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 But we do not optimize q(X) explicitly, focus on the set of beliefs

 e.g.,

 Relax the optimization problem

 approximate objective:
 relaxed feasible set:

 The loopy BP algorithm: 
 a fixed point iteration procedure that tries to solve b*
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Recall: The Theory Behind LBP
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Mean Field Approximation
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 Optimize q(XH) in the space of tractable families

 i.e., subgraph of Gp over which exact computation of Hq is  
feasible

 Tightening the optimization space

 exact objective:
 tightened feasible set: 
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Mean Field Methods
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Variational Principle
 Exact variational formulation

 : the marginal polytope, difficult to characterize
 : the negative entropy function, no explicit form

 Mean field method: non-convex inner bound and exact form of 
entropy

 Bethe approximation and loopy belief propagation: polyhedral 
outer bound and non-convex Bethe approximation
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Mean Field Methods

 For a given tractable subgraph F, a subset of canonical 
parameters is 

 Inner approximation

 Mean field solves the relaxed problem

 is the exact dual function restricted to  
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 For an exponential family with sufficient statistics     defined 
on graph G, the set of realizable mean parameter set

 Idea: restrict p to a subset of distributions associated with a 
tractable subgraph

Tractable Subgraphs
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Example: Naïve Mean Field for Ising Model

 Ising model in {0,1} representation

 Mean parameters

 For fully disconnected graph F,

 The dual decomposes into sum, one for each node

µs = Ep[Xs] = P[Xs = 1] for all s�V, and

µst = Ep[XsXt] = P[(Xs,Xt) = (1,1)] for all (s,t) �E.
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Naïve Mean Field for Ising Model
 Optimization Problem

 Update Rule

 resembles “message” sent from node      to   

 forms the “mean field” applied to     from its 
neighborhood

 Also yields lower bound on log partition function
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Geometry of Mean Field
 Mean field optimization is always non-convex for any 

exponential family in which the state space        is finite

 Recall the marginal polytope is a convex hull

 contains all the extreme points
 If it is a strict subset, then it must be non-convex

 Example: two-node Ising model

 It has a parabolic cross section along  , hence non-convex
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Exact:

Clusters:

(intractable)

Cluster-based approx. to the 
Gibbs free energy (Wiegerinck 2001, 

Xing et al 03,04)
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Mean field approx. to Gibbs free 
energy
 Given a disjoint clustering, {C1, … , CI}, of all variables
 Let 

 Mean-field free energy

 Will never equal to the exact Gibbs free energy no matter what clustering is used, 
but it does always define a lower bound of the likelihood 

 Optimize each qi(xc)'s. 
 Variational calculus …
 Do inference in each qi(xc) using any tractable algorithm
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Theorem: The optimum GMF approximation to the 
cluster marginal is isomorphic to the cluster posterior of 
the original distribution given internal evidence and its 
generalized mean fields:

GMF algorithm: Iterate over each qi

The Generalized Mean Field 
theorem
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[xing et al. UAI 2003]

A generalized mean field 
algorithm
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[xing et al. UAI 2003]

A generalized mean field 
algorithm
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Theorem: The GMF algorithm is guaranteed to 
converge to a local optimum, and provides a lower 
bound for the likelihood of evidence (or partition 
function) the model.

Convergence theorem
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Gibbs predictive distribution:
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 Approximate p(X) by fully factorized q(X)=Piqi(Xi)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :

Xi

 xjqj resembles a “message” sent from node j to i 
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The naive mean field 
approximation
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Cluster marginal of a square block Ck:
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Virtually a reparameterized Ising model of small size.

Example 1: Generalized MF 
approximations to Ising models
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GMF approximation to Ising
models

GMF2x2

GMF4x4

BP

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted 20
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GMFr

GMFb

BP

Example 2: Sigmoid belief 
network

21
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Example 3: Factorial HMM

22
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Automatic Variational Inference

 Currently for each new model we have to 
 derive the variational update equations 
 write application-specific code to find the solution

 Each can be time consuming and error prone

 Can we build a general-purpose inference engine which 
automates these procedures?

