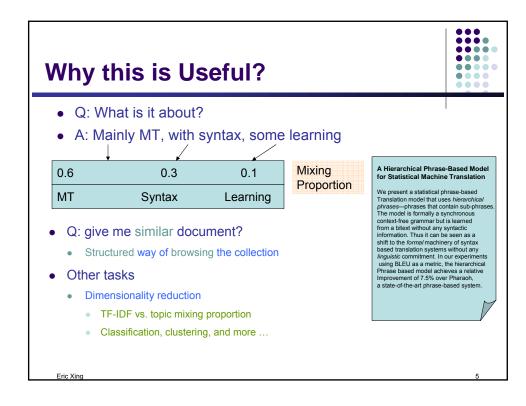


This Talk

- A graphical model primer
- Two families of probabilistic topics models and approximate inference
 - Bayesian admixture models
 - Random models
- Three applications
 - Topic evolution
 - Machine translation
 - Multimedia inference

Eric Xing

How to Model Semantic? • Q: What is it about? • A: Mainly MT, with syntax, some learning A Hierarchical Phrase-Based Model for Statistical Machine Translation Mixing 0.6 0.3 0.1 We present a statistical phrase-based Translation model that uses hierarchical phrases—phrases that contain sub-phrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntax based translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical Phrase based model achieves a relative Improvement of 7.5% over Pharach, a state-of-the-art phrase-based system. Proportion MT Syntax Learning Source likelihood Parse Target Tree ΕM SMT Noun Hidden Alignment Phrase Parameters Score Grammar Estimation **BLEU CFG** argMax Unigram over vocabulary **Topic Models**

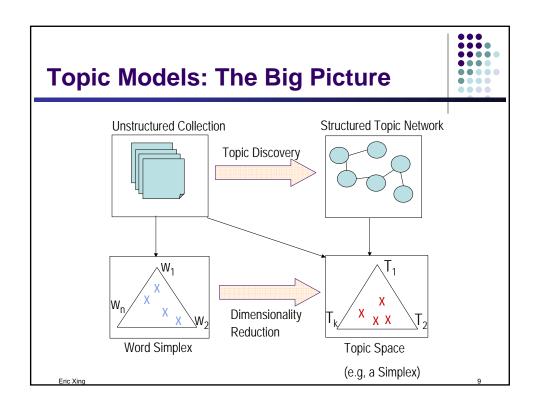


Words in Contexts (con'd)

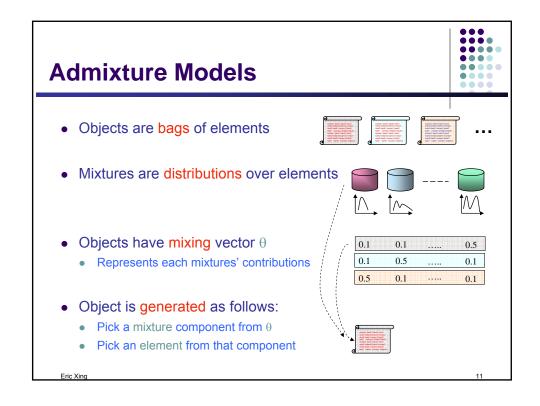
• the opposition Labor **Party** fared even worse, with a predicted 35 **SeatS**, seven less than last **election**.

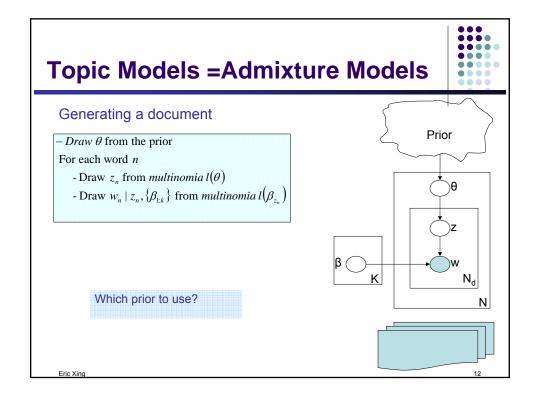
Eric Xing

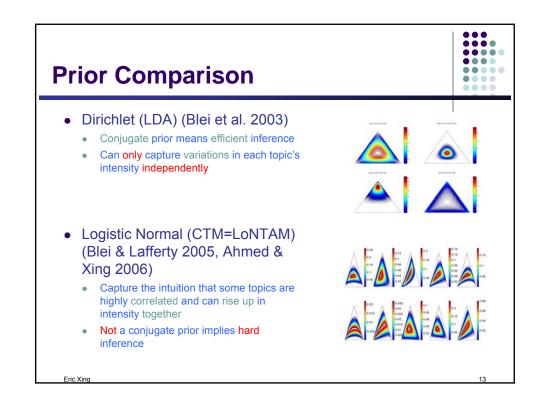
"Words" in Contexts (con'd)

