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Motivation	
  
v Latent	
  Feature	
  Models	
  

–  Examples:	
  
•  factor	
  analysis	
  
•  probabilistic	
  PCA	
  
•  cooperative	
  vector	
  quantization	
  
•  sparse	
  PCA	
  

v Applications	
  
–  choice	
  behavior	
  (i.e.	
  option	
  A	
  over	
  option	
  B)	
  
–  proteomics:	
  modeling	
  the	
  functional	
  interactions	
  of	
  proteins	
  

–	
  which	
  can	
  belong	
  to	
  multiple	
  complexes	
  at	
  the	
  same	
  time	
  
–  collaborative	
  filtering:	
  modeling	
  features	
  of	
  movie	
  

preferences	
  (a	
  la.	
  Netflix	
  challenge)	
  
–  structure	
  learning	
  for	
  graphical	
  models	
  (i.e.	
  bipartite	
  graphs)	
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Let i be the ith data instance

i be its features

Define = [ T
1 , xT

2 , . . . , xT
N ]

= [ T
1 , fT

2 , . . . , fT
N ]

Model: p( , ) =p( | )p( )
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= � where � is the elementwise product
zij � {0, 1}
vij � R

Decompose	
  the	
  feature	
  matrix,	
  F,	
  into	
  a	
  
sparse	
  binary	
  matrix,	
  Z,	
  and	
  a	
  value	
  matrix,	
  V.	
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= � where � is the elementwise product
zij � {0, 1}
vij � R

Decompose	
  the	
  feature	
  matrix,	
  F,	
  into	
  a	
  
sparse	
  binary	
  matrix,	
  Z,	
  and	
  a	
  value	
  matrix,	
  V.	
  	
  

Model: p( , ) =p( | )p( )

=p( | )p( )p( )

The	
  IBP	
  will	
  provide	
  p(Z)	
  
for	
  the	
  case	
  of	
  infinite	
  K!	
  



Finite	
  Feature	
  Model	
  

8	
  

INDIAN BUFFET PROCESS

zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3
The probability model we have defined is

πk |α ∼ Beta( αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is

P(Z) =
K

∏
k=1

∫ ( N

∏
i=1

P(zik|πk)

)

p(πk)dπk

=
K

∏
k=1

B(mk+
α
K ,N−mk+1)
B( αK ,1)

=
K

∏
k=1

α
KΓ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent of K. Since each
column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[

1T zk
]

. This expectation is easily computed,

E
[

1T zk
]

=
N

∑
i=1

E(zik) =
N

∑
i=1

∫ 1

0
πk p(πk) dπk = N

α
K

1+ α
K
, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s .

Consequently, E
[

1TZ1
]

= KE
[

1T zk
]

= Nα
1+ α

K
. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.
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Figure	
  from	
  Griffiths	
  &	
  Ghahramani	
  (2011)	
  

• for each feature k � {1, . . . , K}:
� �k � Beta( �

K , 1) where � > 0
� for each object i � {1, . . . , N}:

� zik � Bernoulli(�k)

Generative	
  Story:	
  
[row]	
  

[column]	
  

[prob.	
  of	
  feat.	
  k]	
  

[is	
  feat.	
  ON/OFF]	
  

p( , � | �)

Beta-­‐Bernoulli	
  Model	
  



Finite	
  Feature	
  Model	
  

Because	
  of	
  the	
  conjugacy	
  of	
  the	
  Beta	
  and	
  
Bernoulli,	
  we	
  can	
  analytically	
  marginalize	
  out	
  the	
  
feature	
  prevalence	
  parameters,	
  πk.	
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Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.
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where mk =
N�

i=1

zik is # features ON in column k,

� is the Gamma function

Marginalized	
  Beta-­‐Bernoulli	
  Model	
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Expected	
  #	
  of	
  non-­‐zeroes	
  

Recall: if X � Beta(r, s), then E[X] =
r

r + s
if Y � Bernoulli(p), then E[Y ] = p

• for each feature k � {1, . . . , K}:
� �k � Beta( �

K , 1) where � > 0
� for each object i � {1, . . . , N}:

� zik � Bernoulli(�k)

Generative	
  Story:	
  

[row]	
  

[column]	
  

[prob.	
  of	
  feat.	
  k]	
  

[is	
  feat.	
  ON/OFF]	
  

E[zik] =
�
K

1 + �
K

�E[ T ] = E
�

N�

i=1

K�

k=1

zik

�
=

N�

1 + �
K

What happens as K � �?

