
Probabilistic Graphical Models
Lecture 20: Gaussian Processes

Andrew Gordon Wilson

www.cs.cmu.edu/~andrewgw

Carnegie Mellon University

March 30, 2015

1 / 53

www.cs.cmu.edu/~andrewgw
Gordon Wilson

What is Machine Learning?

I Machine learning algorithms adapt with data versus having
fixed decision rules.

I Machine learning aims not only to equip people with tools
to analyse data, but to create algorithms which can learn
and make decisions without human intervention.1,2

I In order for a model to automatically learn and make
decisions, it must be able to discover patterns and
extrapolate those patterns to new situations.

1E.g. , N.D. Lawrence (2010), “What is Machine Learning?”
2T.M. Mitchell (2006), “What is Machine Learning and Where Is it Headed?”

2 / 53

Function Learning Example

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

Train

3 / 53

Function Learning Example

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

Train
Human?

4 / 53

Function Learning Example

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

Train
Alien?

5 / 53

Function Learning Example

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

Train
Human?

6 / 53

Function Learning Example

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

Train
Human?
Alien?

7 / 53

Function Learning Example

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

Train
Alien?
Test
Human?

8 / 53

Building an Intelligent Model

The ability for a model to learn from data depends on its:
1. Support: what solutions we think are a priori possible.
2. Inductive biases: what solutions we think are a priori likely.

I Examples: Function Learning, Character Recognition
I Human ability to make remarkable generalisations from data could

derive from an expressive prior combined with Bayesian inference.

9 / 53

Statistics from Scratch

Basic Regression Problem
I Training set of N targets (observations) y = (y(x1), . . . , y(xN))T.
I Observations evaluated at inputs X = (x1, . . . , xN)T.
I Want to predict the value of y(x⇤) at a test input x⇤.

For example: Given CO2 concentrations y measured at times X, what will
the CO2 concentration be for x⇤ = 2024, 10 years from now?

Just knowing high school math, what might you try?

10 / 53

Statistics from Scratch

1949 1951 1953 1955 1957 1959 1961100

200

300

400

500

600

700
Ai

rli
ne

 P
as

se
ng

er
s

(T
ho

us
an

ds
)

Year

11 / 53

Statistics from Scratch

Guess the parametric form of a function that could fit the data
I f (x,w) = wTx [Linear function of w and x]
I f (x,w) = wT�(x) [Linear function of w] (Linear Basis Function

Model)
I f (x,w) = g(wT�(x)) [Non-linear in x and w] (E.g., Neural Network)

�(x) is a vector of basis functions. For example, if �(x) = (1, x, x2) and
x 2 R1 then f (x,w) = w0 + w1x + w2x2 is a quadratic function.

Choose an error measure E(w), minimize with respect to w
I E(w) =

PN
i=1[f (xi,w)� y(xi)]2

12 / 53

Statistics from Scratch

A probabilistic approach
We could explicitly account for noise in our model.

I y(x) = f (x,w) + ✏(x) , where ✏(x) is a noise function.

One commonly takes ✏(x) = N (0,�2) for i.i.d. additive Gaussian noise, in
which case

p(y(x)|x,w,�2) = N (y(x); f (x,w),�2) Observation Model (1)

p(y|x,w,�2) =
NY

i=1

N (y(xi); f (xi,w),�2) Likelihood (2)

I Maximize the likelihood of the data p(y|x,w,�2) with respect to �2,w.
For a Gaussian noise model, this approach will make the same predictions as
using a squared loss error function:

log p(y|X,w,�2) / � 1
2�2

NX

i=1

[f (xi,w)� y(xi)]
2 (3)

13 / 53

Statistics from Scratch
I The probabilistic approach helps us interpret the error measure in a

deterministic approach, and gives us a sense of the noise level �2.
I Probabilistic methods thus provide an intuitive framework for

representing uncertainty, and model development.
I Both approaches are prone to over-fitting for flexible f (x,w): low error

on the training data, high error on the test set.

Regularization
I Use a penalized log likelihood (or error function), such as

log p(y|X,w) /

model fitz }| {

� 1
2�2

nX

i=1

(f (xi,w)� y(xi)
2)

complexity penaltyz }| {
��wTw . (4)

I
But how should we define complexity, and how much should we

penalize complexity?

I Can set � using cross-validation.

14 / 53

Bayesian Inference

Bayes’ Rule

p(a|b) = p(b|a)p(a)/p(b) , p(a|b) / p(b|a)p(a) . (5)

posterior =
likelihood ⇥ prior

marginal likelihood
, p(w|y,X,�2) =

p(y|X,w,�2)p(w)
p(y|X,�2)

.

