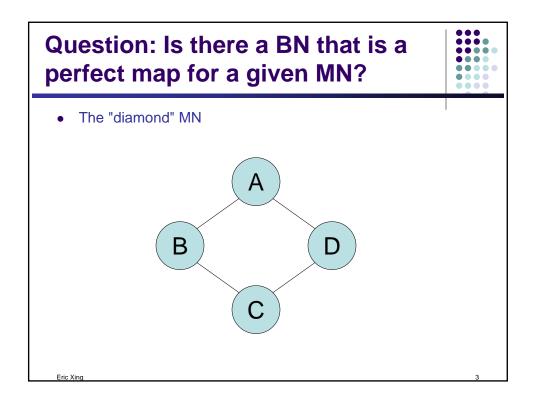
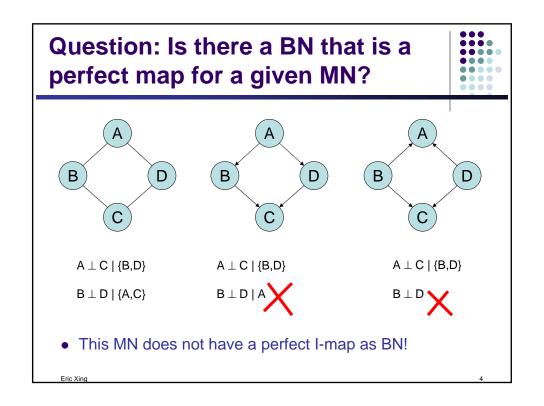
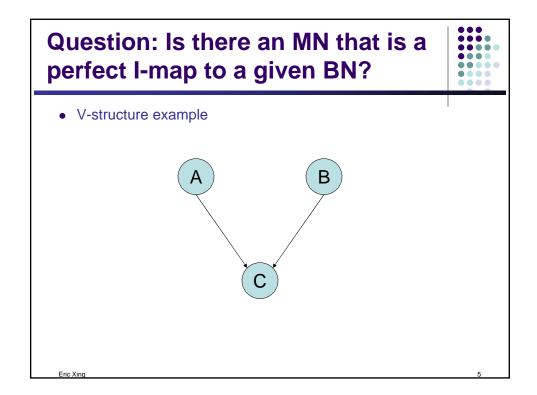
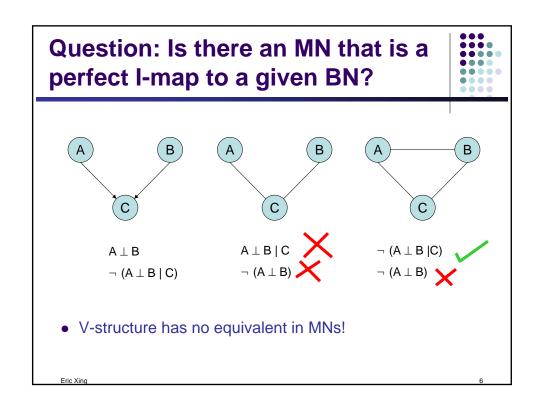


Auditing students: please fill out forms
Recitation:
questions:









Minimal I-maps

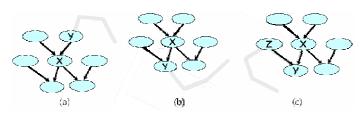
- Instead of attempting perfect I-maps between BNs and MNs, we can try minimal I-maps
- Recall: H is a minimal I-map for G if
 - I(H) ⊆ I(G)
 - Removal of a single edge in H renders it is not an I-map
- Note: If H is a minimal I-map of G, H need not necessarily satisfy all the independence relationships in G

Eric Xing

-

Minimal I-maps from BNs to MNs: Markov Blanket

- Markov Blanket of *X* in a BN G:
 - MB_G(X) is the unique minimal set U of nodes in G such that (X ⊥ (all other nodes) | U) is guaranteed to hold for any distribution that factorizes over G
- Defn (5.7.1): MB_G(X) is the set of nodes consisting of X's parents, X's children and other parents of X's children

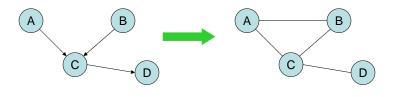


 Idea: The neighbors of X in H --- the minimal I-map of G --- should be MB_G(X)!