E[zik] =
�
K

1 + �
K

�E[ T ] = E
�

N�

i=1

K�

k=1

zik

�
=

N�

1 + �
K

So	
  the	
  expected	
  
number	
  of	
  non-­‐zero	
  
entries	
  in	
  Z	
  is	
  ≤	
  Nα	
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Taking	
  the	
  Infinite	
  Limit	
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Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.
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Consequently, E
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Left-­‐Ordered	
  Form	
  (lof)	
  
Topic	
  Modeling:	
  
•  Consider	
  many	
  samples	
  of	
  the	
  kth	
  topic	
  from	
  the	
  
Markov	
  chain:	
  
	
  
This	
  topic	
  will	
  “drift”	
  over	
  time	
  (e.g.	
  from	
  
{politics}	
  at	
  time	
  (t)	
  to	
  {geology}	
  at	
  time	
  (t+m))	
  

•  Instead	
  of	
  averaging,	
  it’s	
  common	
  to	
  use	
  a	
  MAP	
  
estimate	
  of	
  the	
  topics	
  

•  The	
  order	
  of	
  the	
  topics	
  is	
  not	
  important	
  to	
  the	
  
model	
  (i.e.	
  the	
  topics	
  are	
  not	
  identifiable)	
  

�(1)
k , �(2)

k , . . . , �(T )
k
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Left-­‐Ordered	
  Form	
  (lof)	
  
Back	
  to	
  our	
  model:	
  
•  Q:	
  In	
  a	
  latent	
  feature	
  model,	
  what’s	
  the	
  
difference	
  between	
  feature	
  k=13	
  and	
  k=27?	
  

•  A:	
  Nothing!	
  

The	
  use	
  of	
  left-­‐ordered	
  form	
  capitalizes	
  on	
  the	
  
fact	
  that	
  features	
  are	
  not	
  identifiable	
  	
  
(i.e.	
  order	
  of	
  features	
  doesn’t	
  matter	
  to	
  the	
  
model)	
  



Finite	
  Feature	
  Model	
  

14	
  

Left-­‐Ordered	
  Form	
  (lof)	
  
Define the history of feature k to be the magnitude of
the binary value given by the column:

hk =
N�

i=1

2(N�i)zik

Kh = # of features with history h

K0 = # of features with mk = 0 (i.e. h = 0)

K+ =
2N �1�

h=1

Kh, # of features with non-zero history

� K = K0 + K+

10	
   13	
   2	
   13	
  

1	
   1	
   0	
   1	
  

0	
   1	
   0	
   1	
  

1	
   0	
   1	
   0	
  

0	
   1	
   0	
   1	
  

Same	
  
history	
  

Define	
  lof(Z)	
  to	
  be	
  sorted	
  left-­‐to-­‐right	
  
by	
  the	
  history	
  of	
  each	
  feature.	
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Left-­‐Ordered	
  Form	
  (lof)	
  

Define	
  lof(Z)	
  to	
  be	
  sorted	
  left-­‐to-­‐right	
  
by	
  the	
  history	
  of	
  each	
  feature.	
  

Define equivalence class [Z] = {Z � : lof(Z �) = lof(Z)}

Cardinality of [Z] =
K!

�2N �1
h=0 Kh!

lof

Figure 4: Binary matrices and the left-ordered form. The binary matrix on the left is trans-
formed into the left-ordered binary matrix on the right by the function lof(·). This left-ordered
matrix was generated from the exchangeable Indian buffet process with α = 10. Empty
columns are omitted from both matrices.

to define a set of equivalence classes. Any two binary matrices Y and Z are lof -equivalent if
lof(Y) = lof(Z), that is, if Y and Z map to the same left-ordered form. The lof -equivalence
class of a binary matrix Z, denoted [Z], is the set of binary matrices that are lof -equivalent
to Z. lof -equivalence classes are preserved through permutation of either the rows or the
columns of a matrix, provided the same permutations are applied to the other members of the
equivalence class. Performing inference at the level of lof -equivalence classes is appropriate
in models where feature order is not identifiable, with p(X|F) being unaffected by the order
of the columns of F. Any model in which the probability of X is specified in terms of a linear
function of F, such as PCA or CVQ, has this property.

We need to evaluate the cardinality of [Z], being the number of matrices that map to the
same left-ordered form. The columns of a binary matrix are not guaranteed to be unique:
since an object can possess multiple features, it is possible for two features to be possessed by
exactly the same set of objects. The number of matrices in [Z] is reduced if Z contains identical
columns, since some re-orderings of the columns of Z result in exactly the same matrix. Taking

this into account, the cardinality of [Z] is
(

K
K0...K2N

−1

)

= K!
Q2N

−1
h=0 Kh!

