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Recall: The Theory Behind LBP

e But we do not optimize g(X) explicitly, focus on the set of beliefs
- €0, b= {bi,j = T(Xiaxj)a b, =7(X)}
e Relax the optimization problem

e approximate objective: H g~ F (b)

relaxed feasible set:
: M—>M, (M, 2>M)

% o
b =argmin { <E>b + F(b) }
e The loopy BP algorithm: "o
e a fixed point iteration procedure that tries to solve b*
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Recall: The Theory Behind LBP -

e But we do not optimize g(X) explicitly, focus on the set of beliefs
« €0, b= {bi,j = T(Xiaxj)a b, =7(x)}
e Relax the optimization problem

e approximate objective: H,,... = H(bw. .b)

e relaxed feasible set: M, :{ 720|ZT(XI_):l,zf(x,.,xj):r(xj) }

* .
b =argmin { <E>b + F(b) }
e The loopy BP algorithm: P€™o
e a fixed point iteration procedure that tries to solve b*
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Mean Field Approximation
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Mean Field Methods ot

e Optimize q(X,,) in the space of tractable families

e I.e., subgraph of G, over which exact computation of H, is
feasible

e Tightening the optimization space

e exact objective: H q
o tightened feasible set: Q — T (TcQ)

g =argmin <E>q -H,

qeT
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Variational Principle -

e Exact variational formulation

A(0) = sup {07 — A ()}

e A : the marginal polytope, difficult to characterize
° A*: the negative entropy function, no explicit form

e Mean field method: non-convex inner bound and exact form of
entropy

e Bethe approximation and loopy belief propagation: polyhedral
outer bound and non-convex Bethe approximation
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Mean Field Methods ot

e For a given tractable subgraph F, a subset of canonical
parameters is

M(F;¢) := {1 € R | 7 = Eg[¢(X)] for some 6 € Q(F)}

e Inner approximation
M(F;¢)° € M(G;¢)°

e Mean field solves the relaxed problem

max{{r.6) — A}(7))

o A% = A*‘,/Y‘\F(G) is the exact dual function restricted to M p(G)
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Tractable Subgraphs o

e For an exponential family with sufficient statistics ¢ defined
on graph G, the set of realizable mean parameter set

M(G; ) = {n € R? | Ip sit. E,[6(X)] = i}

e |dea: restrict p to a subset of distributions associated with a

tractable subgraph
Q= {9 e RYA(6) < +oo}

&~ O >
@) @)
. O @)
ko : © T .
O @)
O @) @)

Q(Fy) := {9 €EQ |04 =0V (s,1) € E} UT) := {9 c Q| ‘9(3,15) =0 V(s,t) ¢ E(T)}
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Example: Naive Mean Field for Ising Model | ¢

e Ising model in {0,1} representation ——=0
4{:“1. Sr"'. 6r"-.
p(x) o< exp Z r.0, + Z T 10t 7T T
seV (s,t)eFE e S S

7 B 9

e Mean parameters .,
o © ©

Us = EpXs]= PXs= 1 fordl sV, and

4 5 6
Ust = Ep[XeXi]= P[(Xs, Xt) = (1,1)] for dl (s,t) DE. o ©O ©
e For fully disconnected graph F, o 9 9

Mp(G) :={1 € RIVIFIE] 10< 7 <1,Vs €V, 7y =7s7,V(s,t) € '}

e The dual decomposes into sum, one for each node

Ap(r) = [rslog7e + (1 — 75) log(1 — 7))
seV
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Naive Mean Field for Ising Model | :¢

e Optimization Problem

max {ZH [bs + Z Ostfispte + ZH (1ts) }

[0,1]"
nel (s,0)EE sEV

e Update Rule @
Jls 4 0(93 + Y 93tu¢) S

teN (s)

o 1 =p(Xy=1) =E,[X;] resembles “message” sent from node ¢ to s

{E,[X¢],t € N(s)} forms the “mean field” applied to s from its
neighborhood

e Also yields lower bound on log partition function
KLQ|P)=-Hy(X)- Z E,log f,(X,)+logZ

faeF
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Geometry of Mean Field -

e Mean field optimization is always non-convex for any
exponential family in which the state space X’™ is finite

e Recall the marginal polytope is a convex hull '
M(G) = conv{g(e);e € X}

e Mp(G) contains all the extreme points

e Ifitis a strict subset, then it must be non-convex “A'

e Example: two-node Ising model
Mp(G)={0<1 <1,0<n < 1,72 = 1172}

e It has a parabolic cross section along 71 = 7o , hence non-convex
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Cluster-based approx. to the 1
7 Wiegerinck 2001, 4
Gibbs free energy e 2om | 8