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

S2 S3S1 SN... 

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

S2 S3S1 SN... 

fHMM Mean field approx. Structured variational approx.



23© Eric Xing @ CMU, 2005-2016



Probabilistic Topic Models

 Humans cannot afford to deal with (e.g., search, browse, or 
measure similarity) a huge number of text documents

 We need computers to help out …
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How to get started?
 Here are some important elements to consider before you start:

 Task:
 Embedding? Classification? Clustering? Topic extraction? …

 Data representation:
 Input and output (e.g., continuous, binary, counts, …) 

 Model:
 BN? MRF? Regression? SVM? 

 Inference:
 Exact inference? MCMC? Variational? 

 Learning:
 MLE? MCLE? Max margin? 

 Evaluation:
 Visualization? Human interpretability? Perperlexity? Predictive accuracy? 

 It is better to consider one element at a time!
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Tasks: document embedding 
 Say, we want to have a mapping …, so that 

 Compare similarity 
 Classify contents
 Cluster/group/categorizing
 Distill semantics and perspectives 
 .. 


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Summarizing the data using topics
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See how data changes over time
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User interest modeling using topics
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Representation:
 Data:

 Each document is a vector in the word space
 Ignore the order of words in a document. Only count matters!

 A high-dimensional and sparse representation
– Not efficient text processing tasks, e.g., search, document 

classification, or similarity measure
– Not effective for browsing

As for the Arabian and Palestinean voices that are against the 
current negotiations and the so-called peace process, they are not 
against peace per se, but rather for their well-founded 
predictions that Israel would NOT give an inch of the West bank 
(and most probably the same for Golan Heights) back to the 
Arabs. An 18 months of "negotiations" in Madrid, and 
Washington proved these predictions. Now many will jump on 
me saying why are you blaming israelis for no-result negotiations. 
I would say why would the Arabs stall the negotiations, what do 
they have to loose ?

Arabian

negotiations
against

peace
Israel

Arabs blaming

Bag of Words Representation
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How to Model Semantic?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Source
Target
SMT

Alignment
Score
BLEU

Parse
Tree
Noun

Phrase
Grammar

CFG

likelihood
EM

Hidden
Parameters
Estimation

argMax

MT                    Syntax              Learning

0.6                          0.3                   0.1   

Unigram over vocabulary

To
pi

cs

Mixing 
Proportion

Topic Models
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Why this is Useful?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

MT                    Syntax              Learning

Mixing 
Proportion

0.6                          0.3                   0.1   

 Q: give me similar document?
 Structured way of browsing the collection

 Other tasks
 Dimensionality reduction 

 TF-IDF vs. topic mixing proportion

 Classification, clustering, and more …
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Topic Models: The Big Picture

Unstructured Collection Structured Topic Network

Topic Discovery

Dimensionality  
Reduction

w1

w2

wn

x
x

x
x

T1

Tk T2
x x x

x

Word Simplex Topic Simplex
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Words in Contexts

 “It was a nice shot. ”
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Words in Contexts (con'd)
 the opposition Labor Party fared even worse,  with a 

predicted 35 seats,  seven less than last election.
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"Words" in Contexts (con'd)

Sivic et al. ICCV 2005
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 Objects are bags of elements

 Mixtures are distributions over elements

 Objects have mixing vector 
 Represents each mixtures’ contributions

 Object is generated as follows:
 Pick a mixture component from 
 Pick an element from that component

Admixture Models

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 

…

0.1 0.1 0.5…..

0.1 0.5 0.1…..

