

10-708 Probabilistic Graphical Models

Markov Chain Monte Carlo (MCMC)

Readings:

MacKay Ch. 29 Jordan Ch. 21 Matt Gormley Lecture 16 March 14, 2016

Housekeeping

- Homework 2
 - Due March 16, 12:00 noon (extended)
- Midway Project Report
 - Due March 23, 12:00 noon

1. Data

2. Model

$$p(\boldsymbol{x}\mid\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C\in\mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective $\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

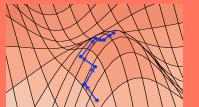
$$Z(oldsymbol{ heta}) = \sum_{oldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(oldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$



It's Pi Day 2016...

... so let's compute π .

Properties of Monte Carlo

Estimator:
$$\int f(x)P(x) dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

Estimator is unbiased:

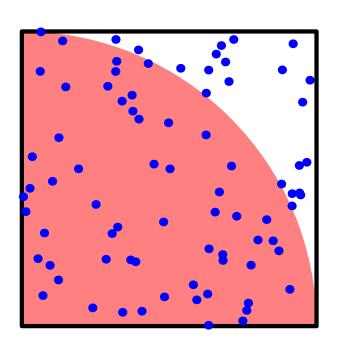
$$\mathbb{E}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] = \mathbb{E}_{P(x)} [f(x)]$$

Variance shrinks $\propto 1/S$:

$$\operatorname{var}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)} [f(x)] = \operatorname{var}_{P(x)} [f(x)] / S$$

"Error bars" shrink like \sqrt{S}

A dumb approximation of π



$$P(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi = 4 \iint \mathbb{I}\left((x^2 + y^2) < 1\right) P(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

```
octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418
```

Aside: don't always sample!

"Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse."

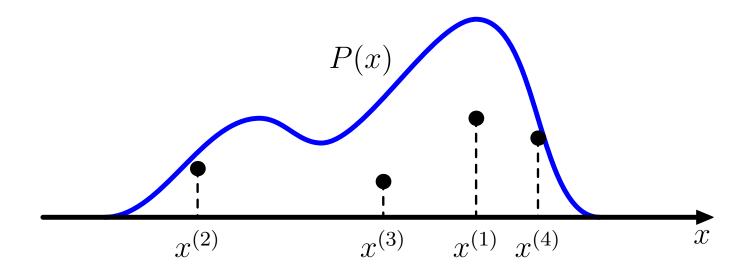
— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance) Gives π to 6 dp's in 108 evaluations, machine precision in 2598.

(NB Matlab's quad1 fails at zero tolerance)

Sampling from distributions

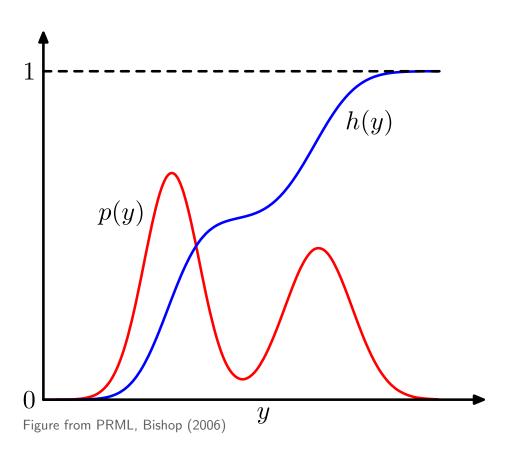
Draw points uniformly under the curve:



Probability mass to left of point \sim Uniform[0,1]

Sampling from distributions

How to convert samples from a Uniform[0,1] generator:



