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Reminders

* HW4: due April 27
* Project presentations: April 29
— Location: Baker Hall A51
— Session 1: 8:30 - 12:30 (4 hrs)
— Lunch break: 12:30 - 1:30 (1 hr)
— Session 2:1:30 - 5:00 (3.5 hrs)



Why is everyone talking

Motivation ,
about Deep Learning?

* Because alot of money isinvestedin it...

— DeepMind: Acquired by Google for $400
million
— DNNResearch: Three person startup

(including Geoff Hinton) acquired by Google
for unknown price tag

— Enlitic, Ersatz, MetaMind, Nervana, Skylab:
Deep Learning startups commanding millions
of VC dollars
* Because it made the front page of the
New York Times
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Why is everyone talking

Motivation .
about Deep Learning?

1960s  Deep learning:

/ — Has won numerous pattern recognition
( 11980s competitions

& — Does so with minimal feature
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A Recipe for

Background : :
Machine Learning
1. Given training data: Face Face Not a face
N

2. Choose each of these:
— Decision function

A~ Examples: Linear regression,
y — fg (.’13@) Logistic regression, Neural Network
— Loss function

A Examples: Mean-squared error,
g(y, yz) E R Cross Entropy



A Recipe for

Background _ :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y }is 3

v Jifi=1 0" = argmgin;f(fe(wi),yi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (33@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00+ = 01 — VU fo(wi), y,)



- n:VE(fo(xi), y;)



= VE(fo(xi),Y;)



Outline

Motivation

Deep Neural Networks (DNNs)

— Background: Decision functions

— Background: Neural Networks

— Three ideas for training a DNN

— Experiments: MNIST digit classification
Deep Belief Networks (DBNs)

— Sigmoid Belief Network

— Contrastive Divergence learning

— Restricted Boltzman Machines (RBMs)
— RBMs as infinitely deep Sigmoid Belief Nets
— Learning DBNs
Deep Boltzman Machines (DBMs)

— Boltzman Machines

— Learning Boltzman Machines

— Learning DBMs



Outline

Deep Neural Networks (DNNs)
— Background: Decision functions
— Background: Neural Networks
— Three ideas for training a DNN
— Experiments: MNIST digit classification



Decision

Functions Linear Regression

y = fo(x) =Nn(0 - x)

where h(a) = a
Output y

Input X1 X2 X3 eoe XM



Decision
Functions

Output

Input °

Linear Regression

y = fo(x) =h(0 x)

0 where h(a) = a




Decision

Functions Linear Regression

y = fo(x) =h(0 - x)

where h(a) = a
Output 0

N OE [




Decision

Functions Linear Regression

y = fo(x) =Nn(0 - x)

where h(a) = a
Output y

Input X1 X2 X3 eoe XM



Decision

FUnctions Logistic Regression

y = fo(x) =h(0-x)

Output y where h(a) = 1+ exp(a)

Input X1 x2 X3 eoe XM



Decision
Neural Network

Functions
Output y
Hidden Layer a1 aZ coe aD

Input X1 X2 X3 cee XM



Decision

Multi-Class Output

Functions
Output Y oo Yk
Hidden Layer a1 aZ coe aD

Input X1 X2 X3 cee XM



Decision

Functions Deeper Networks

This lecture:



Decision

Functions Deeper Networks

This lecture:

Hidden Layer 2 by b, be
Hidden Layer 1 a4 a &p



Decision

Functions Deeper Networks
This lecture:.. ;

Making the T

neural Hidden Layer3 | €y o SR

networks @%

deeper e (B &) - (o



Decision
Functions

Why go Deep?

Neural Nets Deep Networks

(One Hidden Layer) (Two or more Hidden Layers)

* Already universal function |+ Can be representationally
approximators efficient

* Fewer computational units
for the same function

* Canrepresent non-linear * Might allow for a hierarchy
combinations of the input |+ Allows non-local
features generalizations
* Work well * Have been shown to work
even better (vision, audio,
NLP, etc.)!

