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1.	
  Data	
   2.	
  Model	
  
	
  
	
  

4.	
  Learning	
  5.	
  Inference	
  

3.	
  Objective	
  
	
   `(✓;D) =

NX

n=1

log p(x(n) | ✓)

p(x | ✓) = 1

Z(✓)

Y

C2C
 C(xC)

✓⇤
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  2:	
  

time like flies an arrow 
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  3:	
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1.	
  Marginal	
  Inference	
  	
  

2.	
  Partition	
  Function	
  	
  

ˆ

x = argmax

x

p(x | ✓)
3.	
  MAP	
  Inference	
  	
  



It’s	
  Pi	
  Day	
  2016…	
  
	
  
	
  

…so	
  let’s	
  compute	
  π.	
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Properties of Monte Carlo

Estimator:

∫
f(x)P (x) dx ≈ f̂ ≡ 1

S

S∑

s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1

S

S∑

s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1

S2

S∑

s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√

S

Slide from Ian Murray 
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A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418

Slide from Ian Murray 
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Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.
(NB Matlab’s quadl fails at zero tolerance)

Other lecturers are covering alternatives for higher dimensions.
No approx. integration method always works. Sometimes Monte Carlo is the best.

Slide from Ian Murray 
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Sampling from distributions

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]

Slide from Ian Murray 



9	
  

Sampling from distributions
How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y′) dy′

Draw mass to left of point:
u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)

Slide from Ian Murray 
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Rejection sampling

Sampling underneath a P̃ (x)∝P (x) curve is also valid

koptQ̃(x)

P̃ (x)

kQ̃(x)

xx(1)

(xj , uj)

(xi, ui)

Draw underneath a simple
curve kQ̃(x) ≥ P̃ (x):

– Draw x ∼ Q(x)
– height u ∼ Uniform[0, kQ̃(x)]

Discard the point if above P̃ ,
i.e. if u > P̃ (x)

Slide from Ian Murray 
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Importance sampling

Computing P̃ (x) and Q̃(x), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under Q:

∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1

S

S∑

s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution.

Slide from Ian Murray 
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Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P̃ (x)/ZP

∫
f(x)P (x) dx ≈ ZQ

ZP

1

S

S∑

s=1

f(x(s))
P̃ (x(s))

Q̃(x(s))︸ ︷︷ ︸
r̃(s)

, x(s) ∼ Q(x)

≈
✄
✄
✄
✄
✄✄1

S

S∑

s=1

f(x(s))
r̃(s)

✁
✁
✁✁1

S

∑
s′ r̃

(s′)
≡

S∑

s=1

f(x(s))w(s)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
s r̃(s)

Slide from Ian Murray 
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Summary so far

• Sums and integrals, often expectations, occur frequently in statistics

• Monte Carlo approximates expectations with a sample average

• Rejection sampling draws samples from complex distributions

• Importance sampling applies Monte Carlo to ‘any’ sum/integral

Slide from Ian Murray 



Application to large problems

Rejection & importance sampling scale badly with dimensionality

Example:
P (x) = N (0, I), Q(x) = N (0, σ2

I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Variance of importance weights =
(

σ2

2−1/σ2

)D/2
− 1

Infinite / undefined variance if σ ≤ 1/
√

2

Pitfalls	
  of	
  Monte	
  Carlo	
  

14	
  

Slide from Ian Murray 



Outline	
  
•  Review:	
  Monte	
  Carlo	
  
•  MCMC	
  (Basic	
  Methods)	
  

–  Metropolis	
  algorithm	
  
–  Metropolis-­‐Hastings	
  (M-­‐H)	
  algorithm	
  
–  Gibbs	
  Sampling	
  

•  Markov	
  Chains	
  
–  Transition	
  probabilities	
  
–  Invariant	
  distribution	
  
–  Equilibrium	
  distribution	
  
–  Markov	
  chain	
  as	
  a	
  WFSM	
  
–  Constructing	
  Markov	
  chains	
  
–  Why	
  does	
  M-­‐H	
  work?	
  