(6)

Predictive Distribution

p(y|x⇤, y,X) =
Z

p(y|x⇤,w)p(w|y,X)dw . (7)

I Average of infinitely many models weighted by their posterior
probabilities.

I No over-fitting, automatically calibrated complexity.
I Typically more interested in distribution over functions than in

parameters w.
15 / 53

Representing Uncertainty

Different types of uncertainty:
I Uncertainty through lack of knowledge
I Intrinsic uncertainty; e.g., radioactive decay.

Uncertainty through lack of knowledge can seem like intrinsic uncertainty
(e.g., rolling dice).

Regardless of whether or not the universe is deterministic – whether there is
some underlying true answer – we will always have uncertainty. We can
represent this belief using probability distributions (Bayesian methods,
probabilistic modelling).

16 / 53

Parametric Regression Review

Deterministic

E(w) =
NX

i=1

(f (xi,w)� yi)
2 . (8)

Maximum Likelihood

p(y(x)|x,w) = N (y(x); f (x,w),�2
n) , (9)

p(y|X,w) =
NY

i=1

N (y(xi); f (xi,w),�2
n) . (10)

Bayesian

posterior =
likelihood ⇥ prior

marginal likelihood
, p(w|y,X) =

p(y|X,w)p(w)
p(y|X) . (11)

p(y|x⇤, y,X) =
Z

p(y|x⇤,w)p(w|y,X)dw . (12)

17 / 53

Model Selection and Marginal Likelihood

p(y|M1,X) =
Z

p(y|f1(x,w))p(w)dw (13)

 y
All Possible Datasets

p(
y|

M
)

Complex Model
Simple Model
Appropriate Model

18 / 53

Blackboard: Examples of Occam’s Razor in Everyday Inferences

For further reading, see MacKay (2003) textbook, Information Theory,
Inference, and Learning Algorithms.

19 / 53

Occam’s Razor Example

-1, 3, 7, 11, ??, ??
I H1: the sequence is an arithmetic progression,

add n, where n is an integer.
I H2: the sequence is generated by a cubic function

of the form cx3 + dx2 + e, where c, d, and e are
fractions. (� 1

11x3 + 9
11x2 + 23

11)

20 / 53

Model Selection

0 20 40 60 80 100−1

−0.5

0

0.5

1

1.5

2

O
ut

pu
ts

, y
(x

)
Inputs, x

Observations y(x). Assume p(y(x)|f (x)) ⇠ N (y(x); f (x),�2). Consider
polynomials of different orders. As always, observations are out of the
chosen model class! Which model should we choose?

f0(x) = a0 , (14)
f1(x) = a0 + a1x , (15)

f2(x) = a0 + a1x + a2x2 , (16)
... (17)

fJ(x) = a0 + a1x + a2x2 + · · ·+ aJxJ . (18)
21 / 53

Model Selection: Occam’s Hill

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

Model Order

M
ar

gi
na

l L
ik

el
ih

oo
d

(E
vi

de
nc

e)

Marginal likelihood (evidence) as a function of model order, using an
isotropic prior p(a) = N (0,�2I).

22 / 53

Model Selection: Occam’s Asymptote

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

M
ar

gi
na

l L
ik

el
ih

oo
d

(E
vi

de
nc

e)

Model Order

Marginal likelihood (evidence) as a function of model order, using an
anisotropic prior p(ai) = N (0, ��i), with � learned from the data.

23 / 53

Occam’s Razor

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

Model Order

M
ar

gi
na

l L
ik

el
ih

oo
d

(E
vi

de
nc

e)

(a) Isotropic Gaussian Prior

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

M
ar

gi
na

l L
ik

el
ih

oo
d

(E
vi

de
nc

e)

Model Order

(b) Anisotropic Gaussian Prior

For further reading, see Rasmussen and Ghahramani (2001) (Occam’s
Razor) and Kass and Raftery (1995) (Bayes Factors)

24 / 53

Linear Basis Models

Consider the simple linear model,

f (x) = a0 + a1x , (19)
a0, a1 ⇠ N (0, 1) . (20)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−25

−20

−15

−10

−5

0

5

10

15

20

25

Input, x

O
ut

pu
t,

f(x
)