21

Slide adapted from Honglak Lee (NIPS 2010)



Decision Different Levels of
Functions Abstraction

, Feature representation
* We don’t know

the “right” 3rdblayer
IIO - t V2
levels of Jeets
abstraction
2nd layer

e So let the model

“Object parts”
figure it out! e

1st layer
llEdgeS”

Pixels

Example from Honglak Lee (NIPS 2010)



Decision
Functions

Face Recognition:

— Deep Network
can build up
increasingly
higher levels of
abstraction

— Lines, parts,
regions

Example from Honglak Lee (NIPS 2010)

Different Levels of
Abstraction

Feature representation

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
llEdgeS”

Pixels



Decision Different Levels of
Functions Abstraction

Feature representation
e tcteincc
el Rl 3rd layer
Oahenn “Objects”

Hidden Layer 3 ,' -'T’ .x -

Output

2nd layer
“Object parts”

Hidden Layer 2

1st layer
llEdgeS”

Hidden Layer 1

Pixels

Example from Honglak Lee (NIPS 2010)



= VE(fo(xi),Y;)



Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

26



Training

Backpropagation
is just repeated
application of the
chain rule from
Calculus 101.

Backpropagation

y = g(u) and u = h(x).




Training Backpropagation

Output
Case 1:
Logistic
Regression
Input Xy
Forward Backward
dJ _y  (1-y")
J=vy"logg+ (1 —y")log(l —gq = — +
1-y)logi—q) G =L+t
B 1 dJ dJdg dq exp(a)
177 + exp(—a) da dgda’ da  (exp(a)+ 1)2
D
dJ dJ da da
_ 0.1 Il .
! Z 7 0, ~ dadp; do;
7=0

dJ dJ da da _a
dr; dadv; dx; 7




Training Backpropagation

[ (F) Loss ]
What does this picture actually mean? J =5y —y9)?
(E) Output (s1gm01d)
Output y \ Yy = H—Tp(b) )
%\. [ (D) Output (linear)
D
Hidden Layer Z Z; Zp t b= Zj:O Bij
% [ (C) Hidden (sigmoid)
\ 7y = 1—|—exp(a3 V]
Input X4 Xy Xg ) f

[ (B) Hidden (linear)
a; =Yty ajiti, Vj

(A) Inlut
[Grent |

Given z;, Vi




Training Backpropagation

Case 2: Forward Backward
Neural dJ v (1—y")
J=y"logqg+ (1 —9y")log(l —gq — ==
Network ( ) log( ) dg ¢ qg—1
B 1 dJ dJdy dy exp(b)
I T exp(—b) db ~ dydb’ db  (exp(b) + 1)2
D
dJ dJ db db
=2 fr g, ~ dbdp; dp; !
=0 j j j
dJ —dJ db db _ 3,
de N db de7 de -
1 dJ dJ dz; dz, exp(a;)
g — —
7 14 exp(—a;) da; dzjda;’ da;  (exp(a;) + 1)2
M
dJ dJ d(lj daj
a; = Qi g = ; = L
’ zz:; g dOéjZ' dCLj dOéji dOéji
dJ  dJ da; da; &
dﬂ?i B daj dﬂ?i, d%z N jz_;aﬂ




Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

31



Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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Shallow Net Idea #1 ldea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)



Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckin local optima
* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradientis progressively getting more dilute
* “Vanishing gradients”

34



Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even asimple quadratic z = xy objective is
nonconvex:

35



Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even asimple quadratic z = xy objective is
nonconvex:




Stochastic Gradient



Stochastic Gradient



Stochastic Gradient



Stochastic Gradient
..........

of the nearest hill...

onconvexi



Problem A:
Nonconvexity

Training

Stochastic Gradient
Descent...

... climbs to the top
of the nearest hill...

...which might not ¥~
lead to the top of
the mountain




Problem B:

raining Vanishing Gradients
The gradient for an edge * '
at the base of the T
network depends on the "™ W =0 & U=
gradients of many edges B%
above it im0 (o) - (o
2 »
LN
The chain rule multiplies vwewe o) Ca) - (s
many of these partial | ’
derivatives together & e o



Problem B:

Trainin
e Vanishing Gradients

The gradient for an edge > K
at the base of the —
network depends on the ™=« & & — &=

gradients of many edges
b1 bz cee bE
The chain rule multiplies vwewe o) (&) - (s

above it dden ayr
many of these partial %

derivatives together o (B N x

)



Problem B:

fraining Vanishing Gradients
The gradient for an edge > o1 5

at the base of the — «,
network depends on the "=+ W& & & &=
gradients of many edges 0.3

above it e Lyer

W N
lzm‘l 0.2_=7
The chain rule multiplies vwewe o) (&) - (s

many of these partial M7

derivatives together & . D -



Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckin local optima
* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradientis progressively getting more dilute
* “Vanishing gradients”

