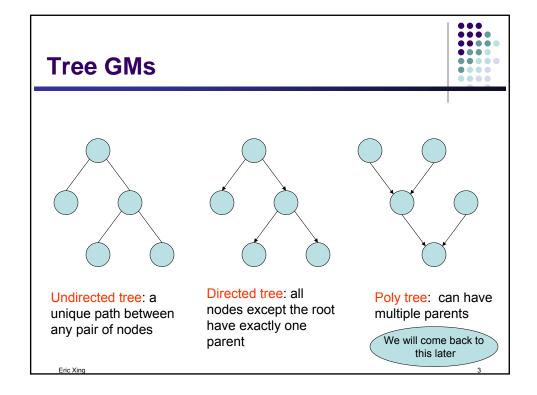


From Elimination to Belief **Propagation** Recall that Induced dependency during marginalization is captured in elimination cliques P(A(H) Summation <-> elimination Intermediate term <-> elimination clique P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)\phi_h(e,f)$ $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)\phi_g(e)\phi_h(e,f)$ $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)\phi_f(a,e)$ $\Rightarrow P(a)P(b)P(c|b)P(d|a)\phi_e(a,c,d)$ $\Rightarrow P(a)P(b)P(c|b)\phi_d(a,c)$ $\Rightarrow P(a)P(b)\phi_c(a,b)$ $\Rightarrow P(a)\phi_b(a)$ Can this lead to an generic inference algorithm?



Equivalence of directed and undirected trees

- Any undirected tree can be converted to a directed tree by choosing a root node and directing all edges away from it
- A directed tree and the corresponding undirected tree make the same conditional independence assertions
- Parameterizations are essentially the same.

• Undirected tree:
$$p(x) = \frac{1}{Z} \left(\prod_{i \in V} \psi(x_i) \prod_{(i,j) \in E} \psi(x_i, x_j) \right)$$

• Directed tree:
$$p(x) = p(x_r) \prod_{(i,j) \in E} p(x_j|x_i)$$

• Equivalence:
$$\psi(x_r)=p(x_r); \ \ \psi(x_i,x_j)=p(x_j|x_i);$$

$$Z=1, \ \ \psi(x_i)=1$$

• Evidence:?
$$\mathcal{S}(X_{\zeta}, \hat{X_{e}})$$

Eric Xin

From elimination to message passing

- Recall ELIMINATION algorithm:
 - Choose an ordering $\mathcal Z$ in which query node f is the final node
 - Place all potentials on an active list
 - Eliminate node i by removing all potentials containing i, take sum/product over x_i .
 - Place the resultant factor back on the list
- For a TREE graph:
 - Choose query node *f* as the root of the tree
 - View tree as a directed tree with edges pointing towards from *f*
 - Elimination ordering based on depth-first traversal
 - Elimination of each node can be considered as message-passing (or Belief Propagation) directly along tree branches, rather than on some transformed graphs
 - → thus, we can use the tree itself as a data-structure to do general inference!!

Eric Xino

5

The elimination algorithm

Procedure Initialize (G, Z)

- 1. Let Z_1, \ldots, Z_k be an ordering of Z such that $Z_i \prec Z_i$ iff i < j
- Initialize F with the full the set of factors

Procedure Normalization (ϕ^*)

1. $P(X|\mathbf{E}) = \phi^*(X)/\sum_x \phi^*(X)$

Procedure Evidence (E)

1. **for** each $i \in I_E$, $\mathcal{F} = \mathcal{F} \cup \delta(E_i, e_i)$

Procedure Sum-Product-Variable-

Elimination
$$(\mathcal{F}, Z, \prec)$$

1. **for** $i = 1, ..., k$

$$\mathscr{F} \leftarrow \text{Sum-Product-Eliminate-Var}(\mathscr{F}, Z_i)$$

2.
$$\phi^* \leftarrow \prod_{\phi \in \mathcal{F}} \phi$$

- 3. **return** ϕ^*
- 4. Normalization (ϕ^*)