25 / 53

Linear Models

We are interested in the induced distribution over functions, not the
parameters...
Let’s characterise the properties of these functions directly:

f (x|a0, a1) = a0 + a1x , a0, a1 ⇠ N (0, 1) . (21)
E[f (x)] = E[a0] + E[a1]x = 0 . (22)

cov[f (xb), f (xc)] = E[f (xb)f (xc)]� E[f (xb)]E[f (xc)] (23)

= E[a2
0 + a0a1(xb + xc) + a2

1xbxc]� 0 (24)

= E[a2
0] + E[a2

1xbxc] + E[a0a1(xb + xc)] (25)
= 1 + xbxc + 0 (26)
= 1 + xbxc . (27)

26 / 53

Linear Models

Therefore any collection of values has a joint Gaussian distribution

[f (x1), . . . , f (xN)] ⇠ N (0,K) , (28)
Kij = cov(f (xi), f (xj)) = k(xi, xj) = 1 + xbxc . (29)

By definition, f (x) is a Gaussian process.

Definition
A Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution. We write
f (x) ⇠ GP(m, k) to mean

[f (x1), . . . , f (xN)] ⇠ N (µ,K) (30)
µi = m(xi) (31)
Kij = k(xi, xj) , (32)

for any collection of input values x1, . . . , xN . In other words, f is a GP with
mean function m(x) and covariance kernel k(xi, xj).

27 / 53

Linear Basis Function Models

Model Specification

f (x,w) = wT�(x) (33)
p(w) = N (0,⌃w) (34)

Moments of Induced Distribution over Functions

E[f (x,w)] = m(x) = E[wT]�(x) = 0 (35)
cov(f (xi), f (xj)) = k(xi, xj) = E[f (xi)f (xj)]� E[f (xi)]E[f (xj)] (36)

= �(xi)
TE[wwT]�(xj)� 0 (37)

= �(xi)
T⌃w�(xj) (38)

I f (x,w) is a Gaussian process, f (x) ⇠ N (m, k) with mean function
m(x) = 0 and covariance kernel k(xi, xj) = �(xi)T⌃w�(xj).

I The entire basis function model of Eqs. (33) and (34) is encapsulated as
a distribution over functions with kernel k(x, x0).

28 / 53

Gaussian Processes

I We are ultimately more interested in – and have stronger intuitions
about – the functions that model our data than weights w in a parametric
model, and we can express those intuitions using a covariance kernel.

I The kernel controls the support and inductive biases of our model, and
thus its ability to generalise.

29 / 53

Example: RBF Kernel

kRBF(x, x0) = cov(f (x), f (x0)) = a2 exp(� ||x � x0||2

2`2) (39)

I Far and above the most popular kernel.
I Expresses the intuition that function values at nearby inputs are more

correlated than function values at far away inputs.
I The kernel hyperparameters a and ` control amplitudes and wiggliness

of these functions.
I GPs with an RBF kernel have large support and are universal

approximators.

30 / 53

Sampling from a GP with an RBF Kernel

x = [-10:0.2:10]’; % inputs (where we query the GP)

N = numel(x); % number of inputs

K = zeros(N,N); % covariance matrix

% very inefficient way of creating K in Matlab

for i=1:N

for j=1:N

K(i,j) = k_rbf(x(i),x(j));

end

end

K = K + 1e-6

*

eye(N); % add jitter for conditioning

CK = chol(K);

f = CK’

*

randn(N,1); % draws from N(0,K)

plot(x,f);

31 / 53

Samples from a GP with an RBF Kernel

32 / 53

1D RBF Kernel with Different Length-scales

kRBF(x, x0) = cov(f (x), f (x0)) = a2 exp(� ||x � x0||2

2`2) (40)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

k(
τ)

SE kernels with Different Length−scales

l=7
l = 0.7
l = 2.28

Figure: SE kernels with different length-scales, as a function of ⌧ = x � x0.

33 / 53

RBF Kernel Covariance Matrix

kRBF(x, x0) = cov(f (x), f (x0)) = a2 exp(� ||x � x0||2

2`2) (41)

The covariance matrix K for ordered inputs on a 1D grid. Kij = kRBF(xi, xj).

34 / 53

Gaussian Process Inference

I Observed noisy data y = (y(x1), . . . , y(xN))T at input locations X.
I Start with the standard regression assumption: N (y(x); f (x),�2).
I Place a Gaussian process distribution over noise free functions

f (x) ⇠ GP(0, k✓). The kernel k is parametrized by ✓.
I Infer p(f⇤|y,X,X⇤) for the noise free function f evaluated at test points

X⇤.