45



ldea #2: Supervised

Trainin
ning Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way
® Then use our original idea

1. Supervised Pre-training
— Use labeled data

—  Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task



S—— ldea #2: Supervised
: Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way

® Then use our original idea

Output

47



Training

Output

Hidden Layer 2

Hidden Layer 1

ldea #2: Supervised
Pre-training



Training

ldea #2: Supervised
Pre-training

49



ldea #2: Supervised

T ini ° °
anne Pre-training

Output y
/,\
Hidden Layer 3 Cy Cy Cg
==
Hidden Layer 2 by b, be
==
Hidden Layer 1 a, ay &p



Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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ldea #3: Unsupervised

Trainin
ning Pre-training

Idea #3: (Two Steps)
® Use our original idea, but pick a better starting point
® Train each level of the model in a greedy way

1. Unsupervised Pre-training
— Use unlabeled data

—  Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

53



The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

Output y

* The input! /,\



The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input! W

Hidden Layer a & ap

This topology defines an m
Auto-encoder.



Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x
— Loss = || x - DECODER(ENCODER(X)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x_ as both input and output.

ampotr [ % % % v

DECODER: x’=h(W’z) W
wor @ O - @

ENCODER: z = h(Wx) m

Slide adapted from Raman Arora



The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters. : : : :
“Input” X4 X Xg Xu

— Train hidden layer 2.
Then fix its parameters. W

— coe Hidden Layer a & 8

— Train hidden layer n. m
Then fix its parameters.

Input Xy X X3 Xu



The solution:
Unsupervised pre-training

Unsupervised pre-

training
* Work bottom-up v) (=) - (&
— Train hidden layer 1. @%
Then fix its parameters.HiddenLayer . B . &
— Train hidden layer 2.
Then fix its parameters. B%
— eee Hidden Layer a a, ap

— Train hidden layer n.

Then fix its parameters.
Input X4 X Xg X



The solution:
Unsupervised pre-training

. b1’ bz, bF,
Unsupervised pre-
training B%
* Work bottom-up igenier (&) (e - (e
— Train hidden layer 1. @%
Then fix its parameters. \ 5 . &
— Train hidden layer 2. y '
Then fix its parameters.
— Hidden Layer -0 a ap

— Train hidden layer n.

Then fix its parameters.
Input X4 X Xg X



The solution:
Unsupervised pre-training

Unsupervised pre- y
training /f\
* Work bottom-up N B - &
— Train hidden layer 1.
Then fix its parameters.
— Train hidden layer 2.  weniover (g ) -~ (&
Then fix its parameters. B%
— Train hidden layer n.  tdenoyer (e ® v &
Then fix its parameters. m
Supervised fine-tuning
Backprop and update all = 5 2 - @

parameters



Deep Network Training

Idea #1:

1l

Supervised fine-tuning only

Idea #2:

1l

Supervised layer-wise pre-training

2. Supervised fine-tuning

Idea #3:

1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

61



Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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Is layer-wise pre-training

Training

always necessary?

In 2010, arecord on a hand-writing
recognition task was set by standard supervised
backpropagation (our Idea #1).

How? A very fast implementation on GPUs.

See Ciresen et al. (2010)



Deep Learning

* Goal: learn features at different levels of
abstraction

* Training can be tricky due to...
— Nonconvexity
— Vanishing gradients

* Unsupervised layer-wise pre-training can
help with both!



Outline

* Deep Belief Networks (DBNs)
— Sigmoid Belief Network
— Contrastive Divergence learning
— Restricted Boltzman Machines (RBMs)
— RBMs as infinitely deep Sigmoid Belief Nets
— Learning DBNs



Question:

How does this relate to
Graphical Models?

The first “Deep Learning” papers in 2006 were
innovations in training a particular flavor of
Belief Network.

Those models happen to also be neural nets.

