

Grade for hw 1
Project proposal
Questions

### **Linear Regression**



 Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where  $\pmb{\varepsilon}$  is an error term of unmodeled effects or random n



• Now assume that  $\varepsilon$  follows a Gaussian  $N(0,\sigma)$ , then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$



Eric Xing

# Logistic Regression (sigmoid classifier)



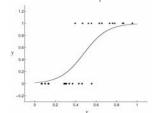
• The condition distribution: a Bernoulli

$$p(y | x) = \mu(x)^{y} (1 - \mu(x))^{1-y}$$

where  $\mu$  is a logistic function

generalized linear model!

$$\mu(x) = \frac{1}{1 + e^{-\theta^T x}}$$



We can used the brute-force gradient method as in LR

• But we can also apply generic laws by observing the partial is an exponential family function, more specifically, a

Eric Xing

### **Exponential family**



For a numeric random variable X

$$y(x|\eta) = h(x) \exp\{\eta^T T(x) - A(\eta)\}$$

$$= \frac{1}{Z(\eta)} h(x) \exp\{\eta^T T(x)\}$$



is an exponential family distribution with natural (canonical) parameter  $\eta$ 

- Function T(x) is a sufficient statistic.
- Function  $A(\eta) = \log Z(\eta)$  is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

### **Multivariate Gaussian Distribution**



• For a continuous vector random variable  $X \in \mathbb{R}^k$ :

• For a continuous vector random variable 
$$X \in \mathbb{R}^K$$
:
$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

$$= \frac{1}{(2\pi)^{k/2}} \exp\left\{-\frac{1}{2}\text{tr}(\Sigma^{-1})x^T\right\} + \mu^T \Sigma^{-1}x - \frac{1}{2}\mu^T \Sigma^{-1}\mu - \log|\Sigma|\right\}$$
• Exponential family representation
$$\eta = \left[\Sigma^{-1}\mu; -\frac{1}{2}\operatorname{vec}(\Sigma^{-1})\right] = \left[\eta_1, \operatorname{vec}(\eta_2)\right], \ \eta_1 = \Sigma^{-1}\mu \text{ and } \eta_2 = -\frac{1}{2}\Sigma^{-1}$$

$$T(x) = \left[x; \operatorname{vec}(xx^T)\right]$$

$$\eta = \left[ \Sigma^{-1} \mu; -\frac{1}{2} \operatorname{vec}(\Sigma^{-1}) \right] = \left[ \eta_1, \operatorname{vec}(\eta_2) \right], \ \eta_1 = \Sigma^{-1} \mu \text{ and } \ \eta_2 = -\frac{1}{2} \Sigma^{-1}$$

$$T(x) = \left[ x; \operatorname{vec}(xx^T) \right]$$

$$A(\eta) = \frac{1}{2} \mu^T \Sigma^{-1} \mu + \log |\Sigma| = -\frac{1}{2} \operatorname{tr}(\eta_2 \eta_1 \eta_1^T) - \frac{1}{2} \log(-2\eta_2)$$

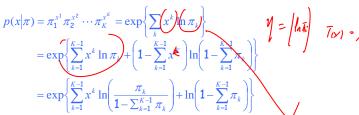
$$h(x) = (2\pi)^{-k/2}$$

Note: a k-dimensional Gaussian is a  $(d+d^2)$ -parameter distribution with a  $(d+d^2)$ element vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and have lower degree of freedom)

### X=

### **Multinomial distribution**





**Exponential family representation** 

$$\eta = \left[\ln\left(\frac{\pi_k}{\pi_K}\right); \mathbf{0}\right]$$

$$T(x) = [x]$$

$$A(\eta) = -\ln\left(1 - \sum_{k=1}^{K-1} \pi_k\right) = \ln\left(\sum_{k=1}^{K} e^{\eta_k}\right)$$

$$h(x) = 1$$

# Why exponential family?

Moment generating property

$$\frac{dA}{d\eta} = \frac{d}{d\eta} \log Z(\eta) = \frac{1}{Z(\eta)} \frac{d}{d\eta} Z(\eta)$$

$$= \frac{1}{Z(\eta)} \frac{d}{d\eta} \int h(x) \exp\{\eta^T T(x)\} dx$$

$$= \int T(x) \frac{h(x) \exp\{\eta^T T(x)\}}{Z(\eta)} dx$$

$$= E[T(x)]$$

$$\frac{d^2 A}{d\eta^2} = \int T^2(x) \frac{h(x) \exp\{\eta^T T(x)\}}{Z(\eta)} dx - \int T(x) \frac{h(x) \exp\{\eta^T T(x)\}}{Z(\eta)} dx \frac{1}{Z(\eta)} \frac{d}{d\eta} Z(\eta)$$

$$= E[T^2(x)] - E^2[T(x)]$$

$$= Var[T(x)]$$

### **Moment estimation**



- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer  $A(\eta)$ .
- The *q*<sup>th</sup> derivative gives the *q*<sup>th</sup> centered moment.