Procedure Sum-Product-Eliminate-Var (

F, // Set of factors

 $\it Z \, / \! /$ Variable to be eliminated

1. $\mathscr{F}' \leftarrow \{\phi \in \mathscr{F} : Z \in Scope[\phi]\}$

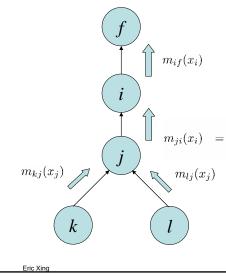
 $2. \quad \mathcal{F}'' \leftarrow \mathcal{F} - \mathcal{F}'$

3. $\psi \leftarrow \prod_{\phi \in \mathcal{F}'} \phi$

4. $\tau \leftarrow \sum_{Z} \psi$

5. **return** $\mathcal{F}'' \cup \{\tau\}$

Eric Xino



Let $m_{ij}(x_i)$ denote the factor resulting from eliminating variables from bellow up to i, which is a function of x_i :

$$m_{ji}(x_i) = \sum_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j) \right)$$

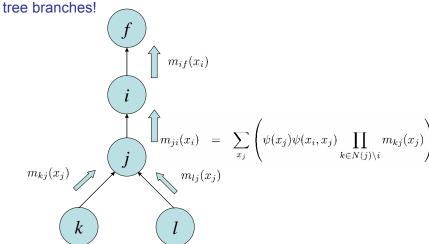
This is reminiscent of a **message** sent from j to i.

$$\bigcap_{m_{ji}(x_i)} = \sum_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j) \right)$$

$$p(x_f) \propto \psi(x_f) \prod_{e \in N(f)} m_{ef}(x_f)$$

 $m_{ii}(x_i)$ represents a "belief" of x_i from x_i !

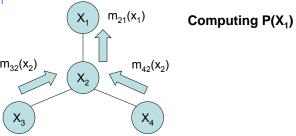
Elimination on trees is equivalent to message passing along
 tree branches!



Eric Xing

The message passing protocol:

- A node can send a message to its neighbors when (and only when) it has received messages from all its other neighbors.
- Computing node marginals:
 - Naïve approach: consider each node as the root and execute the message passing algorithm

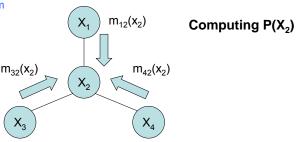


Eric Xino

9

The message passing protocol:

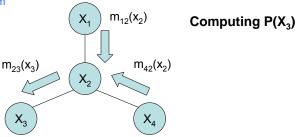
- A node can send a message to its neighbors when (and only when) it has received messages from all its **other** neighbors.
- Computing node marginals:
 - Naïve approach: consider each node as the root and execute the message passing algorithm



Eric Xing

The message passing protocol:

- A node can send a message to its neighbors when (and only when) it has received messages from all its other neighbors.
- Computing node marginals:
 - Naïve approach: consider each node as the root and execute the message passing algorithm