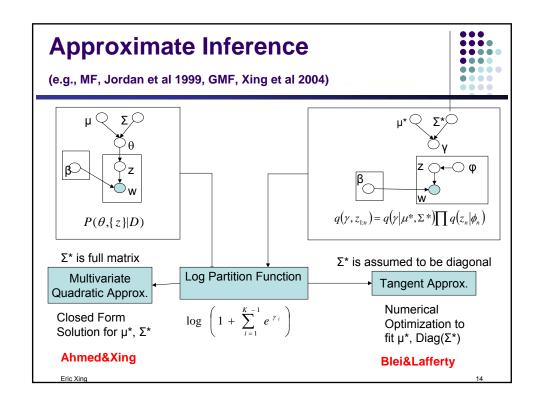


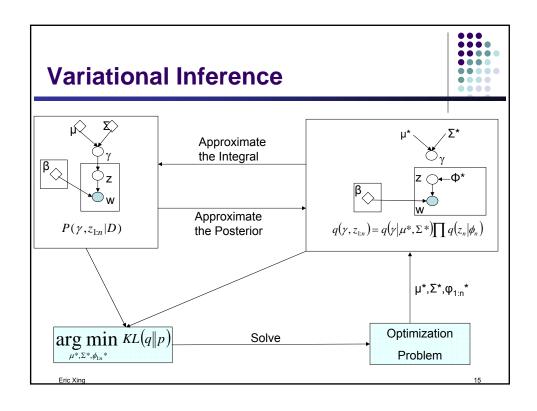
Method One: • Hierarchical Bayesian Admixture A. Ahmed and E.P. Xing AISTAT 2007 10

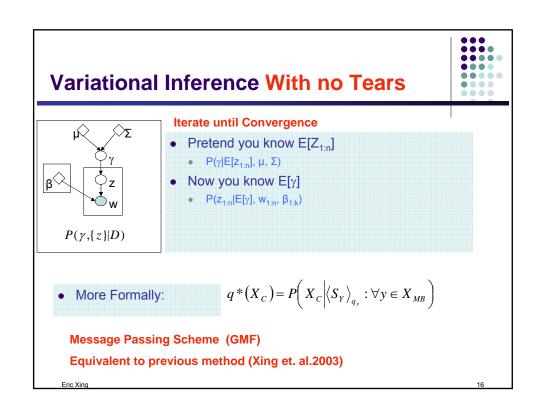












LoNTAM Variations Inference

Fully Factored Distribution

$$q(\gamma, z_{1:n}) = q(\gamma) \prod q(z_n)$$

Two clusters: λ and Z_{1:n}

$$q*(X_C) = P(X_C | \langle S_Y \rangle_{q_y} : \forall y \in X_{MB})$$

• Fixed Point Equations

$$q_{\gamma} * (\gamma) = P(\gamma | \langle S_z \rangle_{q_z}, \mu, \Sigma)$$

$$q_z * (z) = P(z|\langle S_{\gamma} \rangle_{q\gamma}, \beta_{1:k})$$



Variational γ

$$q_{\lambda} * (\gamma) = P(\gamma | \langle S_z \rangle_{q_z}, \mu, \Sigma)$$

$$\propto P(\gamma \mid \mu, \Sigma) P(\langle S_z \rangle_{q_z} | \gamma) \qquad \text{Now what is } \langle S_z \rangle_{q_z} ?$$

$$S_{z} = m = \left[\sum_{n} I(z_{n} = 1), ..., \sum_{n} I(z_{n} = k) \right]$$

$$\propto N(\gamma \mid \mu, \Sigma) \exp \left\{ \langle m \rangle_{q_{z}} \gamma - N \times C(\gamma) \right\}$$

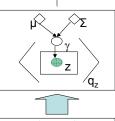
$$\propto N(\gamma \mid \mu, \Sigma) \exp\{\langle m \rangle_{q_z} \gamma - N \times C(\gamma)\}$$

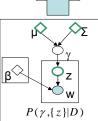
$$\propto \exp\left\{-\frac{1}{2}\gamma'\Sigma^{-1}\gamma + \gamma\Sigma^{-1}\mu + \langle m \rangle_{q_z}\gamma - N \times C(\gamma)\right\}$$

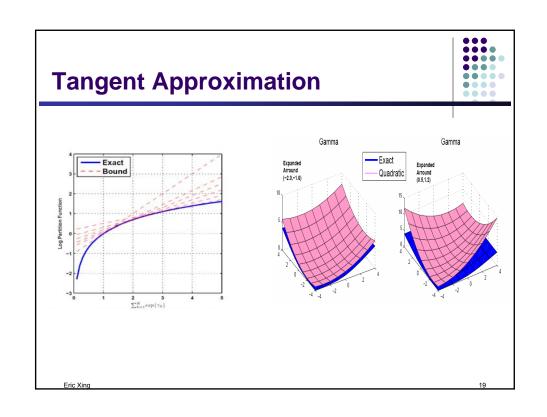
$$C(\gamma) = C(\gamma_{\wedge}) + g'_{\lambda} (\gamma - \gamma_{\wedge}) + .5(\lambda - \gamma_{\wedge})' H(\gamma - \gamma_{\wedge})$$

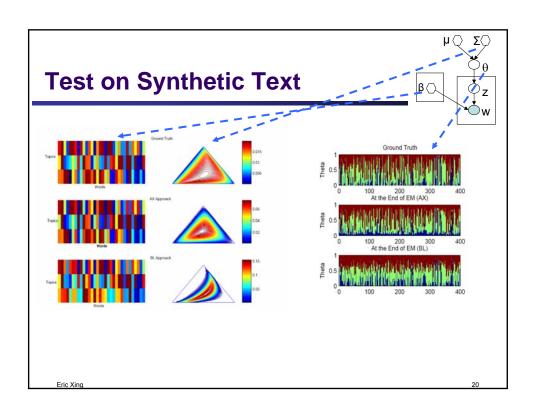
$$\Rightarrow q_{\lambda}^{*}(\gamma) = N(\mu_{\gamma}, \Sigma_{\gamma}) \qquad \sum_{\gamma} = inv \left(\Sigma^{-1} + NH\right)$$