derivatives need to be considered.

$$\frac{dA(\eta)}{d\eta} = \text{mean}$$

$$\frac{d^2A(\eta)}{d\eta^2} = \text{variance}$$

When the sufficient statistic is a stacked vector, partial

Fric Xino

a

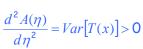
### **Moment vs canonical parameters**

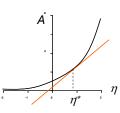


• The moment parameter  $\mu$  can be derived from the natural (canonical) parameter

$$\frac{dA(\eta)}{d\eta} = E[T(x)]^{\text{def}} = \mu$$

A(h) is convex since





• Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1):

$$\eta = \psi(\mu)$$

• A distribution in the exponential family can be parameterized not only by  $\eta$  – the canonical parameterization, but also by  $\mu$  – the moment parameterization.

Eric Xing

## **MLE for Exponential Family**



• For iid data, the log-likelihood is

$$\ell(\eta; D) = \log \prod_{n} h(x_n) \exp \left\{ \eta^T T(x_n) - A(\eta) \right\}$$
$$= \sum_{n} \log h(x_n) + \left( \eta^T \sum_{n} T(x_n) \right) - NA(\eta)$$

Take derivatives and set to zero:

$$\frac{\partial \ell}{\partial \eta} = \sum_{n} T(x_{n}) - N \frac{\partial A(\eta)}{\partial \eta} = 0$$

$$\Rightarrow \frac{\frac{\partial A(\eta)}{\partial \eta}}{\hat{\mu}_{MLE}} = \frac{1}{N} \sum_{n} T(x_{n})$$

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{n} T(x_{n})$$

- This amounts to moment matching.
- We can infer the canonical parameters using  $\hat{\eta}_{\text{MLE}} = \psi(\hat{\mu}_{\text{MLE}})$

Eric Xing

11

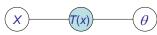
### **Sufficiency**



- For  $p(x|\theta)$ ,  $\pi(x)$  is *sufficient* for  $\theta$  if there is no information in X regarding  $\theta$  geyond that in  $\pi(x)$ .
  - We can throw away X for the purpose pf inference w.r.t.  $\theta$ .
  - Bayesian view
- $X \longrightarrow T(X) \longrightarrow \theta$

 $p(\theta | T(x), x) = p(\theta | T(x))$ 

- Frequentist view (x)
  - (X) - θ
- $p(x | T(x), \theta) = p(x | T(x))$
- The Neyman factorization theorem



• T(x) is sufficient for  $\theta$  if

 $p(x,T(x),\theta) = \psi_1(T(x),\theta)\psi_2(x,T(x))$  $\Rightarrow p(x \mid \theta) = g(T(x),\theta)h(x,T(x))$ 

Eric Xing

### **Examples**



• Gaussian:

$$\begin{split} \eta &= \left[ \Sigma^{-1} \mu; -\frac{1}{2} \operatorname{vec} \left( \Sigma^{-1} \right) \right] \\ T(x) &= \left[ x; \operatorname{vec} \left( x x^T \right) \right] \\ A(\eta) &= \frac{1}{2} \mu^T \Sigma^{-1} \mu + \frac{1}{2} \log \left| \Sigma \right| \\ h(x) &= (2\pi)^{-k/2} \end{split} \Rightarrow \mu_{MLE} = \frac{1}{N} \sum_{n} T_1(x_n) = \frac{1}{N} \sum_{n} x_n$$

Multinomial:

$$\begin{split} \eta &= \left[\ln\left(\frac{\pi_{k}}{\pi_{K}}\right); 0\right] \\ T(x) &= [x] \\ A(\eta) &= -\ln\left(1 - \sum_{k=1}^{K-1} \pi_{k}\right) = \ln\left(\sum_{k=1}^{K} e^{\eta_{k}}\right) \\ h(x) &= 1 \end{split}$$
  $\Rightarrow \mu_{MLE} = \frac{1}{N} \sum_{n} x_{n}$ 

