

Minimal I-maps

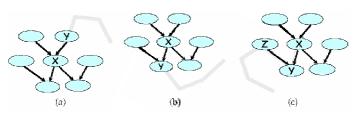
- Instead of attempting perfect I-maps between BNs and MNs, we can try minimal I-maps
- Recall: H is a minimal I-map for G if
 - I(H) (G)
 - Removal of a single edge in H renders it is not an I-map
- Note: If H is a minimal I-map of G, H need not necessarily satisfy all the independence relationships in G

Eric Xing

_

Minimal I-maps from BNs to MNs: Markov Blanket

- Markov Blanket of *X* in a BN G:
 - MB_G(X) is the unique minimal set U of nodes in G such that (X? (all other nodes)
 U) is guaranteed to hold for any distribution that factorizes over G
- Defn (5.7.1): MB_G(X) is the set of nodes consisting of X's parents, X's children and other parents of X's children

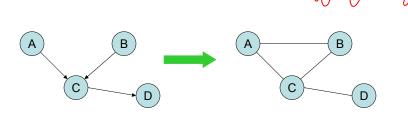


 Idea: The neighbors of X in H --- the minimal I-map of G --- should be MB_G(X)!

Eric Xing

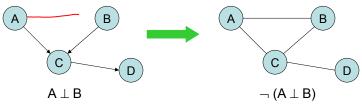
Minimal I-maps from BNs to MNs:

- **Moral Graphs**
 - Defn (5.7.3): The moral graph M(G) of a BN G is an undirected graph that contains an undirected edge between *X* and *Y* if:
 - there is a directed edge between them in either direction
 - X and Y are parents of the same node
 - Comment: this definition ensures MB_G(X) is the set of neighbors of X in M(G)



Minimal I-maps from BNs to MNs: Moral graph is the minimal I-map

- Corollary (5.7.4): The moral graph M(G) of any BN G is a minimal I-map for G
 - Moralization turns each (X, Pa(X)) into a fully connected subset
 - CPDs associated with the network can be used as clique potentials
- The moral graph loses some independence information



Minimal I-maps from BNs to MNs:

Perfect I-maps

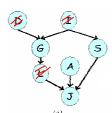
- Proposition (5.7.5): If the BN G is "moral", then its moralized graph M(G) is a perfect I-map of G.
- Proof sketch:
 - I(M(G)) μ I(G) (from before)
 - The only independence relations that are potentially lost from G to M(G) are those arising from V-structures
 - Since G has no V-structures (it is moral), no independencies are lost in M(G)

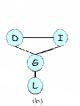
Eric Xing

11

Soundness of d-separation

- Recall d-separation
 - Let $U = \{X, Y, Z\}$ be three disjoint sets of nodes in a BN G.
 - Let G^+ be the ancestral graph: the induced BN over $U \cup$ ancestors(U).
 - Then, d-sep_G(X;Y|Z) iff $sep_{M(G^+)}(X;Y|Z)$





 $\mathsf{D}\text{-}\mathsf{sep}_\mathsf{G}(\mathsf{D};\mathsf{I}\mid\mathsf{L})$

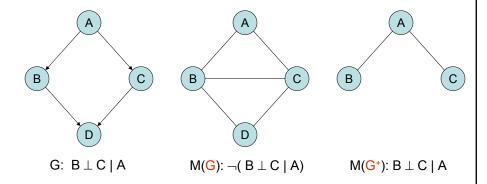
 $D-sep_G(D;I \mid S, A)$

 $sep_{M(G^+)}(D;I\mid L)$

 $\mathsf{Sep}_{\mathsf{M}(\mathsf{G}^+)}\!(\mathsf{D};\!\mathsf{I}\mid \mathsf{S},\!\mathsf{A})$

Soundness of d-separation

• Why it works:



• Idea: Information *blocked* through common children in G that are not in the conditioning variables, is simulated in M(G+) by ignoring all children.