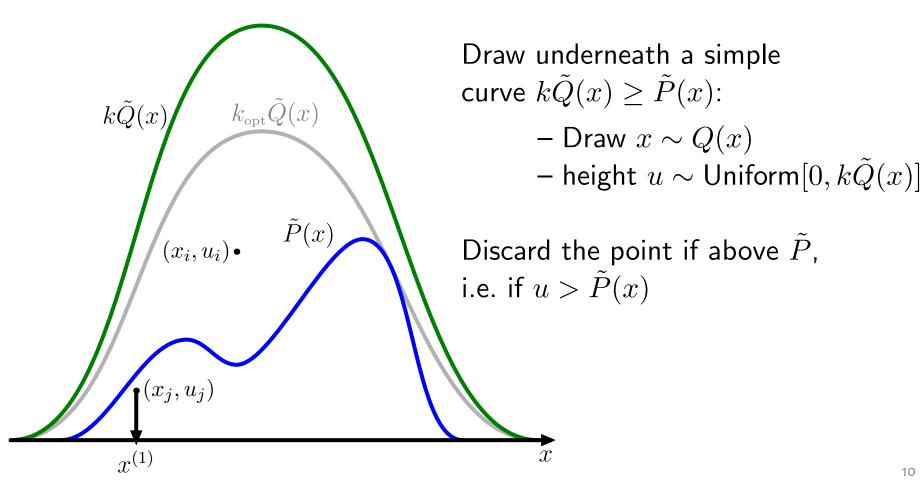
$$h(y) = \int_{-\infty}^{y} p(y') \, \mathrm{d}y'$$

Draw mass to left of point: $u \sim \text{Uniform}[0,1]$

Sample,
$$y(u) = h^{-1}(u)$$

Rejection sampling

Sampling underneath a $\tilde{P}(x) \propto P(x)$ curve is also valid



Importance sampling

Computing $\tilde{P}(x)$ and $\tilde{Q}(x)$, then throwing x away seems wasteful Instead rewrite the integral as an expectation under Q:

$$\int f(x)P(x) dx = \int f(x)\frac{P(x)}{Q(x)}Q(x) dx, \qquad (Q(x) > 0 \text{ if } P(x) > 0)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.

Importance sampling (2)

Previous slide assumed we could evaluate $P(x) = \tilde{P}(x)/\mathcal{Z}_P$

$$\int f(x)P(x) dx \approx \frac{\mathcal{Z}_Q}{\mathcal{Z}_P} \frac{1}{S} \sum_{s=1}^S f(x^{(s)}) \underbrace{\frac{\tilde{P}(x^{(s)})}{\tilde{Q}(x^{(s)})}}_{\tilde{r}(s)}, \quad x^{(s)} \sim Q(x)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{r}^{(s)}}{\frac{1}{S} \sum_{s'} \tilde{r}^{(s')}} \equiv \sum_{s=1}^{S} f(x^{(s)}) w^{(s)}$$

This estimator is consistent but biased

Exercise: Prove that $\mathcal{Z}_P/\mathcal{Z}_Q \approx \frac{1}{S} \sum_s \tilde{r}^{(s)}$

Summary so far

- Sums and integrals, often expectations, occur frequently in statistics
- Monte Carlo approximates expectations with a sample average
- Rejection sampling draws samples from complex distributions
- Importance sampling applies Monte Carlo to 'any' sum/integral

Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

$$P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I})$$

Rejection sampling:

Requires $\sigma \geq 1$. Fraction of proposals accepted $= \sigma^{-D}$

Importance sampling:

Variance of importance weights
$$= \left(\frac{\sigma^2}{2-1/\sigma^2}\right)^{D/2} - 1$$

Infinite / undefined variance if $\sigma \leq 1/\sqrt{2}$

Outline

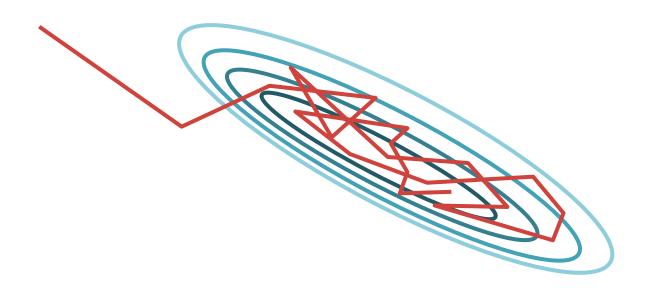
- Review: Monte Carlo
- MCMC (Basic Methods)
 - Metropolis algorithm
 - Metropolis-Hastings (M-H) algorithm
 - Gibbs Sampling
- Markov Chains
 - Transition probabilities
 - Invariant distribution
 - Equilibrium distribution
 - Markov chain as a WFSM
 - Constructing Markov chains
 - Why does M-H work?
- MCMC (Auxiliary Variable Methods)
 - Slice Sampling
 - Hamiltonian Monte Carlo