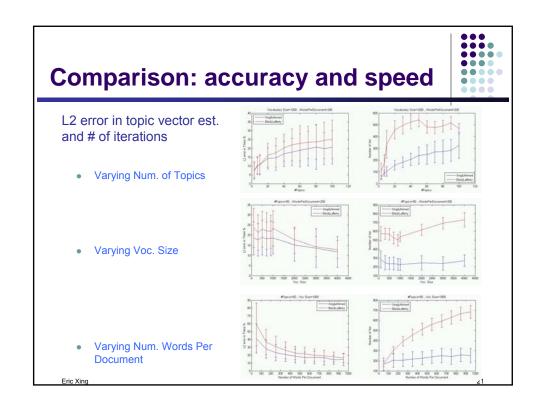
$$\mu_{\gamma} = \sum_{\gamma} \left(\Sigma^{-1} \mu + NH\gamma_{\gamma} + \langle m \rangle - Ng\right)$$

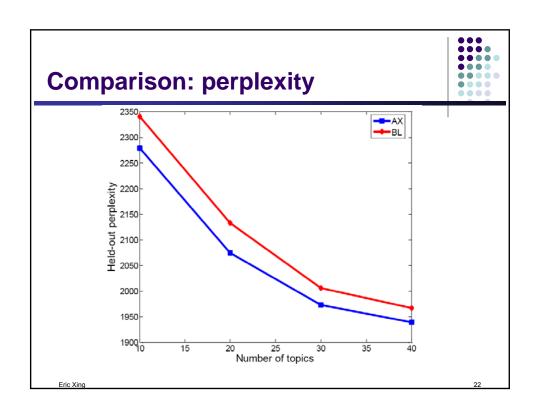


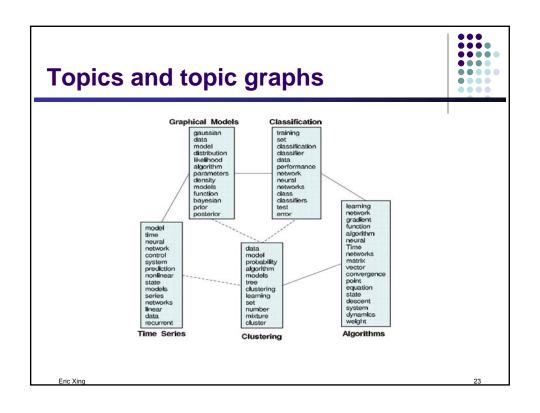












Result on PNAS collection

- PNAS abstracts from 1997-2002
 - 2500 documents
 - Average of 170 words per document
- Fitted 40-topics model using both approaches
- Use low dimensional representation to predict the abstract category
 - Use SVM classifier
 - 85% for training and 15% for testing

Classification Accuracy

Category	Doc	BL	AX
Genetics	21	61.9	61.9
Biochemistry	86	65.1	77.9
Immunology	24	70.8	66.6
Biophysics	15	53.3	66.6
Total	146	64.3	72.6

Eric Xing

Method Two:

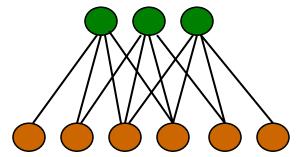
• Layered Boltzmann machines

E.P. Xing, R. Yan and A. G. Hauptmann, UAI 2006

Eric Xin

The Harmonium

hidden units



visible units

Boltzmann machines:

$$p(x, h \mid \theta) = \exp\left\{ \sum_{i} \theta_{i} \phi_{i}(x_{i}) + \sum_{j} \theta_{j} \phi_{j}(h_{j}) + \sum_{i,j} \theta_{i,j} \phi_{i,j}(x_{i}, h_{j}) - A(\mathbf{\theta}) \right\}$$

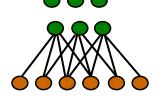
Eric Xing

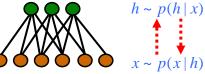
Properties of Harmoniums

- Factors are marginally dependent.
- Factors are conditionally independent given observations on the visible nodes.

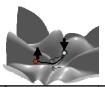
$$P(\ell \mid \mathbf{w}) = \prod_{i} P(\ell_i \mid \mathbf{w})$$

· Iterative Gibbs sampling.