, where Kh is the count of

the number of columns with full history h.
lof -equivalence classes play the same role for binary matrices as partitions do for assign-

ment vectors: they collapse together all binary matrices (assignment vectors) that differ only
in column ordering (class labels). This relationship can be made precise by examining the lof -
equivalence classes of binary matrices constructed from assignment vectors. Define the class
matrix generated by an assignment vector c to be a binary matrix Z where zik = 1 if and only
if ci = k. It is straightforward to show that the class matrices generated by two assignment
vectors that correspond to the same partition belong to the same lof -equivalence class, and
vice versa.

4.3 Taking the infinite limit

Under the distribution defined by Equation 27, the probability of a particular lof -equivalence
class of binary matrices, [Z], is

P ([Z]) =
∑

Z∈[Z]

P (Z) (29)

=
K!

∏2N−1
h=0 Kh!

K
∏

k=1

α
K Γ(mk + α

K )Γ(N − mk + 1)

Γ(N + 1 + α
K )

. (30)

In order to take the limit of this expression as K → ∞, we will divide the columns of Z into two
subsets, corresponding to the features for which mk = 0 and the features for which mk > 0.

11

Figure	
  from	
  Griffiths	
  &	
  Ghahramani	
  (2005)	
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  Limit	
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K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3
The probability model we have defined is

πk |α ∼ Beta( αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is

P(Z) =
K

∏
k=1

∫ ( N

∏
i=1

P(zik|πk)

)

p(πk)dπk

=
K

∏
k=1

B(mk+
α
K ,N−mk+1)
B( αK ,1)

=
K

∏
k=1

α
KΓ(mk+

α
K )Γ(N−mk+1)

Γ(N+1+ α
K )

. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[

1TZ1
]

= E [∑ik zik], has an upper bound that is independent of K. Since each
column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[

1T zk
]

. This expectation is easily computed,

E
[

1T zk
]

=
N

∑
i=1

E(zik) =
N

∑
i=1

∫ 1

0
πk p(πk) dπk = N

α
K

1+ α
K
, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s .

Consequently, E
[

1TZ1
]

= KE
[

1T zk
]

= Nα
1+ α

K
. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K → ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.
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K��
p( ) =

K��

= 0
Problem:	
  Every	
  matrix	
  has	
  zero	
  probability!	
  

K��
p([ ]) =

K��

K!
�2N �1

h=0 Kh!
p( )

GRIFFITHS AND GHAHRAMANI

where we have used the fact that Γ(x) = (x− 1)Γ(x− 1) for x > 1. Substituting Equation 13 into
Equation 12 and rearranging terms, we can compute our limit

lim
K→∞

αK+

∏2N−1
h=1 Kh!

·
K!

K0!KK+
·

(

N!
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j=1( j+
α
K )
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K+

∏
k=1

(N−mk)!∏mk−1
j=1 ( j+ α
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N!
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αK+

∏2N−1
h=1 Kh!

· 1 · exp{−αHN} ·
K+

∏
k=1

(N−mk)!(mk−1)!
N!

, (14)

where HN is the Nth harmonic number, HN = ∑N
j=1

1
j . The details of the steps taken in computing

this limit are given in Appendix A. Again, this distribution is exchangeable: neither the number of
identical columns nor the column sums are affected by the ordering on objects.

4.4 The Indian Buffet Process

The probability distribution defined in Equation 14 can be derived from a simple stochastic process.
As with the CRP, this process assumes an ordering on the objects, generating the matrix sequen-
tially using this ordering. We will also use a culinary metaphor in defining our stochastic process,
appropriately adjusted for geography.4 Many Indian restaurants offer lunchtime buffets with an
apparently infinite number of dishes. We can define a distribution over infinite binary matrices by
specifying a procedure by which customers (objects) choose dishes (features).

In our Indian buffet process (IBP), N customers enter a restaurant one after another. Each cus-
tomer encounters a buffet consisting of infinitely many dishes arranged in a line. The first customer
starts at the left of the buffet and takes a serving from each dish, stopping after a Poisson(α) number
of dishes as his plate becomes overburdened. The ith customer moves along the buffet, sampling
dishes in proportion to their popularity, serving himself with probability mk

i , where mk is the number
of previous customers who have sampled a dish. Having reached the end of all previous sampled
dishes, the ith customer then tries a Poisson(αi ) number of new dishes.

