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Housekeeping

* Homework 2
— Due March 16, 12:00 noon (extended)

* Midway Project Report
— Due March 23, 12:00 noon






It’s Pi Day 2016...

...S0 let’s compute .



Slide from lan Murray

Properties of Monte Carlo

S
Estimator: /f(x)P(:U) de ~ f = ! Zf(x(s)), %) ~ P(x)

Estimator is unbiased:

s
Ep ) [f] = %ZEP(:B) f(2)] = Ep@)lf(z)]

Variance shrinks o« 1/5:
S
A 1
varp oy | | = D varp (@) = varpe) [f(2)] /S
s=1

“Error bars” shrink like v/S



Slide from lan Murray

A dumb approximation of

1 O<z<l and O<y<l1
P@w%={

0 otherwise

w=4//Hmﬁ+y%<1ﬂ%uwdx@/

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=l1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418



Slide from lan Murray

Aside: don’t always sample!

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast
octave:1> 4 * quadl(@(x) sqrt(1-x."2), 0, 1, tolerance)

Gives 7 to 6 dp’s in 108 evaluations, machine precision in 2598.
(NB Matlab’s quadl fails at zero tolerance)
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Sampling from distributions

Draw points uniformly under the curve:

Probability mass to left of point ~ Uniform|0,1]



Slide from lan Murray

Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

hy) = [* _p(y) dy

Draw mass to left of point:
u ~ Uniform[0,1]

Sample, y(u) = h™1(u)

0

Figure from PRML, Bishop (2006) Yy

Although we can’t always compute and invert h(y)
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Rejection sampling

~

Sampling underneath a P(x)x P(x) curve is also valid

Draw underneath a simple
curve kQ(x) > P(x):

— Draw = ~ Q(x)
— height u ~ Uniform|0, kQ(x)]

Discard the point if above P,
ie. if u > P(x)
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Importance sampling

Computing P(z) and Q(x), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under Q):

/f(:c)P(a:) dz = /f(x)P(x)Q(x) dz, (Q(x) > 0 if P(z) > 0)
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This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution.
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Importance sampling (2)

Previous slide assumed we could evaluate P(z) = P(z)/Zp

B(p(®)
[ t@P@) ds f,jng ZED). 46~ Q)

H,_/
7(s)

7(s)

S S
%Zl f(x(S))gZS,ﬂSW z:: 2w

This estimator is consistent but biased

Q

Q

Exercise: Prove that Zp/Zg ~ + Y 7
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Summary so far

Sums and integrals, often expectations, occur frequently in statistics
Monte Carlo approximates expectations with a sample average
Rejection sampling draws samples from complex distributions

Importance sampling applies Monte Carlo to ‘any’ sum/integral

13
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Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

Rejection sampling:

Requires 0 > 1. Fraction of proposals accepted = o~

Importance sampling:

2 \D/2
Variance of importance weights = (2_‘;/02) —1

Infinite / undefined variance if 0 < 1//2



Outline

Review: Monte Carlo

MCMC (Basic Methods)
— Metropolis algorithm
— Metropolis-Hastings (M-H) algorithm
— Gibbs Sampling
Markov Chains
— Transition probabilities
— Invariant distribution
— Equilibrium distribution
— Markov chain as a WFSM
— Constructing Markov chains
— Why does M-H work?

MCMC (Auxiliary Variable Methods)

— Slice Sampling
— Hamiltonian Monte Carlo



Metropolis, Metropolis-Hastings, Gibbs Sampling

MCMC (BASIC METHODS)



MCMC

* Goal: Draw approximate, correlated samples
from a target distribution p(x)

e MCMC: Performs a biased random walk to
explore the distribution



Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs
Sampling, and Hamiltonian MCMC:



Whiteboard

* Metropolis Algorithm
* Metropolis-Hastings Algorithm
* Gibbs Sampling



Gibbs Sampling

p(x)




Gibbs Sampling




Gibbs Sampling




Gibbs Sampling

MRF

Full
conditionals
only need to
condition on
the Markov
Blanket

Figure from Jordan Ch. 21

Bayes Net

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)
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Whiteboard

* Gibbs Sampling as M-H



Figure from Bishop (2006)

Random Walk Behavior of M-H

For Metropolis-Hastings, a generic proposal

distribution is: q(x\x(t)) _ N(O,€2)

If € is large, many rejections
If € is small, slow mixing




Figure from Bishop (2006)

Random Walk Behavior of M-H

* For Rejection Sampling, the accepted samples
are are independent

* But for Metropolis-Hastings, the samples are
correlated

* Question: How long must we wait to get
effectively independent samples?




Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

27



Whiteboard

 Markov chains

* Transition probabilities

* [nvariant distribution

* Equilibrium distribution

» Sufficient conditions for MCMC
 Markov chain as a WFSM




Detailed Balance

Sz’ < z)p(z) = S(z + 2")p(z’)
Detailed balance means that, for each pair of
states x and x’,

arriving at x then x” and arriving at x’ then x
are equiprobable.




Whiteboard

* Simple Markov chain example
* Constructing Markov chains
* Transition Probabilities for MCMC



Practical Issues

* Question: Is it better to move along one dimension
or many?

* Answer: For Metropolis-Hasings, it is sometimes
better to sample one dimension at a time

— Q: Given a sequence of 1D proposals, compare rate of
movement for one-at-a-time vs. concatenation.

 Answer: For , sometimes better to
sample a block of variables at a time

— Q: When is it tractable to sample a block of variables?



Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps
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Practical Issues

* Question: How do we assess convergence of
the Markov chain?

* Answer: It’s not easy!
— Compare statistics of multiple independent chains
— Ex: Compare log-likelihoods

Chain 1 Chain 2

>
>

Log-likelihood
Log-likelihood

# of MCMC steps # of MCMC steps
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Practical Issues

* Question: Is one long Markov chain better than many
short ones?

* Note: typical to discard initial samples (aka. “burn-
in’’) since the chain might not yet have mixed

 0—0—0—0—0—0—0—0—>0

O—>0—>0—>0—>® - Answer:Oftenabalanceis

best:

‘ > ‘ > . ’._>. — Compared to one long chain:

More independent samples
— Compared to many small

.—).—)‘ chains: Less samples
discarded for burn-in

.—).—)‘ — We can still parallelize

‘_>‘_>‘ — Allows us to assess mixing
by comparing chains

34



Whiteboard

* Blocked Gibbs Sampling



MCMC (AUXILIARY VARIABLE
METHODS)



Slide from lan Murray

Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:

/f(a:) dx—/f ) dz dv

1
QEZf(CC(S)% QC,UNP(CC,U)
s=1

We might want to do this if

e P(x|v) and P(v|x) are simple

e P(x,v) is otherwise easier to navigate
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Slice Sampling

e Motivation:

— Want samples from p(x) and don’t know the
normalizer Z

— Choosing a proposal at the correct scale is difficult

* Properties:

— Similar to Gibbs Sampling: one-dimensional
transitions in the state space

— Similar to Rejection Sampling: (asymptotically) draws
samples from the region under the curve

plz) N\

— An MCMC method with an adaptive proposal
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Slice sampling idea

Sample point uniformly under curve P(z)  P(z)

This is just an
auxiliary-variable
Gibbs Sampler!

p(u|z) = Uniform[0, P(z)]

—_—

1 Plz)>u

0O otherwise

= “Uniform on the slice”

p(z|u) o {

39



Figure adapted from MacKay Ch. 29

Slice Sampling




Figure adapted from MacKay Ch. 29

Slice Sampling




Figure adapted from MacKay Ch. 29

Slice Sampling




Algorithm

Slice Sampling
Goal: sample (z,u) given (v, 2®).

Part 1: Stepping Out

Sample interval (7, ;) enclosing z(*).

Expand until endpoints are ”outside” region under curve.

