

Summary: Monte Carlo Methods

- Direct Sampling
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.
- Likelihood weighting, ...
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs

Eric Xino

Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p , and conditional on that, compute expected value of rest X_d analytically:

$$\begin{split} E_{p(X|e)}[f(X)] &= \int p(x_p, x_d \mid e) f(x_p, x_d) dx_p dx_d \\ &= \int_{x_p} p(x_p \mid e) \Biggl(\int_{x_d} p(x_d \mid x_p, e) f(x_p, x_d) dx_d \Biggr) dx_p \\ &= \int_{x_p} p(x_p \mid e) E_{p(X_d \mid x_p, e)} \Bigl[f(x_p, X_d) \Bigr] dx_p \\ &= \frac{1}{M} \sum E_{p(X_d \mid x_p, e)} \Bigl[f(x_p^m, X_d) \Bigr] \qquad x_p^m \sim p(x_p \mid e) \end{split}$$

• This has lower variance, because of the identity:

$$\operatorname{var} \left[\tau(X_{p}, X_{d})\right] = \operatorname{var} \left[E\left[\tau(X_{p}, X_{d}) \mid X_{p}\right]\right] + E\left[\operatorname{var}\left[\tau(X_{p}, X_{d}) \mid X_{p}\right]\right]$$

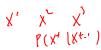
• Hence $\operatorname{var} \left[E\left[\tau(X_p, X_d) \mid X_p\right] \le \operatorname{var}\left[\tau(X_p, X_d)\right]$, so $\tau(X_p, X_d) = E\left[f(X_p, X_d) \mid X_p\right]$ is a lower variance estimator.

Fric Xina

3

Markov chain Monte Carlo (MCMC)

- Importance sampling does not scale well to high dimensions.
- Rao-Blackwellisation not always possible.
- MCMC is an alternative.
- Construct a Markov chain whose stationary distribution is the target density = P(X|e).
- Run for *T* samples (burn-in time) until the chain converges/mixes/reaches stationary distribution.
- Then collect M (correlated) samples x_m.
- Key issues:
 - Designing proposals so that the chain mixes rapidly.
 - Diagnosing convergence.



-...

Markov Chains

- Definition:
 - Given an n-dimensional state space

- Random vector $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$
- $\mathbf{x}^{(t)} = \mathbf{x}$ at time-step t
- $\mathbf{x}^{(t)}$ transitions to $\mathbf{x}^{(t+1)}$ with prob $\mathsf{P}(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}, \dots, \mathbf{x}^{(1)}) = \mathsf{T}(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}) = \mathsf{T}(\mathbf{x}^{(t)} \to \mathbf{x}^{(t+1)})$
- **Homogenous**: chain determined by state $\mathbf{x}^{(0)}$, fixed *transition kernel* T (rows sum to 1)
- Equilibrium: $\pi(\mathbf{x})$ is a stationary (equilibrium) distribution if $\pi(\mathbf{x}') = \Sigma_{\mathbf{x}} \pi(\mathbf{x}) \ \mathsf{T}(\mathbf{x} \rightarrow \mathbf{x}').$

i.e., is a left eigenvector of the transition matrix $\pi^{T} = \pi^{T}$.

$$(0.2 \quad 0.5 \quad 0.3) = (0.2 \quad 0.5 \quad 0.3) \begin{pmatrix} 0.25 & 0 & 0.75 \\ 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 \end{pmatrix}$$

0.25 0.7 (X1) (X2) 0.75 0.5 (0.5) (0.3)

Eric Xing

Markov Chains

- An MC is *irreducible* if transition graph connected
- An MC is *aperiodic* if it is not trapped in cycles
- An MC is *ergodic* (regular) if you can get from state x to x'
 in a finite number of steps.
- **Detailed balance**: $prob(x^{(t)} \rightarrow x^{(i-1)}) = prob(x^{(t-1)} \rightarrow x^{(t)})$

$$p(\mathbf{x}^{(t)})T(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}) = p(\mathbf{x}^{(t-1)})T(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)})$$

summing over $\mathbf{x}^{(t-1)}$

$$p(\mathbf{x}^{(t)}) = \sum_{\mathbf{x}^{(t-1)}} p(\mathbf{x}^{(t-1)}) T(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)})$$