We can indicate which customers chose which dishes using a binary matrix Z with N rows and
infinitely many columns, where zik = 1 if the ith customer sampled the kth dish. Figure 6 shows
a matrix generated using the IBP with α = 10. The first customer tried 17 dishes. The second
customer tried 7 of those dishes, and then tried 3 new dishes. The third customer tried 3 dishes tried
by both previous customers, 5 dishes tried by only the first customer, and 2 new dishes. Vertically
concatenating the choices of the customers produces the binary matrix shown in the figure.

Using K(i)
1 to indicate the number of new dishes sampled by the ith customer, the probability of

any particular matrix being produced by this process is

P(Z) =
αK+

∏N
i=1K

(i)
1 !

exp{−αHN}
K+

∏
k=1

(N−mk)!(mk−1)!
N!

. (15)

As can be seen from Figure 6, the matrices produced by this process are generally not in left-ordered
form. However, these matrices are also not ordered arbitrarily because the Poisson draws always
result in choices of new dishes that are to the right of the previously sampled dishes. Customers
are not exchangeable under this distribution, as the number of dishes counted as K(i)

1 depends upon

4. This work was started when both authors were at the Gatsby Computational Neuroscience Unit in London, where the
Indian buffet is the dominant culinary metaphor.
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Figure 6: A binary matrix generated by the Indian buffet process with α= 10.

the order in which the customers make their choices. However, if we only pay attention to the
lo f -equivalence classes of the matrices generated by this process, we obtain the exchangeable dis-
tribution P([Z]) given by Equation 14: ∏N

i=1K
(i)
1 !

∏2
N−1
h=1 Kh!

matrices generated via this process map to the same

left-ordered form, and P([Z]) is obtained by multiplying P(Z) from Equation 15 by this quantity.
It is possible to define a similar sequential process that directly produces a distribution on lo f

equivalence classes in which customers are exchangeable, but this requires more effort on the part
of the customers. In the exchangeable Indian buffet process, the first customer samples a Poisson(α)
number of dishes, moving from left to right. The ith customer moves along the buffet, and makes
a single decision for each set of dishes with the same history. If there are Kh dishes with history h,
under which mh previous customers have sampled each of those dishes, then the customer samples a
Binomial(mhi ,Kh) number of those dishes, starting at the left. Having reached the end of all previous
sampled dishes, the ith customer then tries a Poisson(αi ) number of new dishes. Attending to the
history of the dishes and always sampling from the left guarantees that the resulting matrix is in
left-ordered form, and it is easy to show that the matrices produced by this process have the same
probability as the corresponding lo f -equivalence classes under Equation 14.

4.5 A Distribution over Collections of Histories

In Section 4.2, we noted that lo f -equivalence classes of binary matrices generated from assignment
vectors correspond to partitions. Likewise, lo f -equivalence classes of general binary matrices cor-
respond to simple combinatorial structures: vectors of non-negative integers. Fixing some ordering
of N objects, a collection of feature histories on those objects can be represented by a frequency
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customers must also choose a Poisson(α) number of dishes, since we can always specify an
ordering on customers which begins with a particular customer.

Finally, it is possible to show that Z remains sparse as K → ∞. The simplest way to do
this is to exploit the previous result: if the number of features possessed by each object follows
a Poisson(α) distribution, then the expected number of entries in Z is Nα. This is consistent
with the quantity obtained by taking the limit of this expectation in the finite model, which
is given in Equation 28: limK→∞ E

[

1TZ1
]

= limK→∞
Nα

1+ α
K

= Nα. More generally, we can

use the property of sums of Poisson random variables described above to show that 1TZ1 will
follow a Poisson(Nα) distribution. Consequently, the probability of values higher than the
mean decreases exponentially.

4.7 Inference by Gibbs sampling

We have defined a distribution over infinite binary matrices that satisfies one of our desider-
ata – objects (the rows of the matrix) are exchangeable under this distribution. It remains
to be shown that inference in infinite latent feature models is tractable, as was the case for
infinite mixture models. We will derive a Gibbs sampler for latent feature models in which
the exchangeable IBP is used as a prior. The critical quantity needed to define the sampling
algorithm is the full conditional distribution

P (zik = 1|Z−(ik),X) ∝ p(X|Z)P (zik = 1|Z−(ik)), (39)

where Z−(ik) denotes the entries of Z other than zik, and we are leaving aside the issue of the
feature values V for the moment. The prior on Z contributes to this probability by specifying
P (zik = 1|Z−(ik)).