•  MCMC	
  (Auxiliary	
  Variable	
  Methods)	
  
–  Slice	
  Sampling	
  
–  Hamiltonian	
  Monte	
  Carlo	
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MCMC	
  (BASIC	
  METHODS)	
  
Metropolis,	
  Metropolis-­‐Hastings,	
  Gibbs	
  Sampling	
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MCMC	
  

•  Goal:	
  Draw	
  approximate,	
  correlated	
  samples	
  
from	
  a	
  target	
  distribution	
  p(x)	
  

•  MCMC:	
  Performs	
  a	
  biased	
  random	
  walk	
  to	
  
explore	
  the	
  distribution	
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Simulations	
  of	
  MCMC	
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Visualization	
  of	
  Metroplis-­‐Hastings,	
  Gibbs	
  
Sampling,	
  and	
  Hamiltonian	
  MCMC:	
  
	
  	
  
http://twiecki.github.io/blog/2014/01/02/visualizing-­‐mcmc/	
  	
  



Whiteboard	
  

•  Metropolis	
  Algorithm	
  
•  Metropolis-­‐Hastings	
  Algorithm	
  
•  Gibbs	
  Sampling	
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Gibbs	
  Sampling	
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370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x

(t)
x

(t+1)



Gibbs	
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

p(x2|x(t+1)
1 )

x

(t)
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j ̸=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x

(t+1)

x

(t+2)

x

(t)

x

(t+3)

x

(t+4)
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conditionals	
  
only	
  need	
  to	
  
condition	
  on	
  
the	
  Markov	
  
Blanket	
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1.3. GIBBS SAMPLING 25

drawn from conditional distributions . In the case of graphical models, the conditional
distributions for individual nodes depend only on the variables in the corresponding Markov blan-
kets, as illustrated in Figure ??. For directed graphs, a very broad choice of conditional distribu-

(a) (b)

Figure 1.15: The Gibbs sampling requires samples to be drawn from the conditional distribution of
a variable conditioned on the remaining variables. For graphical models, this conditional distribu-
tion is a function only of the states of the nodes in the Markov blanket. In the case of an undirected
graph (a) this comprises the set of neighbours while for a directed graph (b) the Markov blanket
comprises the parents, the children and the co-parents.

tions for the individual nodes conditioned on their parents will lead to conditional distributions
for Gibbs sampling which are log concave. The adaptive rejection sampling methods discussed
in Section ?? therefore provide a framework for Monte Carlo sampling from directed graphs with
broad applicability.

As with the Metropolis algorithm, we can gain some insight into the behaviour of Gibbs sam-
pling by investigating its application to a Gaussian distribution. Consider a correlated Gaussian in
two variables, as illustrated in Figure ??, having a conditional distribution of width and a marginal
distribution of width . The typical step size is governed by the conditional distributions and will
be of order . Since the state evolves according to a random walk, the number of steps needed to ob-
tain independent samples from the distribution will be of order . Of course if the Gaussian
distribution were uncorrelated then the Gibbs sampling procedure would be optimally efficient.
For this simple problem we could rotate the coordinate system in order to decorrelate the variable,
however, in practical applications it will generally be infeasible to find such transformations.

One approach to reducing random walk behaviour in Gibbs sampling is called over-relaxation.
In its original form this applies to problems for which the conditional distributions are Gaussian.
This represents a more general class of distributions than the multi-variate Gaussian, since for ex-
ample the non-Gaussian distribution has Gaussian conditional distributions.
At each step of the Gibbs sampling algorithm the conditional distribution for a particular compo-
nent has some mean and some variance . In the over-relaxation framework the value of
is replaced with

(1.55)

where is a Gaussian random variate with zero mean and unit variance, and is a parameter such
that . For the method is equivalent to standard Gibbs sampling. When is
negative the step is biased to the opposite side of the mean. It is easily seen that this step leaves the
desired distribution invariant since if has mean and variance , then so too does . Also it
is clear that if the original Gibbs sampling is ergodic, then the over-relaxed version will be ergodic

Figure from Jordan Ch. 21 

1.3. GIBBS SAMPLING 25

drawn from conditional distributions . In the case of graphical models, the conditional
distributions for individual nodes depend only on the variables in the corresponding Markov blan-
kets, as illustrated in Figure ??. For directed graphs, a very broad choice of conditional distribu-

(a) (b)

Figure 1.15: The Gibbs sampling requires samples to be drawn from the conditional distribution of
a variable conditioned on the remaining variables. For graphical models, this conditional distribu-
tion is a function only of the states of the nodes in the Markov blanket. In the case of an undirected
graph (a) this comprises the set of neighbours while for a directed graph (b) the Markov blanket
comprises the parents, the children and the co-parents.

tions for the individual nodes conditioned on their parents will lead to conditional distributions
for Gibbs sampling which are log concave. The adaptive rejection sampling methods discussed
in Section ?? therefore provide a framework for Monte Carlo sampling from directed graphs with
broad applicability.