Eric Xing

Minimal I-maps from BNs to MNs:

- **Moral Graphs**
 - Defn (5.7.3): The moral graph M(G) of a BN G is an undirected graph that contains an undirected edge between *X* and *Y* if:
 - there is a directed edge between them in either direction
 - X and Y are parents of the same node
 - Comment: this definition ensures MB_G(X) is the set of neighbors of X in M(G)

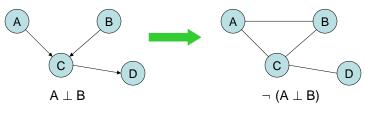


Eric Xino

a

Minimal I-maps from BNs to MNs: Moral graph is the minimal I-map

- Corollary (5.7.4): The moral graph M(G) of any BN G is a minimal Imap for G
 - Moralization turns each (X, Pa(X)) into a fully connected subset
 - CPDs associated with the network can be used as clique potentials
- The moral graph loses some independence information



Eric Xing

Minimal I-maps from BNs to MNs:

Perfect I-maps

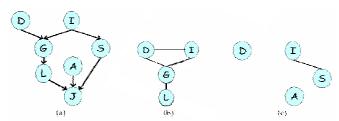
- Proposition (5.7.5): If the BN G is "moral", then its moralized graph M(G) is a perfect I-map of G.
- Proof sketch:
 - $I(M(G)) \subseteq I(G)$ (from before)
 - The only independence relations that are potentially lost from G to M(G) are those arising from V-structures
 - Since G has no V-structures (it is moral), no independencies are lost in M(G)

Eric Xing

11

Soundness of d-separation

- Recall d-separation
 - Let $U = \{X, Y, Z\}$ be three disjoint sets of nodes in a BN G.
 - Let G^+ be the ancestral graph: the induced BN over $U \cup$ ancestors(U).
 - Then, $d\text{-}sep_G(X;Y|Z)$ iff $sep_{M(G^+)}(X;Y|Z)$



D-sep_G(D;I | L)

 $sep_{M(G^+)}(D;I \mid L)$

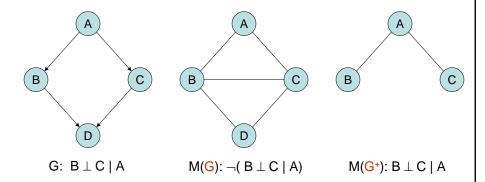
 $Sep_{M(G^+)}(D;I \mid S,A)$

 $D\text{-sep}_G(D;I \mid S, A)$

Eric Xing

Soundness of d-separation

• Why it works:



• Idea: Information *blocked* through common children in G that are not in the conditioning variables, is simulated in M(G+) by ignoring all children.

Eric Xino

13

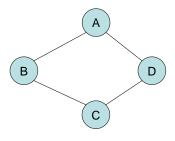
Minimal I-maps from BNs to MNs: Summary

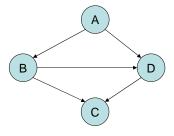
- Moral Graph M(G) is a minimal I-map of G
- If G is moral, then M(G) is a perfect I-map of G
- $D\text{-sep}_G(X;Y|Z) \Leftrightarrow \text{sep}_{M(G^+)}(X;Y|Z)$
- Next: minimal I-maps from MNs to BNs ⇒

Eric Xino

Minimal I-maps from MNs to BNs:

 Any BN I-map for an MN must add triangulating edges into the graph





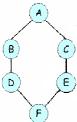
 $B \perp D \mid A$

Eric Xing

15

Minimal I-maps from MNs to BNs: chordal graphs

- Defn (5.7.11):
 - Let X₁-X₂-...X_k-X₁ be a loop in a graph. A chord in a loop is an edge connecting X_i and X_i fo non-consecutive {X_p, X_i}
 - An undirected graph H is chordal if any loop X₁-X₂-...X_k-X₁ for K >= 4 has a chord



 Defn (5.7.12): A directed graph G is chordal if its underlying undirected graph is chordal

Eric Xing

Minimal I-maps from MNs to BNs:

- triangulation
 - Thm (5.7.13): Let H be an MN, and G be any BN minimal Imap for H. Then G can have no immoralities.
 - Intuitive reason: Immoralities introduce additional independencies that are not in the original MN
 - (cf. proof for theorem 5.7.13 in K&F)
 - Corollary (5.7.14): Let K be any minimal I-map for H. Then K is necessarily chordal!
 - Because any non-triangulated loop of length at least 4 in a Bayesian network graph necessarily contains an immorality
 - Process of adding edges also called triangulation

Eric Xing

17

- Thm (5.7.15): Let H be a non-chordal MN. Then there is no BN G that is a perfect I-map for H.
- Proof:
 - Minimal I-map G for H is chordal
 - It must therefore have additional directed edges not present in H
 - Each additional edge eliminates some independence assumptions
 - Hence proved.

