ra
cy

Autoencoder 2D

LLE 2D

LSA 2D

 1 3 7 15 31 63 127 255 511 1023 2047 4095 7531
0

0.1

0.2

0.3

0.4

0.5

0.6

20 Newsgroup Dataset

Number of Retrieved Documents

Ac
cu

ra
cy

Autoencoder 10D

LLE 10D

LSA 10D

Fig. S5: Accuracy curves when a query document from the test set is used to retrieve other test set
documents, averaged over all 7,531 possible queries.

References and Notes
1. For the conjugate gradient fine-tuning, we used Carl Rasmussen’s “minimize” code avail-
able at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/.

2. G. Hinton, V. Nair, Advances in Neural Information Processing Systems (MIT Press, Cam-
bridge, MA, 2006).

3. Matlab code for generating the images of curves is available at
http://www.cs.toronto.edu/ hinton.

4. G. E. Hinton, Neural Computation 14, 1711 (2002).

5. S. T. Roweis, L. K. Saul, Science 290, 2323 (2000).

6. The 20 newsgroups dataset (called 20news-bydate.tar.gz) is available at
http://people.csail.mit.edu/jrennie/20Newsgroups.

7. L. K. Saul, S. T. Roweis, Journal of Machine Learning Research 4, 119 (2003).

8. Matlab code for LLE is available at http://www.cs.toronto.edu/ roweis/lle/index.html.

9. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Proceedings of the IEEE 86, 2278 (1998).

10. D. V. Decoste, B. V. Schoelkopf, Machine Learning 46, 161 (2002).

11. P. Y. Simard, D. Steinkraus, J. C. Platt, Proceedings of Seventh International Conference
on Document Analysis and Recognition (2003), pp. 958–963.

9

Figure	
 from	
 (Hinton	
 and	
 Salakhutdinov,	
 2006)	

Outline	

•  Motivation	

•  Deep	
 Neural	
 Networks	
 (DNNs)	

–  Background:	
 Decision	
 functions	

–  Background:	
 Neural	
 Networks	

–  Three	
 ideas	
 for	
 training	
 a	
 DNN	

–  Experiments:	
 MNIST	
 digit	
 classification	

•  Deep	
 Belief	
 Networks	
 (DBNs)	

–  Sigmoid	
 Belief	
 Network	

–  Contrastive	
 Divergence	
 learning	

–  Restricted	
 Boltzman	
 Machines	
 (RBMs)	

–  RBMs	
 as	
 infinitely	
 deep	
 Sigmoid	
 Belief	
 Nets	

–  Learning	
 DBNs	

•  Deep	
 Boltzman	
 Machines	
 (DBMs)	

–  Boltzman	
 Machines	

–  Learning	
 Boltzman	
 Machines	

–  Learning	
 DBMs	

97	

Deep	
 Boltzman	

Machines	

•  DBNs	
 are	
 a	

hybrid	

directed/
undirected	

graphical	

model	

•  DBMs	
 are	
 a	

purely	

undirected	

graphical	

model	

98	

DBMs	

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Deep	
 Boltzman	

Machines	

Can	
 we	
 use	
 the	
 same	

techniques	
 to	
 train	
 a	
 DBM?	

99	

DBMs	

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Learning	
 Standard	

Boltzman	
 Machines	

•  Undirected	
 graphical	

model	
 of	
 binary	

variables	
 with	

pairwise	
 potentials	

•  Parameterization	
 of	

the	
 potentials:	

100	

DBMs	

�ij(xi, xj) =

exp(xiWijxj)

(In	
 English:	
 higher	
 value	
 of	

parameter	
 Wij	
 leads	
 to	
 higher	

correlation	
 between	
 Xi	
 and	
 Xj	
 on	

value	
 1)	

Xi X1 X1

Xj

X1 X1

Learning	
 Standard	

Boltzman	
 Machines	

101	

DBMs	

X1 X1

X1 X1

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Visible	
 units:	

Hidden	
 units:	