67



DBNSs MNIST Digit Generation

. Suppose you
want to build a o 5 0 0 0 0 0 0 0
generative mode] AN
capable of explaining 2 22 %322 122
handwritten digits 73 213 33%
. 4 4 ¢ ¢ 4 A& 4 ¢ 4
— To have a model p(x) g ; f j- E }i i f i
from which we can -
sample digits that look ; ; g, é -,; :;; ; } ;f
realistic ¢ 995979499

— Learn unsupervised
hidden representation of
an image

Figure from (Hinton et al., 2006)

-..nm-qmuiw.ugu—-g



DBNs Sigmoid Belief Networks

* Directed graphical model of
binary variables in fully
connected layers

* Only bottom layer is observed

* Specific parameterization of
the conditional probabilities:

p(x;|parents(x;)) =
1

1 4+ exp(— Zj Wi T ;)

69

Figure from Marcus Frean, MLSS Tutorial 2010



Contrastive Divergence
Training

DBNs

Contrastive Divergence is a general tool for learning a
generative distribution, where the derivative of the log partition
function is intractable to compute.

log L =log P(D)

Slide from Marcus Frean, MLSS Tutorial 2010



Contrastive Divergence

DBNs C
Training
%bg[/ X
P v) o log PY(x ZP - log P*(x)
< VED h
data  av. ove?Sostenor V. over joint Contrastive

Divergence estimates

the second term with
Both terms involve averaging over % log P*(x). a Monte Carlo

estimate from 1-step

i !
Another way to write it: of a Gibbs sampler!

<a% log P*(x)> — <a% log P*(x)>
veD, h~P(h|v) x~P(x)
clamped / wake phase unclamped / sleep / free phase
177 conditioned hypotheses 1] ] random fantasies

Slide from Marcus Frean, MLSS Tutorial 2010



Contrastive Divergence
Training

DBNs

For a belief net the joint is automatically normalised: Z is a constant 1

@ 2nd term is zero!
Olog L

@ for the weight w;; from j into ¢, the gradient (x; — pi)z;

8wij
@ stochastic gradient ascent:

Awij X \(l‘,—pz)x]/

-~

the "delta rule”

So this is a stochastic version of the EM algorithm, that you may have
heard of. We iterate the following two steps:

get samples from the posterior

M step: apply the learning rule that makes them more likely

Slide from Marcus Frean, MLSS Tutorial 2010



DBNs Sigmoid Belief Networks

* In practice, applying CD to
a Deep Sigmoid Belief
Nets fails

* Sampling from the
posterior of many (deep)
hidden layers doesn’t
approach the equilibrium
distribution quickly
enough

/3

Figure from Marcus Frean, MLSS Tutorial 2010



DBNs Boltzman Machines

* Undirected graphical
model of binary
variables with
pairwise potentials

e Parameterization of
the potentials:

Vij(@i, xj) =
GXp(SEiWZ‘j$]’)

(In English: higher value of
parameter W; leads to higher
correlation between X; and X; on
value 1)



Restricted Boltzman
Machines

DBNs

@ Assume visible units are one layer, and hidden units are another.
@ Throw out all the connections within each layer.

hidden

Ohjlhklv

@ the posterior P(h | v) factors
c.f. in a belief net, the prior P(h) factors

@ no explaining away

Slide from Marcus Frean, MLSS Tutorial 2010



Restricted Boltzman

DBNSs ,
Machines

Alternating Gibbs sampling

Since none of the units within a layer are interconnected, we can do Gibbs
sampling by updating the whole layer at a time.

(with time running from left — right)

Slide from Marcus Frean, MLSS Tutorial 2010



Restricted Boltzman
Machines

DBNs

learning in an RBM

Repeat for all data:
@ start with a training vector on the visible units

@ then alternate between updating all the hidden units in parallel and
updating all the visible units in parallel

Aw@'j =N [ <Uz' hj>0 - <Ui hj>oo ]

restricted connectivity is trick #1:

it saves waiting for equilibrium in the clamped phase.

Slide from Marcus Frean, MLSS Tutorial 2010
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Restricted Boltzman

DBNSs ,
Machines

trick # 2: curtail the Markov chain during learning

Repeat for all data:
@ start with a training vector on the visible units
@ update all the hidden units in parallel
© update all the visible units in parallel to get a “reconstruction”
@ update the hidden units again

Aw;; = 1 [ (v hj>0 — (v hj>1 ]

This is not following the correct gradient, but works well in practice. Geoff

Hinton calls it learning by “contrastive divergence”.
78
Slide from Marcus Frean, MLSS Tutorial 2010



Deep Belief Networks
(DBNs)

RBMs are equivalent to infinitely deep belief networks

DBNs

to generate: and so on...
o
r, Y LV A Fy Y N YL(?)
w \| 2
visible layer ) \ Yo
’ \0/
VSR

s
=
N
o
O

7)
=

-

&)
203
X3

<

sampling from this is the same as sampling w
from the network on the right.

v

=
<<

BN

o
/N
8
L&
\

(&

‘

gﬂ
=

-

O

;\1’
/
=3

visible layer
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Slide from Marcus Frean, MLSS Tutorial 2010



Deep Belief Networks
(DBNs)

RBMs are equivalent to infinitely deep belief networks

DBNs

and so on...

