School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Gaussian graphical models and
Ising models: modeling networks

Reading: See class website
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Network Research
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Where do networks come from? o2

e The Jesus network
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Evolving networks

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

over time?

March 2005 January 2006 August 2006

© Eric Xing @ CMU, 2005-2016 4



Evolving networks
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Recall: ML Structural Learning

for completely observed
GMs
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Two “Optimal” approaches o

e “Optimal” here means the employed algorithms guarantee to
return a structure that maximizes the objectives (e.g., LogLik)

e Many heuristics used to be popular, but they provide no guarantee on attaining
optimality, interpretability, or even do not have an explicit objective

e E.g.: structured EM, Module network, greedy structural search, etc.

e We will learn two classes of algorithms for guaranteed
structure learning, which are likely to be the only known
methods enjoying such guarantee, but they only apply to
certain families of graphs:

e Trees: The Chow-Liu algorithm (this lecture)
e Pairwise MRFs: covariance selection, neighborhood-selection (later)
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Key Idea: network inference as T
parameter estimation +-

|

- 7 expl0171 + Oxx9 + 0323 + 0424 +

01200122 + 0132123 + O23T273 + 93437333’4}



Model:

Pairwise Markov Random Fields

|

P(fl?h L2, T3, 5174) — E @XP{91£U1 + 025 + 0323 + 0424 +

01202122 + 0132123 + O232273 + 9343?333’4}

e Nodal states can be either discrete (Ising/Potts model), or
continuous (Gaussian graphical model), or heterogeneous

e the parameter matrix encodes the graph structure
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Recall Multivariate Gaussian o2

e Multivariate Gaussian density:
1

(Zﬂ)n/Z‘z‘l/Z exp{-%(x—,u)T 2 (X_lu)}

p(x|u,x)=

e WOLG: letp=0 Q=x"1

Q1/2 | 2
p(Xsza"'aXp |,U - O,Q) = (‘Zi)n/z eXp{'zZi: qii(Xi) _ZqUXin}

i<]

e \We can view this as a continuous Markov Random Field with
potentials defined on every node and edge:
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Gaussian Graphical Model -
Cell type
T n
X" ~ N(0, =)
Microarray
samples Encodes dependencies

among genes
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Precision Matrix Encodes Non-Zero eoco
Edges in Gaussian Graphical Modela | ¢

") _ (Em))‘l

Edge corresponds to non-
zero precision matrix
element
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Markov versus Correlation
Network

Correlation network is based on Covariance Matrix

E«z’,’j =0 = X’LJ—X] or p(Xian) — p(X‘E)p(XJ)

A GGM Is a Markov Network based on Precision Matrix

» Conditional Independence/Partial Correlation Coefficients
are a more sophisticated dependence measure

Qi; =0 = X LX;|X_; or p(X;, X;|X_;) = p(Xi|X_i;)p(X;]X )

[ % % *x x % 0 L2 L3
* % x *x *x 0O
Q= * x x 0 0O Tq T4
* * 0 %« 0O
* * 0 0 % O \
\0 0 0 0 0 %) 26 O

5
With small sample size, empirical covariance matrix cannot be inverted
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Sparsity

e One common assumption to make: sparsity

e Makes empirical sense: Genes are only assumed to
interface with small groups of other genes.

e Makes statistical sense: Learning is now feasible in high
dimensions with small sample size

o) _ (gm)‘l

sparse
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Network Learning with the
LASSO

e Assume network is a Gaussian Graphical Model

e Perform LASSO regression of all nodes to a target node

e 5,9 .

3 /
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Network Learning with the i
LASSO oo

e LASSO can select the neighborhood of each node

B1 = argming, Y — XB1* + Al|B1 ]

[ ] 515‘

b1
1 ' 6

B2
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L1 Regularization (LASSO)

e A convex relaxation.

ined Form

Constra

Lagrangian Form

1Y = XBI° + A8

= argming

1Y —X3]|°

= argming

t to

subjec

P

Y IBl<c
j=1

e Enforces sparsity!
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Theoretical Guarantees ot

e Assumptions

e Dependency Condition: Relevant Covariates are not overly dependent

e Incoherence Condition: Large number of irrelevant covariates cannot be too
correlated with relevant covariates

e Strong concentration bounds: Sample quantities converge to expected values
quickly