Poisson:

$$\begin{split} \eta &= \log \lambda \\ T(x) &= x \\ A(\eta) &= \lambda = e^{\eta} \\ h(x) &= \frac{1}{x!} \end{split} \implies \mu_{MLE} = \frac{1}{N} \sum_{n} x_{n} \end{split}$$

Eric Xing

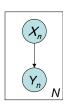
**Generalized Linear Models** (GLIMs)



- The graphical model
  - Linear regression
  - Discriminative linear classification
  - Commonality:

model 
$$E_p(Y) = \mu = f(\theta^T X)$$

- What is p()? the cond. dist. of Y.
- What is f()? the response function.

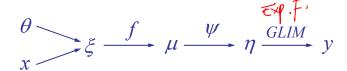


- GLIM
  - The observed input x is assumed to enter into the model via a linear combination of its elements  $\xi = \theta^T x$
  - The conditional mean  $\mu$  is represented as a function  $f(\xi)$  of  $\xi$ , where f is known as the response function
  - The observed output *y* is assumed to be characterized by an exponential family distribution with conditional mean *μ*.

Eric Xing

### GLIM, cont.





$$p(y \mid \eta) = h(y) \exp \left\{ \eta^{T}(x) y - A(\eta) \right\}$$
$$\Rightarrow p(y \mid \eta) = h(y) \exp \left\{ \frac{1}{\phi} \left( \eta^{T}(x) y - A(\eta) \right) \right\}$$

- The choice of exp family is constrained by the nature of the data Y
  - Example: y is a continuous vector → multivariate Gaussian y is a class label → Bernoulli or multinomial
- The choice of the response function
  - Following some mild constrains, e.g., [0,1]. Positivity ...
  - Canonical response function:  $f = \psi^{-1}(\cdot)$ 
    - In this case  $\theta^T x$  directly corresponds to canonical parameter  $\eta$ .

### **MLE for GLIMs with natural** response



Log-likelihood

• Log-likelihood
$$\ell = \sum_{n} \log h(y_n) + \sum_{n} \left(\theta^T x_n y_n - A(\eta_n)\right)$$
• Derivative of Log-likelihood

$$\frac{d\ell}{d\theta} = \sum_{n} \left( x_{n} y_{n} - \frac{dA(\eta_{n})}{d\eta_{n}} \frac{d\eta_{n}}{d\theta} \right)$$
$$= \sum_{n} \left( y_{n} - \mu_{n} \right) x_{n}$$
$$= X^{T} (y - \mu)$$

This is a fixed point function because  $\mu$  is a function of  $\theta$ 

- Online learning for canonical GLIMs
  - Stochastic gradient ascent = least mean squares (LMS) algorithm:

$$\theta^{t+1} = \theta^t + \rho (y_n - \mu_n^t) x_n$$
where  $\mu_n^t = (\theta^t)^T x_n$  and  $\rho$  is a step size

# **Batch learning for canonical GLIMs**



• The Hessian matrix

$$H = \frac{d^2 \ell}{d\theta d\theta^T} = \frac{d}{d\theta^T} \sum_n (y_n - \mu_n) x_n = \sum_n x_n \frac{d\mu_n}{d\theta^T}$$

$$= -\sum_n x_n \frac{d\mu_n}{d\eta_n} \frac{d\eta_n}{d\theta^T}$$

$$= -\sum_n x_n \frac{d\mu_n}{d\eta_n} x_n^T \quad \text{since } \eta_n = \theta^T x_n$$

$$= -X^T W X$$



where  $X = [X_n^T]$  is the design matrix and

$$W = \operatorname{diag}\left(\frac{d\mu_1}{d\eta_1}, \dots, \frac{d\mu_N}{d\eta_N}\right)$$

which can be computed by calculating the  $2^{nd}$  derivative of  $A(\eta_n)$ 

Eric Xino

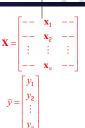
. .