In the finite model, where P (Z) is given by Equation 27, it is straightforward to compute
the full conditional distribution for any zik. Integrating over πk gives

P (zik = 1|z−i,k) =

∫ 1

0
P (zik|πk)p(πk|z−i,k) dπk

=
m−i,k + α

K

N + α
K

, (40)

where z−i,k is the set of assignments of other objects, not including i, for feature k, and m−i,k

is the number of objects possessing feature k, not including i. We need only condition on z−i,k

rather than Z−(ik) because the columns of the matrix are generated independently under this
prior.

In the infinite case, we can derive the conditional distribution from the exchangeable IBP.
Choosing an ordering on objects such that the ith object corresponds to the last customer to
visit the buffet, we obtain

P (zik = 1|z−i,k) =
m−i,k

N
, (41)

for any k such that m−i,k > 0. The same result can be obtained by taking the limit of Equation
40 as K → ∞. Similarly the number of new features associated with object i should be drawn
from a Poisson( α

N ) distribution. This can also be derived from Equation 40, using the same
kind of limiting argument as that presented above to obtain the terms of the Poisson.

5 A latent feature model with binary features

We have derived a prior for infinite sparse binary matrices, and indicated how statistical in-
ference can be done in models defined using this prior. In this section, we will show how this
prior can be put to use in models for unsupervised learning, illustrating some of the issues
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Figure 1: Stick-breaking construction for the DP and IBP.

The black stick at top has length 1. At each iteration the

vertical black line represents the break point. The brown

dotted stick on the right is the weight obtained for the DP,

while the blue stick on the left is the weight obtained for

the IBP.

where d  [0, 1) and  > ⇥ d. The Pitman-Yor IBP

weights decrease in expectation as a O (k ⇥ 1
d ) power-law,

and this may be a better fit for some naturally occurring

data which have a larger number of features with signifi-

cant but small weights [4].

An example technique for the DP which we could adapt to

the IBP is to truncate the stick-breaking construction after a

certain number of break points and to perform inference in

the reduced space. [7] gave a bound for the error introduced

by the truncation in the DP case which can be used here as

well. Let K  be the truncation level. We set µ ( k ) = 0 for
each k > K  , while the joint density of µ ( 1: K  ) is,

p(µ ( 1: K  ) ) =
K   

k = 1

p(µ ( k ) |µ ( k ⇥ 1 ) ) (19)

=  K  
µ  

( K  )

K   

k = 1

µ ⇥ 1
( k ) I(0 ⇤ µ ( K  ) ⇤ · · · ⇤ µ ( 1 ) ⇤ 1)

The conditional distribution of Z given µ ( 1: K  ) is simply
1

p( Z |µ ( 1: K  ) ) =
N 

i = 1

K   

k = 1

µ z i k
( k ) (1 ⇥ µ ( k ) )1 ⇥ z i k (20)

with z i k = 0 for k > K  . Gibbs sampling in this represen-

tation is straightforward, the only point to note being that

adaptive rejection sampling (ARS) [3] should be used to

sample each µ ( k ) given other variables (see next section).

4 SLICE SAMPLER

Gibbs sampling in the truncated stick-breaking construc-

tion is simple to implement, however the predetermined

truncation level seems to be an arbitrary and unneces-

sary approximation. In this section, we propose a non-

approximate scheme based on slice sampling, which can be

1Note that we are making a slight abuse of notation by using
Z both to denote the original IBP matrix with arbitrarily ordered
columns, and the equivalent matrix with the columns reordered to
decreasing µ’s. Similarly for the feature parameters  ’s.

seen as adaptively choosing the truncation level at each it-

eration. Slice sampling is an auxiliary variable method that

samples from a distribution by sampling uniformly from

the region under its density function [12]. This turns the

problem of sampling from an arbitrary distribution to sam-

pling from uniform distributions. Slice sampling has been

successfully applied to DP mixture models [8], and our ap-

plication to the IBP follows a similar thread.