As with the Metropolis algorithm, we can gain some insight into the behaviour of Gibbs sam-
pling by investigating its application to a Gaussian distribution. Consider a correlated Gaussian in
two variables, as illustrated in Figure ??, having a conditional distribution of width and a marginal
distribution of width . The typical step size is governed by the conditional distributions and will
be of order . Since the state evolves according to a random walk, the number of steps needed to ob-
tain independent samples from the distribution will be of order . Of course if the Gaussian
distribution were uncorrelated then the Gibbs sampling procedure would be optimally efficient.
For this simple problem we could rotate the coordinate system in order to decorrelate the variable,
however, in practical applications it will generally be infeasible to find such transformations.

One approach to reducing random walk behaviour in Gibbs sampling is called over-relaxation.
In its original form this applies to problems for which the conditional distributions are Gaussian.
This represents a more general class of distributions than the multi-variate Gaussian, since for ex-
ample the non-Gaussian distribution has Gaussian conditional distributions.
At each step of the Gibbs sampling algorithm the conditional distribution for a particular compo-
nent has some mean and some variance . In the over-relaxation framework the value of
is replaced with

(1.55)

where is a Gaussian random variate with zero mean and unit variance, and is a parameter such
that . For the method is equivalent to standard Gibbs sampling. When is
negative the step is biased to the opposite side of the mean. It is easily seen that this step leaves the
desired distribution invariant since if has mean and variance , then so too does . Also it
is clear that if the original Gibbs sampling is ergodic, then the over-relaxed version will be ergodic

MRF	
   Bayes	
  Net	
  

•  Must	
  be	
  “easy”	
  to	
  sample	
  from	
  
conditionals	
  

•  Many	
  conditionals	
  are	
  log-­‐concave	
  
and	
  are	
  amenable	
  to	
  adaptive	
  
rejection	
  sampling	
  



Whiteboard	
  

•  Gibbs	
  Sampling	
  as	
  M-­‐H	
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Random	
  Walk	
  Behavior	
  of	
  M-­‐H	
  
•  For	
  Metropolis-­‐Hastings,	
  a	
  generic	
  proposal	
  
distribution	
  is:	
  

•  If	
  ϵ	
  is	
  large,	
  many	
  rejections	
  
•  If	
  ϵ	
  is	
  small,	
  slow	
  mixing	
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�
max

�
min

⇢✏

p(x)

q(x|x(t))

Figure from Bishop (2006) 

q(x|x(t)) = N (0, ✏2)



Random	
  Walk	
  Behavior	
  of	
  M-­‐H	
  
•  For	
  Rejection	
  Sampling,	
  the	
  accepted	
  samples	
  
are	
  are	
  independent	
  

•  But	
  for	
  Metropolis-­‐Hastings,	
  the	
  samples	
  are	
  
correlated	
  

•  Question:	
  How	
  long	
  must	
  we	
  wait	
  to	
  get	
  
effectively	
  independent	
  samples?	
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�
max

�
min

⇢✏

p(x)

q(x|x(t))

A:	
  independent	
  
states	
  in	
  the	
  M-­‐H	
  
random	
  walk	
  are	
  
separated	
  	
  by	
  
roughly	
  
steps	
  	
  

(�
max

/�
min

)2

Figure from Bishop (2006) 



MARKOV	
  CHAINS	
  
Definitions	
  and	
  Theoretical	
  Justification	
  for	
  MCMC	
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Whiteboard	
  

•  Markov	
  chains	
  
•  Transition	
  probabilities	
  
•  Invariant	
  distribution	
  
•  Equilibrium	
  distribution	
  
•  Sufficient	
  conditions	
  for	
  MCMC	
  
•  Markov	
  chain	
  as	
  a	
  WFSM	
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Detailed	
  Balance	
  