Exact: G[p(X)] (intractable)
Clusters: G[{0.(X,)}]

© Eric Xing @ CMU, 2005-2016 12



Mean field approx. to Gibbs free 434

3
energy o
e Given a disjoint clustering, {C,, ..., C}, of all variables
o Let q(X) = [T a X,

e Mean-field free energy

Gy ZZHq ( )E(Xci)J“ZZqi(Xci )lnqi(xci)

I X S ¢

c.g., GMF = qu ( )75(X X, )+ZZ gq\x )¢5(X )+ ZZCI lnCI (naive mean field)

i<J XX

e Will never equal to the exact Gibbs free energy no matter what clustering is used,
but it does always define a lower bound of the likelihood

e Optimize each gi(x,)'s.
e Variational calculus ...
e Do inference in each qg;(x,) using any tractable algorithm

© Eric Xing @ CMU, 2005-2016 13



The Generalized Mean Field
theorem

Theorem: The optimum GMF approximation to the
cluster marginal is isomorphic to the cluster posterior of
the original distribution given internal evidence and its
generalized mean fields:

qi*(XH,Ci ) = p(XH,Ci |XE,<:i 9<XH,I\/IBi >qj¢i)

GMF algorithm: Iterate over each Q;

© Eric Xing @ CMU, 2005-2016
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A generalized mean field T
algorith m [xing et al. UAI 2003] oo
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A generalized mean field T
algorith m [xing et al. UAI 2003] oo
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Convergence theorem

Theorem: The GMF algorithm is guaranteed to

converge to a local optimum, and provides a lower
bound for the likelihood of evidence (or partition
function) the model.

© Eric Xing @ CMU, 2005-2016
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The naive mean field
approximation oo

e Approximate p(X) by fully factorized q(X)=P;q;(X)

e For Boltzmann distribution p(X)=exp{2; < ; 4; XX+ X }/Z :

). } Q O
| O @ O
=p(X; [{X), 1 €N} Q Q

= <X j> resembles a “message” sent from node jto i

mean field equation:

q;(X;) = eXP{HioX,‘ T Z 0; X

JEN;

" {(X ), : ] €N, }forms the “mean field” applied to X; from its neighborhood
J
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Example 1: Generalized MF 433+
approximations to Ising models o

X080 EEEE
58888888
SLEF 0
B2 E88S

Cluster marginal of a square block C,:

A4

q(XCk)oceXp< z Qinin-I—Z@ioxi-l- Z Qijxi<xj>q(xck‘)

i,jECk iECk ieCy ,jeMBy ,
k'eMBCy

Virtually a reparameterized Ising model of small size.
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GMF approximation to Ising
models

Singleton marginal error CPU time

attractive repulsive attractive repulsive

_ ©FEric Xing @ CMU, 2005-2016
Attractive coupling: positively weighted

Repulsive coupling: negatively weighted 20



Example 2: Sigmoid belief
network

0.5

0.4;

0.31

0.27

0.1r

Singleton marginal error

GMF, |

no obs

with obs

140

1207

1007

801

601

40+

20¢
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CPU time

with obs
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Example 3: Factorial HMM E
OO OO OO0 | O-O~-O-O-0-0-0~-0
ﬁ/”%ﬁ o
00O OO O O O OO0 00000

0.1 ‘ o . ﬁﬁ
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Automatic Variational Inference .

(b)
A —O—D——
—(E)—— (D))

fHMM Mean field approx. Structured variational approx.

e Currently for each new model we have to

e derive the variational update equations
e write application-specific code to find the solution

e [Each can be time consuming and error prone

e Can we build a general-purpose inference engine which
automates these procedures?