Eric Xing

Clique trees (1)

- Notation:
 - Let H be a connected undirected graph. Let C₁,...C_k be the set of maximal cliques in H.
 - Let T be a tree structured graph whose nodes are $C_1,...C_k$.
 - Let C_i, C_j be two cliques in the tree connected by an edge. Define $S_{ij} = C_i$ $\cap C_i$ be the sep-set between C_i and C_i
 - Let $W_{\langle (i,j)} = Variables(C_i) Variables(S_{ij})$ --- the residue set

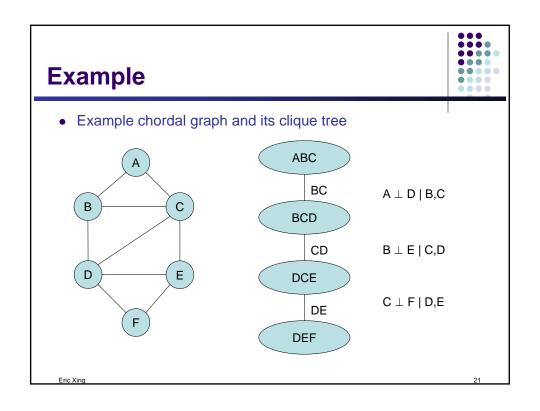
Eric Xing

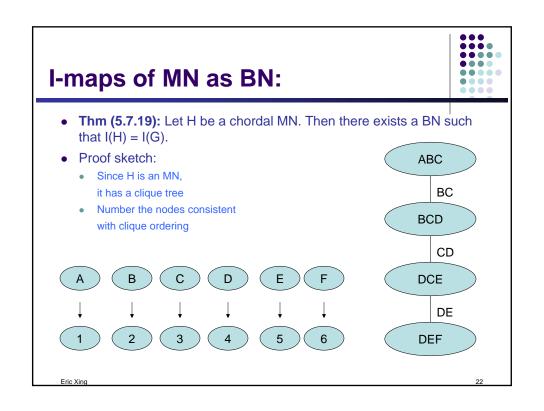
19

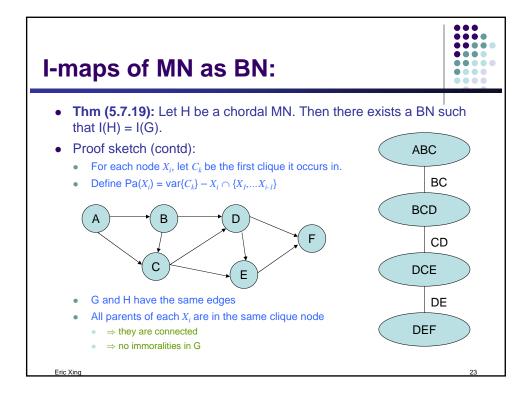
Clique trees (2)

- A tree T is a clique tree for H if:
 - Each node corresponds to a clique in H and each maximal clique in H is a node in T
 - Each sepset S_{i,j} separates W_{<(i,j)} and W_{<(j,i)}
- Every undirected chordal graph H has a clique tree T.
 - Proof by induction (cf. Theorem 5.7.17 in K&F)
 - Example in next slide ⇒

Eric Xing







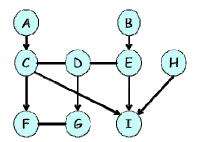
Minimal I-maps from MNs to BNs: Summary

- A minimal I-map BN of an MN is chordal
 - Obtained by triangulating the MN
- If the MN is chordal, there is a perfect BN I-map for the MN
 - Obtained from the corresponding clique-tree
- Next: Hybrids of BNs and MNs
 - Partially Directed Acyclic Graphs

Eric Xin

Partially Directed Acyclic Graphs

- Also called chain graphs
- Nodes can be disjointly partitioned into several chain components
- An edge within the same chain component must be undirected
- An edge between two nodes in different chain components must be directed



Chain components:

 $\{A\}, \{B\}, \{C,D,E\},\{F,G\},\{H\}, \{I\}\}$

Eric Xing

25

Summary

- Investigated the relationship between BNs and MNs
- They represent different families of independence assumptions
 - Chordal graphs can be represented in both
- Chain networks: superset of both BNs and MNs

Eric Xing