Detailed	
  balance	
  means	
  that,	
  for	
  each	
  pair	
  of	
  
states	
  x	
  and	
  x’,	
  
arriving	
  at	
  x	
  then	
  x’	
  and	
  arriving	
  at	
  x’	
  then	
  x	
  

	
  are	
  equiprobable.	
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S(x0  x)p(x) = S(x x

0)p(x0)



Whiteboard	
  

•  Simple	
  Markov	
  chain	
  example	
  
•  Constructing	
  Markov	
  chains	
  
•  Transition	
  Probabilities	
  for	
  MCMC	
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Practical	
  Issues	
  
•  Question:	
  Is	
  it	
  better	
  to	
  move	
  along	
  one	
  dimension	
  

or	
  many?	
  

•  Answer:	
  For	
  Metropolis-­‐Hasings,	
  it	
  is	
  sometimes	
  
better	
  to	
  sample	
  one	
  dimension	
  at	
  a	
  time	
  
–  Q:	
  Given	
  a	
  sequence	
  of	
  1D	
  proposals,	
  compare	
  rate	
  of	
  

movement	
  for	
  one-­‐at-­‐a-­‐time	
  vs.	
  concatenation.	
  

•  Answer:	
  For	
  Gibbs	
  Sampling,	
  sometimes	
  better	
  to	
  
sample	
  a	
  block	
  of	
  variables	
  at	
  a	
  time	
  
–  Q:	
  When	
  is	
  it	
  tractable	
  to	
  sample	
  a	
  block	
  of	
  variables?	
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Practical	
  Issues	
  
•  Question:	
  How	
  do	
  we	
  assess	
  convergence	
  of	
  
the	
  Markov	
  chain?	
  

•  Answer:	
  It’s	
  not	
  easy!	
  
–  Compare	
  statistics	
  of	
  multiple	
  independent	
  chains	
  
–  Ex:	
  Compare	
  log-­‐likelihoods	
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Practical	
  Issues	
  
•  Question:	
  Is	
  one	
  long	
  Markov	
  chain	
  better	
  than	
  many	
  

short	
  ones?	
  
•  Note:	
  typical	
  to	
  discard	
  initial	
  samples	
  (aka.	
  “burn-­‐

in”)	
  since	
  the	
  chain	
  might	
  not	
  yet	
  have	
  mixed	
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•  Answer:	
  Often	
  a	
  balance	
  is	
  
best:	
  
–  Compared	
  to	
  one	
  long	
  chain:	
  

More	
  independent	
  samples	
  	
  
–  Compared	
  to	
  many	
  small	
  

chains:	
  Less	
  samples	
  
discarded	
  for	
  burn-­‐in	
  	
  

–  We	
  can	
  still	
  parallelize	
  
–  Allows	
  us	
  to	
  assess	
  mixing	
  

by	
  comparing	
  chains	
  



Whiteboard	
  

•  Blocked	
  Gibbs	
  Sampling	
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MCMC	
  (AUXILIARY	
  VARIABLE	
  
METHODS)	
  

Slice	
  Sampling,	
  Hamiltonian	
  Monte	
  Carlo	
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Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:
∫

f(x)P (x) dx =

∫
f(x)P (x, v) dxdv

≈ 1

S

S∑

s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate

Slide from Ian Murray 



Slice	
  Sampling	
  
•  Motivation:	
  

– Want	
  samples	
  from	
  p(x)	
  and	
  don’t	
  know	
  the	
  
normalizer	
  Z	
  

–  Choosing	
  a	
  proposal	
  at	
  the	
  correct	
  scale	
  is	
  difficult	
  
•  Properties:	
  

–  Similar	
  to	
  Gibbs	
  Sampling:	
  one-­‐dimensional	
  
transitions	
  in	
  the	
  state	
  space	
  

–  Similar	
  to	
  Rejection	
  Sampling:	
  (asymptotically)	
  draws	
  
samples	
  from	
  the	
  region	
  under	
  the	
  curve	
  
	
  
	
  

– An	
  MCMC	
  method	
  with	
  an	
  adaptive	
  proposal	
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Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝
{

1 P̃ (x) ≥ u

0 otherwise
= “Uniform on the slice”

Slide from Ian Murray 

This	
  is	
  just	
  an	
  
auxiliary-­‐variable	
  
Gibbs	
  Sampler!	
  