© Eric Xing @ CMU, 2005-2016 23



Probabilistic Topic Models .o

e Humans cannot afford to deal with (e.g., search, browse, or
measure similarity) a huge number of text documents

e \We need computers to help out ...

© Eric Xing @ CMU, 2005-2016 24



How to get started? 4+

e Here are some important elements to consider before you start:
e Task:
Embedding? Classification? Clustering? Topic extraction? ...

e Data representation:
Input and output (e.g., continuous, binary, counts, ...)

e Model:
BN? MRF? Regression? SVM?

e Inference:
Exact inference? MCMC? Variational?

e Learning:
MLE? MCLE? Max margin?
e Evaluation:

Visualization? Human interpretability? Perperlexity? Predictive accuracy?

e It is better to consider one element at a time!

© Eric Xing @ CMU, 2005-2016 25



Tasks: document embedding o°

e Say, we want to have a mapping ..., so that

e Compare similarity *" g
e Classify contents

e Cluster/group/categorizing

e Distill semantics and perspectives

© Eric Xing @ CMU, 2005-2016 26



Summarizing the data using topics

—

Bayesian
modeling

Visual
cortex

Education

Bayesian
model
inference
models
probability
probabilistic
Markov
prior
hidden
approach

cortex
cortical
areas
visual
area
primary
connections
ventral
cerebral
Sensory

students
education
learning
educational
teaching
school
student
skills
teacher
academic

© Eric Xing @ CMU, 2005-2016

market
economic
financial
economics
markets
returns
price
stock
value
Investment
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X X
0000
0000
o000
- o0
ee NOwW ddla Changes over time o
2/27/2007 4/24/2007 6/26/2007 8/28/2007 10/23/2007 12/25/2007 2/19/2008
healthcare healthcare healthcare healthcare kucinich obama obama
abc abc wisconsin wisconsin ron clinton clinton
wisconsin wisconsin vegas vegas obama paul hillary
vegas vegas superdelegate superdelegate healthcare ron barack
superdelegate superdelegate nevada kucinich paul kucinich campaign
nevada nevada abc nevada wisconsin hillary democratic
delegate delegate fundraising fundraising vegas iowa iowa
civil civil delegate delegate superdelegate campaign kucinich
recount fundraising civil florida iowa new paul
florida recount florida civil nevada barack ron
© Eric Xing @ CMU, 2005-2016 28



User interest modeling using topics

User interest profile (adjustable with sliders---Changing these changes recommendations.)

Weight User preferred topics
. : learning machine training vector learn machines kernel learned classifiers classifier
: online classification digital library libraries browsing classify classifying labels catalog
: two differences active hypothesis arise difference evolved morphological modify morphology
! experiments ability demonstrated produced contexts situations instances fail recognize string
: features class classes subset java characteristic earlier represented defines separate
: process making presents objective steps reports distinguish exploit maintaining select
: algorithm signal input signals output exact performs music sound iterative
: database databases contains version list comprehensive release stored update curated
: applications application provide built numerous proven providing discusses tremendous presents

10: text literature discovery mining biomedical full extract discovering texts themes

-
O N O n bW N e

http://cogito-demos.ml.cmu.edu/cgi-bin/recommendation.cgi
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L X X
0000
000 O
m o000
Representation: o
L] o
e Data: Bag of Words Representation
As for the Arabian and Palestinean voices that are against the
current negotiations and the so-called peace process, they are not
against peace per se, but rather for their well-founded ‘ .
predictions that Israel would NOT give an inch of the West bank - Arabian
(and most probably the same for Golan Heights) back to the
Arabs. An 18 months of "negotiations' in Madrid, and negotiations
Washington proved these predictions. Now many will jump on é .
me saying why are you blaming israelis for no-result negotiations. agaIHSt
I would say why would the Arabs stall the negotiations, what do peace
they have to loose ? Israel
Arabs 3
blaming
. . ' "/-ﬂ-‘ ]
e Each document is a vector in the word space .
. Q| leamnin
e Ignore the order of words in a document. Only count matters! /%: P
1| intelligence
. . ' . JoumlomrinciaW g n;z:m
e A high-dimensional and sparse representation (|V'| > D) sl | e
Not efficient text processing tasks, e.g., search, document e 0| peils
classification, or similarity measure e :
Not effective for browsing .
{ | volume

