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Reminders

* Typo fixed: lecture 16, slide 29, detailed
balance

* Today: wrap up DPMM
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Motivation

+* Latent Feature Models

— Examples:
 factor analysis
 probabilistic PCA
* cooperative vector quantization
* sparse PCA
“* Applications
— choice behavior (i.e. option A over option B)

— proteomics: modeling the functional interactions of proteins
— which can belong to multiple complexes at the same time

— collaborative filtering: modeling features of movie
preferences (a la. Netflix challenge)

— structure learning for graphical models (i.e. bipartite graphs)



Latent Feature Models

Let x; be the :th data instance
f; be its features

T T T

F = [f?vfgvafﬁ]

Model: p(X, F) =p(X|F)p(F)



Latent Feature Models

Decompose the feature matrix, F, into a
sparse binary matrix, Z, and a value matrix, V.
where ® isthe elementwise product
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Latent Feature Models

Decompose the feature matrix, F, into a
sparse binary matrix, Z, and a value matrix, V.

F=7ZxV where ® is the elementwise product
zij € 10,1}
Vij € R

Model: p(X, F)

The IBP will provide p(2)
for the case of infinite K!




Figure from Griffiths & Ghahramani (2011)

Finite Feature Model

Beta-Bernoulli Model

e foreachfeaturek € {1,..., K}:

o m ~ Beta(%,1) where o > 0

o for each object: € {1,...,N}:
m 2 ~ Bernoulli(my)

p(Z, 7 | )

0 O OF




Finite Feature Model
Marginalized Beta-Bernoulli Model

Because of the conju%acy of the Beta and
Bernoulli, we can analytically marginalize out the
feature prevalence parameters, T,.

P(Z) = n/( P(Zikﬂik)) p(1y) dry
k=1

=

['(my+ 2 )F(N—mk—l—l)

K o
= 11"
o
o N_I_I_I_E)

N

where m; = Z zik is # features ON in column &,
i=1

['is the Gamma function



Finite Feature Model
Gererstve sy Expected # of non-zeroes

e foreach feature k € {1,..., K}:
o m, ~ Beta(%,1) where oo > 0
o foreach objecti € {1,..., N}
m 2;; ~ Bernoulli(7y)

Recall: if X ~ Beta(r, s), then E| X]| = ’
r—+ S
if Y ~ Bernoulli(p), thenE[Y]=0p
&
1 K So the expected
]E[ZZK] T 14 o number of non-zero
K entries in Z is < Na
T N K ] Na
T _ . _
=E17Z1] =E | ) Y zy| = =
Li=1 k=1 _ K

What happens as K — oo?
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Finite Feature Model
Taking the Infinite Limit

Kh_r)rloop(Z) — Klinoo | T(N+1+2)

=0

Problem: Every matrix has zero probability!

K 2T (mg+ 2)L(N —my+1)
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Finite Feature Model
Left-Ordered Form (lof)
Topic Modeling:
» Consider many samples of the k" topic from the

(T)

Markov chain: (1) ,(2)
k2 Pr - Pg

This topic will “drift” over time (e.g. from
{politics} at time (t) to {geology} at time (t+m))

* Instead of averaging, it’s common to use a MAP
estimate of the topics

* The order of the topics is not important to the
model (i.e. the topics are not identifiable)



Finite Feature Model
Left-Ordered Form (lof)

Back to our model:

* Q:Inalatent feature model, what’s the
difference between feature k=13 and k=27?

* A: Nothing!

The use of left-ordered form capitalizes on the
fact that features are not identifiable

(i.e. order of features doesn’t matter to the
model)



Finite Feature Model
Left-Ordered Form (lof) Same

Define the history of feature k to be the magnitude of history
the binary value given by the column:

N
hy = Z 2N =1 2
i=1
K, = # of features with history A
Ko = # of features with my, = 0 (i.e. h = 0)
2N 1
K, = Z K, # of features with non-zero history
h=1
= K =Ko+ K4

Define lof(Z) to be sorted left-to-right
by the history of each feature.



Figure from Griffiths & Ghahramani (2005)

Finite Feature Model
Left-Ordered Form (lof)

Define lof(Z) to be sorted left-to-right
by the history of each feature.

Define equivalence class [Z] = {Z' : lof(Z') = lof(Z)}
K!

Cardinality of [Z] =
[Tho' Ka!
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Finite Feature Model
Taking the Infinite Limit

lim p(Z)= lim n% i )TN —m 1)

K—oo K—oo ¢ C(N+14%)
=0
Problem: Every matrix has zero probability!
K!
lim p([Z]) = lim ———p(Z)
K—o0 K—o0 Hh Kh'
K K.
(0 s (N—mk)!(mk—l)!
= Tk - exp{—oHy} - e :
h= k=1 :
Al
where Hy = Z ; is the Nth harmonic number
j=1

Solution: Every equivalence class has non-zero probability!