If these are assumptions are met, LASSO will asymptotically recover
correct subset of covariates that relevant.
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Network Learning with the cece
LASSO oo

e Repeat this for every node
e Form the total edge set

€ = {(u,v) : max(|Bus|, | Boul) > 0}
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Consistent Structure Recovery

[Meinshausen and Buhlmann 2006, Wainwright 2009]

If . > C\/logp

Then with high probability,

S(B) — S(B”)
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Why this algorithm work? .o

e What is the intuition behind graphical regression?
e Continuous nodal attributes
e Discrete nodal attributes

e Are there other algorintms?

e More general scenarios:
non-iid sample and evolving networks

e (Case study
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Multivariate Gaussian

e Multivariate Gaussian density:
1

(272')”/2‘2‘1/2 exp{-%(x-u)T Z_I(X_'u)}

p(x|u,x)=

e A joint Gaussian:

Xy _ X4 M| | 2y 2
I W ]

e How to write down p(x,), p(x4|x,) or p(x,|x;) using the block
elements in xand X7?

e Formulas to remember:

p(x,) =N (x,|m37,V;") P(X1‘X2):/V(X1|m1|2av12)
m; = [, my, = i + Z122\:512 (X, — 145)
Vzm =25, V1|2 =2y _2122512221
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The matrix inverse lemma -

e Consider a block-partitioned matrix: M =

e First we diagonalize M

| -FH'][E F | 0] [E-FH'G 0
0 | G H||-H'G I]| 0 H
e Schur complement: M/H = E-FH ''G
e Then we inverse, using this formula: xXyz=w = Y'=27ZW'X

S L

| (MH)! -(M/H)'FH"! _|ET+E'F(M/E)'GE" -ET'F(M/E)’
-H'G(M/H)" H'+H'G(M/H) FH" -(M/E)"GE" (M/E)”

e Matrix inverse lemma
(E-FH'G)"' =E"'+E'F(H-GE'F ) 'GE"
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The covariance and the precision
matrices
2:{011 5;}
o, X

J

. (M/H) -(MMH)'FH "
-H'G(MH)" H'+H'G(M/H) ' FH"

J

Q :|: O 'qna-sz—l_l } _ {QU qlT }
'q112—1_151 2_1—1(| +q115151TZ—1_1) ql Q—l
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P(X1‘X2) = N (X, |m1|29V1\2)

3 =g 12 = My Z122512 Xo — Hp
Single-node Conditional "=~/ "=
12 = &11 T &1p&224421

|
e The conditional dist. of a single node i given the rest of the

nodes can be written as:

p(XilX i) = N (i + Exox X% x_, (Xoi = pixy)
2XX _ZXX ZX X ZX_J()

e WOLG: let © =20

p(Xi| X)) = N(Zxx_. X% XK Uxx — XX pyg XX ;)
= N(¢/27;X 0 qi—i)

a;
= N(_;“X—u q?;|_,£;)

Q= G 'qn&lTZ—]_l } _ |:qll qlT }
'an—]_]&l z:—1_l (I + q116151T2—1_1) (
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Conditional auto-regression o
e From
XX ) = N(Z=X i q)

Y

e We can write the following conditional auto-regression
function for each node:

e Neighborhood est. based on auto-regression coefficient

Si={j : J7#1,0;,;#0}
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Conditional independence o
e From
pXIX ) = N(F—X i q)

Y

e Given an estimate of the neighborhood s;, we have:
p(XilX=) = p(Xi]Xy)

e Thus the neighborhood s; defines the Markov blanket of node |

© Eric Xing @ CMU, 2005-2016 27



Recent trends in GGM: ot

e Covariance selection (classical e L,-regularization based

method) method (hot !)

e Dempster [1972]: e Meinshausen and Buhimann [Ann.
Sequentially pruning smallest Stat. 06]:
elements in precision matrix Used LASSO regression for

e Drton and Perlman [2008]: neighborhood selection

Improved statistical tests for e Banerjee [JMLR 08]:
pruning Block sub-gradient algorithm for
finding precision matrix

e Friedman et al. [Biostatistics 08]:

Serio.us limitations in Efficient fixed-point equations
praCtlce breakS dOWﬂ When based on a Sub_gradient
covariance matrix is not algorithm

invertible

Structure learning is possible

even when # variables > # ‘
samples
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The Meinshausen-Buhimann 34
(MB) algorithm: os

e Solving separated Lasso for every single variables:

L1, L2y " L1+ Lt Le4+1r "1 Tp

Step 1: Pick up one variable

o — L1, 2, ***y Th_1, ‘:Ck—|—1' "ty Ip

The resulting
coefficient does not

Step 3: Solve Lasso regression problem b¢tweeny andz | correspond to the Q
value-wise
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L,-regularized maximum T
likelihood learning o

—
N
e Input: Sample covariance matrix S S 3 Ln),.(n)
’ (} ¥i

n=1

1
N
e Assumes standardized data (mean=0, variance=1)

e S is generally rank-deficient
Thus the inverse does not exist

e Output: Sparse precision matrix Q
e Originally, Q is defined as the inverse of S, but not directly invertible
e Need to find a sparse matrix that can be thought as of as an inverse of S

-, I

——

A v
log likelihood In T M(z®|0,Q~t)  regularizer
t=1

e Approach: Solve an L,-regularized maximum likelihood
equation
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From matrix opt. to vector opt.: 3
coupled Lasso for every single Var. oo

e Focus only on one row (column), keeping the others constant

L 1

Q=1 ,7 ,

I

e Optimization problem for blue vector is shown to be Lasso (L,-
regularized quadratic programming)

e Difference from MB’s: Resulting Lasso problems are coupled

e The gray part is actually not constant; changes after solving one Lasso problem
(because it is the opt of the entire Q that optimize a single loss function, whereas
in MB each lasso has its own loss function..

e This coupling is essential for stability under noise
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Learning Ising Model
(i.e. pairwise MRF) oo

e Assuming the nodes are discrete (e.g., voting outcome of a
person), and edges are weighted, then for a sample x, we
have

P(x|®) = exp(Z@ T+ Z 000, — )

eV (i,j)€EE

e |t can be shown the pseudo-conditional likelihood for node k is

Py(xy|x\r) = logistic (2:1:k <9\k, x\k>)
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Question: vector-valued nodes
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New Problem: -+
Evolving Social Networks s

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

over time?

March 2005 January 2006 August 2006
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Reverse engineering time-
specific "rewiring” networks
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L X X
0000
000 O
sss
Inference I [Song, Kolar and Xing, Bioinformatics 09] °
e KELLER: Kernel Weighted L-regularized Logistic Regression
Nt . t t
e = argn;%nlw(%) + A €; |1 Vi
where [, (0%) = Zt; L w(xt';xt)log Pt xt 1,19:)
Lasso:
i = argman'}f ™:9) + Xl 9 |1

e Constrained convex optimization
e Estimate time-specific nets one by one, based on "virtual iid" samples
e Could scale to ~10% genes, but un tronger smoothness assumptions
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Algorithm — nonparametric
neighborhood selection

e Conditional likelihood

Pet(fvﬂxf\'i) = logistic (2z¢ (6, x‘iz>)

e Neighborhood Selection: S(z;) ={j| 9;‘-}3_ 20}

e Time-specific graph regression:
o Estimate at t* € [0,1]

m{ D wilt)(6:") +/\1||9||1}
teT™

Where  ~(0;2') = log Py (55:“171{;,)

Ky, (t—t*)
Ztﬂ'e’rn Khn (t’ - t*)

© Eric Xing @ CMU, 2005-2016
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Structural consistency of coce
KELLER oe

Assumptions
o Define: Qu=E[ViIogPy[X.|X\]], VueV z, =K {X(-U.X *T] . YueV
S = max max \Si| 0 min = Min max \9:\
u t ecEl

e A1: Dependency Condition
Aluin((gg‘ks) Z (-\'rmill- \VIT E [U l]
Amax () < Diax, ¥t € [0, 1]

e A2: Incoherence Condition J« € (0, 1] such that
|Q%s(Q5s) 7| <1—a, Vi*e€]0,1]

e A3: Smoothness Condition
maxsup |o], (t*)] < Ap, maxsup|ol (t*)]| < A
u.v t* u,v

uv uv
t*

max sup |¢,,.(t*)| < By, maxsupl|d’ (t*)| < B
U px COCENEE

e A4: Bounded Kernel
AM, > 1 max |K(2)| < My max K(z)? < M,
R © Eric Xing @ CMU, 2005'1260[%6 38