0.5 0.1 0.1…..

money1 bank1 bank1 loan1 
river2 stream2 bank1 money1 
river2 bank1 money1 bank1  
loan1   money1 stream2 
bank1  money1 bank1 bank1 
loan1 river2 stream2 bank1 
money1 river2 bank1 money1 
bank1  loan1   bank1  
money1 stream2 
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Topic Models
Generating a document

Prior

θ 

z 

w β  
Nd

N 

K 

 
   

    

 
 from  ,| Draw -

 from  Draw-
  each wordFor  

prior  thefrom  

:1 nzknn

n

lmultinomiazw
lmultinomiaz

n
Draw






Which prior to use?
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Choices of Priors
 Dirichlet (LDA) (Blei et al. 2003)

 Conjugate prior means efficient inference
 Can only capture variations in each topic’s 

intensity independently

 Logistic Normal (CTM=LoNTAM) 
(Blei & Lafferty 2005, Ahmed & 
Xing 2006)
 Capture the intuition that some topics are highly 

correlated and can rise up in intensity together
 Not a conjugate prior implies hard inference

40
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Generative Semantic of LoNTAM
Generating a document
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Posterior inference
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Posterior inference results

z w b
N

a ✓
K

Bayesian
model
inference
…..

input
output
system
…..

cortex
cortical
areas
…..

Topics

Topic proportions

Topic assignments

D

�
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Joint likelihood of all variables
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We are interested in computing the posterior, 
and the data likelihood!



 A possible query:

 Close form solution?

 Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors

 Learning: What to learn? What is the objective function?

Inference and Learning are both 
intractable 
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Approximate Inference

 Variational Inference

 Mean field approximation (Blei et al)
 Expectation propagation (Minka et al)
 Variational 2nd-order Taylor approximation (Xing)

 Markov Chain Monte Carlo

 Gibbs sampling (Griffiths et al)
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Mean-field assumption
 True posterior

 Break the dependency using the fully factorized distribution

 Mean-field family usually does NOT include the true posterior.
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Update each marginals
 Update

 In LDA,

 We obtain 
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This is also a Dirichlet---the same as its prior!



Coordinate ascent algorithm for LDA
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Ahmed&Xing Blei&Lafferty

Σ* is assumed to be diagonalΣ* is full matrix

Log Partition Function
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Multivariate
Quadratic Approx.

Tangent Approx.

Closed Form 
Solution for μ*, Σ*

Numerical 
Optimization to 
fit μ*, Diag(Σ*)

Choice of q() does matter

50© Eric Xing @ CMU, 2005-2016



Tangent Approximation
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How to evaluate?
 Empirical Visualization: e.g., topic discovery on New 

York Times
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How to evaluate?

w

β  



z

μ Σ
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• Test on Synthetic Text where ground truth is known:



Comparison: accuracy and speed
L2 error in topic vector est. 
and # of iterations

 Varying Num. of Topics

 Varying Voc. Size

 Varying Num. Words Per 
Document
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Comparison: perplexity
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Classification Result on PNAS 
collection
 PNAS abstracts from 1997-2002

 2500  documents
 Average of 170 words per document

 Fitted 40-topics model using both approaches
 Use low dimensional representation to predict the abstract category

 Use SVM classifier
 85% for training and 15% for testing

Classification Accuracy

-Notable Difference
-Examine the low dimensional
representations below
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What makes topic models useful -
-- The Zoo of Topic Models!
 It is a building block of many models.
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Williamson et al. 2010 Chang & Blei, 2009

Boyd-Graber & Blei, 2008 Wang & Blei, 2008McCallum et al. 2007

Titov & McDonald, 2008
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Conclusion
 GM-based topic models are cool

 Flexible 
 Modular
 Interactive

 There are many ways of implementing topic models
 unsupervised
 supervised

 Efficient Inference/learning algorithms
 GMF, with Laplace approx. for non-conjugate dist.
 MCMC

 Many applications
 …
 Word-sense disambiguation
 Image understanding
 Network inference
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Summary on VI
 Variational methods in general turn inference into an optimization 

problem via exponential families and convex duality

 The exact variational principle is intractable to solve; there are two 
distinct components for approximations:
 Either inner or outer bound to the marginal polytope
 Various approximation to the entropy function

 Mean field: non-convex inner bound and exact form of entropy
 BP: polyhedral outer bound and non-convex Bethe approximation
 Kikuchi and variants: tighter polyhedral outer bounds and better 

entropy approximations (Yedidia et. al. 2002)
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