© Eric Xing @ CMU, 2005-2016 30



How to Model Semantic?

e Q: Whatis it about?

e A: Mainly MT, with syntax, some learning

l /

e

0.6 0.3 0.1
MT Syntax Learning
Source Parse likelihood
Target
Tree EM
SMT '
: Noun Hidden
Alignment
Phrase Parameters
Score imati
. Grammar Estimation
CFG argMax

\M

Unigram over vocabulary

Mixing
Proportion

Topics

Topic Models

© Eric Xing @ CMU, 2005-2016

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Why this is Useful?

e Q: Whatis it about?

e A: Mainly MT, with syntax, some learning

l

/

e

0.6

0.3

0.1

MT

Syntax

Learning

e Q: give me similar document?

Structured way of browsing the collection

e Other tasks

Dimensionality reduction
TF-IDF vs. topic mixing proportion

Classification, clustering, and more ...

Mixing
Proportion

© Eric Xing @ CMU, 2005-2016

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned
from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Topic Models: The Big Picture

Unstructured Collection

Structured Topic Network

Topic Discovery

\

W

>

Dimensionality
Reduction

2

Word Simplex

Topic Simplex

© Eric Xing @ CMU, 2005-2016
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LS| versus Topic Model 434
(probabilistic LSI) o

documents topic
topic documents
[72) 7)) &
.= S s, 2 _ ~
§ X = § W gl A _ DT Xx=W"d
LSI
documents topics
. documents
< -§ N a Topic-Mixing is via repeated
§ P(W) — = g P(2) word labeling
al
Topic models

© Eric Xing @ CMU, 2005-2016 34



Words in Contexts ot

. “ltwas anice shot.”

© Eric Xing @ CMU, 2005-2016 35



Words in Contexts (con'd)

e the opposition Labor Party fared even worse, with a
predicted 35 seats, seven less than last election.

© Eric Xing @ CMU, 2005-2016 36



"Words" in Contexts (con'd) os




Admixture Models

Objects are bags of elements

Mixtures are distributions over eleme

Objects have mixing vector 6

Represents each mixtures’ contributions

Object is generated as follows:

Pick a mixture component from 0
Pick an element from that component

© Eric Xing @ CMU, 2005-2016
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X
0000
0000
. -
Topic Models °
Generating a document
— Draw @ from the prior Prior
For each word n
-Draw z, from multinomia (&) 0
-Draw W, | z,,{, } from multinomial(ﬁzn)
z
B+ Ow
K N,
Which prior to use? N

© Eric Xing @ CMU, 2005-2016
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Choices of Priors o

e Dirichlet (LDA) (Blei et al. 2003)

e Conjugate prior means efficient inference

e Can only capture variations in each topic’s
intensity independently

e Logistic Normal (CTM=LoNTAM)
(Blei & Lafferty 2005, Ahmed &
Xing 2006)

e Capture the intuition that some topics are highly
correlated and can rise up in intensity together

e Not a conjugate prior implies hard inference

© Eric Xing @ CMU, 2005-2016
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X X
0000
gose
Generative Semantic of LONTAM | ¢
Generating a document u <2 z
— Draw @ from the prior >>
For each word n
-Draw z, from multinomia 1(6) Eéy
-Draw W, | z,,{8,, } from multinomia I(,an)
BN ?
KM
7~ N, (.2) "
7/~NK_1(/1,Z) vk =0 \@® dN
O
©

K1
Cly)= logEI e
it

il
nl

K-1
0 exp{yi —10g(1+ Z:eyi j}
i—1

R

- Log Partition Function

© Eri

L Xing @ CM

) =oNormalization Constant
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Posterior inference

Topic proportions

Topic assignments

oobooao

Friston K.