Joint distribution

"
y

f⇤

#
⇠ N

0,

"
K✓(X,X) + �2I K✓(X,X⇤)

K✓(X⇤,X) K✓(X⇤,X⇤)

#!
. (42)

Conditional predictive distribution

f⇤|X⇤,X, y,✓ ⇠ N (f̄⇤, cov(f⇤)) , (43)

f̄⇤ = K✓(X⇤,X)[K✓(X,X) + �2I]�1y , (44)

cov(f⇤) = K✓(X⇤,X⇤)� K✓(X⇤,X)[K✓(X,X) + �2I]�1K✓(X,X⇤) .
(45)

35 / 53

Inference using an RBF kernel

I Specify f (x) ⇠ GP(0, k).
I Choose kRBF(x, x0) = a2

0 exp(� ||x�x0||2
2`2

0
). Choose values for a0 and `0.

I Observe data, look at the prior and posterior over functions.

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(x
)

Samples from GP Prior

(a)

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(x
)

Samples from GP Posterior

(b)

I Does something look strange about these functions?
36 / 53

Inference using an RBF kernel

Increase the length-scale `.

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(x
)

Samples from GP Prior

(a) (b)

37 / 53

Learning and Model Selection

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(46)

We can write the evidence of the model as

p(y|Mi) =

Z
p(y|f ,Mi)p(f)df , (47)

 y
All Possible Datasets

p(
y|

M
)

Complex Model
Simple Model
Appropriate Model

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(x
)

Data
Simple
Complex
Appropriate

(b)
38 / 53

Learning and Model Selection
I We can integrate away the entire Gaussian process f (x) to obtain the

marginal likelihood, as a function of kernel hyperparameters ✓ alone.

p(y|✓,X) =
Z

p(y|f ,X)p(f |✓,X)df . (48)

log p(y|✓,X) =

model fitz }| {
�1

2
yT(K✓ + �2I)�1y�

complexity penaltyz }| {
1
2

log |K✓ + �2I|�N
2

log(2⇡) .
(49)

I An extremely powerful mechanism for kernel learning.

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(x
)

Samples from GP Prior

(c)

−10 −5 0 5 10
−4

−3

−2

−1

0

1

2

3

4

Input, x

O
ut

pu
t,

f(x
)

Samples from GP Posterior

(d)
39 / 53

Learning and Model Selection

I A fully Bayesian treatment would integrate away kernel
hyperparameters ✓.

p(f⇤|X⇤,X, y) =
Z

p(f⇤|X⇤,X, y,✓)p(✓|y)d✓ (50)

I For example, we could specify a prior p(✓), use MCMC to take J
samples from p(✓|y) / p(y|✓)p(✓), and then find

p(f⇤|X⇤,X, y) ⇡ 1
J

JX

i=1

p(f⇤|X⇤,X, y,✓(i)) , ✓(i) ⇠ p(✓|y) . (51)

I If we have a non-Gaussian noise model, and thus cannot integrate away
f , the strong dependencies between Gaussian process f and
hyperparameters ✓ make sampling extremely difficult. In my
experience, the most effective solution is to use a deterministic
approximation for the posterior p(f |y) which enables one to work with
an approximate marginal likelihood.

40 / 53

Gaussian Process Covariance Kernels

Let ⌧ = x � x0:

kSE(⌧) = exp(�0.5⌧ 2/`2) (52)

kMA(⌧) = a(1 +

p
3⌧
`

) exp(�
p

3⌧
`

) (53)

kRQ(⌧) = (1 +
⌧ 2

2↵ `2)
�↵ (54)

kPE(⌧) = exp(�2 sin2(⇡ ⌧ !)/`2) (55)

41 / 53

Inference and Learning

1. Learning: Optimize marginal likelihood,

log p(y|✓,X) =

model fitz }| {
�1

2
yT(K✓ + �2I)�1y�

complexity penaltyz }| {
1
2

log |K✓ + �2I|�N
2

log(2⇡) ,

with respect to kernel hyperparameters ✓.
2. Inference: Conditioned on kernel hyperparameters ✓, form the

predictive distribution for test inputs X⇤:

f⇤|X⇤,X, y,✓ ⇠ N (f̄⇤, cov(f⇤)) ,
f̄⇤ = K✓(X⇤,X)[K✓(X,X) + �2I]�1y ,

cov(f⇤) = K✓(X⇤,X⇤)� K✓(X⇤,X)[K✓(X,X) + �2I]�1K✓(X,X⇤) .

42 / 53

Gaussian process graphical model

I Squared are observed, circles are latent, the thick bar is a set of fully
connected nodes.