Figure from Griffiths & Ghahramani (2005)

The Indian Buftet Process
Non-exchangeable

* Imagine an Indian restaurant with a buffet containing an infinite # of dishes.

* N customers make a plate by selecting dishes from the buffet:

— 1** customer:
Starts at the left and selects a Poisson(a) number of dishes

— i*" customer:

1. Samples previously sampled dishes according to their popularity: Problem: the
(i.e. with prob. m,/i where m, is the # of .
previous customers who tried dish k) process Is not

2. Then selects a Poisson(a/i) number of new dishes exchangeable -

dishes sampled
as “new’”’
depend on the
customer order.

customer 1

customer 2

customer 3

customer 4




Figure from Griffiths & Ghahramani (2005)

The/\lndian Buffet Process
Exchangeable

* Imagine an Indian restaurant with a buffet containing an infinite # of dishes.

* N customers make a plate by selecting dishes from the buffet:

— 1** customer:
Starts at the left and selects a Poisson(a) number of dishes

— i*" customer:
1. Makes a single decision for dishes with same history, h: o
(i.e. If there are K, dishes w/history h sampled by m,, customers, | This yields a lof
then she samples a Binomial(m,/I, K;) number starting at the left) | mstrix. 7
2. Then selects a Poisson(a/i) number of new dishes ’

Does so with
probability
p([Z])!

customer 1

customer 2

customer 3

customer 4




Figure from Griffiths & Ghahramani (2005)

The Indian Buffet Process

Example

Dishes
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Gibbs Sampler for IBP

Consider a “prior only” sampler of p(Z | o)

e Forfinite K: )
P(zig = l|z_i1) = / P(zik|m1)p(Tr|Z—i 1) dTr,
0
Mok + %
- Frao

where z_; 1 is the kth column except row ¢,
m_; 1 is the # of rows w/feat. k except :

* Forinfinite K:
— The “Exchangeable IBP” is exchangeable!
— Choose an order s.t. the it" customer was the last to enter (just like CRP sampler)
— Foranyks.t.m;, >0, resample:

m_; k
N )

P(zig = 1z_ik) =
— Then draw a Poisson(a/i) # of new dishes.
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Slide from Ghahramani, Bayes Np. Workshop 2009

Properties of the Indian buffet process

Prior sample from IBP with a=10
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Figure 1: Stick-breaking construction for the DP and IBP.
The black stick at top has length 1. At each iteration the
vertical black line represents the break point. The brown
dotted stick on the right is the weight obtained for the DP,

Shown in (Griffiths and Ghahramani, 2005): while the blue stick on the left is the weight obtained for

It is infinitely exchangeable.

the IBP.

The number of ones in each row is Poisson(«)
The expected total number of ones is V.
The number of nonzero columns grows as O(alog V).

Additional properties:

e Has a stick-breaking representation (Teh, Goriir, Ghahramani, 2007)
e Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)
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Slide from Ghahramani, Bayes Np. Workshop 2009

Posterior Inference in IBPs
P(Z,a|X) x P(X|Z)P(Z|a)P(«)

Gibbs sampling: P(an = 1|Z_(nk), X, Oz) X P(an = 1|Z—(nk:)7 Oé)P(XlZ)

m_n k

o |f m_n kg > 0, P(an — Hz—n,k) —

e For infinitely many £ such that m_,, = 0: Metropolis steps with truncation™ to
sample from the number of new features for each object.
e If o has a Gamma prior then the posterior is also Gamma — Gibbs sample.

Conjugate sampler: assumes that P(X|Z) can be computed.

Non-conjugate sampler: P(X|Z) = [ P(X|Z,0)P(0)df cannot be computed,
requires sampling latent 6 as well (c.f. (Neal 2000) non-conjugate DPM samplers).

*Slice sampler: non-conjugate case, is not approximate, and has an adaptive
truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood & Griffiths, 2007).

Accelerated Gibbs Sampling: maintaining a probability distribution over some of
the variables (Doshi-Velez & Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, & Teh, 2009).
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Slide from Ghahramani, Bayes Np. Workshop 2009

Modelling Data

Latent variable model: let X be the N x D matrix of observed data, and Z be the
N x K matrix of binary latent features

P(X,Z|a) = P(X|Z)P(Z|«)

By combining the IBP with different likelihood functions we can get different kinds
of models:

e Models for graph structures (w/ Wood, Griffiths, 2006)
e Models for protein complexes (w/ Chu, Wild, 2006)
e Models for overlapping clusters (w/ Heller, 2007)
e Models for choice behaviour (Goriir, Jakel & Rasmussen, 2006)
e Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)

e Sparse latent factor models (w/ Knowles, 2007)
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Summary

Beta-Bernoulli model is a simple finite
feature model

Can treat features as latent

Infinite limit of Beta-Bernoulli yields the
Indian Buffet Process (IBP)

Many properties of the IBP are similar to the
CRP