Problem:	
  Sampling	
  
from	
  the	
  conditional	
  

p(x | u) might	
  be	
  
infeasible.	
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Figure 29.16. Slice sampling. Each
panel is labelled by the steps of
the algorithm that are executed in
it. At step 1, P ∗(x) is evaluated
at the current point x. At step 2,
a vertical coordinate is selected
giving the point (x, u′) shown by
the box; At steps 3a-c, an
interval of size w containing
(x, u′) is created at random. At
step 3d, P ∗ is evaluated at the left
end of the interval and is found to
be larger than u′, so a step to the
left of size w is made. At step 3e,
P ∗ is evaluated at the right end of
the interval and is found to be
smaller than u′, so no stepping
out to the right is needed. When
step 3d is repeated, P ∗ is found to
be smaller than u′, so the
stepping out halts. At step 5 a
point is drawn from the interval,
shown by a ◦. Step 6 establishes
that this point is above P ∗ and
step 8 shrinks the interval to the
rejected point in such a way that
the original point x is still in the
interval. When step 5 is repeated,
the new coordinate x′ (which is to
the right-hand side of the
interval) gives a value of P ∗

greater than u′, so this point x′ is
the outcome at step 7.

Figure adapted from MacKay Ch. 29 
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:	
  

Goal: sample (x, u) given (u(t)
, x

(t)).

u ⇠ Uniform(0, p(x(t))

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x

(t).

r ⇠ Uniform(u,w)

(xl, xr) = (x(t) � r, x

(t) + w � r)

Expand until endpoints are ”outside” region under curve.

while(p̃(xl) > u){xl = xl � w}
while(p̃(xr) > u){xr = xr + w}

Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x

(t)){xr = x}
else{xl = x}

}
x

(t+1) = x, u

(t+1) = u
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Goal: sample (x, u) given (u(t)
, x

(t)).
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Part 2: Sample x (Shrinking)

while(true) {
Draw x from within the interval (xl, xr), then accept or shrink.

x ⇠ Uniform(xl, xr)

if(p̃(x) > u){break}
else if(x > x

(t)){xr = x}
else{xl = x}

}
x

(t+1) = x, u

(t+1) = u
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Goal: sample (x, u) given (u(t)
, x

(t)).

u ⇠ Uniform(0, p(x(t))

Part 1: Stepping Out

Sample interval (xl, xr) enclosing x
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Multivariate	
  Distributions	
  
– Resample	
  each	
  variable	
  xi	
  one-­‐at-­‐a-­‐time	
  (just	
  like	
  
Gibbs	
  Sampling)	
  

– Does	
  not	
  require	
  sampling	
  from	
  	
  

– Only	
  need	
  to	
  evaluate	
  a	
  quantity	
  proportional	
  to	
  
the	
  conditional	
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p(xi|{xj}j 6=i)

p(xi|{xj}j 6=i) / p̃(xi|{xj}j 6=i)



Hamiltonian	
  Monte	
  Carlo	
  

•  Suppose	
  we	
  have	
  a	
  distribution	
  of	
  the	
  form:	
  

•  We	
  could	
  use	
  random-­‐walk	
  M-­‐H	
  to	
  draw	
  
samples,	
  but	
  it	
  seems	
  a	
  shame	
  to	
  discard	
  
gradient	
  information	
  

•  If	
  we	
  can	
  evaluate	
  it,	
  the	
  gradient	
  tells	
  us	
  
where	
  to	
  look	
  for	
  high-­‐probability	
  regions!	
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p(x) = exp{�E(x)}/Z

r
x

E(x)

x 2 RN

p 2 RN

where	
  



Background:	
  Hamiltonian	
  Dyanmics	
  
Applications:	
  

–  Following	
  the	
  motion	
  of	
  atoms	
  in	
  a	
  fluid	
  through	
  
time	
  

–  Integrating	
  the	
  motion	
  of	
  a	
  solar	
  system	
  over	
  time	
  
–  Considering	
  the	
  evolution	
  of	
  a	
  galaxy	
  (i.e.	
  the	
  
motion	
  of	
  its	
  stars)	
  

–  “molecular	
  dynamics”	
  
–  “N-­‐body	
  simulations”	
  