Metropolis, Metropolis-Hastings, Gibbs Sampling

MCMC (BASIC METHODS)

MCMC

- Goal: Draw approximate, correlated samples from a target distribution p(x)
- MCMC: Performs a biased random walk to explore the distribution



Simulations of MCMC

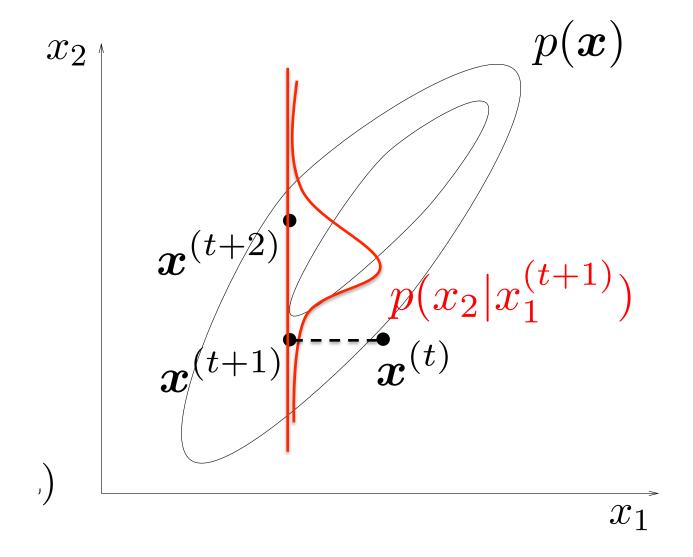
Visualization of Metroplis-Hastings, Gibbs Sampling, and Hamiltonian MCMC:

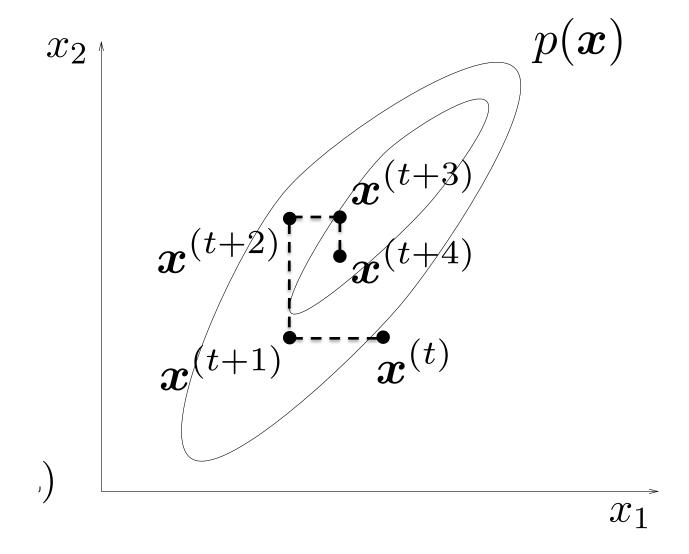
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

Whiteboard

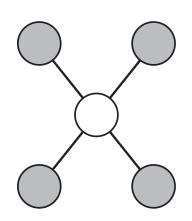
- Metropolis Algorithm
- Metropolis-Hastings Algorithm
- Gibbs Sampling