Theorem

[Kolar and Xing, 09]
Assume that A1, A2, A3. A4 hold. Furthermore, assume
that the following conditions hold:
L g = O(?’L_%)
2. Swhin=oll),

sy log pn
3. —neEt = o(1)

5. grnin — Q( \/ Sn-rl:,?ipn)

then
A N N,
P {G(Ahhmt*) + G* ] = £} (exp (—Cn; L ok 8 10gp)> — 0

© Eric Xing @ CMU, 2005-2016
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000
0000
0000
4
I nfe rence I I [Amr and Xing, PNAS 2009, AOAS 2009] °
e TESLA: Temporally Smoothed L,-regularized logistic
regressior T
N1 T : t
0;,...,0; = arg 9111”1.1}2? 2 Lavg (0;)

T
+A ) 1165 s
t=1

T
X ) 165 =07 |1,
t=2

where 1,,,(0f) = & ;ztl log P (x| _;.08).

e Constrained convex optimization

e Scale to ~5000 nodes, does not need smoothness assumption, can
accommodate abrupt changes.
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Temporally Smoothed Graph sece
Regression oo

L t. t I ¢
TESLA: M LA+ h3 tui+ 23 1]

u_l,m,:)T;v?_...,vr_
S.t. _/&E’jgeg‘.jgu&’jjt:]_j...jTjVjEV\?::
st —ol <0 -0 <wlt=2,...T,VjeV\i,
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Modified estimation procedure 4+

e estimate block partition on which the coefficient functioﬁs

are constant

N p
mﬁmZ(Yz —Xzﬂ(ti))2 —I—2>\22 Bkl v (*)
i—=1 k=1

e estimate the coefficient functions on each block of the
partition

. - . 2 **
%%tg(y; Xi7)2 + 201 |, (™)
Ay
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Structural Consistency of TESLA | :¢

|Ko|ari and Xingi 2009|

. It can be shown that, by applying the results for model
selection of the Lasso on a temporal difference
transformation of (*), the block are estimated
consistently

. Then it can be further shown that, by applying Lasso on
(**), the neighborhood of each node on each of the
estimated blocks consistently

e Further advantages of the two step procedure

e choosing parameters easier
e faster optimization procedure
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Senate network — 109t congress | ¢

e Voting records from 109th congress (2005 - 2006)

e There are 100 senators whose votes were recorded on the
542 bills, each vote is a binary outcome
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Senate network — 109t" congress

March 2005 January 2006 August 2006
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Senator Chafee ot
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Senator Ben Nelson ot

T=0.2 T=0.8
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Progression and Reversion of
Breast Cancer cells

Q
O
O

T4 revert 1 T4 revert 3

09
’o

T4 revert 2
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Estimate Neighborhoods Jointly | ss::
Across All Cell Types T

How to share information
across the cell types?

. a;)o T4R3
o‘ ng .. ® .‘
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Sparsity of Difference $43

Penalize differences between networks of adjacent cell types

Q‘h

. 9 S1
@®
)
l 167 — 951H1
°
@ @®
. - %?QQQ,OO T4
. °® 0! 2

H9T4R1 9T4H 0. 0 \9T4R3 T4 H
H9T4R2 074
T4R1 a:) T4R3
.

T4R2
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ical Lasso

ided Graph
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Network Overview
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Interactions — Biological cece
Processes oo

T4 cells: Increased Cell ProIiferItion,

S1 cells Growth, Signaling, Locomotion
o
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c?»‘\\’l’ Q ’(}Q °
O % >
& s & o)
e S % S K e®
" m\)\\) (o Y 03_0) ° e & u\\_\s
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i - - 0000
Interactions — Biological sect
o0
Processes -
T4 cells MMP-T4R cells:
Significantly reduced
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Fancier network est. scenarios -

e Dynamic Directed (auto-regressive) Networks
[Song, Kolar and Xing, NIPS 2009]

time (-1

e Missing Data
[Kolar and Xing, ICML 2012]

e Multi-attribute Data

[Kolar, Liu and Xing, JMLR 2013] ‘
) Qatp74D m\\‘;‘n
-~
bed
oYy b el
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Summary

« Graphical Gaussian Model

. The precision matrix encode structure
- Not estimatable when p >>n

« Neighborhood selection:
. Conditional dist under GGM/MRF
« Graphical lasso
. Sparsistency

o Time-varying Markov networks
. Kernel reweighting est.
. Total variation est.
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