Likelihood:	

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Learning	
 Standard	

Boltzman	
 Machines	

102	

DBMs	

X1 X1

X1 X1

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Full	
 conditionals	
 for	
 Gibbs	
 sampler:	

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Delta	
 updates	
 to	
 each	
 of	
 model	
 parameters:	

(Old)	
 idea	
 from	
 Hinton	
 &	
 Sejnowski	
 (1983):	
 For	
 each	

iteration	
 of	
 optimization,	
 run	
 a	
 separate	
 MCMC	
 chain	

for	
 each	
 of	
 the	
 data	
 and	
 model	
 expectations	
 to	

approximate	
 the	
 parameter	
 updates.	

Learning	
 Standard	

Boltzman	
 Machines	

103	

DBMs	

X1 X1

X1 X1

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Full	
 conditionals	
 for	
 Gibbs	
 sampler:	

Delta	
 updates	
 to	
 each	
 of	
 model	
 parameters:	

(Old)	
 idea	
 from	
 Hinton	
 &	
 Sejnowski	
 (1983):	
 For	
 each	

iteration	
 of	
 optimization,	
 run	
 a	
 separate	
 MCMC	
 chain	

for	
 each	
 of	
 the	
 data	
 and	
 model	
 expectations	
 to	

approximate	
 the	
 parameter	
 updates.	

But	
 it	
 doesn’t	
 work	

very	
 well!	

	

The	
 MCMC	
 chains	

take	
 too	
 long	
 to	
 mix	

–	
 especially	
 for	
 the	

data	
 distribution.	

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�

Learning	
 Standard	

Boltzman	
 Machines	

104	

DBMs	

X1 X1

X1 X1

Delta	
 updates	
 to	
 each	
 of	
 model	
 parameters:	

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�

(New)	
 idea	
 from	
 Salakhutinov	
 &	
 Hinton	
 (2009):	

•  Step	
 1)	
 Approximate	
 the	
 data	
 distribution	
 by	

variational	
 inference.	
 	
 	

•  Step	
 2)	
 Approximate	
 the	
 model	
 distribution	

with	
 a	
 “persistent”	
 Markov	
 chain	
 (from	

iteration	
 to	
 iteration)	

105	

X1 X1

X1 X1

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�Step	
 1)	
 Approximate	
 the	
 data	
 distribution…	

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

R. Salakhutdinov and G. Hinton

chain will mix before the parameters have changed enough
to significantly alter the value of the estimator. Many per-
sistent chains can be run in parallel and we will refer to the
current state in each of these chains as a “fantasy” particle.

2.2 A Variational Approach to Estimating the
Data-Dependent Expectations

In variational learning (Hinton and Zemel, 1994; Neal and
Hinton, 1998), the true posterior distribution over latent
variables p(h|v; θ) for each training vector v, is replaced
by an approximate posterior q(h|v; µ) and the parameters
are updated to follow the gradient of a lower bound on the
log-likelihood:

ln p(v; θ) ≥
∑

h

q(h|v; µ) ln p(v,h; θ) + H(q) (7)

= ln p(v; θ)−KL[q(h|v; µ)||p(h|v; θ)],

where H(·) is the entropy functional. Variational learning
has the nice property that in addition to trying to max-
imize the log-likelihood of the training data, it tries to
find parameters that minimize the Kullback–Leibler diver-
gences between the approximating and true posteriors. Us-
ing a naive mean-field approach, we choose a fully factor-
ized distribution in order to approximate the true posterior:
q(h; µ) =

∏P
j=1 q(hi), with q(hi = 1) = µi where P is

the number of hidden units. The lower bound on the log-
probability of the data takes the form:

ln p(v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm

+
∑

i,j

Wijviµj − lnZ(θ)

+
∑

j

[µj lnµj + (1− µj) ln (1− µj)] .