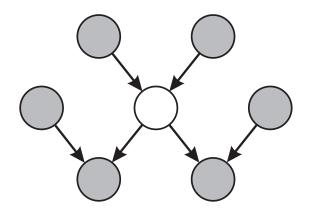


Full conditionals only need to condition on the Markov Blanket

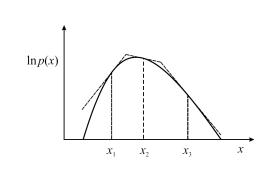


MRF

Bayes Net



- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

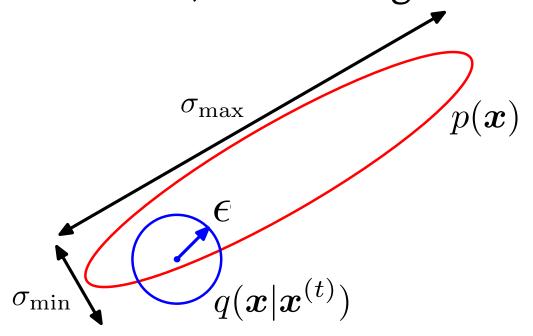


Whiteboard

Gibbs Sampling as M-H

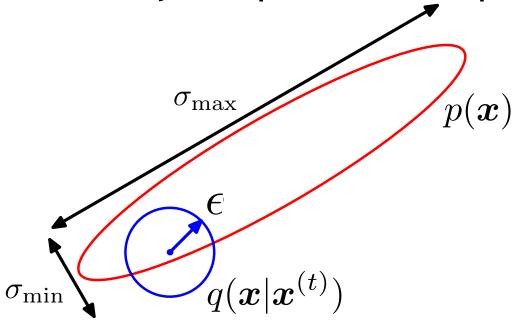
Random Walk Behavior of M-H

- For Metropolis-Hastings, a generic proposal distribution is: $q(x|x^{(t)}) = \mathcal{N}(0,\epsilon^2)$
- If € is large, many rejections
- If ∈ is small, slow mixing



Random Walk Behavior of M-H

- For Rejection Sampling, the accepted samples are are independent
- But for Metropolis-Hastings, the samples are correlated
- Question: How long must we wait to get effectively independent samples?



A: independent states in the M-H random walk are separated by roughly $(\sigma_{\text{max}}/\sigma_{\text{min}})^2$ steps

Definitions and Theoretical Justification for MCMC

MARKOV CHAINS

Whiteboard

- Markov chains
- Transition probabilities
- Invariant distribution
- Equilibrium distribution
- Sufficient conditions for MCMC
- Markov chain as a WFSM

Detailed Balance

$$S(x' \leftarrow x)p(x) = S(x \leftarrow x')p(x')$$

Detailed balance means that, for each pair of states x and x',

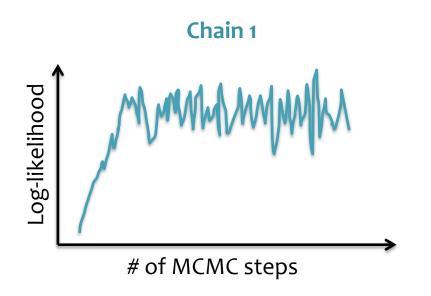
arriving at x then x' and arriving at x' then x are equiprobable.

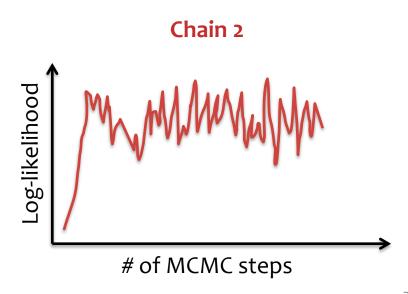
Whiteboard

- Simple Markov chain example
- Constructing Markov chains
- Transition Probabilities for MCMC

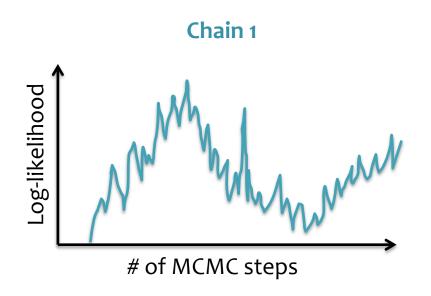
- Question: Is it better to move along one dimension or many?
- **Answer:** For Metropolis-Hasings, it is sometimes better to sample one dimension at a time
 - Q: Given a sequence of 1D proposals, compare rate of movement for one-at-a-time vs. concatenation.
- Answer: For Gibbs Sampling, sometimes better to sample a block of variables at a time
 - Q: When is it tractable to sample a block of variables?