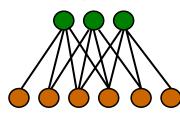




Learning with contrastive divergence



A Binomial Word-count Model



 $h_i = 3$: topic j has strength 3

$$h_j \in \mathbb{R}, \qquad \langle h_j \rangle = \sum_i W_{i,j} x_i$$

 $x_i = n$: word i has count n

 $x_i \in \mathbf{I}$

words counts

$$p(\mathbf{h} \mid \mathbf{x}) = \prod_{j} \text{Normal}_{h_j} \left[\sum_{i} \vec{W}_{ij} \vec{x}_i, 1 \right]$$

$$p(\mathbf{x} \mid \mathbf{h}) = \prod_{i} \text{Bi}_{x_i} \left[N, \frac{\exp(\alpha_j + \sum_{j} W_{ij} h_j)}{1 + \exp(\alpha_j + \sum_{j} W_{ij} h_j)} \right] \frac{\infty C_{x_i}^N \exp((\alpha_i + \sum_{j} W_{ij} h_j) x_i + A_i)}{\text{Reduce to softmax when N=1!}}$$

 $\operatorname{Bi}_{x_i}[N,p] = C_{x_i}^N p^{x_i} (1-p)^{N-x_i} = C_{x_i}^N \left(\frac{p}{1-p}\right)^{x_i} (1-p)^N$

Let
$$p = \frac{1}{1 + \exp(\alpha_j + \sum_j W_{ij} h_j)}$$
,

$$\propto C_{x_i}^N \exp\left\{\left(\alpha_i + \sum_j W_{ij} h_j\right) x_i + A_i\right\}$$

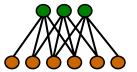
 $\Rightarrow p(\mathbf{x}) \propto \exp\left\{\left(\sum_{i} \alpha_{i} x_{i} - \log \Gamma(x_{i}) - \log \Gamma(N - x_{i})\right) + \frac{1}{2} \sum_{j} \left(\sum_{i} W_{i,j} x_{i}\right)^{2}\right\}$

The Computational Trade-off

Undirected model: Learning is hard, inference is easy.

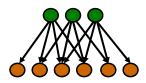
<u>Directed Model</u>: Learning is "easier", inference is hard.

Example: Document Retrieval.



topics

words



Retrieval is based on comparing (posterior) topic distributions of documents.

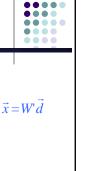
- directed models: inference is slow. Learning is relatively "easy".
- <u>undirected model</u>: inference is fast. Learning is slow but can be done offline.

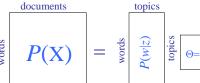
20

Comparison of model semantics

topic

topic

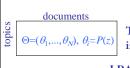




|| words

documents

X



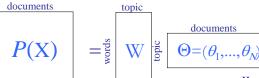
documents

 \mathbf{D}^{T}

LSI

Topic-Mixing is via marginalizing over word labeling

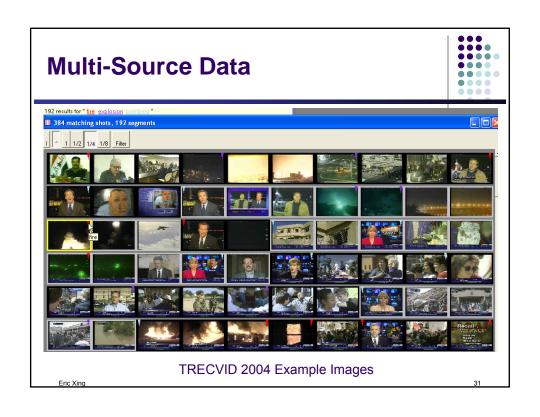
LDA $p(X) \leftarrow z \leftarrow \vec{\theta}$

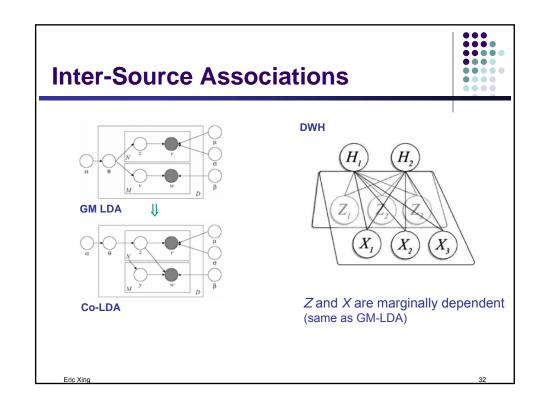


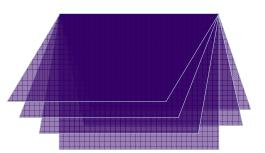
Mixing is via determining individual word rate

 $p(X) \leftarrow W'\vec{\theta}$

_____ Harmonium







Eric Xing

00

Learning and Inference

• Maximal likelihood learning based on gradient ascent.

$$\delta\theta_i \propto \langle f_i(x_i) \rangle_{\text{data}} - \langle f_i(x_i) \rangle_p$$

- gradient computation requires model distribution p(.)
- p(.) is intractable
- Contrastive Divergence
 - approximate p(.) with Gibbs sampling
- Variational approximation
 - GMF approximation

$$q(\mathbf{x}, \mathbf{z}, \mathbf{h}) = \prod_{i} q(x_i \mid v_i) \prod_{k} q(z_k \mid \mu_k, \sigma_k) \prod_{j} q(h_j \mid \gamma_i)$$

Eric Xing

Inter-source Inference

GMF approximation to DWH

$$q(\mathbf{x}, \mathbf{z}, \mathbf{h}) = \prod_{i} q(x_i \mid N, v_i) \prod_{k} q(z_k \mid \mu_k, \sigma_k) \prod_{j} q(z_k \mid \mu_k, \sigma_k)$$

