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Latent Variable Models ot

Sequence models
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Learning Parameters (EM)

latent variables

4&— (unobserved in

training data)

—

Observed variable

=3

2

ot

P[X1. ... X5, Hy, oo Hs) = P[H1] | | P[HH0] | | PLXG ]

Since latent variables are not observed in the data, we have to
use Expectation Maximization (EM) to learn parameters
 Slow
 Local Minima

©Eric Xing @ CMU, 2012-2016



Spectral Learning o

e Different paradigm of learning in latent variable models based on
linear algebra

e Theoretically,
e Provably consistent
e Can offer deeper insight into the identifiability

e Practically,
e Local minima free
e As of now, performs comparably to EM with 10-100x speed-up

e Can also model non-Gaussian continuous data using kernels (usually
performs much better than EM in this case)
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Related References °

e Relevant works
e Hsu et al. 2009 — Spectral HMMs (also Bailly 2009)
o Siddiqi et al. 2009 — Features in Spectral Learning

e Parikh et al. 2011/2012 —Tensors to Generalize to Trees/Low Treewidth
Graphs

e Cohen et al. 2012/ 2013 — Spectral Learning of latent PCFGs

o Will present it from “matrix factorization” view:

o Balle et al. 2012 — Connection between Spectral Learning / Hankel Matrix
Factorization

e Song et al. 2013 — Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction -

¢ In many applications that use latent variable models, the end task is
not to recover the latent states, but rather to use the model for
prediction among observed variables.

e Dynamical Systems — Predict future given past

QO OO0
-0 0 0|0 OF—,,
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Focusing on Prediction 4+
e We will only be concerned with quantities related to the observeE

variables:
P[Xla X27 X37 X47 X5]

e \We do not care about the latent variables explicitly.

e Do we still need EM to learn the parameters?

©Eric Xing @ CMU, 2012-2016 8



But if we don’t care about the T
latent variables.... ot

e \Why don’t we just integrate them out?

e Because integrating them out results in a clique ®
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Marginal Does Not Factorize 4+

P[X1, Xo, X3, Xy, X5] = ) P[Hl]P[Hl]ﬁP[HﬂHi—l]HP[XHHJ

Hi.....Hs 2 i=1

Does not factorize due to the outer sum (Can somewhat distribute
the sum, but doesn’t solve problem)
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But isn’t an HMM different froma | 222:
clique? oo

e |t depends on the number of latent states.

e Consider the following model.

H
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If H has only one state.....

e Then the observed variables are independent!

“ o
660 0%

Xy X3
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What if H has many states? o

e Let us say the observed variables each have m states.

e Then if H has m3 states then the latent model can be exactly
equivalent to a clique (depending on how parameters are set).

H X
X1 X, X3 X4 X3

e But what about all the other cases?
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The Question ot

e Under existing methods, latent models all require EM to learn
regardless of the number of hidden states.

e However, is there a formulation of latent variable models
where the difficulty of learning is a function of the number of
latent states?

e This is the question that the will answer.
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Sum Rule (Matrix Form)

e Sum Rule

P[X] = ) P[X|Y]P[Y]
Y
e Equivalent view using Matrix Algebra

PlX] =  P|X|Y] x P|Y]
(

X
X

1)

0
1

)

PIX=0]Y =0 PIX=0Y =1 PlY
(20 v 2o epeomvoa) X (v



Chain Rule (Matrix Form)

e Chain Rule
P[X,Y] = P[X|Y]P[Y] = P[Y|X|P[Y]

Means on diagonal

e Equivalent view using Matrix Algebra \

P[X.Y]= 7P[X|[Y] x PloY]

P(X =0.Y =0] P[X=0Y =1]
PIX =1Y =0] P[X=1Y =1] —

(]P’[X—OD/_O] IP[X—OY—I]) P[Y = 0] 0

P[X = 1]Y =0] P[X = 1|Y = 1] X( 0 p[y_u)

e Note how diagonal is used to keep Y from being marginalized
out.
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A and B have m
states each.
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In general, nothing we can say about the nature of this matrix.

Graphical Models
Algebra View

17
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it

Independence: The Linear
Algebra View

e What if we know A and B are independent?