### **Recall LMS**



• Cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$
$$= \frac{1}{2} (\mathbf{X} \theta - \bar{y})^{T} (\mathbf{X} \theta - \bar{y})$$



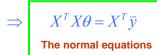
• To minimize  $J(\theta)$ , take derivative and set to zero:

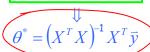
$$\nabla_{\theta} J = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left( \theta^{T} X^{T} X \theta - \theta^{T} X^{T} \bar{y} - \bar{y}^{T} X \theta + \bar{y}^{T} \bar{y} \right)$$

$$= \frac{1}{2} \left( \nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta - 2 \nabla_{\theta} \operatorname{tr} \bar{y}^{T} X \theta + \nabla_{\theta} \operatorname{tr} \bar{y}^{T} \bar{y} \right)$$

$$= \frac{1}{2} \left( X^{T} X \theta + X^{T} X \theta - 2 X^{T} \bar{y} \right)$$

$$= X^{T} X \theta - X^{T} \bar{y} = 0$$





Eric Xing

# Iteratively Reweighted Least Squares (IRLS)



ullet Recall Newton-Raphson methods with cost function  ${\cal J}$ 

$$\theta^{t+1} = \theta^t - H^{-1} \nabla_{\theta} J$$

We now have

$$\nabla_{\theta} J = X^{T} (y - \mu)$$

$$H = -X^{T} W X$$

$$\theta^{*} = \left( X^{T} X \right)^{-1} X^{T} \vec{y}$$

Now:

$$\theta^{t+1} = \theta^t + H^{-1} \nabla_{\theta} \ell$$

$$= \left[ X^T W^t X \right]^{-1} \left[ X^T W^t X \theta^t + X^T (y - \mu^t) \right]$$

•

where the adjusted response is 
$$z' = X\theta' + (W')^{-1}(y - \mu')$$

This can be understood as solving the following "Iteratively reweighted least squares " problem

$$\theta^{t+1} = \arg\min_{\theta} (z - X\theta)^T W (z - X\theta)$$

Eric Xing

Example 1: logistic regression

(sigmoid classifier)

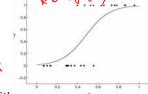


• The condition distribution: a Bernoulli

$$p(y | x) = \mu(x)^{y} (1 - \mu(x))^{1-y}$$

where  $\mu$  is a logistic function

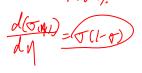




- p(y|x) is an exponential family function, with
  - mean:  $E[y | x] = u \neq \frac{1}{1 + e^{-\eta(x)}}$
- E(y) = P(y=1)1
- and canonical response function  $\eta = \xi = \theta^T x$
- +1/(9=0) 0 = 1/(9=1)

• IRLS  $\frac{d\mu}{d\eta} = \mu(1-\mu)$ 

$$W = \begin{pmatrix} \mu_1(1-\mu_1) & & \\ & \ddots & \\ & & \mu_1(1-\mu_1) \end{pmatrix}$$



Eric Xin

### Logistic regression: practical issues



It is very common to use regularized maximum likelihood.

$$p(y = \pm 1 | x, \theta) = \frac{1}{1 + e^{-y\theta^T x}} = \sigma(y\theta^T x)$$

$$p(\theta) \sim \text{Normal}(\mathbf{0}, \lambda^{-1}I)$$

$$l(\theta) = \sum_{n} \log \left( \sigma(y_n \theta^T x_n) \right) - \frac{\lambda}{2} \theta^T \theta$$

- IRLS takes  $O(Na^6)$  per iteration, where N = number of training cases and d = dimension of input x.
- Quasi-Newton methods, that approximate the Hessian, work faster.
- Conjugate gradient takes O(Nd) per iteration, and usually works best in practice.
- Stochastic gradient descent can also be used if Nis large c.f. perceptron

$$\nabla_{\theta} \ell = (\mathbf{1} - \sigma(y_n \theta^T x_n)) y_n x_n - \lambda \theta$$

### **Example 2: linear regression**



• The condition distribution: a Gaussian

$$p(y|x,\theta,\Sigma) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (y - \mu(x))^T \Sigma^{-1} (y - \mu(x))\right\}$$