• Expected mean value of topic strength:

$$\gamma_j = \sum_i W_{i,j} \nu_i + \sum_k U_{k,j} \mu_k$$

• Expected mean value of image-feature :

$$\mu_k = \sigma_k^2 \left(\beta_k + \sum_{j=j} U_{k,j} \gamma_j \right)$$

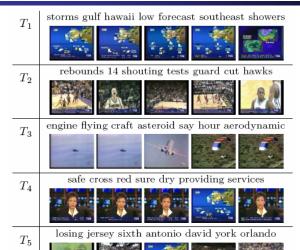
Expected mean count

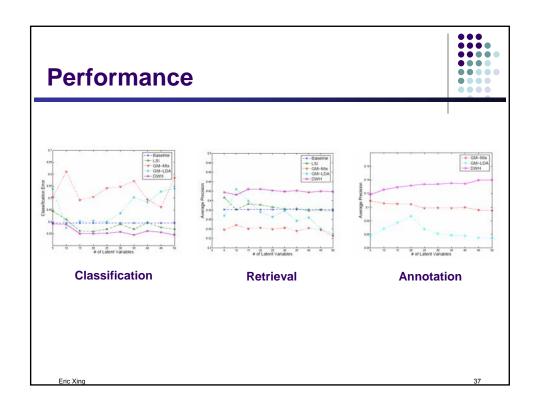
$$N \nu_i = N \frac{\exp(\alpha_j + \sum_j W_{ij} \gamma_j)}{1 + \exp(\alpha_j + \sum_j W_{ij} \gamma_j)}$$

Eric Xing

35

Examples of Latent Topics

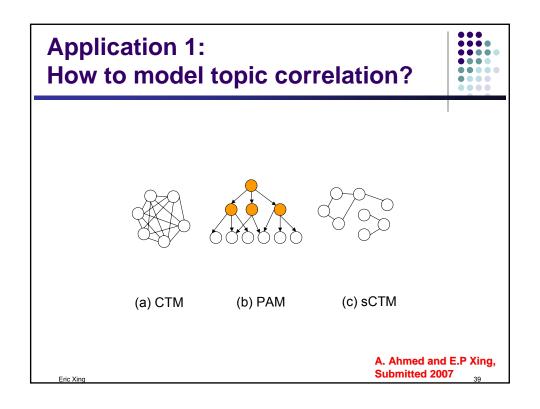


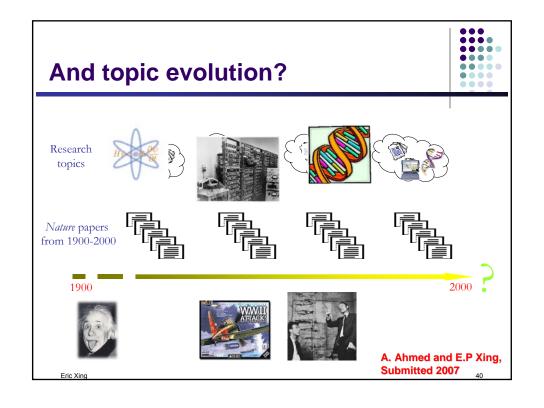


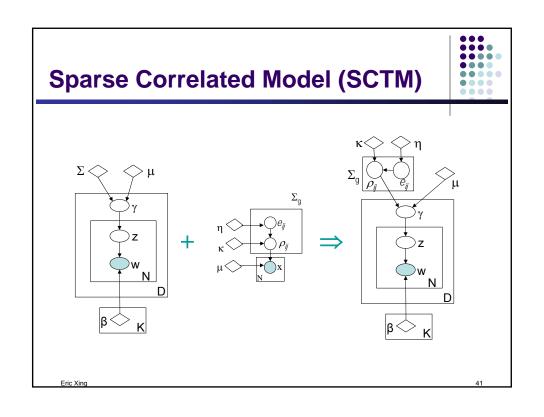
This Talk

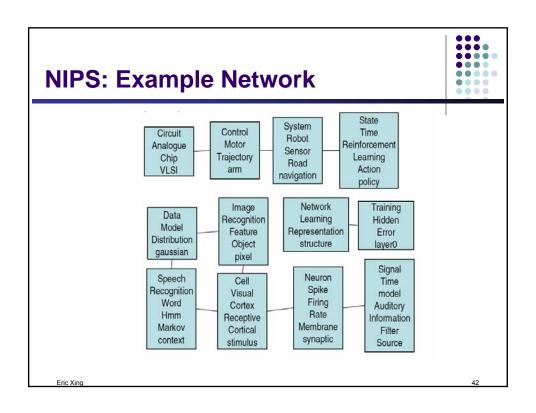
- A graphical model primer
- Two families of probabilistic topics models and approximate inference
 - Bayesian admixture models
 - Random models
- Three applications
 - Learning topic graphs and topic evolution
 - Machine translation
 - Multimedia inference