Abstract

This article is about how the brain data mines its sensory
principles of functional brain anatomy that have emerged f
over the past century. These principles are considered in |

Learning and inference in the bram

The Wellcome Department of Imaging Neuroscience, Institute of Neur
London WC1N 3BG, UK. k.friston@fl.ion.ucl.ac.uk

© Eric Xing @ CMU, 2005-2016
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Posterior inference results

Topic proportions

Li
Er

Th
Lc._

Al

|
T
|
|
|
/ 1 |
|
I
|
|
I
1

Topic assignments
DomOmm™

! neinfi

c:[:-:li men
BG JK. k

stitute of Neur

© Eric Xing @ CMU, 2005-2016

Bayesian
\ model
inference

cortex
cortical

input
\ output
system
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Joint likelihood of all variables

K D N
p(B.6.z.w) =[] p(Belm [ | p0ale) [ | p(zanl6a) P(wanlzan. B)

k=1

OO Y

D

We are interested in computing the posterior,
and the data likelihood!

© Eric Xing @ CMU, 2005-2016 44



Inference and Learning are both cece

000
intractable e
e A possible query:
p(6, |D)="?
P(z,,|D)="7
e Close form solution?  p(6, | D) _ P6,D)
p(D)
{ZZJ[H (1;[ PWom | £z, ) P2 WH)j P(6, |0‘)J p(Smdo dp

p(D)

p(D)= " [-+] [H[H P | B,)P(Zy |«9n>jp<9n Ia)jp(ﬂlﬂ)d@-“d%dﬂ
{Zom} n m

e Sum in the denominator over T" terms, and integrate over n k-dimensional topic
vectors

e Learning: What to learn? What is the objective function?

© Eric Xing @ CMU, 2005-2016 45



Approximate Inference

e Variational Inference

Mean field approximation (Blei et al)
Expectation propagation (Minka et al)
Variational 2nd-order Taylor approximation (Xing)

e Markov Chain Monte Carlo

Gibbs sampling (Griffiths et al)

© Eric Xing @ CMU, 2005-2016
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Mean-field assumption o
e True posterior
p(/67 (9,2,’11])
0, zlw) =
p(B, 0, z|w) ()

e Break the dependency using the fully factorized distribution
g(B.0.2) =[[aB | [20a) | | 9(zan)
k d n

e Mean-field family usually does NOT include the true posterior.

© Eric Xing @ CMU, 2005-2016 47



Update each marginals

e Update

q(0a) o< exp (ET, g(zgn) [log p(fale) + ) log p(zanGd)B
n

— —Dirichlet

K
p(Bale) o< exp ) (e — 1) log 4k

k=1

] =

p(zanl0a) = exp

|
|

1[zg, = k]log Qdk} — —Multinomial
k

Il
p—

e \We obtain N
q(0q) o exp {Z (Z q(Zan = k) + g — 1) log O
k=1

n=1

This is also a Dirichlet---the same as its prior!

© Eric Xing @ CMU, 2005-2016

48




Coordinate ascent algorithm for LDA

1: Initialize variational topics g(fy), k=1,..., K.

2: repeat

3: for each documentde {1,2,..., D} do

4 Initialize variational topic assigments q(z4,), n=1,..., N
5 repeat

6 Update variational topic proportions g(6 ;)

7 Update variational topic assigments q(z4,), n=1,..., N
8 until Change of g(0,) is small enough

9 end for

0 Update variational topics g(fi), k=1,..., K.

1: until Lower bound L(g) converges

© Eric Xing @ CMU, 2005-2016 49



Choice of q() does matter

M 2
%ij
NS

P(7,12}ID)

2* is full matrix

Multivariate
Quadratic Approx.

N*Rgc)
Y

3 ZgCﬂp
C} N

W

A(r. 2,,) =l = T alzal¢,)

Log Partition Function

2* is assumed to be diagonal

Closed Form
Solution for p*, Z*

Ahmed&Xing

K -1
log (1+ Z e“j

i=1

© Eric Xing @ CMU, 2005-2016

A\ 4

Tangent Approx.

Numerical
Optimization to
fit u*, Diag(Z*)

Blei&Lafferty

50




Tangent Approximation .

