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1 Exponential Family

Probability density functions that are in exponential family can be expressed in the following form.

p(x|η) = h(x)exp{ηTT (x)−A(η)}

A(η) = log

∫
h(x)exp{ηTT (x)}dx

One example of exponential family is multinomial distribution. For given data x = (x1, x2, ..., xk) , xi ∼
Multi(1, πi ) and Σ πi = 1, we can write the probability of the data as follows.

p(x|π) = πx1
1 πx2

2 ...πxk

k

= elog(π
x1
1 π

x2
2 ...π

xk
k )

= eΣk
i=1xilogπi

Thus, in the corresponding exponential form, η = [log π1, logπ2, ..., logπk], x = [x1, x2, ..., xk], T(x) = x,
A(η) = 0 and h(x) = 1.

Another example is Dirichlet distribution. Let α1, α2, ... , αk > 0. The probability function of such
distribution can be represented as an exponential function.

p(π|α) =
1

B(α)
ΠK
i=1π

αi−1
i

= eΣK
i=1(αi−1)logπi−logB(α)

where A(η) = logB(α), η = [α1, α2, ..., αk], T (x) = [logπ1, logπ2, ..., πk] and h((x)) = 1.

2 Cumulant Generating Property

Notice that one appealing feature of the exponential family is that we can easily compute moments of the
distribution by taking derivatives of the log normalizer A(η).
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2.1 First cumulant a.k.a Mean

The first derivative of A(η) is equal to the mean of sufficient statistics T (X).

dA

dη
=

d

dη
logZ(η)

=
1

Z(η)

d

dη
Z(η)

=
1

Z(η)

d

dη

{∫
h(x)exp{ηTT (x)}dx

}
=

∫
T (x)

h(x)exp{ηTT (x)}
Z(η)

dx

=

∫
T (x)p(x|η)dx

= E[T (X)]

2.2 Second cumulant a.k.a Variance

The second derivative of A(η) is equal to the variance or first central moment of sufficient statistics T (X).

d2A

dη2
=

∫
T (x)exp{ηTT (x)−A(η)}(T (x)− dA

dη
)h(x)dx

=

∫
T 2(x)

h(x)exp{ηTT (x)}
Z(η)

dx− dA

dη

∫
T (x)

h(x)exp{ηTT (x)}
Z(η)

dx

=

∫
T 2(x)p(x|η)dx− dA

dη

∫
T (x)p(x|η)dx

= E[T 2(X)]− (E[T (X)])2

= V ar[T (X)]

2.3 Moment estimation

Accordingly, the qth derivative gives the qth centered moment. When the sufficient statistic is a stacked
vector, partial derivatives need to be considered.

2.4 Moment vs canonical parameters

Since the moment parameter µ can be derived from the natural (canonical) parameter η by:

dA(η)

η
= E[T (x)]

def
= µ

Also notice that A(η) is convex since:

d2A(η)

dη2
= V ar[T (x)] > 0
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Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1)
by:

η
∆
= ψ(µ)

which means a distribution in the exponential family can be parameterized not only by η (the canonical
parameterization), but also by µ (the moment parameterization).

3 Sufficiency

For p(x|θ), T(x) is sufficient for θ if there is no information in X regarding θ beyond that in T(x).

θ ⊥⊥ X|T (X)

However, it is defined in different ways in the Bayesian and frequentist frameworks.

Bayesian view θ as a random variable. To estimate θ, T (X) contains all the essential information in X.

p(θ|T (x), x) = p(θ|T (x))

Frequentist view θ as a label rather than a random variable. T (X) is sufficient for θ if the conditional
distribution of X given T (X) is not a function of θ.

p(x|T (x), θ) = p(x|T (x))

For undirected models, we have

p(x, T (x), θ) = ψ1(T (x), θ)ψ2(x, T (x))

Since T (x) is function of x, we can drop T (x) on the left side, and then divide it by p(θ).

p(x|θ) = g(T (x), θ)h(x, T (x))

Another important feature of the exponential family is that one can obtain the sufficient statistics T (X)
simply by inspection. Once the distribution function is expressed in the standard form,

p(x|η) = h(x)exp{ηTT (x)−A(η)}

we can directly see T (X) is sufficient for η.
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4 MLE for Exponential Family

The reduction obtained by using a sufficient statistic T (X) is particularly notable in the case of IID sampling.
Suppose the dataset D is composed of N independent random variables, characterized by the same exponential
family density. For these i.i.d data, the log-likelihood is

l(η;D) = log

N∏
n=1

h(xn)exp{ηTT (xn)−A(η)}

=

N∑
n=1

log(h(xn)) + (ηT
N∑
n=1

T (xn))−NA(η)

Take derivative and set it to zero, we can get

∂l

∂η
=

N∑
n=1

T (xn)−N ∂A(η)

∂η
= 0

∂A(η)

∂η
=

1

N

N∑
n=1

T (xn)

µ̂MLE =
1

N

N∑
n=1

T (xn)

η̂MLE = ψ(µ̂MLE)

Our formula involves the data only via the sufficient statistic
∑N
n=1 T (Xn). This means that to estimate

MLE of η, we only need to maintain fixed dimensions of data. For Bernouilli, Poisson and multinomial
distributions, it suffices to maintain a single value, the sum of the observations. Individual data points can
be thrown away. While for the univariate Gaussian distribution, we need to maintain the sum

∑N
n=1 xn and

the sum of squares
∑N
n=1 x

2
n.

4.1 Examples

1. Gaussian distribution: We have

η =

[
Σ−1µ;−1

2
vec(Σ−1)

]
T (x) =

[
x; vec(xxT )

]
A(η) =

1

2
µTΣ−1µ+

1

2
log |Σ|

h(x) = (2π)−k/2.