+
o
«Q
Y LA P Y g
X 3
PN/ ®
:
w X

9

N7
AN

o

v

.,
MRBM to generate:
visible layer ) t visible layer visible layer

@ So when we train an RBM, we're really training an co” deep sigmoid
belief net!

@ It’s just that the weights of all layers are tied.

S

\
o
NP
\.'?

N

< €< < < < — <—
S

< //
A

S

>
l/

T

visible layer
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Slide from Marcus Frean, MLSS Tutorial 2010



Deep Belief Networks
(DBNs)

Un-tie the weights from layers 2 to infinity

If we freeze the first RBM, and so on...
and then train another RBM

atop it, we are untying the w2'

weights of layers 2+ in the oo
net (which remain tied
together).

DBNs

\" ¥ 4 1 M "*, ¥ ~",

Slide from Marcus Frean, MLSS Tutorial 2010
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(DBNs)

Un-tie the weights from layers 3 to infinity

Deep Belief Networks

DBNs

and so on...

and ditto for the 3rd layer...

4 o/fu\\oA«\\

82
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Slide from Marcus Frean, MLSS Tutorial 2010



Deep Belief Networks
(DBNs)

fine-tuning with the wake-sleep algorithm

DBNs

So far, the up and down weights have been symmetric, as required by the
Boltzmann machine learning algorithm. And we didn’t change the lower
levels after “freezing” them.

@ wake: do a bottom-up pass, starting with a pattern from the training
set. Use the delta rule to make this more likely under the generative
model.

@ sleep: do a top-down pass, starting from an equilibrium sample from
the top RBM. Use the delta rule to make this more likely under the
recognition model.

[CD version: start top RBM at the sample from the wake phase, and don’t
wait for equilibrium before doing the top-down pass].

wake-sleep learning algorithm
unties the recognition weights from the generative ones

Slide from Marcus Frean, MLSS Tutorial 2010
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Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

|. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

DBNs

Figure from (Hinton & Salakhutinov, 2006)



Unsupervised Learning
of DBNs

Settin . =

Pre-train a stack of RBMs in .. . Cs3
greedy layerwise fashion e

Il. Unrollthe RBMsto create | | w1 ..
an autoencoder (i.e. — |
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

DBNs

Pretraining
85
Figure from (Hinton & Salakhutinov, 2006)



DBNSs
of

Setting A: DBN Autoencoder

|. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

Figure from (Hinton & Salakhutinov, 2006)

Unsupervised Learning
DBNSs

_______________________________________

Unrolling

86



Unsupervised Learning
of DBNs

Setting A: DBN Autoencoder

|. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters |
using backpropagation

DBNs

Fine-tuning

Figure from (Hinton & Salakhutinov, 2006)
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Supervised Learning

DBNSs
of DBNs

Setting B: DBN classifier

|. Pre-train a stack of RBMs
in greedy layerwise
fashion (unsupervised)

ll. Fine-tune the parameters
using backpropagation by
minimizing classification
error on the training data

Figure from (Hinton & Salakhutinov, 2006)



DBNSs MNIST Digit Generation

real
data

30-D
deep auto

30-D logistic
PCA

30-D
PCA

* Comparison of deep autoencoder, logistic PCA, and PCA
* Each method projects the real data down to a vector of
30 real numbers

e Then reconstructs the data from the low-dimensional
projection



Learning Deep Belief
Networks (DBNs)

Setting B: DBN Autoencoder

|. Pre-train a stack of RBMs in
greedy layerwise fashion

II. Unroll the RBMs to create
an autoencoder (i.e.
bottom-up and top-down
weights are untied)

lll. Fine-tune the parameters
using backpropagation

DBNs

Figure from (Hinton & Salakhutinov, 2006)



DBNSs MNIST Digit Generation

. Suppose you
want to build a
generative mode]
capable of explaining
handwritten digits

— To have a model p(x)
from which we can
sample digits that look
realistic

— Learn unsupervised
hidden representation of
an image

Figure from (Hinton et al., 2006)
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Figure 8: Each row shows 10 samples from the generative model with a particu-
lar label clamped on. The top-level associative memory is run for 1000 iterations
of alternating Gibbs sampling between samples.