The learning proceeds by maximizing this lower bound
with respect to the variational parameters µ for fixed θ,
which results in mean-field fixed-point equations:

µj ← σ
(

∑

i

Wijvi +
∑

m\j

Jmjµm

)

. (8)

This is followed by applying SAP to update the model pa-
rameters θ (Salakhutdinov, 2008). We emphasize that vari-
ational approximations cannot be used for approximating
the expectations with respect to the model distribution in
the Boltzmann machine learning rule because the minus
sign (see Eq. 6) would cause variational learning to change
the parameters so as to maximize the divergence between
the approximating and true distributions. If, however, a
persistent chain is used to estimate the model’s expecta-
tions, variational learning can be applied for estimating the
data-dependent expectations.

The choice of naive mean-field was deliberate. First, the
convergence is usually very fast, which greatly facilitates

learning. Second, for applications such as the interpretation
of images or speech, we expect the posterior over hidden
states given the data to have a single mode, so simple and
fast variational approximations such as mean-field should
be adequate. Indeed, sacrificing some log-likelihood in or-
der to make the true posterior unimodal could be advan-
tageous for a system that must use the posterior to con-
trol its actions. Having many quite different and equally
good representations of the same sensory input increases
log-likelihood but makes it far more difficult to associate
an appropriate action with that sensory input.

Boltzmann Machine Learning Procedure:

Given: a training set of N data vectors {v}N
n=1.

1. Randomly initialize parameters θ0 and M fantasy parti-
cles. {ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}

2. For t=0 to T (# of iterations)
(a) For each training example v

n, n=1 to N
• Randomly initialize µ and run mean-field up-
dates Eq. 8 until convergence.

• Set µn = µ.
(b) For each fantasy particle m=1 to M

• Obtain a new state (ṽt+1,m, h̃t+1,m) by run-
ning a k-step Gibbs sampler using Eqs. 4, 5, ini-
tialized at the previous sample (ṽt,m, h̃t,m).

(c) Update

W t+1 = W t + αt

„

1
N

N
X

n=1

v
n(µn)⊤ −

1
M

M
X

m=1

ṽ
t+1,m(h̃t+1,m)⊤

«

.

Similarly update parameters L and J .

(d) Decrease αt.

3 Deep Boltzmann Machines (DBM’s)
In general, we will rarely be interested in learning a com-
plex, fully connected Boltzmann machine. Instead, con-
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures
complicated, higher-order correlations between the activi-
ties of hidden features in the layer below. Deep Boltzmann
machines are interesting for several reasons. First, like
deep belief networks, DBM’s have the potential of learning
internal representations that become increasingly complex,
which is considered to be a promisingway of solving object
and speech recognition problems. Second, high-level rep-
resentations can be built from a large supply of unlabeled
sensory inputs and very limited labeled data can then be
used to only slightly fine-tune the model for a specific task
at hand. Finally, unlike deep belief networks, the approxi-
mate inference procedure, in addition to an initial bottom-
up pass, can incorporate top-down feedback, allowing deep
Boltzmann machines to better propagate uncertainty about,
and hence deal more robustly with, ambiguous inputs.

Mean-­‐field	
 approximation:	
 Variational	
 lower-­‐bound	
 of	
 log-­‐likelihood:	

Fixed-­‐point	
 equations	
 for	
 variational	
 params:	

Learning	
 Standard	

Boltzman	
 Machines	

DBMs	

Delta	
 updates	
 to	
 each	
 of	
 model	
 parameters:	

(New)	
 idea	
 from	
 Salakhutinov	
 &	
 Hinton	
 (2009):	

•  Step	
 1)	
 Approximate	
 the	
 data	
 distribution	
 by	

variational	
 inference.	
 	