Eric Xing

13

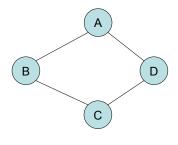
Minimal I-maps from BNs to MNs: Summary

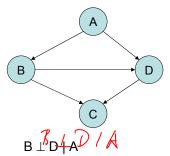
- Moral Graph M(G) is a minimal I-map of G
- If G is moral, then M(G) is a perfect I-map of G
- $D\text{-sep}_G(X;Y|Z)$, $sep_{M(G^+)}(X;Y|Z)$
- Next: minimal I-maps from MNs to BNs ⇒

Eric Xing

Minimal I-maps from MNs to BNs:

 Any BN I-map for an MN must add triangulating edges into the graph



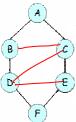


Eric Xing

15

Minimal I-maps from MNs to BNs: chordal graphs

- Defn (5.7.11):
 - Let X_1 - X_2 -... X_k - X_l be a loop in a graph. A chord in a loop is an edge connecting X_i and X_i fo non-consecutive $\{X_i, X_i\}$
 - An undirected graph H is chordal if any loop X₁-X₂-...X_k-X₁ for K >= 4 has a chord



 Defn (5.7.12): A directed graph G is chordal if its underlying undirected graph is chordal

Eric Xino

Minimal I-maps from MNs to BNs: triangulation

- Thm (5.7.13): Let H be an MN, and G be any BN minimal Imap for H. Then G can have no immoralities.
 - Intuitive reason: Immoralities introduce additional independencies that are not in the original MN
 - (cf. proof for theorem 5.7.13 in K&F)
- Corollary (5.7.14): Let K be any minimal I-map for H. Then K is necessarily chordal!
 - Because any non-triangulated loop of length at least 4 in a Bayesian network graph necessarily contains an immorality
- Process of adding edges also called triangulation

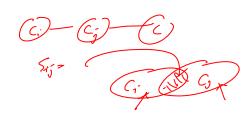
- Thm (5.7.15): Let H be a non-chordal MN. Then there is no BN G that is a perfect I-map for H.
- Proof:
 - Minimal I-map G for H is chordal
 - It must therefore have additional directed edges not present in H
 - Each additional edge eliminates some independence assumptions
 - Hence proved.

ric Xing

Clique trees (1)

- Notation:
 - Let H be a connected undirected graph. Let C₁,...C_k be the set of maximal cliques in H.
 - Let T be a tree structured graph whose nodes are C₁,...C_k.
 - Let C_i, C_j be two cliques in the tree connected by an edge. Define $S_i = C_i \cap C_i$ be the sep-set between C_i and C_i
 - Let W_{<(i,j)} = Variables(C_i) Variables(S_{ij}) --- the residue set

7



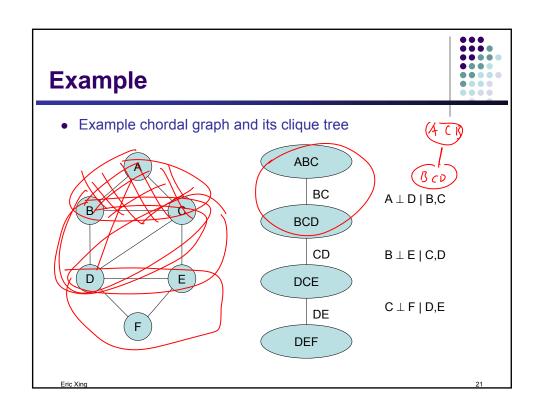
Eric Xing

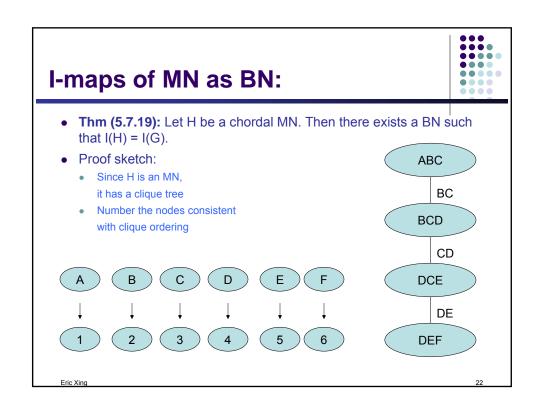
10

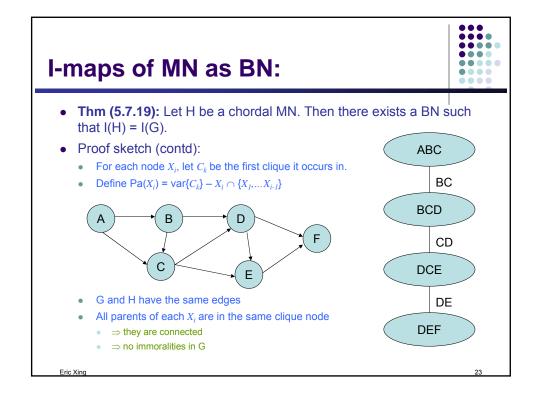
Clique trees (2)

