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The Optimization View of coce
Graphical Models oo

e The connection between optimization and graphical models has led to many
amazing discoveries

[ J EM

e Variational Inference

e Max Margin/Max Entropy Learning

e Bridge to Statistical Physics, Numerical Methods Communities

e Optimization has many advantages:
e Itis easy to formulate
e Can derive principled approximations via convex relaxations
e Can use existing optimization methods.

e But it has many challenges too:
e Non-Gaussian continuous variables
e Nonconvexity (local minima)
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The Linear Algebra View of cece
Graphical Models oo

e \We are going to discuss a different (still not fully understood) point of view
of graphical models that revolves around linear algebra.

e Compared to the optimization perspective, the linear algebra view often less
intuitive to formulate.

e However, it lets us solve problems that are intractable from the optimization
perspective

e Graphical Models with Non-Gaussian Continuous Variables.
e Local Minima Free Learning in Latent Variable Models

e Moreover it offers a different theoretical perspective and bridges the
graphical models, kernels and tensor algebra communities.
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Non-Gaussian Continuous

Variables

Depth Reconstruction
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further awa>
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[Saxena, Chung and Ng 2005]
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Non-Gaussian Continuous

Variables

Demographics: Model relationships among
different demographic variables

Male Canada - 2010

Female

Population (in millions)

08 12 16 2

©Eric Xing @ CMU, 2012-2016

Population Distribution for Afghanistan in Year 2005 [Base Case]
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Graphical Models - What we have
learned so far...

P[C = 0]A = 0] [ P[C = 0|A = 1]

P[C = 1|A = 0] | P[C = 1|4 = 1]
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Parameter Learning - What we
have learned so far...

Samples

e |[f variables are observed, just count from dataset

e In case of hidden variables, can use Expectation Maximization.....
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Inference - What we have learned
so far...

e (Can do exact inference with Variable Elimination, Belief
Propagation.

e Can do approximate inference with Loopy BP, Mean Field, MCMC
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Non-Parametric Continuous Case
is Much Harder...

A

How do we make a
conditional probability
table out of this?

Estimated Probability Density Function

5
-0 -0

¥y

e How to learn parameters? (What are the parameters?)
e How to perform inference?
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Could Discretize the 1
Distribution.... :

! [ ]

o .1.,2 ., 3,
[ ] ] ]

e Loses information that O and 1 are closer than 0 and 3
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Hilbert Space Embeddings of
Distributions

e General formulation for probabilistic modeling with

continuous variables.

Kenji Fukumizu Arthur Gretton Bernhard Scholkopf
—_————————— e
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Why do Gaussians Work?

(1) Because we have
parameters (sufficient
statistics) !1!!

(2) Itis easy to
marginalize/condition etc.

Bijection between (mean,variance) pair and distribution

(pt1,01) < > N (p1,07)
(k2, 02) < > N(“% 0-2)
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Key Idea — Create Sufficient
Statistic for Arbitrary Distribution

e | want to represent this distribution with a small vector .

A
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Idea 1: Take some Moments
AL = (ELX] )

Problem: Lots of Distributions have the same mean!

/\/\ au ( IIEE[@] )

>

Better, but lots of distributions still have the same mean and variance!

A

X ~D E[X]
px = | E[X?]
> E[X"]

Even better, but lots of distributions still have the same first three moments!
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Better Idea: Create Infinite T
Dimensional Statistic °°

‘ [ E[X] )

E[X*?]
/\/\ py = | E[X7]
> (not exactly, but right idea...)
e But the vector is infinite........ how do we compute things with
it??7?°?7°
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Remember the Kernel Trick!!! 13
Primal
Formulation: mm w w + CZ&
‘—I—byj /1_53 V]
=0 Vy

Infinite, cannot be dlrectly

computed But the dot product is

easy to compute ©

Dual Formulation: 1
' maXZ o — = Z ;oY YK
a D =
1 1,7
Z a;y; = 0
1
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Overview of Hilbert Space see:
Embedding oo

e Create an infinite dimensional statistic for a distribution.

e Two Requirements:

e Map from distributions to statistics is one-to-one

e Although statistic is infinite, it is cleverly constructed such that the kernel
trick can be applied.

e Perform Belief Propagation as if these statistics are the
conditional probability tables.

e We will now make this construction more formal by
introducing the concept of Hilbert Spaces

©Eric Xing @ CMU, 2012-2016
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Vector Space

e A set of objects closed under linear combinations:

v,weY — av+ fweV

e Normally, you think of these “objects” as finite dimensional
vectors. However, in general the objects can be functions.

e Nonrigorous Intuition: A function is like an infinite
dimensional vector.