Properties:	
  
–  Total	
  energy	
  of	
  the	
  system	
  H(x,p)	
  stays	
  constant	
  
– Dynamics	
  are	
  reversible	
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Important	
  for	
  
detailed	
  balance	
  



Background:	
  Hamiltonian	
  Dyanmics	
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Let	
  
x 2 RN

p 2 RN

E(x)

K(p) = p

T
p/2

H(x,p) = E(x) +K(p)

be	
  a	
  position	
  

be	
  a	
  momentum	
  

Potential	
  energy:	
  

Kinetic	
  energy:	
  

Total	
  energy:	
  

Hamiltonian	
  function	
  

Given	
  a	
  starting	
  position	
  x(1)	
  and	
  a	
  starting	
  momentum	
  p(1)	
  we	
  
can	
  simulate	
  the	
  Hamiltonian	
  dynamics	
  of	
  the	
  system	
  via:	
  

1.  Euler’s	
  method	
  
2.  Leapfrog	
  method	
  
3.  etc.	
  



Background:	
  Hamiltonian	
  Dyanmics	
  
Parameters	
  to	
  tune:	
  

1.  Step	
  size,	
  ϵ	
  
2.  Number	
  of	
  iterations,	
  L 

	
  
Leapfrog	
  Algorithm:	
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for ⌧ in 1 . . . L:

p = p� ✏

2

r
x

E(x)

x = x+ ✏p

p = p� ✏

2

r
x

E(x)
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  Hamiltonian	
  Dyanmics	
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at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.

(a)
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Euler’s method, stepsize 0.3
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(b) Modified Euler’s method, stepsize 0.3
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(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Figure from Neal (2011)  



Since	
  p(x,p)	
  is	
  
separable…	
  

Hamiltonian	
  Monte	
  Carlo	
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Figure from Neal (2011)  

p(x) = exp{�E(x)}/Z x 2 RN

p 2 RN

where	
  

E(x)

K(p) = p

T
p/2

H(x,p) = E(x) +K(p)

Goal:	
  

Define:	
  

Note:	
  

p(x,p) = exp{�H(x,p)}/ZH

= exp{�E(x} exp{�K(p)}/ZH

)
X

p

p(x,p) = exp{�E(x}/Z

)
X

x

p(x,p) = exp{�K(x}/ZK

Target	
  dist.	
  

Gaussian	
  

Preliminaries	
  



Whiteboard	
  

•  Hamiltonian	
  Monte	
  Carlo	
  algorithm	
  
(aka.	
  Hybrid	
  Monte	
  Carlo)	
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FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50, −1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on this Hamiltonian, such as might be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.

Notice that this trajectory does not resemble a random walk. Instead, starting from the
lower left-hand corner, the position variables systematically move upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur, moving back and forth across the “valley” created by the high correlation
between the variables.

The need to keep these smaller oscillations under control limits the stepsize that can
be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.

Figure from Neal (2011)  



M-­‐H	
  vs.	
  HMC	
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Random−walk Metropolis
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FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMC used a kinetic energy (defining the momen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.

Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,
with a bivariate Gaussian proposal distribution with the current state as mean, zero correla-
tion, and the same standard deviation for the two coordinates. The standard deviation of the
proposals for this example was 0.18, which is the same as the stepsize used for HMC propos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.
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Hamiltonian Monte Carlo
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FIGURE 5.5
Two hundred iterations, starting with the 20 iterations shown above, with only the first position coordinate plotted.

Figure from Neal (2011)  
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Visualization	
  of	
  Metroplis-­‐Hastings,	
  Gibbs	
  
Sampling,	
  and	
  Hamiltonian	
  MCMC:	
  
	
  	
  
http://twiecki.github.io/blog/2014/01/02/visualizing-­‐mcmc/	
  	
  



MCMC	
  Summary	
  

•  Pros	
  
– Very	
  general	
  purpose	
  
– Often	
  easy	
  to	
  implement	
  
– Good	
  theoretical	
  guarantees	
  as	
  	
  

•  Cons	
  
– Lots	
  of	
  tunable	
  parameters	
  /	
  design	
  choices	
  
– Can	
  be	
  quite	
  slow	
  to	
  converge	
  
– Difficult	
  to	
  tell	
  whether	
  it's	
  working	
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