In detail, we introduce an auxiliary slice variable,

s| Z , µ ( 1: ⇤ )  U niform[0, µ  ] (21)

where µ  is a function of µ ( 1: ⇤ ) and Z , and is chosen to be
the length of the stick for the last active feature,

µ  = min
 

1, min
k :  i , z i k = 1

µ ( k )

 
. (22)

The joint distribution of Z and the auxiliary variable s is

p(s, µ ( 1: ⇤ ) , Z ) = p( Z , µ ( 1: ⇤ ) ) p(s| Z , µ ( 1: ⇤ ) ) (23)

where p(s| Z , µ ( 1: ⇤ ) ) = 1
µ  I(0 ⇤ s ⇤ µ  ). Clearly, integrat-

ing out s preserves the original distribution over µ ( 1: ⇤ ) and

Z , while conditioned on Z and µ ( 1: ⇤ ) , s is simply drawn
from (21). Given s, the distribution of Z becomes:

p( Z |x , s, µ ( 1: ⇤ ) )  p( Z |x , µ ( 1: ⇤ ) ) 1
µ  I(0 ⇤ s ⇤ µ  ) (24)

which forces all columns k of Z for which µ ( k ) < s to be
zero. Let K  be the maximal feature index with µ ( K  ) > s.
Thus z i k = 0 for all k > K  , and we need only consider

updating those features k ⇤ K  . Notice that K  serves

as a truncation level insofar as it limits the computational

costs to a finite amount without approximation.

Let K † be an index such that all active features have in-

dex k < K † (note that K † itself would be an inactive fea-

ture). The computational representation for the slice sam-

pler consists of the slice variables and the first K † features:

 s, K  , K † , Z 1: N , 1: K † , µ ( 1: K † ) ,  1: K †  . The slice sampler
proceeds by updating all variables in turn.

Update s. The slice variable is drawn from (21). If the new
value of s makes K  ⌅ K † (equivalently, s < µ ( K † )), then

we need to pad our representation with inactive features

until K  < K †. In the appendix we show that the stick

lengths µ ( k ) for new features k can be drawn iteratively
from the following distribution:

p(µ ( k ) |µ ( k ⇥ 1 ) , z : , > k = 0)  exp(  
 N

i = 1
1
i (1 ⇥ µ ( k ) ) i )

µ  ⇥ 1
( k ) (1 ⇥ µ ( k ) ) N I(0 ⇤ µ ( k ) ⇤ µ ( k ⇥ 1 ) ) (25)

We used ARS to draw samples from (25) since it is log-

concave in log µ ( k ) . The columns for these new features

are initialized to z : , k = 0 and their parameters drawn from
their prior  k  H .

Shown in (Gri�ths and Ghahramani, 2005):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(↵)

• The expected total number of ones is ↵N .

• The number of nonzero columns grows as O(↵ log N).

Additional properties:

• Has a stick-breaking representation (Teh, Görür, Ghahramani, 2007)

• Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)
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Posterior Inference in IBPs
P (Z,↵|X) / P (X|Z)P (Z|↵)P (↵)

Gibbs sampling: P (znk = 1|Z�(nk)

,X,↵) / P (znk = 1|Z�(nk)

,↵)P (X|Z)

• If m�n,k > 0, P (znk = 1|z�n,k) =

m�n,k

N
• For infinitely many k such that m�n,k = 0: Metropolis steps with truncation⇤ to

sample from the number of new features for each object.
• If ↵ has a Gamma prior then the posterior is also Gamma ! Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Non-conjugate sampler: P (X|Z) =

R
P (X|Z, ✓)P (✓)d✓ cannot be computed,

requires sampling latent ✓ as well (c.f. (Neal 2000) non-conjugate DPM samplers).

⇤Slice sampler: non-conjugate case, is not approximate, and has an adaptive
truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood & Gri�ths, 2007).

Accelerated Gibbs Sampling: maintaining a probability distribution over some of
the variables (Doshi-Velez & Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, & Teh, 2009).
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Modelling Data

Latent variable model: let X be the N ⇥D matrix of observed data, and Z be the
N ⇥K matrix of binary latent features

P (X,Z|↵) = P (X|Z)P (Z|↵)

By combining the IBP with di↵erent likelihood functions we can get di↵erent kinds
of models:

• Models for graph structures (w/ Wood, Gri�ths, 2006)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for overlapping clusters (w/ Heller, 2007)

• Models for choice behaviour (Görür, Jäkel & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)

• Sparse latent factor models (w/ Knowles, 2007)
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Summary	
  

•  Beta-­‐Bernoulli	
  model	
  is	
  a	
  simple	
  finite	
  
feature	
  model	
  

•  Can	
  treat	
  features	
  as	
  latent	
  
•  Infinite	
  limit	
  of	
  Beta-­‐Bernoulli	
  yields	
  the	
  
Indian	
  Buffet	
  Process	
  (IBP)	
  

•  Many	
  properties	
  of	
  the	
  IBP	
  are	
  similar	
  to	
  the	
  
CRP	
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