=1, b=1], ..., =1,B=m

B
B
B

e
o
i

i

i

= = =1{,....P|B=m

e Joint probability matrix is rank one, since all rows are multiples of
one another!!
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Independence and Rank -

A B

o o P[A, B] has rank m (at most)
A B

o o ’P[A, B] has rank 1

e What about rank in between 1 and m?
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Low Rank Structure

e A and B are not marginally independent (They are only
conditionally independent given X).

A X B

OO0

e Assume X has k states (while A and B have m states).

o Then, Tank(P|A,B|) <k

o Why?

©Eric Xing @ CMU, 2012-2016
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Low Rank Structure

[ BIX]

-

.

(@©X)

.

AN

Gl

[AlX]

[A, B]

L

o

rank < k rank < k

rank < k

rank < k
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The Spectral View -

e Latent variable models encode low rank dependencies among
variables (both marginal and conditional)

e Use tools from linear algebra to exploit this structure.
e Rank
e Eigenvalues
e SVD
e Tensors
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A More Interesting Example o°

k states

m states

{X3vX4}

has rank k
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Low Rank Matrices “Factorize”

M:LR If M has rank k

m by n mby k kbyn

We already know one factorization!!!

Pl X2, Xisay] = P[Xq10 | Ho| P[OH2| P X343 Ho]

Factor of 4 variables Factor of 3 variables T Factor of 3 variables

Factor of 1 variable
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Alternate Factorizations ot

e The key insight is that this factorization is not unique.

e Consider Matrix Factorization. Can add any invertible
transformation:

M = LR
M =LSS 'R

e The magic of spectral learning is that there exists an
alternative factorization that only depends on observed
variables!
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An Alternate Factorization ot

e Let us say we only want to factorize this matrix of 4 variables

Pl X12;, X(3,45]

such that it is product of matrices that contain at most three
variables e.q.

’P :X{I,Q}a XB:
P :X27 X{3,4}:
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An Alternate Factorization ot

e Note that

P X125, X3] = P[X (1.9 Ho|P@HL | P X3 Ha)'
P| X |Hy | P :@HQ],P[X{SA} ‘HQ]T

e Product of green terms (in some order) is

Pl X191, Xi3a3]

e Product of red terms (in some order) is fP[X2 XS]
)
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An Alternate Factorization

Pl X190, Xz | = Pl X9y, Xs|P[Xo, X3|™ PIX,. X (3.4} |

factor of 4 variables factor of 3 variables factor of 3 variables

Advantage: Factors are only functions of observed variables! Can
be directly computed from data without EM!!!!

Caveat: some factors are no longer probability tables (do not have
to be non-negative)

We will call this factorization the observable factorization.
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Graphical Relationship

P[X{1,2}7X{3,4}] = P[X{L?}v X3]P[X9’X3]_1’P[XQ’X{3’4}]
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Another Factorization ot

e Seems we would do better empirically if you could “combine”
both factorizations. Will come back to this later.
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Relationship to Original T
Factorization -

e What is the relationship between the original factorization and
the new factorization?

Pl X2 Xsap] = P X2y | Ho| PlOH P X503 Ho]

M L R
M = LR
M =LSS 'R

Can | choose S to get the observable factorization?
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Relationship to Original
Factorization -
o Let

S . — P[Xg‘Hg]

Pl X2y, Xisay] = PlX (105, Xs]P[Xo, X3]"P[Xo, X34y

= LS =S 'R

Pl X1y, Xsay| = Pl X120 Ho|P|OH: | P X 5.0 Ho|
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Our Alternative Factorization ot

Pl X121, Xizay] = P X195, Xa|P[Xo, X3 "P[Xa, Xiz.)]

factor of 4 variables factor of 3 variables factor of 3 variables

e It may not seem very amazing at the moment (we have only
reduced the size of the factor by 1)

e What is cool is that every latent tree of V variables has such a
factorization where:

e All factors are of size 3
e All factors are only functions of observed variables

©Eric Xing @ CMU, 2012-2016 33



Training / Testing with Spectral
Learning 4

e \We have that

Pl X101, Xizay] = P[ X190y, X3]P[Xo, X3]'"P[Xo, Xi3.4]

e |n training, we compute estimates:
PurelXoo, Xs] PurelXe, Xa]™ Pure[Xa, Xl

e In test time, we can compute probability estimates (let
lowercase letters denote fixed evidence values):