©Eric Xing @ CMU, 2012-2016
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Hilbert Space o6

e A Hilbert Space is a complete vector space equipped with an
iInner product.

e Theinner product {f,g> has the following properties:
e Symmetry (f.9)=49.F)
e Linearity <Off1 + ﬁf2,9> = C¥<f1,9> + /5<f299>
e Nonnegativity <f, f> > ()
o Zero (f,f)=0 = f=0

e Basically a “nice” infinite dimensional vector space, where lots
of things behave like the finite case (e.g. using inner product
we can define “norm” or “orthogonality”)
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Hilbert Space Inner Product -

e Example of an inner product (just an example, inner product
not required to be an integral)

.9) = | Fl)gla)ds

Inner product of two functions is a number

e Non-rigorous Intuition: Like the traditional finite vector
space inner product

U, W I’UT’UJ
)

] — scalar
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Linear Operators

e An operator C maps a function f in one Hilbert Space to
another function g in the same or another Hilbert Space.

e Linear Operator: 9= C'f
Claf +pg) =aCf + Cg

e Non-rigorous Intuition: Operators are sort of like matrices.

©Eric Xing @ CMU, 2012-2016
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Adjoints (Transposes) oe

e The adjoint C':G— Fofan operator C : F — § is
defined such that

(g.Cfy=<{C'g,f) VfeF,geg

e Like transpose / conjugate transpose for real / complex
matrices:

w' Mv = (MT’w)T’v
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Hilbert Space Outer Product +-

f & g isimplicitly defined such that

f®gh)=<g h)f

Outer Product of two functions is an operator

e Non-rigorous Intuition: Like Vector Space Outer Product

VW =vw'
B —
vw' (z2) ={(w, 2)v I
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Reproducing Kernel Hilbert i

Space o

e Basically, a “really nice” infinite dimensional vector space where
even more things behave like the finite case

e We are going to “construct” our Reproducing Kernel Hilbert Space
with a Mercer Kernel. A Mercer Kernel K(x,y) is a function of two
variables, such that:

f j K(e,)f(@)f(y)dedy >0 V§

e The is a generalization of a positive definite matrix:

oAz >0 Vo _.I - 0

©Eric Xing @ CMU, 2012-2016
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Gaussian Kernel o2

e The most common kernel that we will use is the Gaussian
RBF Kernel:

|z — yl|3

0'2

K (z,y) = exp
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The Feature Function ot

e Consider holding one element of the kernel fixed. We get a
function of one variable which we call the feature function.
The collection of feature functions is called the feature map.

(;b:t' = K(ﬂ?j )

e For a Gaussian Kernel the feature functions are unnormalized
Gaussians:

() = exp (Il — y%)

o2

Uﬁ—yﬁ)

o2

¢15(y) = exp (
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Defining the Inner Product 4+

e Define the Inner Product as:

(P Py = (K(v,"), K(y,-)) = K(x,y)

_I — scalar

e Note that:

¢.(y) = ¢y(v) = K(z,y)



Reproducing Kernel Hilbert
Space oo

e Consider the set of functions that can be formed with linear
combinations of these feature functions:

K
JFo = {f(z) ; Z o, (2), Yk e Ny and z; € X}
j=1

o We define the Reproducing Kernel Hilbert Space F to the
completion of Fo (like Fo with the “holes” filled in)

e Intuitively, the feature functions are like an over-complete basis for
the RKHS

F(2) = a101(2) + aada(2) — _ _ _ _

©Eric Xing @ CMU, 2012-2016
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Reproducing Property 4+

e |t can now be derived that the inner product of a function f
with ¢, evaluates a function at point x:

(f ) = <Z_oaj¢%,¢m>
= Z ()zj<qbg3j7 qu> Linearity of inner product

J
= Z a, K(x;, x) Definition of kernel
J

= €T \
f( ) Remember that

K (2).7) = s, (x)