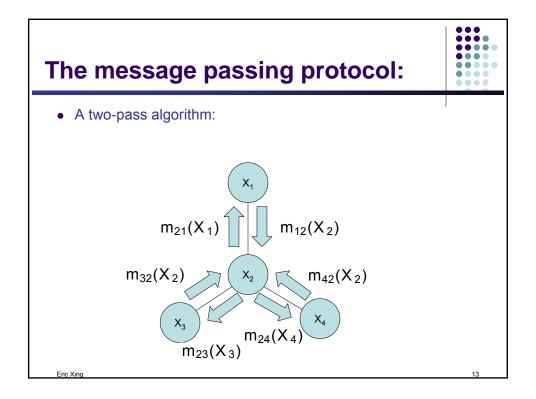
Eric Xing

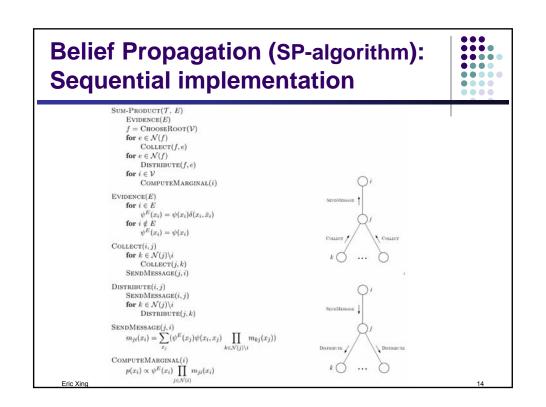
11

Computing node marginals

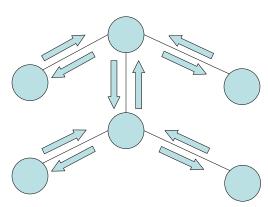
- Naïve approach:
 - Complexity: NC
 - N is the number of nodes
 - · C is the complexity of a complete message passing
- Alternative dynamic programming approach
 - 2-Pass algorithm (next slide →)
 - Complexity: 2C!

Eric Xing





Belief Propagation (SP-algorithm): Parallel synchronous implementation



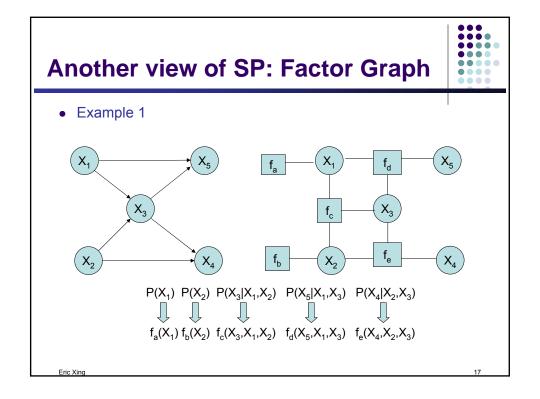
- For a node of degree d, whenever messages have arrived on any subset of d-1 node, compute the message for the remaining edge and send!
 - A pair of messages have been computed for each edge, one for each direction
 - All incoming messages are eventually computed for each node

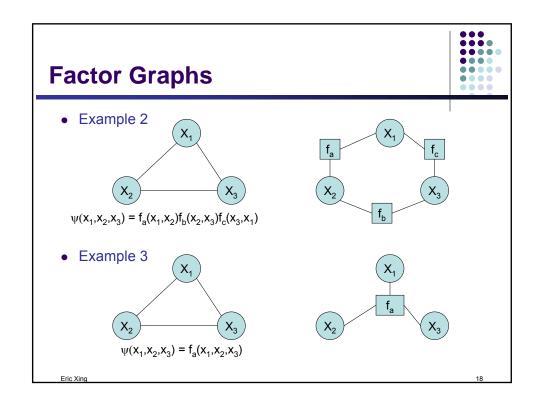
Correctness of BP on tree

- Collollary: the synchronous implementation is "non-blocking"
- Thm: The Message Passage Guarantees obtaining all marginals in the tree

 $m_{ji}(x_i) = \sum_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in N(j) \setminus i} m_{kj}(x_j) \right)$ • What about non-tree?

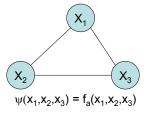
(x, x) May (y,)

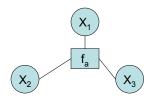




Factor Tree

 A Factor graph is a Factor Tree if the undirected graph obtained by ignoring the distinction between variable nodes and factor nodes is an undirected tree



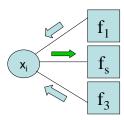


Eric Xing

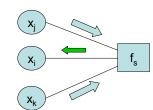
19

Message Passing on a Factor Tree

- Two kinds of messages
 - 1. v: from variables to factors
 - 2. μ : from factors to variables



$$\nu_{is}(x_i) = \prod_{t \in \mathcal{N}(i) \setminus s} \mu_{ti}(x_i)$$

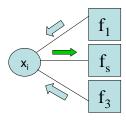


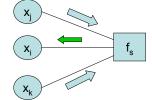
$$\mu_{si}(x_i) = \sum_{x_{\mathcal{N}}(s)\setminus i} \left(f_s(x_{\mathcal{N}(s)}) \prod_{j \in \mathcal{N}(s)\setminus i} \nu_{js}(x_j) \right)$$