Popecl 1. 22, 03, 24] = Prrrplriey. Xs]Pure[Xo. Xs] " Pure[Xo. vsy]’
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Generalizing To More Variables

e Consider HMM with 5 observations. Using similar arguments
as before we will get that:

Pl X125 Xizasy] = 'P[X{1,2}?X3]'P[X2;XB]_LP[X2;X{3,4,5}]

/

reshape and decompose
recursively

Pl X, Xusy | = ,P[X{Q,S};X4],P[X3;X4]_1,P[X3;X{4,5}]
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Consistency o

e A trivial consistent estimator is to simply attempt to estimate
the “big” probability table from the data without making any
conditional independence assumptions

PMLE[X1;X23X3,X4] _ P[X1’X2;X37X4] as number of samples

increases

e While this is consistent, it is not very statistically efficient
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Consistency o

e A better estimate is to compute likelihood estimates of the
factorization:

Prre|Xaon Ho|Prure|©OH | Prre| Xsa H,|'
— P[X1,X2§X3;X4]

e But this requires running EM, which will get stuck in local
optima and is not guaranteed to obtain the MLE of the
factorized model
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Consistency o

e In spectral learning, we estimate the alternate factorization
from the data

Porrre[Xoy, XalPure[Xe, Xa] " Pure[Xe, Xi34]
— P[Xla XQ; X33 X4]

e This is consistent and computationally tractable (at some loss
of statistical efficiency due to the dependence on the inverse)
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Where’s the Catch? ot

e Before we said that if the number of latent states was very
large then the model was equivalent to a clique.

e \Where does that scenario enter in our factorization?

P[X{LQ} ? X{BA}] — P[X{l,Q}v X3

o

When does this inverse exist?

| X9, X34 ]
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When Does the Inverse Exist ot

S ——
Pl Xy, Xs| = Pl Xo|Ho | Pl@QH P X5 | Hy| '

e All the matrices on the right hand side must have full
rank. (This is in general a requirement of spectral
learning, although it can be somewhat relaxed)
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When m > k o2

e The inverse cannot exist, but this situation is easily fixable (project
onto lower dimensional space)

P[X{l,Q}a X{354}] -
—1
Pl Xj12y. X3]V (U '"P[Xy, X5]V) U 'P[X5. Xi34y]

e Where U, V are the top left/right k singular vectors of P[Xg, Xg]
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When k> m ot

e The inverse does exist. But it no longer satisfies the following
property, which we used to derive the factorization

PlXo, X3] ! = (P[Xs|Ha] ) Pl@H2] P Xo|Ho] ™!

e This is much more difficult to fix, and intuitively corresponds to
how the problem becomes intractable if k >> m.
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What does k>m mean? .

e Intuitively, large k, small m means long range dependencies

e Consider following generative process:
(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y.
(2) Print A n times.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA...... or AYAYAYA.....

With n=2 we either generate:
AAXAAXAA..... or AAYAAYAA.......

©Eric Xing @ CMU, 2012-2016
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How many hidden states does cece
HMM need? oo

e HMM needs 2n states.

e Needs to remember count as well as whether we picked S=X
or S=Y

e However, number of observed states m does not change, so
our previous spectral algorithm will break for n > 2.

e How to deal with this in spectral framework?

©Eric Xing @ CMU, 2012-2016 44



Making Spectral Learning Work cece
In Practice oo

e \We are only using marginals of pairs/triples of variables to
construct the full marginal among the observed variables.

e Only works when k <m.

e However, in real problems we need to capture longer range
dependencies.
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Recall our factorization

PlX 12, Xppay] = PlX (12 ]P0, ] P, Xis ]
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Key Ildea: Use Long-Range
Features

Construct feature Construct feature
vector of left side vector of right side

Q1 PR




Spectral Learning With Features

Pl Xa, X3] =

Use more complex feature instead:

il Q PRl

41[62 29 63] ;

1

Pl X191, Xz | = E[d182. 0304]
— E[S192. ]V (U 'E[p, @ ¢pr]V) U Pldr. Xi5.4]

©Eric Xing @ CMU, 2012-2016
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Experimentally, -

e Has been shown by many authors that (with some work)
spectral methods achieve comparable results to EM but are
10-50x faster
e Parikh et al. 2011/ 2012
e Balleetal 2012
e Cohenetal. 2012/2013

e The following are some synthetic and real data results
demonstrating the comparison between EM and spectral
methods.