Rescale  $\Rightarrow h(x) \exp\left\{-\frac{1}{2} \Sigma^{-1} (\eta^T (x) y) A(\eta)\right\}$ 

where  $\mu$  is a linear function

$$\mu(x) = \theta^T x = \eta(x)$$

- p(y|x) is an exponential family function, with
  - mean:  $E[y | x] = \mu = \theta^T x$
  - and canonical response function

$$\eta_1 = \xi = \theta^T x$$

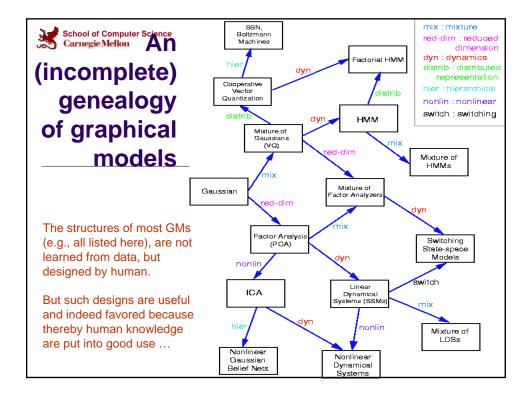
• IRLS 
$$\frac{d\mu}{d\eta} = 1 \Rightarrow \theta^{t+1} = (X^T W^t X)^{-1} X^T W^t z^t \\ \Rightarrow = (X^T X)^{-1} X^T (X \theta^t + (y - \mu^t)) \Rightarrow \theta = (X^T X)^{-1} X^T Y \\ = \theta^t + (X^T X)^{-1} X^T (y - \mu^t)$$

$$\stackrel{t\to\infty}{\Rightarrow} \theta = (X^T X)^{-1} X^T Y$$

Steepest descent

Normal equation

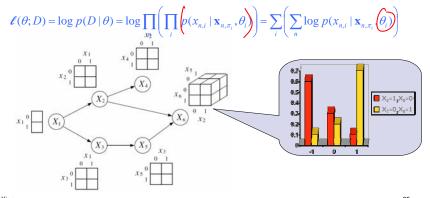
# Simple GMs are the building blocks of complex BNs Density estimation Parametric and nonparametric methods Regression Linear, conditional mixture, nonparametric Classification Generative and discriminative approach Eric Xing



### **MLE for general BNs**



 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:



### How to define parameter prior?





Factorization:  $p(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{M} p(x_i \mid \mathbf{x}_{\pi_i})$ 

Local Distributions defined by, e.g., multinomial parameters:

$$p(x_i^k \mid \mathbf{x}_{\pi_i}^j) = \theta_{x_i^k \mid \mathbf{x}_{\pi_i}^j}$$

Assumptions (Geiger & Heckerman 97,99):

- Complete Model Equivalence
- Global Parameter Independence
- Local Parameter Independence
- Likelihood and Prior Modularity

 $p(\theta \mid G)$ ?

Eric Xino

# Global & Local Parameter Independence



**B**urglary

**A**larm

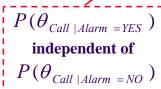
Global Parameter Independence

For every DAG model:

$$p(\theta_m \mid G) = \prod_{i=1}^{M} p(\theta_i \mid G)$$

Local Parameter Independence-For every node:

$$p(\theta_i \mid G) = \prod_{i=1}^{q_i} p(\theta_{x_i^k \mid \mathbf{x}_{\pi_i}^j} \mid G)$$



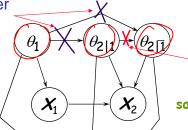
Earthquake

Radio

Eric Xino

# Parameter Independence, Graphical View

Global Parameter Independence



Local Parameter Independence

sample 1

sample 2

•

Provided all variables are observed in all cases, we can perform Bayesian update each parameter independently !!!

Eric Xing

# Which PDFs Satisfy Our Assumptions? (Geiger & Heckerman 97,99)



• Discrete DAG Models:  $X_i \mid \pi_{x_i}^j \sim \text{Multi}(\theta)$ 

Dirichlet prior:  $P(\theta) = \frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \prod_{k} \theta_{k}^{\alpha_{k}-1} = C(\alpha) \prod_{k} \theta_{k}^{\alpha_{k}-1}$ 

• Gaussian DAG Models:  $x_i \mid \pi_{x_i}^j \sim \text{Normal}(\mu, \Sigma)$ 

Normal prior:  $p(\mu | \nu, \Psi) = \frac{1}{(2\pi)^{n/2} |\Psi|^{1/2}} \exp \left\{ -\frac{1}{2} (\mu - \nu)' \Psi^{-1} (\mu - \nu) \right\}$ 

Normal-Wishart prior:

$$p(\mu \mid \nu, \alpha_{\mu}, \mathbf{W}) = \text{Normal}\left(\nu, (\alpha_{\mu}\mathbf{W})^{-1}\right),$$

$$p(\mathbf{W} \mid \alpha_{w}, \mathbf{T}) = c(n, \alpha_{w})|\mathbf{T}|^{\alpha_{w}/2}|\mathbf{W}|^{(\alpha_{w}-n-1)/2} \exp\left\{\frac{1}{2}\operatorname{tr}\left\{\mathbf{T}\mathbf{W}\right\}\right\},$$
where  $\mathbf{W} = \Sigma^{-1}$ .