Eric Xing

Message Passing on a Factor Tree, con'd

- Message passing protocol:
 - A node can send a message to a neighboring node only when it has received messages from all its other neighbors
- Marginal probability of nodes:



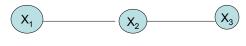


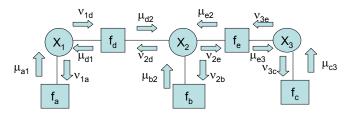
$$\begin{split} P(\textbf{x}_i) &\propto \prod_{s \text{ 2 N(i)}} \mu_{si}(\textbf{x}_i) \\ &\propto \nu_{is}(\textbf{x}_i) \mu_{si}(\textbf{x}_i) \end{split}$$

Eric Xino

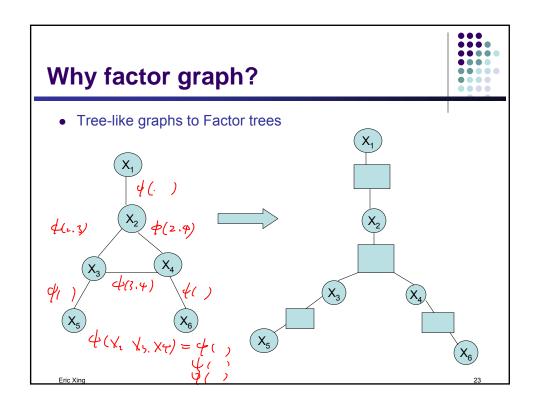
21

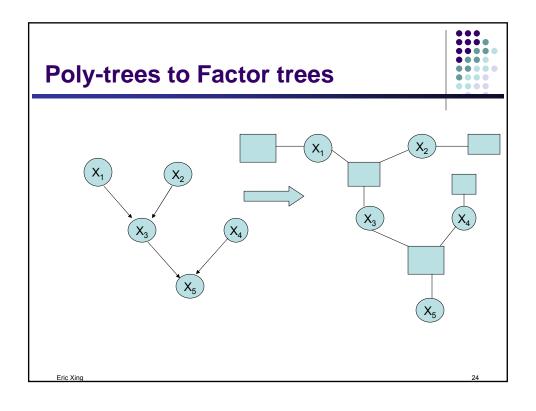
BP on a Factor Tree

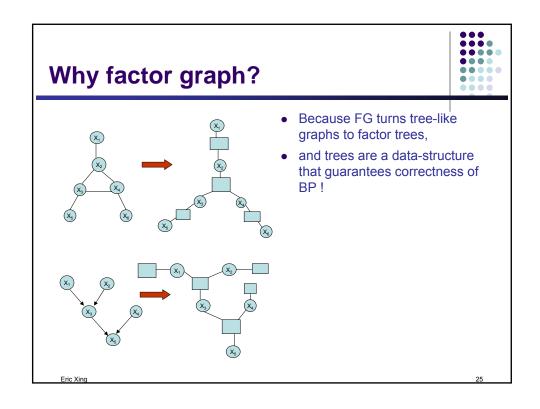


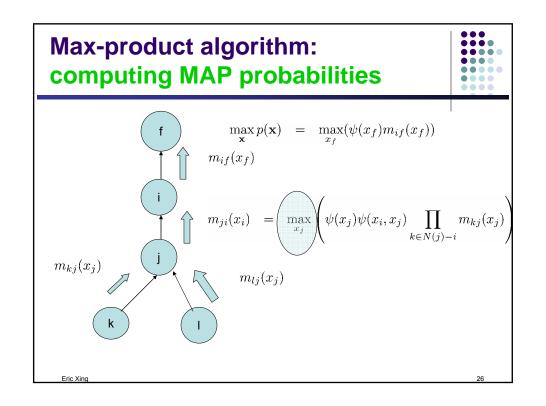


Eric Xing



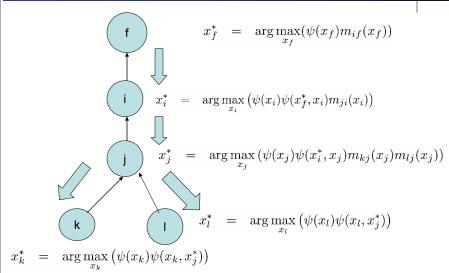






Max-product algorithm:

computing MAP configurations using a final bookkeeping backward pass



Summary

- Sum-Product algorithm computes singleton marginal probabilities on:
 - Trees
 - Tree-like graphs
 - Poly-trees
- Maximum a posteriori configurations can be computed by replacing sum with max in the sum-product algorithm
 - Extra bookkeeping required

Eric Xing

Inference on general GM

- Now, what if the GM is not a tree-like graph?
- Can we still directly run message message-passing protocol along its edges?