Samples from a DBN trained on MNIST



DBNSs MNIST Digit Recognition

Examples of correctly recognized handwritten digits
that the neural network had never seen before
Experimental

evaluation of o C) @ 1 L ( Af & (I 2/

DBN with
greedy layer-

L N R P R

training and
fine-tuning

R S ¢ 794149470 46>9
le L 702\ 7 T1TA4&32Y9

algorithm
Its very

D8 YT I LG T oo

Slide from Hinton, NIPS Tutorial 2007



DBNSs MNIST Digit Recognition

How well does it discriminate on MNIST test set with

no extra information about geometric distortions?
Experimental

evaluat.ion of « Generative model based on RBM’s 1.25%
;Felic\l/\)llrlc:yer- » Support Vector Machine (Decoste et. al.) 1.4%
wise pre- » Backprop with 1000 hiddens (Platt) ~1.6%
training and « Backprop with 500 -->300 hiddens ~1.6%
fine-tuning « K-Nearest Neighbor ~ 3.3%
via the wake- « See Le Cun et. al. 1998 for more results

sleep

algorithm

* Its better than backprop and much more neurally plausible
because the neurons only need to send one kind of signal,
and the teacher can be another sensory input.

93
Slide from Hinton, NIPS Tutorial 2007



Document Clustering

DBNSs :
and Retrieval
output
2000 reconstructed counts | yector
] .
500 NEUrons * We train the neural |
= network to reproduce its

input vector as its output

250 neurons _ _
 This forces it to

1 compress as much
information as possible
T into the 10 numbers in

the central bottleneck.
e These 10 numbers are

250 neurons

L] then a good way to
500 neurons compare documents.
t input
2000 word counts vector

Slide from Hinton, NIPS Tutorial 2007



DBNSs ,
and Retrieval

Performance of the autoencoder at
document retrieval

« Train on bags of 2000 words for 400,000 training cases
of business documents.

— First train a stack of RBM'’s. Then fine-tune with
backprop.
« Test on a separate 400,000 documents.
— Pick one test document as a query. Rank order all the

other test documents by using the cosine of the angle
between codes.

— Repeat this using each of the 400,000 test documents
as the query (requires 0.16 trillion comparisons).

* Plot the number of retrieved documents against the
proportion that are in the same hand-labeled class as the
query document.

Slide from Hinton, NIPS Tutorial 2007

Document Clustering
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DBNs

0.6

0.5

o
N
T

Accuracy

0.2

01

Document Clustering
and Retrieval

20 Newsgroup Dataset
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Number of Retrieved Documents

Retrieval Results
* Goal: given a

query
document,

retrieve the
relevant test
documents

Figure shows
accuracy for
varying
numbers of
retrieved test
docs



Outline

* Deep Boltzman Machines (DBMs)
— Boltzman Machines
— Learning Boltzman Machines
— Learning DBMs



Deep Boltzman

DBMs .
Machines

* DBNs area .
hybrid Deep Belief Deep Boltzmann

Network Machine

directed|/
undirected
graphical
model
 DBMs are a
purely
undirected
graphical
model




Deep Boltzman

DBMs ,
Machines

Deep Boltzmann
Machine

Can we use the same
techniques to train a DBM?




Learning Standard

DBMs ,
Boltzman Machines

* Undirected graphical
model of binary
variables with
pairwise potentials

e Parameterization of
the potentials:

Vij(@i, xj) =
GXp(SEiWZ‘j$]’)

(In English: higher value of
parameter W; leads to higher
correlation between X; and X; on
value 1)



Learning Standard

DBMs .
Boltzman Machines

Visible units: Vv € {O, 1}D O
Hidden units: € {0, I}P
Likelihood:

E(v,h;0) = —%VTLV — %hTJh — v Wh.

L pv;0) 1 ,
p("? 9) = Z(@) = Z(@) ;eXp (_E(V7h7 9))7

Z(0)=>Y_> exp(—E(v,h;0)),
v h



Learning Standard
Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each Q

DBMs

iteration of optimization, run a separate MCMC chain
for each of the data and model expectations to
approximate the parameter updates.