Detailed bal → stationary dist exists

Eric Xino

Metropolis-Hastings

- Treat the target distribution as stationary distribution
- Sample from an easier proposal distribution, followed by an acceptance test
- This induces a transition matrix that satisfies detailed balance
 - MH proposes moves according to $Q(x \mid x)$ and accepts samples with probability A(x'|x).
 - The induced transition matrix is $T(x \to x') = Q(x'|x)A(x'|x)$
 - Detailed balance means

$$\pi(x)Q(x'|x)A(x'|x) = \pi(x')Q(x|x')A(x|x')$$

Hence the acceptance ratio is

$$\chi \rightarrow \chi'$$

Metropolis-Hastings

- 1. Initialize $\boldsymbol{x}^{(0)}$ $\chi' \sim T(\chi'' \rightarrow \chi_{i})$
- While not mixing // burn-in
 - x=x(t)
 - t += 1,
 - sample $u \sim \text{Unif}(0,1)$
 - sample $x^* \sim Q(x^*|x)$

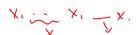
- if
$$u < A(x^*|x) = \min\left(1, \frac{\pi(x^*)Q(x|x^*)}{\pi(x)Q(x^*|x)}\right)$$

• $x^{(t)} = x^*$ // transition

- else
- $x^{(t)} = x$
- // stay in current state

Function Draw sample (x(t))

- Reset t=0, for t=1:N,
 - x(t+1) \leftarrow Draw sample (x(t))

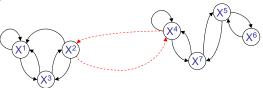


Mixing time

• The ε mixing time T_{ε} is the minimal number of steps (from any starting distribution) until $D_{\text{var}}(P^{(T)}, \pi) \le \varepsilon$, where D_{var} is the variational distance between the two distributions:

$$D_{\text{var}}(\mu_1, \mu_2) = \sup_{\mathcal{A} \subset \mathcal{S}} \left| \mu_1(\mathcal{A}) - \mu_2(\mathcal{A}) \right|$$

- Chains with low bandwidth (conductance) regions of space take a long time to mix.
- This arises for GMs with deterministic or highly skewed potentials.



Eric Xing

 $q(x^*|x) \sim N(x^{(i)},100)$

0.05

 $p(x) \sim 0.3 \exp(-0.2x^2) + 0.7 \exp(-0.2(x-10)^2)$

Summary of MH

- Random walk through state space
- Can simulate multiple chains in parallel
- Much hinges on proposal distribution Q
 - Want to visit state space where p(X) puts mass
 - Want $A(x^*|x)$ high in modes of p(X)
 - Chain mixes well
- Convergence diagnosis
 - How can we tell when burn-in is over?
 - Run multiple chains from different starting conditions, wait until they start "behaving similarly".
 - Various heuristics have been proposed.