©Eric Xing @ CMU, 2012-2016
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Synthetic Data (parikn et al. 2012] +-

e Different latent variable models

! Lenﬁth =40 l

I Length = 40 I /_&x

B9 B0l
5569555

O 66 60 006

e Train: Learn parameters for a given model given samples of observed
variables

Length = 15

e Test: Evaluate likelihood of random samples drawn from model and
compare to the true likelihood
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Synthetic Data (parikn et al. 2012]

e Synthetic 3" order HMM Example (Spectral/EM/Online EM):

10000f

Runtime(s)

100}

0.10205 1

Runtime vs. Sample Size

Online EM X
R
R ‘o’
'o “ ‘o\
oooa T EM

Spectral

2 5 10 20 50 75 100
Training Samples
e Results for other structures look similar
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0.5
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Error vs. Sample Size

Spectral —

2 5 10 20 50 75 100
Training Samples
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Supervised Parsing iconen et al. 2012/2013]

e Learn a latent variable Probabilistic Context Free Grammar model
(latent PCFG) which is a PCFG augmented with additional latent
states

PCFG Latent Variable PCFG
S S (H1)

NP VP NP (H2) VP (H3)
DT NN VBD NP

/\ DT (H5) NN (H6) VBD(H?N)
T T
Xs

D|T {H8) NN {H9)
X1 X2 X3 X X1 X2 X3 X Xs
The bear ate the fish The bear ate the fish

e Train: Learn parameters given parse trees on training examples.
e Test: Estimate most likely parse structure on test sentences

©Eric Xing @ CMU, 2012-2016
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Empirical Results for Latent
PCFGs [Cohen et al. 2013]

section 22 section 23
EM  spectral EM  spectral
m =8 86.87 85.60 — —
m =16 || 88.32  &7.77 — —
m = 24 || 88.35 88.53 — —
m =32 || 88.56 8882 §7.76  88.05

Evaluation Measure: F1 bracketing score

©Eric Xing @ CMU, 2012-2016 53




imi 22
Timing Results on Latent
o0
PCFG T
S|[Cohen et al. 2013] o
single EM spectral algorithm

EM iter. | best model | total feature transfer + scaling SVD a—be a—=x

m =3 6m 3h 3h32m

‘ 36m 1h34m 10m
. 34m  3h13m 19m
22m 4“9‘“ 36m  4hS4m  28m

35m  7hlém  41m

m = 16 52m 26h6m 5h19m
m = 24 3h7m 93h36m 7h15m
m =32 | 9h21m 187h12m | 9h52m
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Dealing with Nonparametric, sett
Continuous Variables T

e It is difficult to run EM if the conditional/marginal distributions
are continuous and do not easily fit into a parametric family.
A

o 2 @ o o @
we 28 8 B & B

e However, we will see that Hilbert Space Embeddiyngs can
easily be combined with spectral methods for learning
nonparametric latent models. (Next lecture)
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1
Summary - EM & Spectral (Partl) |
Spectral
EM
« Aims to Find MLE so more * Does not aim to find MLE so less
“statistically” efficient statistically efficient.
« Can get stuck in local-optima « Local-optima-free
» Lack of theoretical guarantees * Provably consistent
+ Slow * Very fast

« Easy to derive for new models Challenging to derive for new
models (Unknown whether it can
generalize to arbitrary loopy

models)
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Summary - EM & Spectral (Part ll) | ¢

EM Spectral

No issues with negative numbers

Problems with negative numbers.
Requires explicit normalization to
compute likelihood.

Allows for easy modelling with Allows for easy modelling with
conditional distributions marginal distributions

Difficult to incorporate long-range Easy to incorporate long-range
features (since it increases features.
treewidth).

- Easy to generalize to non-
Generalizes poorly to non- Gaussian continuous variables
Gaussian continuous variables. via Hilbert Space Embeddings
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