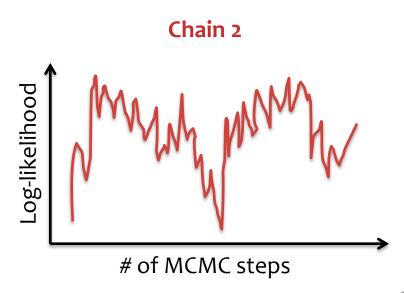
- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
 - Compare statistics of multiple independent chains
 - Ex: Compare log-likelihoods



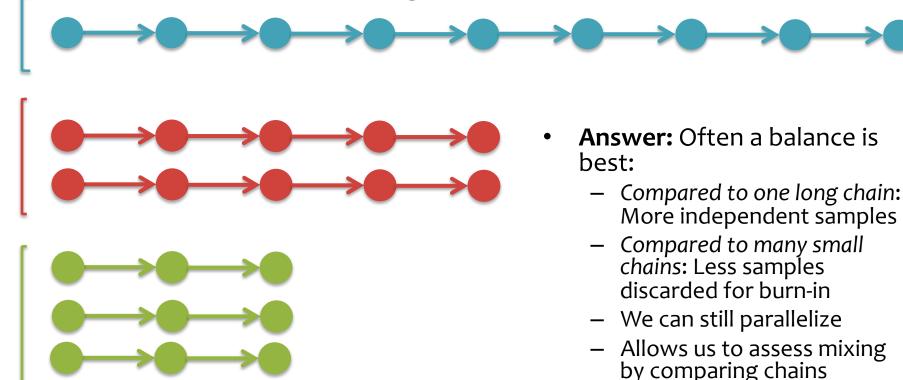


- Question: How do we assess convergence of the Markov chain?
- Answer: It's not easy!
 - Compare statistics of multiple independent chains
 - Ex: Compare log-likelihoods





- Question: Is one long Markov chain better than many short ones?
- Note: typical to discard initial samples (aka. "burn-in") since the chain might not yet have mixed



Whiteboard

Blocked Gibbs Sampling

Slice Sampling, Hamiltonian Monte Carlo

MCMC (AUXILIARY VARIABLE METHODS)

Auxiliary variables

The point of MCMC is to marginalize out variables, but one can introduce more variables:

$$\int f(x)P(x) dx = \int f(x)P(x,v) dx dv$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x, v \sim P(x,v)$$

We might want to do this if

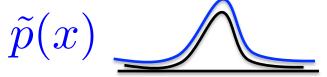
- P(x|v) and P(v|x) are simple
- \bullet P(x,v) is otherwise easier to navigate

Motivation:

- Want **samples** from p(x) and don't know the normalizer Z
- Choosing a proposal at the correct scale is difficult

Properties:

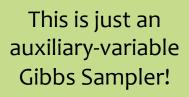
- Similar to Gibbs Sampling: one-dimensional transitions in the state space
- Similar to Rejection Sampling: (asymptotically) draws samples from the region under the curve

