
School of Computer Science

Probabilistic Graphical Models 

Gaussian graphical models and 
Ising models: modeling networks 
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Lecture 10, February 15, 2016

Reading: See class website
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Social Network Internet Regulatory Network

Network Research
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Where do networks come from?
 The Jesus network

© Eric Xing @ CMU, 2005-2016 3



Evolving networks

March 2005 January 2006 August 2006

Can I get his vote?

Corporativity, 

Antagonism,

Cliques,
…

over time?
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…

t=1 2 3 T

Evolving networks
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Two “Optimal” approaches 
 “Optimal” here means the employed algorithms guarantee to 

return a structure that maximizes the objectives (e.g., LogLik)
 Many heuristics used to be popular, but they provide no guarantee on attaining 

optimality, interpretability, or even do not have an explicit objective
 E.g.: structured EM, Module network, greedy structural search, etc. 

 We will learn two classes of algorithms for guaranteed 
structure learning, which are likely to be the only known 
methods enjoying such guarantee, but they only apply to 
certain families of graphs:
 Trees: The Chow-Liu algorithm (this lecture)
 Pairwise MRFs: covariance selection, neighborhood-selection (later)      
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Key Idea: network inference as 
parameter estimation



 Nodal states can be either discrete (Ising/Potts model), or 
continuous (Gaussian graphical model), or heterogeneous 

 the parameter matrix encodes the graph structure
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Model: 
Pairwise Markov Random Fields



Recall Multivariate Gaussian
 Multivariate Gaussian density:

 WOLG:  let

 We can view this as a continuous Markov Random Field with 
potentials defined on every node and edge:
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Cell type

Microarray 
samples Encodes dependencies 

among genes

Gaussian Graphical Model
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Edge corresponds to non-
zero precision matrix 
element

Precision Matrix Encodes Non-Zero
Edges in Gaussian Graphical Modela
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 Correlation network is based on Covariance Matrix

 A GGM is a Markov Network based on Precision Matrix
 Conditional Independence/Partial Correlation Coefficients 

are a more sophisticated dependence measure

With small sample size, empirical covariance matrix cannot be inverted

Markov versus Correlation 
Network
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Sparsity
 One common assumption to make: sparsity

 Makes empirical sense: Genes are only assumed to 
interface with small groups of other genes.

 Makes statistical sense: Learning is now feasible in high 
dimensions with small sample size

sparse
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Network Learning with the 
LASSO
 Assume network is a Gaussian Graphical Model

 Perform LASSO regression of all nodes to a target node
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Network Learning with the 
LASSO
 LASSO can select the neighborhood of each node
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L1 Regularization (LASSO)
 A convex relaxation.

 Enforces sparsity!

Constrained Form Lagrangian Form


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Theoretical Guarantees
 Assumptions

 Dependency Condition: Relevant Covariates are not overly dependent
 Incoherence Condition: Large number of irrelevant covariates cannot be too 

correlated with relevant covariates
 Strong concentration bounds: Sample quantities converge to expected values 

quickly 

If these are assumptions are met, LASSO will asymptotically recover 
correct subset of covariates that relevant.
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Network Learning with the 
LASSO
 Repeat this for every node
 Form the total edge set 
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If 

Then with high probability, 

Consistent Structure Recovery
[Meinshausen and Buhlmann 2006, Wainwright 2009]
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Why this algorithm work?
 What is the intuition behind graphical regression?

 Continuous nodal attributes
 Discrete nodal attributes

 Are there other algorihtms?

 More general scenarios: 
non-iid sample and evolving networks

 Case study
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Multivariate Gaussian
 Multivariate Gaussian density:

 A joint Gaussian: 

 How to write down p(x2), p(x1|x2) or p(x2|x1) using the block 
elements in  and ?
 Formulas to remember:
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The matrix inverse lemma
 Consider a block-partitioned matrix:

 First we diagonalize M

 Schur complement:

 Then we inverse, using this formula:

 Matrix inverse lemma
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The covariance and the precision 
matrices
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Single-node Conditional 
 The conditional dist. of a single node i given the rest of the 

nodes can be written as:

 WOLG: let 
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Conditional auto-regression 
 From 

 We can write the following conditional auto-regression 
function for each node:

 Neighborhood est. based on auto-regression coefficient
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Conditional independence
 From

 Given an estimate of the neighborhood si, we have:

 Thus the neighborhood si defines the Markov blanket of node i
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Recent trends in GGM:
 Covariance selection (classical 

method) 
 Dempster [1972]: 

 Sequentially pruning smallest 
elements in precision matrix

 Drton and Perlman [2008]: 
 Improved statistical tests for 

pruning

 L1-regularization based 
method (hot !)
 Meinshausen and Bühlmann [Ann. 