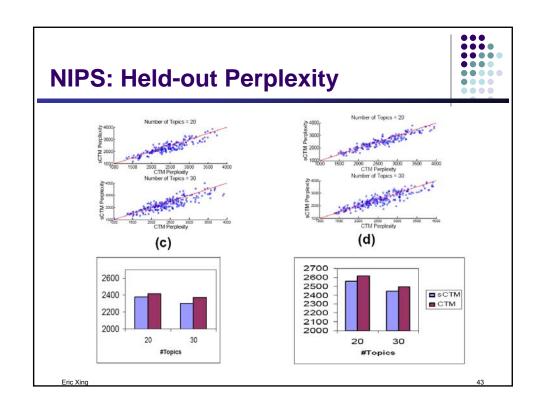
Eric Xing

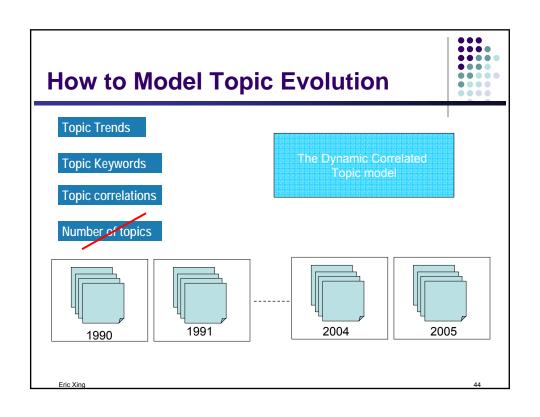


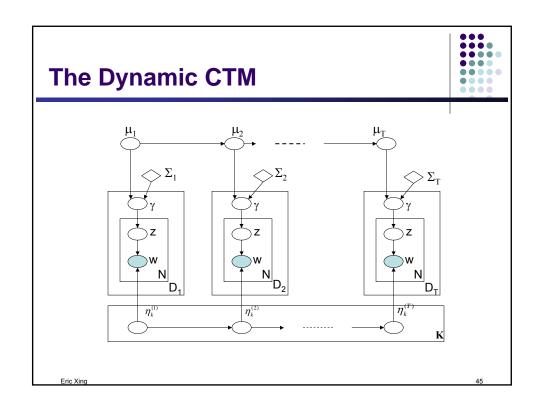


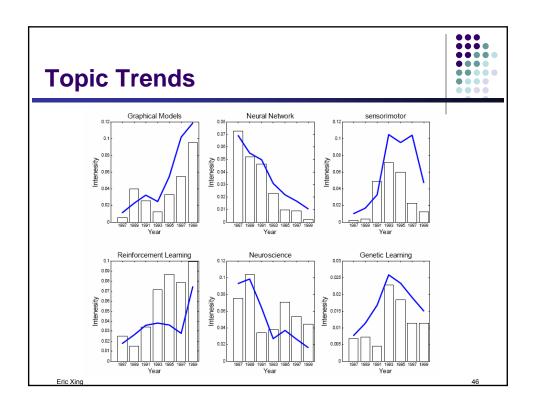


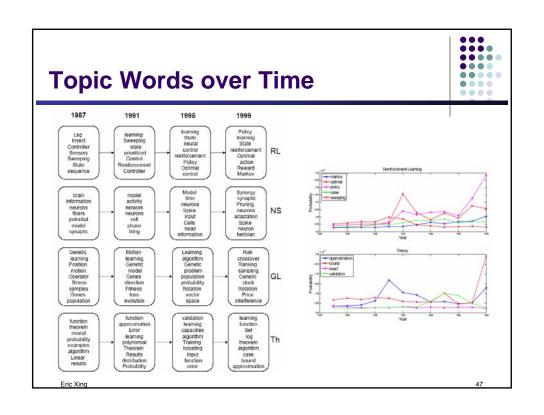


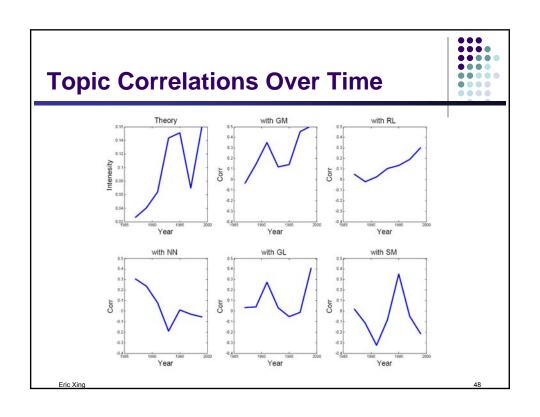


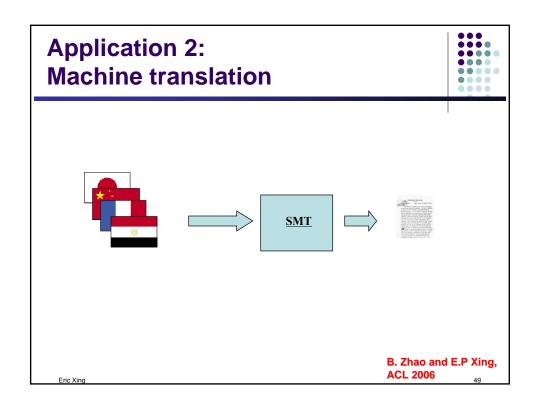


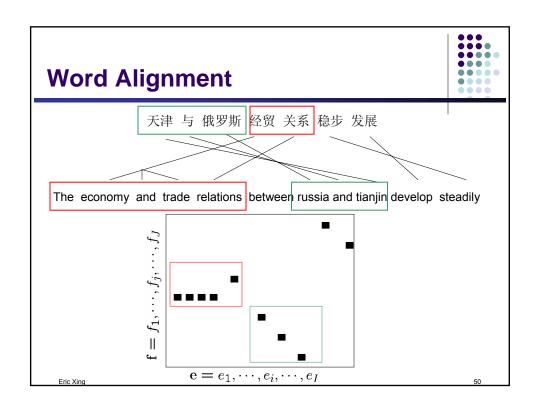


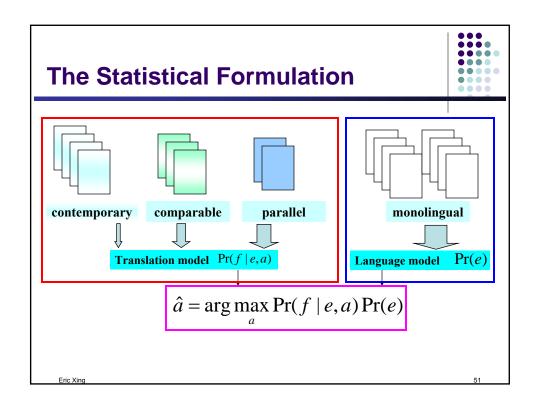


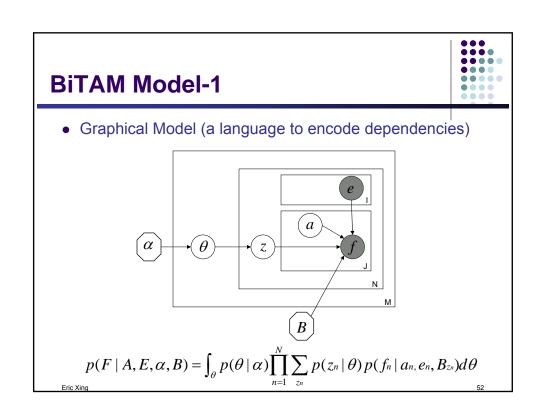


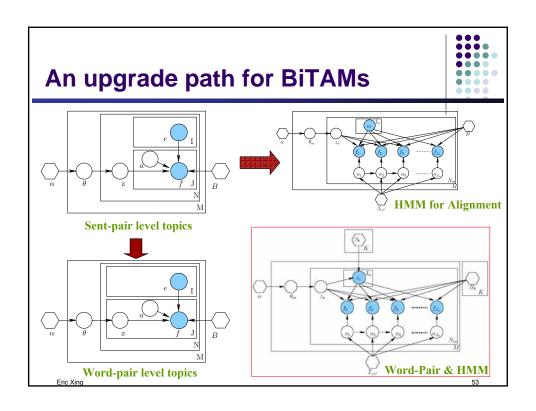












Experiments

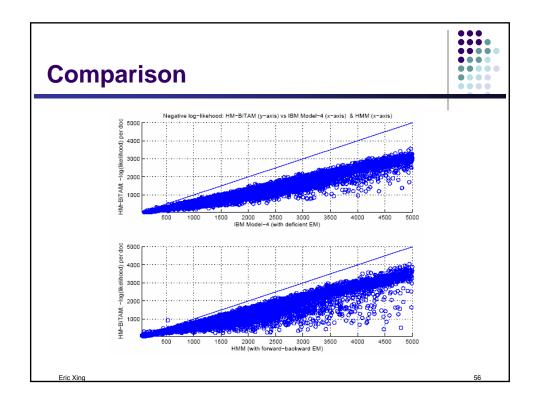