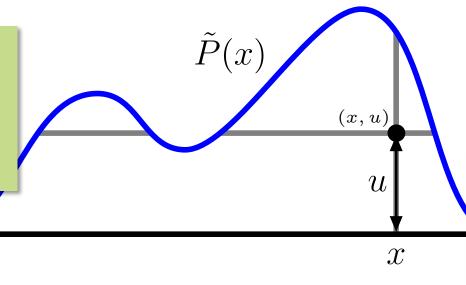


An MCMC method with an adaptive proposal

Slice sampling idea

Sample point uniformly under curve $\tilde{P}(x) \propto P(x)$

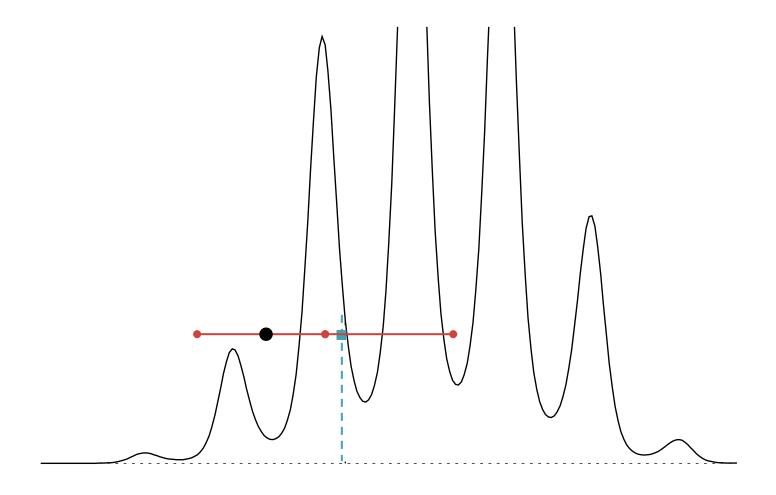


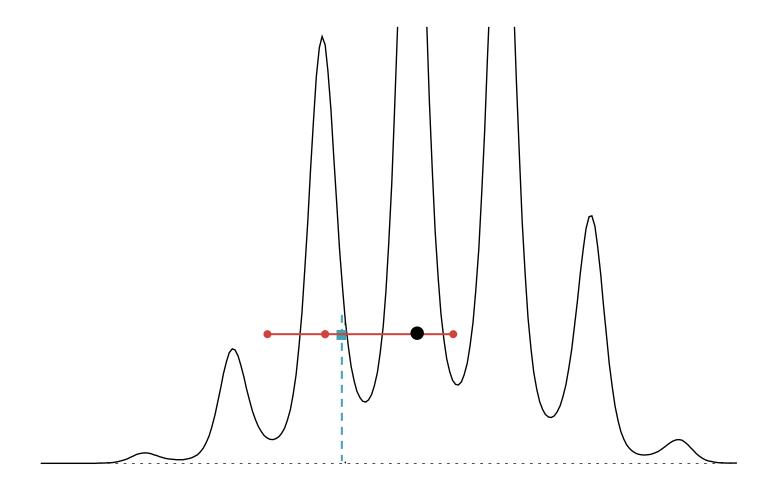


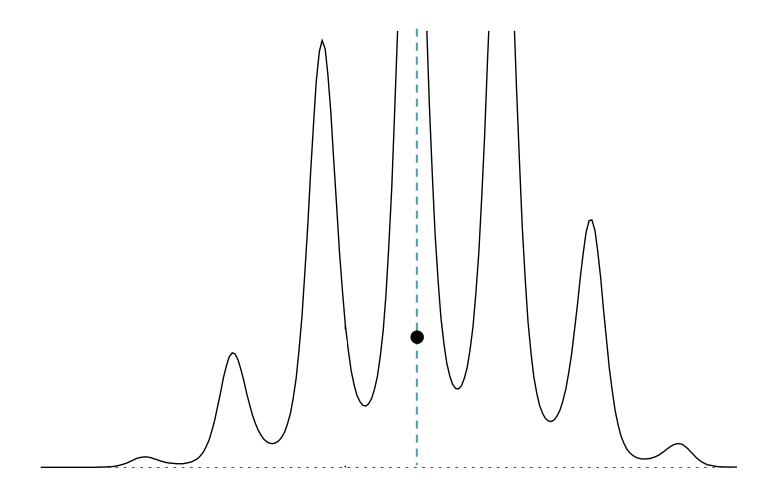
Problem: Sampling from the conditional $p(x \mid u)$ might be infeasible.

$$p(u|x) = \mathsf{Uniform}[0, \tilde{P}(x)]$$

$$p(x|u) \propto \begin{cases} 1 & \tilde{P}(x) \ge u \\ 0 & \text{otherwise} \end{cases}$$
 = "Uniform on the slice"







Goal: sample
$$(x, u)$$
 given $(u^{(t)}, x^{(t)})$.

Part 1: Stepping Out

Sample interval
$$(x_l, x_r)$$
 enclosing $x^{(t)}$.

Expand until endpoints are "outside" region under curve.

Part 2: Sample x (Shrinking)

Draw x from within the interval (x_l, x_r) , then accept or shrink.

```
Goal: sample (x, u) given (u^{(t)}, x^{(t)}).

u \sim \text{Uniform}(0, p(x^{(t)}))

Part 1: Stepping Out

Sample interval (x_l, x_r) enclosing x^{(t)}.

r \sim \text{Uniform}(u, w)

(x_l, x_r) = (x^{(t)} - r, x^{(t)} + w - r)

Expand until endpoints are "outside" region under curve.

while (\tilde{p}(x_l) > u)\{x_l = x_l - w\}

while (\tilde{p}(x_r) > u)\{x_r = x_r + w\}

Part 2: Sample x (Shrinking)
```