Gamma (Gamma
4 T T T T =
Exact e = Expﬂndﬂ ExaCt Expanded
sl|——-Bound|. ... ... . S s e 5 ] Arround e ——Quadratic|  Amound .
: ; ; - - (2018 (0519 o
5 .
2 ;
2 : :
8 : 5
= : 0). :
: 4 :
: , 4
: "
B 1 2 3 4 5 4y
> rp{vi }
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e00
o000
e0o00
3
How to evaluate? -
e Empirical Visualization: e.g., topic discovery on New
York Times
The 5 most frequent topics from the HDP on the New York Times.
game life film book wine
season kKnow movie life street
team school show books hotel
coach street life novel house
play man television story room
points family films man night
games says director author place
giants house man house restaurant
second children story war park
players night says children garden

© Eric Xing @ CMU, 2005-2016
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How to evaluate? p%z{@
- 0

« Test on Synthetic Text where ground truth is kgowﬂ B0 \i’
/
4

Ground Truth ’

o oL At

100 200 300 400
At the End of EM (AX

100 200 300 400
At the End of EM (BL

100 200 300 400
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Comparison: accuracy and speed

L2 error in topic vector est.
and # of iterations

e Varying Num. of Topics

e Varying Voc. Size

e Varying Num. Words Per
Document

Yocabulary Size=1000 , WordsPerDocument=200
40

W
&

30 q

in Theta %

L2 emn

L
a 20 40 60 a0 100 120
#Topics

#Topics=50 , WordsPerDocument=200

L2 error in Theta %

L L L L L L
1600 2000 2500 3000 3500 4000 4500

“oc. Size

L n
a 500 1000

#Topics=50 |, Voc Size=1000

2| Xing&Ahmed
80 BleifLafferty [q

70 B

L2 errorin Theta %

0 L L L L n L L L L
1) 100 200 300 400 500 GOO 700 8OO 900 1000

© Eric Xing @ CMU2665-20"6"™"

MNurnber of Iter

MNumber of Iter

Nurnber of lter

Yocabulary Size=1000 , ¥WordsPerDocurment=200

1
1} 0 40 60 a0
#lopics

#Topics=50 , WordsPerDocument=200

200t 4

300 1

200+ B

100

L L L L L L L
1000 1500 2000 2500 3000 3500 4000 4500

Yot Size

L
[1} 500

#lopics=50 , Vot Size=1000

100

L
900 1000

54
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Comparison: perplexity

Held-out perplexity

[ [

190QIO

15

20 25
Number of topics

© Eric Xing @ CMU, 2005-2016
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Classification Result on PNAS i
collection ot

e PNAS abstracts from 1997-2002

e 2500 documents
e Average of 170 words per document

e Fitted 40-topics model using both approaches

e Use low dimensional representation to predict the abstract category
e Use SVM classifier

e 85% for training and 15% for testing

Classification Accuracy

Category Doc | BL | AX
Genetics 21 61.9 | 61.9 Notable Difference

SIS _ . .
Biochemistry | 86 | 65.1 = ) -Examine the low dimensional
Immunology | 24 | 70.8 | 66.6 representations below

Biophysics 15 | 53.3 | 66.6
Total 146 | 64.3 | 72.6

© Eric Xing @ CMU, 2005-2016 56




What makes topic models useful -
-- The Zoo of Topic Models!

e Itis a building block of many models.

Williamson et al. 2010 Chang & Blei, 2009 Titov & McDonald, 2008
JECa T
eforo-pfo-e] i %20”
Qe @@ | |
O ® BT | e en

O & e
7 T N 2N z N
o }g @@\§ s i i i
\ ! ‘
OO J @’@57:2/0\0 “ N WﬁK

McCallum et al. 2007 Boyd-Graber & Blei, 2008 Wang & Blei, 2008
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Conclusion
e GM-based topic models are cool
e Flexible
e Modular

e Interactive

e There are many ways of implementing topic models
e unsupervised
e supervised

e Efficient Inference/learning algorithms

e GMF, with Laplace approx. for non-conjugate dist.
e MCMC

e Many applications
[ J
e Word-sense disambiguation
e Image understanding

e Network inference
© Eric Xing @ CMU, 2005-2016
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Summary on VI -

e Variational methods in general turn inference into an optimization
problem via exponential families and convex duality

e The exact variational principle is intractable to solve; there are two
distinct components for approximations:

e Either inner or outer bound to the marginal polytope
e Various approximation to the entropy function

e Mean field: non-convex inner bound and exact form of entropy

e BP: polyhedral outer bound and non-convex Bethe approximation

e Kikuchi and variants: tighter polyhedral outer bounds and better
entropy approximations (Yedidia et. al. 2002)
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