- For non-trees, we do not have the guarantee that message-passing will be consistent!
- Then what?
 - Construct a graph data-structure from P that has a tree structure, and run message-passing on it!
- → Junction tree algorithm

Eric Xino

29

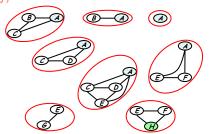
Elimination Clique

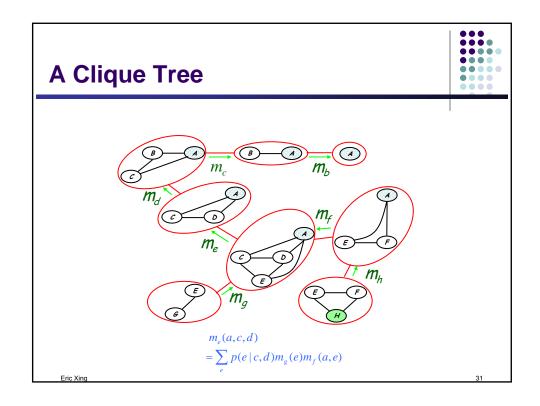
- Recall that Induced dependency during marginalization is captured in elimination cliques
 - Summation <-> elimination
 - Intermediate term <-> elimination clique

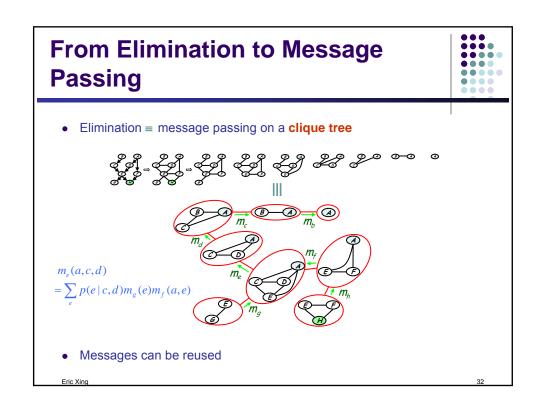
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f)

- $\Rightarrow \ P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e) \phi_{h}(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)\phi_g(e)\phi_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)\frac{\phi_f(a,e)}{\phi_f(a,e)}$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)\phi_e(a,c,d)$
- $\Rightarrow P(a)P(b)P(c|b)\phi_d(a,c)$
- $\Rightarrow P(a)P(b)\phi_c(a,b)$
- $\Rightarrow P(a)\phi_b(a)$
- $\Rightarrow \phi(a)$
 - Can this lead to an generic inference algorithm?

Eric Xing

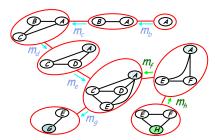






From Elimination to Message Passing

- Elimination ≡ message passing on a clique tree
 - Another query ...



• Messages m_f and m_h are reused, others need to be recomputed

V:--