Part 2: Sample x (Shrinking)

Draw z from within the interval (x;,z,), then accept or shrink.
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Algorithm

Slice Sampling

Goal: sample (z,u) given (u®, z®).
u ~ Uniform (0, p(z*)
Part 1: Stepping Out
Sample interval (7, ;) enclosing z(*).
r ~ Uniform(u, w)
(z1,2) = (2 —r,2® +w —7)
Expand until endpoints are ”outside” region under curve.
while(p(x;) > u){z; = x; — w}
while(p(z,) > u){x, =z, + w}
Part 2: Sample x (Shrinking)

Draw z from within the interval (x;,z,), then accept or shrink.
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Algorithm

Slice Sampling

Goal: sample (z,u) given (u®, z®).
u ~ Uniform (0, p(z*)
Part 1: Stepping Out
Sample interval (7, ;) enclosing z(*).
r ~ Uniform(u, w)
(z1,2) = (2 —r,2® +w —7)
Expand until endpoints are ”outside” region under curve.
while(p(x;) > u){z; = x; — w}
while(p(z,) > u){x, =z, + w}
Part 2: Sample x (Shrinking)
while(true) {
Draw z from within the interval (x;,z,), then accept or shrink.
x ~ Uniform(z;, z,)
if(p(x) > u){break}
else if(z > M) {z, =z}
else{x; = z}

}

2D = g () =y,
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Slice Sampling

Multivariate Distributions

— Resample each variable x; one-at-a-time (just like
Gibbs Sampling)

— Does not require sampling from
p(wil{x;}j-i)
— Only need to evaluate a quantity proportional to
the conditional

p(wil{z;} i) o< p(wil{z; } i)



Hamiltonian Monte Carlo

* Suppose we have a distribution of the form:

p(x) = exp{—E(x)}/Z
where & & RN

* We could use random-walk M-H to draw
samples, but it seems a shame to discard
gradient information V , F/(x)

* If we can evaluate it, the gradient tells us
where to look for high-probability regions!



Background: Hamiltonian Dyanmics

Applications:
— Following the motion of atoms in a fluid through
time
— Integrating the motion of a solar system over time

— Considering the evolution of a galaxy (i.e. the
motion of its stars)

— “molecular dynamics”
— “N-body simulations”

Properties:

— Total energy of the system H(x,p) stays constant
— Dynamics are reversible «- _

48




Background: Hamiltonian Dyanmics

Let T & RN be a position

D < RY  be amomentum

Potential energy:  F'(x)
Kinetic energy: K(p) — pr/2
Total energy: H(x,p) = F(x) + K(p)

©Hamiltonian function

Given a starting position x” and a starting momentum p” we
can simulate the Hamiltonian dynamics of the system via:

1. Euler’s method
2. Leapfrog method
3. etc.

49



Background: Hamiltonian Dyanmics

Parameters to tune:
1. Stepsize, €
2. Number of iterations, L

Leapfrog Algorithm:
for min1...L:

€
P=DP— §va(.’JZ)
r =T+ €p

€
P=DP— §vazE(x)



Figure from Neal (2011)

Background: Hamiltonian Dyanmics

(a) Euler’s method, stepsize 0.3 (b) Modified Euler’s method, stepsize 0.3

Momentum (p)
IS
|
Momentum (p
IS
|

Position (g) Position (g)

(c) Leapfrog method, stepsize 0.3 (d) Leapfrog method, stepsize 1.2

Momentum (p
=
1
Momentum (p)
=
1

Position (g) Position (g)
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Figure from Neal (2011)

Hamiltonian Monte Carlo

Preliminaries

Goal: p(x) = exp{—FE(x)}/Z whee & € RY

=Y p(a,p) = exp{—K(x}/Z [CalsSiani
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Whiteboard

* Hamiltonian Monte Carlo algorithm
(aka. Hybrid Monte Carlo)



Position coordinates
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Momentum coordinates

Figure from Neal (2011)

Hamiltonian Monte Carlo

Value of Hamiltonian

2.6

2.5 1

2.4

2.3 1

2.2
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Figure from Neal (2011)

M-H vs. HMC

Random-walk Metropolis Hamiltonian Monte Carlo

2 9
1 - 1 -
0 - 0 -
1 - 14
i _9

| | | | | | | | | |

-2 -1 0 1 2 -2 -1 0 1 2
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Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs
Sampling, and Hamiltonian MCMC:



Slide adapted from Daphe Koller

MCMC Summary

* Pros
— Very general purpose
— Often easy to implement

— Good theoretical guaranteesas t — oo

* Cons
— Lots of tunable parameters [ design choices
— Can be quite slow to converge
— Difficult to tell whether it's working