 	

•  Step	
 2)	
 Approximate	
 the	
 model	
 distribution	

with	
 a	
 “persistent”	
 Markov	
 chain	
 (from	

iteration	
 to	
 iteration)	

106	

X1 X1

X1 X1

�W = �
��

vhT
�
v�D,h�p(h|v)

�
�
vhT

�
v,h�p(h,v)

�

�L = �
��

vvT
�
v�D,h�p(h|v)

�
�
vvT

�
v,h�p(h,v)

�

�J = �
��

hhT
�
v�D,h�p(h|v)

�
�
hhT

�
v,h�p(h,v)

�Step	
 2)	
 Approximate	
 the	
 model	
 distribution…	

Why	
 not	
 use	
 variational	
 inference	
 for	
 the	
 model	
 expectation	
 as	
 well?	

Learning	
 Standard	

Boltzman	
 Machines	

DBMs	

Delta	
 updates	
 to	
 each	
 of	
 model	
 parameters:	

(New)	
 idea	
 from	
 Salakhutinov	
 &	
 Hinton	
 (2009):	

•  Step	
 1)	
 Approximate	
 the	
 data	
 distribution	
 by	

variational	
 inference.	
 	
 	

•  Step	
 2)	
 Approximate	
 the	
 model	
 distribution	

with	
 a	
 “persistent”	
 Markov	
 chain	
 (from	

iteration	
 to	
 iteration)	

Difference	
 of	
 the	
 two	
 mean-­‐field	
 approximated	
 expectations	
 above	

would	
 cause	
 learning	
 algorithm	
 to	
 maximize	
 divergence	
 between	
 true	

and	
 mean-­‐field	
 distributions.	
 	

Persistent	
 CD	
 adds	
 correlations	
 between	
 successive	
 iterations,	
 but	
 not	
 an	
 issue.	

Deep	
 Boltzman	

Machines	

•  DBNs	
 are	
 a	

hybrid	

directed/
undirected	

graphical	

model	

•  DBMs	
 are	
 a	

purely	

undirected	

graphical	

model	

107	

DBMs	

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Learning	
 Deep	
 	

Boltzman	
 Machines	

Can	
 we	
 use	
 the	
 same	

techniques	
 to	
 train	
 a	
 DBM?	

I.  Pre-­‐train	
 a	
 stack	
 of	
 RBMs	
 in	

greedy	
 layerwise	
 fashion	

(requires	
 some	
 caution	
 to	

avoid	
 double	
 counting)	

II.  Use	
 those	
 parameters	
 to	

initialize	
 two	
 step	
 mean-­‐
field	
 approach	
 to	
 learning	

full	
 Boltzman	
 machine	
 (i.e.	

the	
 full	
 DBM)	

108	

DBMs	

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v
⊤
W

1
h

1 − h
1⊤

W
2
h

2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)

, (11)

p(h2
m = 1|h1) = σ

(

∑

j

W 2
imh1

i

)

, (12)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v
p(h1,v;W1) is an implicit

prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =
∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑

n p(h1|vn;W1). Since the second RBM is re-
placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(

∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)

, (15)

p(vi = 1|h1) = σ
(

∑

j

W 1
ijhj

)

. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Document	
 Clustering	

and	
 Retrieval	

Clustering	
 Results	

•  Goal:	
 cluster	
 related	
 documents	

•  Figures	
 show	
 projection	
 to	
 2	
 dimensions	

•  Color	
 shows	
 true	
 categories	

109	

DBMs	

Figure	
 from	
 (Salakhutdinov	
 and	
 Hinton,	
 2009)	

First compress all documents to 2 numbers using a type of PCA

Then use different colors for different document categories

 First compress all documents to 2 numbers.

Then use different colors for different document categories

PCA	
 DBN	

Deep	
 Learning	

Lots	
 to	
 explore:	

– Other	
 nonlinear	
 functions	

•  Rectified	
 Linear	
 Units	
 (ReLUs)	

– Popular	
 (classic)	
 architectures:	

•  Convolutional	
 Neural	
 Networks	
 (CNN)	

•  Long-­‐term	
 Short-­‐term	
 Memory	
 (LSTM)	

– Modern	
 architectures	

•  Stacked	
 SVMs	
 with	
 random	
 projections	

•  Sum-­‐product	
 Networks	

110	