Eric Xing

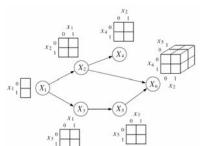
29

### **MLE for general BNs**



 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

 $\ell(\theta; D) = \log p(D \mid \theta)$   $= \log \prod_{n} \left( \prod_{i} p(\mathbf{x}_{n,i} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}) \right)$   $= \sum_{i} \left( \sum_{n} \log p(\mathbf{x}_{n,i} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}) \right)$ 



Eric Xing

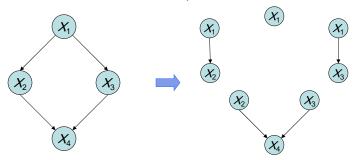
# Example: decomposable likelihood of a directed model



• Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$

• This is exactly like learning four separate small BNs, each of which consists of a node and its parents.



### **MLE for BNs with tabular CPDs**



Assume each CPD is represented as a table (multinomial) where

$$\theta_{ijk} \stackrel{\text{def}}{=} p(X_i = j \mid X_{\pi_i} = k)$$



- Note that in case of multiple parents,  $\mathbf{X}_{\pi_j}$  will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$n_{ijk} \stackrel{\text{def}}{=} \sum_{n} x_{n,i}^{j} x_{n,\pi_{i}}^{k}$$

• The log-likelihood is

$$\boldsymbol{\ell}(\boldsymbol{\theta}; \boldsymbol{\mathcal{D}}) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} \boldsymbol{n}_{ijk} \log \theta_{ijk}$$

• Using a Lagrange multiplier to enforce  $\sum_{j} \theta_{ijk} = 1$ , we get:

$$\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{i,j,k} n_{ij'k}}$$

Eric Xing

### **MLE and Kulback-Leibler** divergence



KL divergence

$$D(q(x) \parallel p(x)) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$$

Empirical distribution

$$\widetilde{p}(x) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \delta(x, x_n)$$

- Where  $\delta(x,x_n)$  is a Kronecker delta function
- $Max_{\theta}(MLE) \equiv Min_{\theta}(KL)$

$$D(\widetilde{p}(x) || p(x | \theta)) = \sum_{x} \widetilde{p}(x) \log \frac{\widetilde{p}(x)}{p(x | \theta)}$$

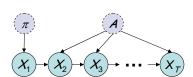
$$= \sum_{x} \widetilde{p}(x) \log \widetilde{p}(x) - \sum_{x} \widetilde{p}(x) \log p(x | \theta)$$

$$= \sum_{x} \widetilde{p}(x) \log \widetilde{p}(x) - \frac{1}{N} \sum_{x} \log p(x_{x} | \theta)$$

$$= C + \frac{1}{N} \ell(\theta; D)$$

### **Parameter sharing**





- Consider a time-invariant (stationary) 1st-order Markov model Initial state probability vector:  $\pi_k = p(X_1^k = 1)$ 

  - State transition probability matrix:  $A_{ij} \stackrel{\mathrm{def}}{=} p(X_i^j = 1 \mid X_{i-1}^i = 1)$
- $p(X_{1:T} \mid \theta) = p(x_1 \mid \pi) \prod_{t=2}^{T} \prod_{t=2} p(X_t \mid X_{t-1})$ The joint:
- The log-likelihood:  $\ell(\theta; D) = \sum_{n} \log p(x_{n,1} \mid \pi) + \sum_{n=1}^{T} \log p(x_{n,n} \mid x_{n,n-1}, A)$
- Again, we optimize each parameter separately
  - $\pi$  is a multinomial frequency vector, and we've seen it before
  - What about A?