I Each yi is conditionally independent given fi.
I Because of the marginalization property of a GP, addition of further

inputs x⇤ and unobserved targets y⇤ does not change the distribution of
any other variables.

Figure from GPML, Rasmussen and Williams (2006)

43 / 53

Worked Example: Combining Kernels, CO2 Data

1968 1977 1986 1995 2004

320

340

360

380

400

Year

C
O

2 C
on

ce
nt

ra
tio

n
(p

pm
)

Example from Rasmussen and Williams (2006), Gaussian Processes for
Machine Learning.

44 / 53

Worked Example: Combining Kernels, CO2 Data

45 / 53

Worked Example: Combining Kernels, CO2 Data

I Long rising trend: k1(xp, xq) = ✓2
1 exp

⇣
� (xp�xq)

2

2✓2
2

⌘

I Quasi-periodic seasonal changes: k2(xp, xq) =

kRBF(xp, xq)kPER(xp, xq) = ✓2
3 exp

⇣
� (xp�xq)

2✓2
4

� 2 sin2(⇡(xp�xq))
✓2

5

⌘

I Multi-scale medium term irregularities:

k3(xp, xq) = ✓2
6

⇣
1 + (xp�xq)

2

2✓8✓2
7

⌘�✓8

I Correlated and i.i.d. noise: k4(xp, xq) = ✓2
9 exp

⇣
� (xp�xq)

2

2✓2
10

⌘
+ ✓2

11�pq

I ktotal(xp, xq) = k1(xp, xq) + k2(xp, xq) + k3(xp, xq) + k4(xp, xq)
46 / 53

Worked Example: Combining Kernels, CO2 Data

I Hand crafted a kernel combination to perform extrapolation
I Confidence in the extrapolation is high (suggests that model is well

specified).
I Can interpret the learned kernel hyperparameters ✓ to learn information

about our dataset.
I A lot of the interesting pattern recognition has been done by a human in

this example. We would like to completely automate this modelling
procedure.

47 / 53

Non-Gaussian Likelihoods

We can no longer analytically integrate away the Gaussian process. But we
can use a simple Monte carlo sum:

p(f⇤|y,X, x⇤) =
Z

p(f⇤|f , x⇤)p(f |y)df

⇡ 1
J

JX

j=1

p(f⇤|f (j), x⇤) , f (j) ⇠ p(f |y)

But how do we sample from p(f |y)?

48 / 53

Non-Gaussian Likelihoods

We can no longer analytically integrate away the Gaussian process. But we
can use a simple Monte carlo sum:

p(f⇤|y,X, x⇤) =
Z

p(f⇤|f , x⇤)p(f |y)df

⇡ 1
J

JX

j=1

p(f⇤|f (j), x⇤) , f (j) ⇠ p(f |y)

But how do we sample from p(f |y)?

Elliptical slice sampling. Murray et. al. AISTATS 2010.

49 / 53

Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(f |y, ✓) / p(y|f)p(f |✓) (56)
p(✓|f , y) / p(f |✓)p(✓) . (57)

But this won’t work because of strong correlations between f and ✓.

50 / 53

Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(f |y, ✓) / p(y|f)p(f |✓) (58)
p(✓|f , y) / p(f |✓)p(✓) . (59)

But this won’t work because of strong correlations between f and ✓.
I Transform into a whitened space, f = L⌫, and sample from ⌫ and ✓,

which decouples correlations.

51 / 53

Non-Gaussian Likelihoods

But what about hyperparameters? It’s easy to implement Gibbs sampling:

p(f |y, ✓) / p(y|f)p(f |✓) (60)
p(✓|f , y) / p(f |✓)p(✓) . (61)

But this won’t work because of strong correlations between f and ✓.
I Transform into a whitened space, f = L⌫, and sample from ⌫ and ✓,

which decouples correlations.
I Use a deterministic approach to approximately integrate away f to

access a marginal likelihood, conditioned only on kernel
hyperparameters ✓:

p(y|✓) =
Z

p(y|f)p(f |✓)df (62)

I The Laplace approximation, for example, approximates p(f |y) as a
Gaussian.

52 / 53

Readings for Next Time

I C. Rasmussen and C. Williams, GPML, Ch. 4, 5
I Y. Saatchi, PhD Thesis, 2011. Chapter 5
I J. Candela and C.E. Rasmussen, A unifying view of sparse

approximation Gaussian process regression, JMLR 2005.
I A.G. Wilson and R.P. Adams. Gaussian process kernels for pattern

discovery and extrapolation, ICML 2013.

53 / 53