- Training data
 - Small: Treebank 316 doc-pairs (133K English words)
 - Large: FBIS-Beijing, Sinorama, XinHuaNews, (15M English words).

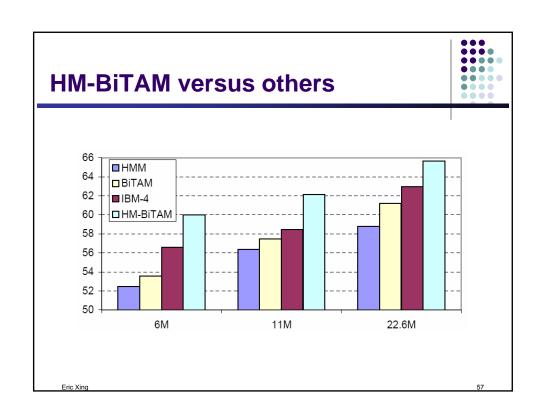
Train	#Doc.	#Sent.	#Tokens		
Train			English	Chinese	
Treebank	316	4172	133K	105K	
FBIS.BJ	6,111	105K	4.18M	3.54M	
Sinorama	2,373	103K	3.81M	3.60M	
XinHua	19,140	115K	3.85M	3.93M	
FOUO	15,478	368K	13.14M	11.93M	
Test	95	627	25,500	19,726	

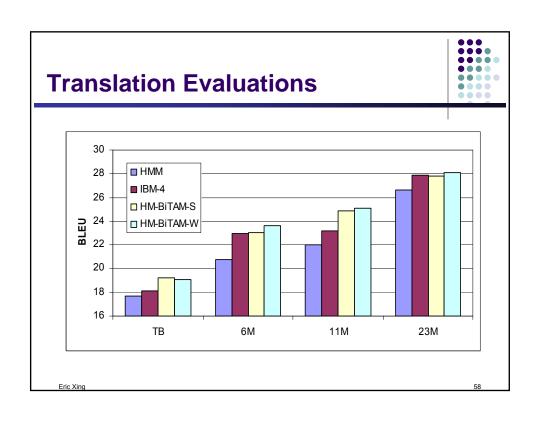
- Word Alignment Accuracy & Translation Quality
 - F-measure
 - BLEU