Draw x from within the interval (x_l, x_r) , then accept or shrink.

```
Goal: sample (x, u) given (u^{(t)}, x^{(t)}).
u \sim \text{Uniform}(0, p(x^{(t)}))
Part 1: Stepping Out
   Sample interval (x_l, x_r) enclosing x^{(t)}.
     r \sim \text{Uniform}(u, w)
     (x_1, x_r) = (x^{(t)} - r, x^{(t)} + w - r)
   Expand until endpoints are "outside" region under curve.
     while (\tilde{p}(x_l) > u) \{x_l = x_l - w\}
     while (\tilde{p}(x_r) > u) \{x_r = x_r + w\}
Part 2: Sample x (Shrinking)
while(true) {
   Draw x from within the interval (x_l, x_r), then accept or shrink.
     x \sim \text{Uniform}(x_l, x_r)
     if(\tilde{p}(x) > u)\{break\}
     else if(x > x^{(t)}) \{x_r = x\}
     else\{x_l = x\}
x^{(t+1)} = x, \ u^{(t+1)} = u
```

Multivariate Distributions

- Resample each variable x_i one-at-a-time (just like Gibbs Sampling)
- Does not require sampling from

$$p(x_i|\{x_j\}_{j\neq i})$$

 Only need to evaluate a quantity proportional to the conditional

$$p(x_i|\{x_j\}_{j\neq i}) \propto \tilde{p}(x_i|\{x_j\}_{j\neq i})$$

Hamiltonian Monte Carlo

Suppose we have a distribution of the form:

$$p(oldsymbol{x}) = \exp\{-E(oldsymbol{x})\}/Z$$
 where $oldsymbol{x} \in \mathcal{R}^N$

• We could use random-walk M-H to draw samples, but it seems a shame to discard gradient information $\nabla_{\boldsymbol{x}} E(\boldsymbol{x})$

 If we can evaluate it, the gradient tells us where to look for high-probability regions!

Applications:

- Following the motion of atoms in a fluid through time
- Integrating the motion of a solar system over time
- Considering the evolution of a galaxy (i.e. the motion of its stars)
- "molecular dynamics"
- "N-body simulations"

Properties:

- Total energy of the system H(x,p) stays constant
- Dynamics are reversible Important for detailed balance

Let
$$oldsymbol{x} \in \mathcal{R}^N$$
 be a position

$$oldsymbol{p} \in \mathcal{R}^N$$
 be a momentum

Potential energy:
$$E({m x})$$

Kinetic energy:
$$K(\boldsymbol{p}) = \boldsymbol{p}^T \boldsymbol{p}/2$$

Total energy:
$$H(\boldsymbol{x},\boldsymbol{p}) = E(\boldsymbol{x}) + K(\boldsymbol{p})$$

Hamiltonian function

Given a starting position $x^{(l)}$ and a starting momentum $p^{(l)}$ we can simulate the Hamiltonian dynamics of the system via:

- 1. Euler's method
- 2. Leapfrog method
- 3. etc.

Parameters to tune:

- 1. Step size, ϵ
- 2. Number of iterations, L

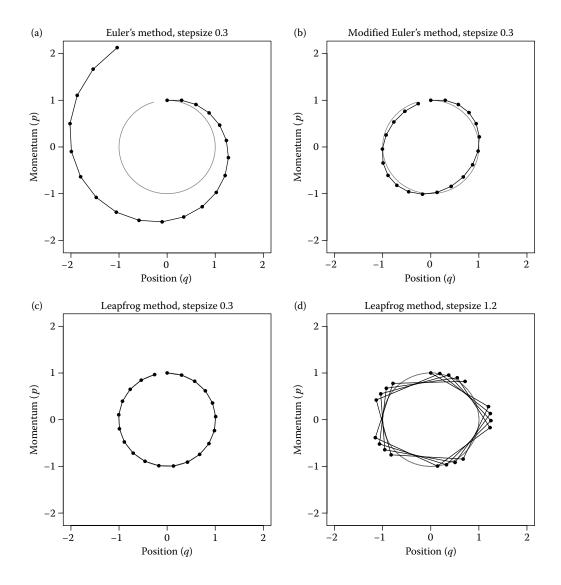
Leapfrog Algorithm:

for
$$\tau$$
 in $1 \dots L$:

$$\boldsymbol{p} = \boldsymbol{p} - \frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x})$$

$$x = x + \epsilon p$$

$$\boldsymbol{p} = \boldsymbol{p} - \frac{\epsilon}{2} \nabla_{\boldsymbol{x}} E(\boldsymbol{x})$$