# Learning a Markov chain transition matrix



- A is a stochastic matrix:  $\sum_{i} A_{ij} = 1$
- Each row of A is multinomial distribution.
- So MLE of  $A_{ij}$  is the fraction of transitions from i to j

$$A_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} x_{n,t-1}^{i} x_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} x_{n,t-1}^{i}}$$

- Application:
  - if the states  $X_t$  represent words, this is called a bigram language model
- Sparse data problem:
  - If i → j did not occur in data, we will have A<sub>ij</sub> =0, then any futher sequence with word pair i → j will have zero probability.
  - A standard hack: backoff smoothing or deleted interpolation

$$\widetilde{A}_{i\to\bullet} = \lambda \eta_t + (1-\lambda) A_{i\to\bullet}^{ML}$$

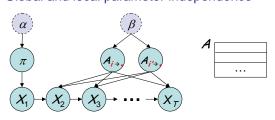
Eric Xing

35

### **Bayesian language model**



• Global and local parameter independence



- The posterior of A<sub>i→</sub> and A<sub>r→</sub> is factorized despite v-structure on X<sub>t</sub> because X<sub>t-1</sub> acts like a multiplexer
- Assign a Dirichlet prior  $\beta_i$  to each row of the transition matrix:

$$A_{ij}^{\textit{Bayes}} \stackrel{\text{def}}{=} p(j \mid i, D, \beta_i) = \frac{\#(i \to j) + \beta_{i,k}}{\#(i \to \bullet) + \left|\beta_i\right|} = \lambda_i \beta_{i,k}' + (1 - \lambda_i) A_{ij}^{\textit{ML}}, \text{ where } \lambda_i = \frac{\left|\beta_i\right|}{\left|\beta_i\right| + \#(i \to \bullet)}$$

 We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words (adjectives, verbs, etc.)

Eric Xing

### **Example: HMM: two scenarios**



- Supervised learning: estimation when the "right answer" is known
  - **Examples:**

GIVEN: a genomic region  $x=x_1...x_{1,000,000}$  where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

- **Unsupervised learning**: estimation when the "right answer" is unknown
  - **Examples:**

GIVEN: the porcupine genome; we don't know how frequent are the

CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

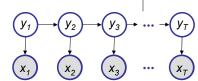
- **QUESTION:** Update the parameters  $\theta$  of the model to maximize  $P(x|\theta)$  -
  - -- Maximal likelihood (ML) estimation

### **Recall definition of HMM**



• Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$



or 
$$p(y_t | y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, ..., a_{i,M}), \forall i \in I.$$

Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$
.

• Emission probabilities associated with each state

$$p(x_t | y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in \mathbb{I}.$$

 $p(x_i | y_i^i = 1) \sim f(\cdot | \theta_i), \forall i \in I.$ or in general:

### **Supervised ML estimation**



- Given  $x = x_1...x_N$  for which the true state path  $y = y_1...y_N$  is known,
  - Define:

```
A_{ij} = # times state transition i \rightarrow j occurs in y

B_{ik} = # times state i in y emits k in x
```

• We can show that the maximum likelihood parameters  $\theta$  are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}$$

$$b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k'} B_{ik'}}$$

• What if x is continuous? We can treat  $\{(x_{n,t},y_{n,t}): t=1:T, n=1:N\}$  as  $\Lambda k T$  observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric Xing

39

### Supervised ML estimation, ctd.



- Intuition:
  - When we know the underlying states, the best estimate of  $\theta$  is the average frequency of transitions & emissions that occur in the training data
- Drawback:
  - Given little data, there may be overfitting:
    - $P(x|\theta)$  is maximized, but  $\theta$  is unreasonable

0 probabilities - VERY BAD

- Example:
  - Given 10 casino rolls, we observe

• Then:  $a_{FF} = 1$ ;  $a_{FL} = 0$ 

$$b_{F1} = b_{F3} = .2;$$

 $b_{F2} = .3$ ;  $b_{F4} = 0$ ;  $b_{F5} = b_{F6} = .1$ 

Eric Xing

### **Pseudocounts**



- Solution for small training sets:
  - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in \mathbf{y} + R_{ij}

B_{ik} = # times state i in \mathbf{y} emits k in \mathbf{x} + S_{ik}
```

- $R_{ij}$ ,  $S_{ij}$  are pseudocounts representing our prior belief
- Total pseudocounts:  $R_i = \Sigma_j R_{ij}$ ,  $S_i = \Sigma_k S_{ik}$ ,
  - --- "strength" of prior belief,
  - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --- smoothing
- This is equivalent to Bayesian est. under a uniform prior with "parameter strength" equals to the pseudocounts

Eric Xing 4