Eric Xino

0	pics				
T1	Teams, sports, disabled, games members, people, cause, water, national, handicapped	T1	人, 残疾, 体育, 事业, 水, 世界, 区, 新华社, 队员, 记者		
T2	Shenzhen, singapore, hongkong, stock, national, investment, yuan, options, million, dollar	T2	深圳, 深, 新, 元, 有, 股, 香港, 国有, 外资, 新华社		
ТЗ	Chongqing, company, takeover, shenzhen, tianjin, city, national, government, project, companies	Т3	国家, 重庆, 市, 区, 厂, 天津, 政府, 项目, 国, 深圳		
T4	Hongkong, trade, export, import, foreign, tech., high, 1998, year, technology	T4	香港, 贸易, 出口, 外资, 合作, 今年, 项目, 利用, 新, 技术		
T5	House, construction, government, employee, living, provinces, macau, anhui, yuan	T5	住房,房,九江,建设,澳门,元,职工,目前,国家,占,省		
T6	Gas, company, energy, usa, russia, france, chongqing, resource, china, economy, oil	Т6	公司, 天然气, 两, 国, 美国, 记者, 关系, 俄, 法, 重庆		







Systems	1-gram	2-gram	3-gram	4-gram	BLEUr4
Hiero Sys.	73.92	40.57	23.21	13.84	30.70
Gale Sys.	75.63	42.71	25.00	14.30	32.78
HM-BiTAM	76.77	42.99	25.42	14.04	33.19
Ground Truth	76.10	43.85	26.70	15.73	34.17

Eric Xing

59

Application 3: video representation/classification

- Video: a complex, multi-modal data type for representation and classification
 - Image, text (closed-captions, speech transcript), audio
- Goal: classify video segments called video shots into semantic categories

speech

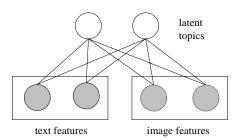
J. Yang, Y. Liu, E. P. Xing and A. Hauptmann, SDM 2007, **BEST PAPER Award**

Eric Xir

SDM 2007, BEST PAPER Award 60

Harmoniums for Multi-modal Data

- Dual-wing harmoniums (DWH) [Xing et al. 05]
 - modeling bi-modal data: captioned images, video
 - learning hidden topics from two "wings" of observed features

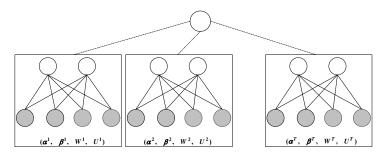


VI. .

61

Mixture-of-Harmoniums (MoH)

• A family of category-specific dual-wing harmoniums



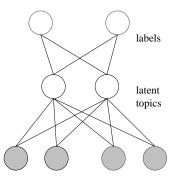
 $\cdots X_N$

classification by finding the "best-fitting" harmonium

Eric Xin

Hierarchical Harmonium (HH)

 Incorporate category labels as a layer of hidden nodes on top of latent topic nodes

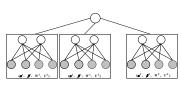


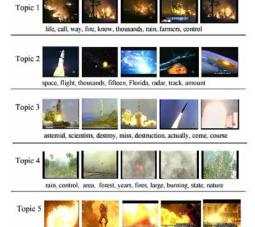
• classification by inference of label nodes

Eric Xina

63

- Revealing "sub-topics" of each category
- Co-clusters of both text and image features





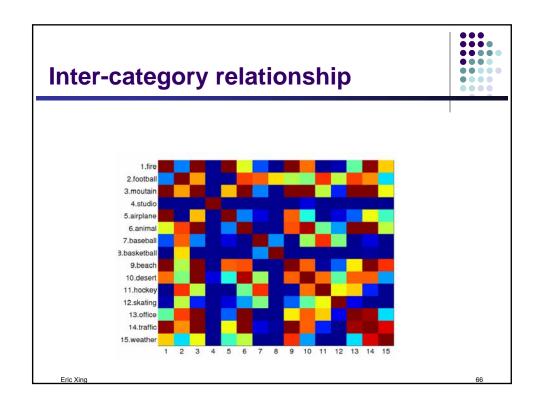
panic, sized, type, headaches, freedom, love, turning, beautiful

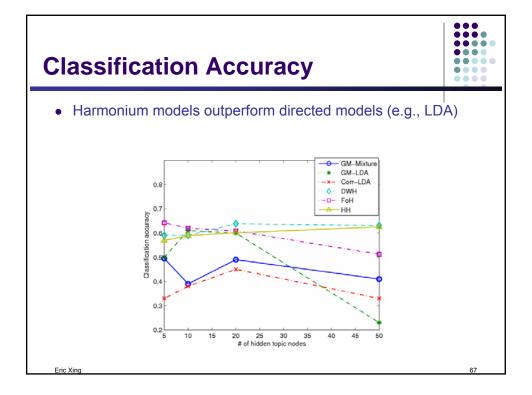
 $X_1 \cdots X_N$

 Y_{j}

 H_{I}

Eric Xing





Conclusion • GM-based topic models are cool • Flexible • Modular • Interactive • There are many ways of implementing topic models • Directed • Undirected • Efficient Inference/learning algorithms • GMF, with Laplace approx. for non-conjugate dist. • MCMC • Many applications • ... • Word-sense disambiguation • Word-net • Network inference