] — scalar
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SVM Kernel Intuition 33
1

: T
min Zw ’w—i—O;ﬁ

w,b

(w'ep(x,;) +by; =1-¢& V5  &§=0 V)

Maps data points to RKHS Feature Functions!
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How To Embed Distributions
(Mean Map) [Smola et al. 2007]

The Hilbert Space Embedding of X density
e \
px() = Exmlon] = |
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Mean Map cont.

e Mean Map

px = Ex|ox]

e If the kernel is universal, then the map from distributions to
embeddings is one-to-one. Examples of universal kernels:

e Gaussian RBF Kernel.

e Laplace Kernel

e “Empirical Estimate” (not actually computable from data if
feature map is infinite....but we will solve this problem in the

next lecture)

[Lx = Z ¢$n

Data point
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Example (Discrete)

e Consider a random variable X that takes the values 1, 2, 3, 4.

We want to embed it into an RKHS. Which RKHS?

e The RKHS of 4 dimensional vectors in R*. The feature functions in this

RKHS are:
1 0 0 0 \
0 1 0 0
=1 g |P2=| | =] =
0 0 0 1
px = Ex[opx] = PX = 1]y + P[X = 2]y + P[X = 3]¢ps + P[X = 4],

PIX =1
P[X = 9] Embedding equal to marginal

Hx = | piy — 3 probability vector in the discrete
PIY — 41 case

©Eric Xing @ CMU, 2012-2016
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Mean Map cont.

Ex-p|f(X)] = {f, mx) iffisinthe RKHS

o Why?

(Fopx)

|
PN
ok
e
%
S
ASE
ol
~"




Embedding Joint Distribution of 2 | $32:
Variables ismoeta. 2007 4+

e Define the uncentered cross-covariance operator
Cy x implicitly such that

9,Cyvxf)=Eyx[f(X)g(Y)] VfeF, Vgeg
e Note now f is in one Hilbert Space, while g is in another.
e Cyy will be our embedding of the joint distribution of X and Y.

e Note now Cyy is an operator, just like P[X,Y] is a matrix.
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Cross Covariance Operator cont. |

o Let dx € F and Yy € G (the feature functions of these
two RKHSSs)

e Then explicit form of cross-covariance operator is:
Cyx = Eyx|¢y @ ¢x]

e Looks like the Uncentered Covariance of two variables X and
Y:

COV(X, Y) — “'ZY)([YX]

©Eric Xing @ CMU, 2012-2016
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Embedding Joint Distribution of | iit:
TWO Variab|eS [Smola et al. 2007] :.

Embed in the Tensor
Product of two RKHS'’s

e % @

H
0

@ V2
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“Tensor Product” Intuition ot

e Consider two finite sets:
S ={1,3,4} T ={2,6}

e |f “outer product” is defined as:
a & b = (a’a b)

e Then tensor product is:

ST =1{(1,2),(1,6),(3,2),(3,6),(4,3),(4,6)}

e (Don’t take the example too literally since this is not a vector
space)
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Tensor Product of Two Vector
Spaces

H=F®G




Cross Covariance Operator cont. |

e Proof:

<g?CYXf>

G, Eyx|[vy @ dx]f)

EYX

<g [’l#y 0% ng] f>] Move expectation outside
<g <§Z5Xj f>’l#y >] Definition of outer product
_<g? ZDY ><fx QbX >] Rearrange

g (Y) f (X)] Reproducing Property
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Auto Covariance Operator

e The uncentered auto-covariance operator is:

Cxx = Ex|ox @ ¢x]

e Looks like the uncentered variance of X

Uncentered-Var(X) = E[X?]

e Intuition: Analogous to

Diag(P|X])

©Eric Xing @ CMU, 2012-2016
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Conditional Embedding Operator

e Conditional Embedding Operator:

Cy|x = CyxCxx

e Intuition:

P[Y|X] = P[Y, X] x Diag(P[X])~"




Conditional Embedding Cont. -

e Conditional Embedding Operator:

Cyix = CyxCxx

e Has Following Property:
vzl Pyv|z| = Cyixda

e Analogous to “Slicing” a Conditional Probability Table in the
Discrete Case:

P[Y|X = 1] = P[Y|X]d,

©Eric Xing @ CMU, 2012-2016
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Why We Care o

e S0 we have some statistics for marginal, joint, and conditional
distributions....

e How does this help us define Belief Propagation?

e There are many parametric distributions where it is hard to
define message passing

e Think Back: What makes Gaussians different?
e Easy to marginalize, perform Chain Rule with Gaussians!
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Why we Like Hilbert Space 1
Embeddings oo
We can marginalize and use chain rule in Hilbert Space too!!!
Sum Rule: Sum Rule in RKHS:
P[X] = L PIX,Y] = L PIX|YIEY] ix = Cy|y thy
Chain Rule: Chain Rule in RKHS:

PIX,Y] = PIX[Y]P[Y] = P[Y|X]P[Y] | Cyx = Cy|xCxx = CxyCyy
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Kernel Graphical Models songeta. 200 $3-

Song et al. 2011]

e The idea is to replace the CPTs with RKHS
operators/functions.

e Let’s do this for a simple example first.

A D

e We would like to compute P[A = a, D = (]
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Consider the Discrete Case




Inference as Matrix Multiplication |:¢

A B C D

0000

P(D) = P(A)P(B|A) P(C|B) P(DIC)’

Oops....we accidentally integrated out A
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Put A on Diagonal Instead -

A B C D

) P(B|A) P(C|B) P(D|C)




Now it works oo

S

=

S
|

P(@A)P(B|A) " P(C|B) P(D|C)'

AN ) 1




Introducing evidence

A B C D

0000

e Introduce evidence with delta vectors

P(A=a,D=d) =65 P(A, D),

©Eric Xing @ CMU, 2012-2016 51



Now with Kernels

Cpa Cqg Cpic

Estimated Prabability Density Function . P
timats it it ti
Estimated Probabilty Density Function Estimated Probability Density Function - stimated Probabilty Density Function
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Sum-Product with Kernels ot

A B C D

00090

Cap = cAACB\A

Cap = CAACB\ACB|C’CO\D
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Sum-Product with Kernels ot

A B C D

0000

some number = ¢, C4 poy



. o000
Kernel Graphical Models: The T
Overall Picture os
Naive way to represent joint Discrete Graphical Models allow us
distribution of discrete variables to factorize the “huge” joint
is to store and manipulate a distribution table into smaller
“huge” probability table. factors.

Kernel Graphical Models allow us to
factorize joint distributions of
continuous variables into smaller

Naive way to represent joint
distribution for many
continuous variables is to
use multivariate kernel factors.
density estimation.
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Summary o

e Hilbert Space Embedding provides a way to create a
“sufficient statistic” for an arbitrary distribution.

e Can embed marginal, joint, and conditional distributions into
the RKHS

e Next time:
e Prove sum rule and chain rule for RKHS embedding
e Performing Belief Propagation with the Embedding Operators
e \Why the messages are easily computed from data (and not infinite)
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Appendix: sese

Consider an Even Simpler Graphical Model | ¢

Caa  Cpa  Cqp

We are going to show how to estimate these operators from data.
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The Kernel Matrix

| - |
| m |
<¢:EN9 ¢m1> il <¢$N? ¢$N>
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Empirical Estimate Auto
Covariance

Cxx = Ex|ox @ x|

. 1 &
cxx=ﬁ;1¢xn®¢xn

A 1
Cxx = —PxDy

Defined on next slide
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Conceptually,

II i

¢CE‘1 qba?z A A mn
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Conceptually,

o

o7 f G— Gy, EEp
olf | _ f— O = f
! f e

amm o, =m)
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Rigorously, -

(I)X is an operator that maps vectors in RNto functions in f
such that:

N
Z VP, = Pxv

n=1

Its adjoint (transpose) (I);_( can then be derived to be:

(@ar> f)
: {buys I \ T

\ @L.F
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Empirical Estimate Cross

Covariance

CYX —

Py ® dx]

. 1 X

CYX —

1
Ncbycb}




Getting the Kernel Matrix -

e [t can then be shown that,

(I);_((I)X — KXX KXX(iaj) L= <¢$za¢$3>

e This is finite and easy to compute!! ©

e However, note that the estimates of the covariance operators
are not finite since:
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