- A tree T is a clique tree for H if:
 - Each node corresponds to a clique in H and each maximal clique in H is a node in T
 - Each sepset $S_{i,i}$ separates $W_{<(i,j)}$ and $W_{<(j,i)}$
- Every undirected chordal graph H has a clique tree T.
 - Proof by induction (cf. Theorem 5.7.17 in K&F)
 - Example in next slide ⇒

Eric Xino







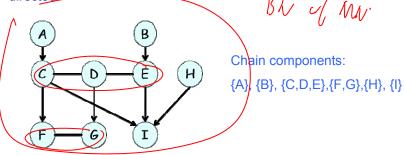
Minimal I-maps from MNs to BNs: Summary

- A minimal I-map BN of an MN is chordal
 - Obtained by triangulating the MN
- If the MN is chordal, there is a perfect BN I-map for the MN
 - Obtained from the corresponding clique-tree
- Next: Hybrids of BNs and MNs
 - Partially Directed Acyclic Graphs

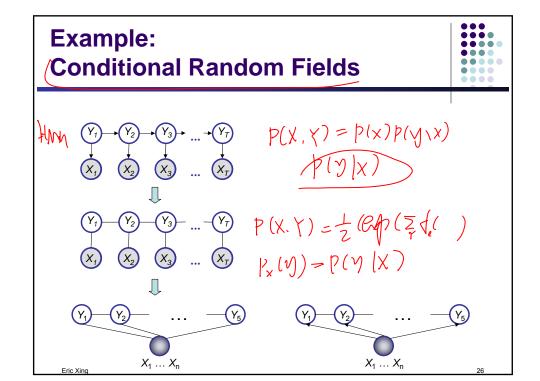
Eric Xin

Partially Directed Acyclic Graphs

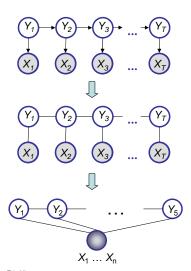
- Also called chain graphs
- Nodes can be disjointly partitioned into several chain components
- An edge within the same chain component must be undirected
- An edge between two nodes in different chain components must be directed



Eric Xing 2



Example: Conditional Random Fields



Discriminative

$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_{c} f_{c}(x, y_{c}) \right\}$$

- Doesn't assume that features are independent
- When labeling X_i future observations are taken into account

27

Conditional Models

- Conditional probability P(label sequence y | observation sequence x)
 rather than joint probability P(y, x)
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

Eric Xing

Conditional Distribution

• If the graph G = (V, E) of **Y** is a tree, the conditional distribution over the label sequence Y = y, given X = x, by fundamental theorem of random fields is:

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} \mid_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} \mid_v, \mathbf{x}) \right)$$
x is a data sequence

- x is a data sequence
- y is a label sequence
- *v* is a vertex from vertex set V = set of label random variables
- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge
- *k* is the number of features
- $\theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k$ and μ_k are parameters to be estimated
- y_e is the set of components of y defined by edge e
- $y|_{v}$ is the set of components of y defined by vertex v

Fric Xina

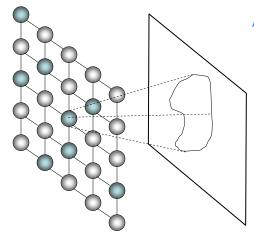
Conditional Distribution (cont'd)

• CRFs use the observation-dependent normalization $Z(\mathbf{x})$ for the conditional distributions:

$$p_{\theta}(y | x) = \frac{1}{Z(x)} \exp \left(\sum_{e \in E, k} \lambda_{k} f_{k}(e, y|_{e}, x) + \sum_{v \in V, k} \mu_{k} g_{k}(v, y|_{v}, x) \right)$$

 $Z(\mathbf{x})$ is a normalization over the data sequence \mathbf{x}

Conditional Random Fields



$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_{c} f_{c}(x, y_{c}) \right\}$$

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

Eric Xing

31

Summary

- Investigated the relationship between BNs and MNs
 - They represent different families of independence assumptions
 - Chordal graphs can be represented in both
- Chain networks: superset of both BNs and MNs

Eric Xino