Delta updates to each of model parameters:

AW = « (EPdata [Vh ] Ep odel[ hT]) )
AL = « (EPdata [VV ] —Ep,oaa [VVT]) g
A = « (EPdata [hh—r] - EPmodel [hh—r]) )

Full conditionals for Gibbs sampler:
p(hj =1v,h_j) =0 (Y Wiv; + Z Timhj),

=1 ml\y

p(v; = 1lh,v_;) = Zth -+ Z Lkvj
k=1\1



Learning Standard
Boltzman Machines

(Old) idea from Hinton & Sejnowski (1983): For each <‘\ —
B

DBMs

iteration of optimization, run a separate MCMC chain ut it doesn’t work
for each of the data and model expectations to very well!
approximate the parameter updates.

The MCMC chains

Delta updates to each of model parameters: take too long to mix

) ) . ~ especially for th
AW =a <<Vh >v€D,h~p(h|V) —(vh >V’h“’p(h’v)) daetzpdei;l:rit)),u;;n.e
AL =« (<VVT>v€D,h~p(h|v) - <VVT>v,h~p(h,v>> \ |
AJ =« <<hhT>veD,h~p(h|V) B <hhT>V’th(h’V)>

Full conditionals for Gibbs sampler:

D
p(hj =1v,h_j) =0 (Y Wiv; + Z Timhj),

=1 ml\y

p(v; = 1lh,v_;) = Zth -+ Z szvj
k=1\1



Learning Standard
Boltzman Machines

O

DBMs

(New) idea from Salakhutinov & Hinton (2009):
. Approximate the data distribution by

variational inference.
Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)
Delta updates to each of model parameters:

AW =« (<VhT>v€D,h~p(h|V) ; <VhT>V>hNP<h’V))
AL =« (<VVT>ve’D,h~p(h|V) B <VVT>V’th(h’V)>

AJ =« (<hhT>veD,h~p(h|V) B <hhT>V’th(h’v))




DBMs

Learning Standard

Boltzman Machines

(New) idea from Salakhutinov & Hinton (2009):
. Approximate the data distribution by

variational inference.
Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)

Delta updates to each of model parameters:

AW = q (<VhT>v€D,h~p(h|V) ; <VhT>V’hNP<h’V))

/ — . — \

Step 1) Approximate the data distribution...

O

Mean-field approximation: Variational lower-bound of log-likelihood:

q(h; ) = H_le q(hi)  Wp(v;0) > > q(hlv;p)inp(v,h;6) +H(q)

C](hi — 1) — M4 Fixed-point equations for variational parames:

L < O'(Z W@'j?)i =F Z ij,um)

m\j



DBMs

(New) idea from Salakhutinov & Hinton (2009):
. Approximate the data distribution by

variational inference.
Approximate the model distribution

with a “persistent” Markov chain (from
iteration to iteration)
Delta updates to each of model parameters:

AW = q (<VhT>v€D,h~p(h|V) ; <VhT>V’hNP<h’V))

/ — . — \

Step 2) Approximate the model distribution...

Learning Standard
Boltzman Machines

O

Why not use variational inference for the model expectation as well?

Difference of the two mean-field approximated expectations above
would cause learning algorithm to maximize divergence between true

and mean-field distributions.

Persistent CD adds correlations between successive iterations, but not an issue.



Deep Boltzman

DBMs .
Machines

* DBNs area .
hybrid Deep Belief Deep Boltzmann

Network Machine

directed|/
undirected
graphical
model
 DBMs are a
purely
undirected
graphical
model




Learning Deep

DBMs :
Boltzman Machines

Can we use the same
techniques to train a DBM?

l. Pre-train a stack of RBMs in
reedy layerwise fashion
requires some caution to

avoid double counting)

Il. Use those parameters to
initialize two step mean-
field approach to learning
full Boltzman machine (i.e.
the full DBM)

Deep Boltzmann
Machine




DBMs

Clustering Results

Document Clustering
and Retrieval

e Goal: cluster related documents
* Figures show projection to 2 dimensions

* Color shows true categories

PCA

Figure from (Salakhutdinov and Hinton, 2009)
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Deep Learning

Lots to explore:

— Other nonlinear functions
* Rectified Linear Units (ReLUs)

— Popular (classic) architectures:
 Convolutional Neural Networks (CNN)
* Long-term Short-term Memory (LSTM)
— Modern architectures

* Stacked SVMs with random projections
* Sum-product Networks