So

µMLE =
1

N

∑
n

T (xn) =
1

N

N∑
n=1

xn.
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2. Multinomial distribution: We have

η =

[
ln
πk
πK

; 0

]
T (x) = [x]

A(η) = − ln

(
1−

K−1∑
k=1

πk

)
h(x) = 1.

So

µMLE =
1

N

N∑
n=1

xn.

3. Poisson distribution: We have

η = log λ

T (x) = x

A(η) = λ = eη

h(x) =
1

x!
.

So

µMLE =
1

N

N∑
n=1

xn.

5 Bayesian Estimation

5.1 Conjugacy

Prior
p(η|φ) ∝ exp{φTT (η)−A(η)}

Likelihood
p(x|η) ∝ exp{ηTT (x)−A(η)}

suppose η = T (η), posterior

p(η|x, φ) ∝ p(x|η)p(η|φ)

∝ exp{ηTT (x) + φTT (η)−A(η)−A(φ)}
∝ exp{ T (η)T︸ ︷︷ ︸

sufficient func

( T (x) + φ︸ ︷︷ ︸
natural parameter

)− (A(η) +A(φ)︸ ︷︷ ︸
A(η,φ)

)}
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6 Generalized Linear Model

GLIM is a generalized form of traditional linear regression. As in linear regression, the observed input x is
assumed to enter the model via a linear combination of its elements ξ = θTx. The output of the model, on
the other hand, is assumed to have an exponential family distribution with conditional mean µ = f(ξ), where
f is known as the response function. Note that for linear regression f is simply the identity function. Figure
1 is a graphical representation of GLIM. And Table 1 lists some correspondence between usual regression
types and choice of f and Y .

Figure 1: Graphical model of GLIM.
.

Regression Type f distribution of Y
Linear Regression identity N (µ, σ2)
Logistic Regression logistic Bernoulli
Probit regression cumulative Gaussian Bernoulli
Multivariate Regression logistic Multivariate

Table 1: Examples of regression types and choice of f and Y .

6.1 Why GLIMs?

As a generalization of linear regression, logistic regression, probit regression, etc., GLIM provides a framework
for creating new conditional distributions that comes with some convenient properties. Also GLIMs with
the canonical response functions are easy to train with MLE.

However, Bayesian estimation of GLIMs doesn’t have a closed form of posterior, so we have to turn to
approximation techniques.

6.2 Properties of GLIM

Formally, we assume the output of GLIM has the following form:

p(y|η, φ) = h(y, φ) exp

[
1

φ
(ηT (x)y −A(η))

]
.
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This is slightly different from the traditional definition of EF, where we include a new scale parameter φ;
most distributions are naturally expressed in this form.

Note that η = ψ(µ) and µ = f(ξ) = f(θTx), so we have η = ψ(f(θTx)). So the conditional distribution of y
given x, θ and φ is

p(y|x, θφ) = h(y, φ) exp

[
1

φ
(yTψ(f(θTx))−A(ψ(f(θTx))))

]
.

There’re mostly 2 design choices of GLIM: the choice of exponential family and the choice of f . The choice
of the exponential family is largely constrained by the nature of the data y. E.g., for continuous y we use
multivariate Gaussian, where for discrete class labels we use Bernoulli or multinomial. Response function
is usually chosen with some mild constraints, e.g., between [0, 1] and being positive. There’s a so-called
canonical response function where we use f = ψ−1; in this case the conditional probability is simplified to

p(y|x, θφ) = h(y, φ) exp

[
1

φ
(θTx · y −A(θTx))

]
.

Figure 2 lists canonical response function for several distributions. Figure 3 and table 2 lists the relationship

Figure 2: Canonical response function for several distributions.
.

between variables and canonical functions.

Figure 3: Relationship between variables and functions.
.

Regression Type Canonical Response µ = f(ξ) η = f−1(µ) distribution of Y
Linear Regression Y µ = ξ η = µ N (µ, σ2)
Logistic Regression Y µ = 1

1+exp(−ξ) η = log µ
1−µ Bernoulli(µ)

Probit regression N µ = φ(ξ) η = φ−1(µ) Bernoulli(µ)

Table 2: Some regression types and their response/link functions.
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6.3 MLE estimation for GLIMs with canonical response

Now we can compute the MLE estimation for canonical response functions: the log likelihood function is

l =
∑
n

log h(yn) +
∑
n

(θTxnyn −A(ηn)).

Take derivative with respect to θ(note that θ is the only parameter for GLIMs with canonical response):

dl

dθ
=
∑
n

(
xnyn −

dA(ηn)

dηn

dηn
dθ

)
=
∑
n

(yn − µn)xn = XT (y − µ).

So we can do stochastic gradient ascent with update rule

θ(t+1) = θ(t) + ρ(yn − (θ(t))Txn)xn

where ρ is the step size.

Another method is to use Newton-Raphson methods to obtain a batch-learning algorithm: The update rule
is

θ(t+1) = θ(t) −H−1∇θJ

where J is the cost function and H is the Hessian matrix (second derivative). We have

∇θJ = XT (y − µ),

and

H =
∂2l

∂θ∂θT
=

∂

∂θT

∑
n

(yn − µn)xn =
∑
n

xn
∂µn
∂θT

= −
∑
n

xn
∂µn
∂ηn

∂ηn
∂θT

= −
∑
n

xn
∂µn
∂ηn

xTn

= −XTWX,

where W = diag

(
dµ1

dη1
,
dµ2

dη2
, · · · , dµN

dηN

)
. So the update rule is

θ(t+1) = θ(t) −H−1∇θJ = (XTW (t)X)−1XTW (t)z(t)

where the adjusted response is z(t) = Xθ(t) + (W (t))−1(y − µ(t)).