Stat. 06]: 
 Used LASSO regression for 

neighborhood selection
 Banerjee [JMLR 08]: 

 Block sub-gradient algorithm for 
finding precision matrix

 Friedman et al. [Biostatistics 08]: 
 Efficient fixed-point equations 

based on a sub-gradient 
algorithm

 …

Serious limitations in 
practice: breaks down when 
covariance matrix is not 
invertible

Structure learning is possible 
even when # variables ＞ # 
samples
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The Meinshausen-Bühlmann 
(MB) algorithm: 

Step 1: Pick up one variable

Step 2: Think of it as “y”, and the rest as “z”

Step 3: Solve Lasso regression problem between y and z

Step 4: Connect the k-th node to those having nonzero weight in w

 Solving separated Lasso for every single variables:

The resulting 
coefficient does not 
correspond to the Q 
value-wise
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L1-regularized maximum 
likelihood learning
 Input: Sample covariance matrix S

 Assumes standardized data (mean=0, variance=1)
 S is generally rank-deficient 

 Thus the inverse does not exist

 Output: Sparse precision matrix Q
 Originally, Q is defined as the inverse of S, but not directly invertible
 Need to find a sparse matrix that can be thought as of as an inverse of S 

 Approach: Solve an L1-regularized maximum likelihood 
equation

log likelihood regularizer
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From matrix opt. to vector opt.:
coupled Lasso for every single Var.

 Focus only on one row (column), keeping the others constant

 Optimization problem for blue vector is shown to be Lasso (L1-
regularized quadratic programming)

 Difference from MB’s: Resulting Lasso problems are coupled
 The gray part is actually not constant; changes after solving one Lasso problem 

(because it is the opt of the entire Q that optimize a single loss function, whereas 
in MB each lasso has its own loss function..

 This coupling is essential for stability under noise
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Learning Ising Model 
(i.e. pairwise MRF)
 Assuming the nodes are discrete (e.g., voting outcome of a 

person), and edges are weighted, then for a sample x, we 
have 

 It can be shown the pseudo-conditional likelihood for node k is 
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Question: vector-valued nodes
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New Problem: 
Evolving Social Networks

March 2005 January 2006 August 2006

Can I get his vote?

Corporativity, 

Antagonism,

Cliques,
…

over time?
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T0 TN

…

Drosophila development

t*

n=1 or some small #

Reverse engineering time-
specific "rewiring" networks
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Inference I
 KELLER: Kernel Weighted L1-regularized Logistic Regression

 Constrained convex optimization
 Estimate time-specific nets one by one, based on "virtual iid" samples
 Could scale to ~104 genes, but under stronger smoothness assumptions

[Song, Kolar and Xing, Bioinformatics 09]

Lasso:
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 Conditional likelihood

 Neighborhood Selection:

 Time-specific graph regression:
 Estimate at

Where

and

Algorithm – nonparametric 
neighborhood selection
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Structural consistency of 
KELLER

Assumptions
 Define: 

 A1: Dependency Condition

 A2: Incoherence Condition

 A3: Smoothness Condition

 A4: Bounded Kernel
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Theorem [Kolar and Xing, 09]
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 TESLA: Temporally Smoothed L1-regularized logistic 
regression

 Constrained convex optimization
 Scale to ~5000 nodes, does not need smoothness assumption, can 

accommodate abrupt changes. 

Inference II [Amr and Xing, PNAS 2009, AOAS 2009]
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Temporally Smoothed Graph 
Regression

TESLA:

…
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Modified estimation procedure
 estimate block partition on which the coefficient functions 

are constant

 estimate the coefficient functions on each block of the 
partition

(*)

(**)
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Structural Consistency of TESLA

I. It can be shown that, by applying the results for model
selection of the Lasso on a temporal difference 
transformation of (*), the block are estimated 
consistently

II. Then it can be further shown that, by applying Lasso on 
(**), the neighborhood of each node on each of the 
estimated blocks consistently

 Further advantages of the two step procedure
 choosing parameters easier
 faster optimization procedure

[Kolar, and Xing, 2009]
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Senate network – 109th congress

 Voting records from 109th congress (2005 - 2006)
 There are 100 senators whose votes were recorded on the 

542 bills, each vote is a binary outcome
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Senate network – 109th congress

March 2005 January 2006 August 2006
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Senator Chafee
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Senator Ben Nelson

T=0.2 T=0.8
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S1 (normal)

Progression and Reversion of 
Breast Cancer cells

T4 (malignant)

T4 revert 1

T4 revert 2

T4 revert 3
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T4

S1

T4R1

T4R2

T4R3

Estimate Neighborhoods Jointly 
Across All Cell Types

How to share information 
across the cell types?
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Penalize differences between networks of adjacent cell types

T4

S1

T4R1

T4R2

T4R3

Sparsity of Difference
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RSS for all cell types

sparsity Sparsity of difference

Tree-Guided Graphical Lasso 
(Treegl)

© Eric Xing @ CMU, 2005-2016 51



S1

T4

EGFR-ITGB1

PI3K-MAPKK

MMP

Network Overview
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S1 cells
T4 cells: Increased Cell Proliferation, 
Growth, Signaling, Locomotion

Interactions – Biological 
Processes

© Eric Xing @ CMU, 2005-2016 53



MMP-T4R cells: 
Significantly reduced 
interactions

T4 cells

Interactions – Biological 
Processes
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PI3K-MAPKK-T4R: Reduced Growth, 
Locomotion and SignalingT4 cells

Interactions – Biological 
Processes
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Fancier network est. scenarios
 Dynamic Directed (auto-regressive) Networks

 Missing Data

 Multi-attribute Data

[Song, Kolar and Xing, NIPS 2009]

[Kolar and Xing, ICML 2012]

[Kolar, Liu and Xing, JMLR 2013]
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Summary
 Graphical Gaussian Model

 The precision matrix encode structure
 Not estimatable when p >> n

 Neighborhood selection:
 Conditional dist under GGM/MRF
 Graphical lasso
 Sparsistency

 Time-varying Markov networks
 Kernel reweighting est.
 Total variation est.
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