Hamiltonian Monte Carlo

Preliminaries

Goal:

$$p(\boldsymbol{x}) = \exp\{-E(\boldsymbol{x})\}/Z$$

 \boldsymbol{x}

where
$$oldsymbol{x} \in \mathcal{R}^N$$

Define:

$$K(\mathbf{p}) = \mathbf{p}^T \mathbf{p}/2$$
 $H(\mathbf{x}, \mathbf{p}) = E(\mathbf{x}) + K(\mathbf{p})$
 $p(\mathbf{x}, \mathbf{p}) = \exp\{-H(\mathbf{x}, \mathbf{p})\}/Z_H$
 $= \exp\{-E(\mathbf{x})\} \exp\{-K(\mathbf{p})\}/Z_H$

Note:

Since p(x,p) is separable...

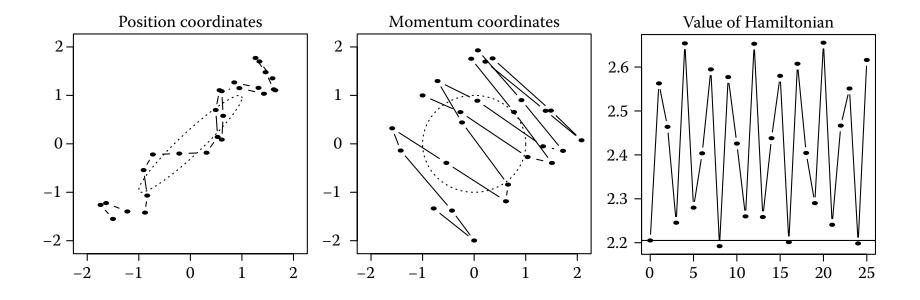
$$\Rightarrow \sum_{\mathbf{p}} p(\mathbf{x}, \mathbf{p}) = \exp\{-E(\mathbf{x})/Z\}$$

Target dist.

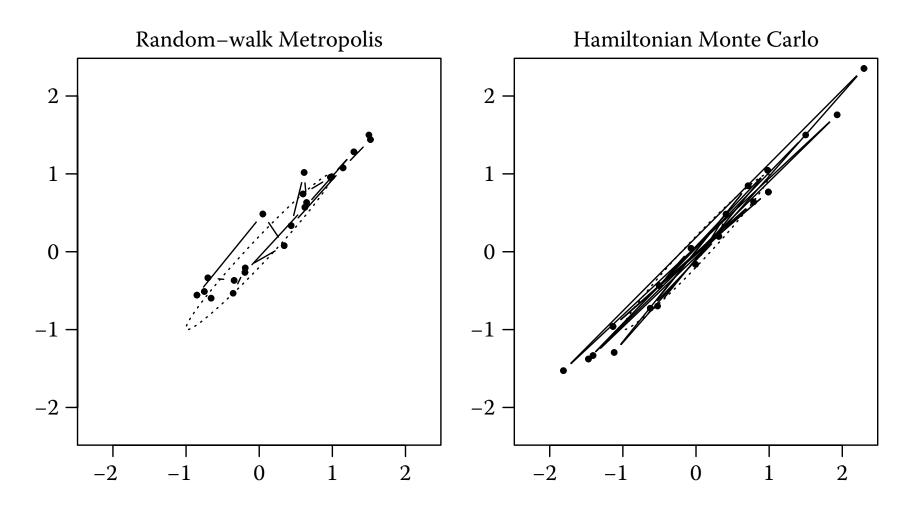
Whiteboard

 Hamiltonian Monte Carlo algorithm (aka. Hybrid Monte Carlo)

Hamiltonian Monte Carlo



M-H vs. HMC



Simulations of MCMC

Visualization of Metroplis-Hastings, Gibbs Sampling, and Hamiltonian MCMC:

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

MCMC Summary

Pros

- Very general purpose
- Often easy to implement
- Good theoretical guarantees as $t \to \infty$

Cons

- Lots of tunable parameters / design choices
- Can be quite slow to converge
- Difficult to tell whether it's working