Eric Xing

$$G_{1}, I_{2}, simple.$$

$$P(X_{1} | X_{5})$$

$$X_{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{pmatrix}$$

$$P(X_{1} | X_{5})$$

$$P(X_{2} | X_{1}, X_{2}, X_{3})$$

$$P(X_{3} | X_{4}, X_{4}, X_{3})$$

$$P(X_{3} | X_{4}, X_{4}, X_{4}, X_{4})$$

$$P(X_{3} | X_{4}, X_{4}, X_{4}, X_{4})$$

$$P(X_{3} | X_{4}, X_{4}, X_{4}, X_{4})$$

$$P(X_{3} | X_{4}, X_{4}, X_{4}, X_{4}, X_{4})$$

$$P(X_{3} | X_{4}, X_{4}, X_{4}, X_{4}, X_{4})$$

$$P(X_{3} | X_{4}, X_{4},$$

Gibbs sampling

- Gibbs sampling is an MCMC algorithm that is especially appropriate for inference in graphical models.
- The procedue
 - we have variable set $X=\{x_1, x_2, x_3, ..., x_N\}$ for a GM
 - at each step one of the variables X_i is selected (at random or according to some fixed sequences), denote the remaining variables as X_i , and its current value as X_i
 - Using the "alarm network" as an example, say at time t we choose X_E and we denote the current value assignments of the remaining variables, X_E , obtained from previous samples, as $x_{-F}^{(-1)} = \left\{x_R^{(-1)}, x_A^{(r-1)}, x_A^{(r-1)}, x_B^{(r-1)}\right\}$
 - the conditional distribution $p(X_i | \mathbf{x}_i^{(t-1)})$ is computed
 - a value $x_i^{(f)}$ is sampled from this distribution
 - the sample $x^{(f)}$ replaces the previous sampled value of X_i in X_i .

• i.e.,
$$\mathbf{X}^{(t)} = \mathbf{X}_{-E}^{(t-1)} \cup \mathbf{X}_{E}^{(t)}$$

Eric Xing

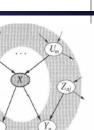
...

Markov Blanket

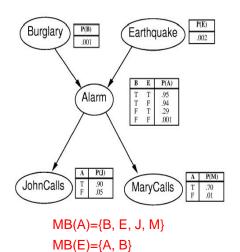
- Markov Blanket in BN
 - A variable is independent from others, given its parents, children and children's parents (dseparation).

 A variable is independent all its non-neighbors, given all its direct neighbors.

 Every step, choose one variable and sample it by P(X|MB(X)) based on previous sample.



Gibbs sampling of the alarm network



- To calculate P(J|B1,M1)
- Choose (B1,E0,A1,M1,J1) as a start
- Evidences are B1, M1, variables are A, E, J.
- Choose next variable as A
- Sample A by
 P(A|MB(A))=P(A|B1, E0, M1,
 J1) suppose to be false.
- (B1, E0, A0, M1, J1)
- Choose next random variable as E, sample E~P(E|B1,A0)
- ...

15

Gibbs sampling

- · Gibbs sampling is a special case of MH
- The transition matrix updates each node one at a time using the following proposal:

$$Q((\mathbf{x}_i, \mathbf{x}_{-i}) \to (\mathbf{x}_i', \mathbf{x}_{-i})) = p(\mathbf{x}_i' | \mathbf{x}_{-i})$$

- This is efficient since for two reasons
 - It leads to samples that is always accepted

$$\begin{split} A\Big((\boldsymbol{x}_{i}, \mathbf{x}_{-i}) \rightarrow (\boldsymbol{x}_{i}^{'}, \mathbf{x}_{-i})\Big) &= \min \left(1, \frac{p(\boldsymbol{x}^{'}, \mathbf{x}_{-i})Q\big((\boldsymbol{x}^{'}, \mathbf{x}_{-i}) \rightarrow (\boldsymbol{x}_{i}, \mathbf{x}_{-i})\big)}{p(\boldsymbol{x}_{i}, \mathbf{x}_{-j})Q\big((\boldsymbol{x}_{i}, \mathbf{x}_{-j}) \rightarrow (\boldsymbol{x}^{'}, \mathbf{x}_{-j})\big)} \right) \\ &= \min \left(1, \frac{p(\boldsymbol{x}^{'}, | \mathbf{x}_{-i})p(\mathbf{x}_{-i})p(\boldsymbol{x}_{-i}|\mathbf{x}_{-i})}{p(\boldsymbol{x}_{i} | \mathbf{x}_{-j})p(\mathbf{x}^{'}, |\mathbf{x}_{-j})} \right) = \min \left(1, 1\right) \end{split}$$

Thus

$$T((\mathbf{X}_i, \mathbf{X}_{-i}) \rightarrow (\mathbf{X}_i', \mathbf{X}_{-i})) = p(\mathbf{X}_i' | \mathbf{X}_{-i})$$

• It is efficient since $p(\mathbf{x}_i^{\cdot} | \mathbf{x}_{-i})$ only depends on the values in \mathbf{X}_i° s Markov blanket

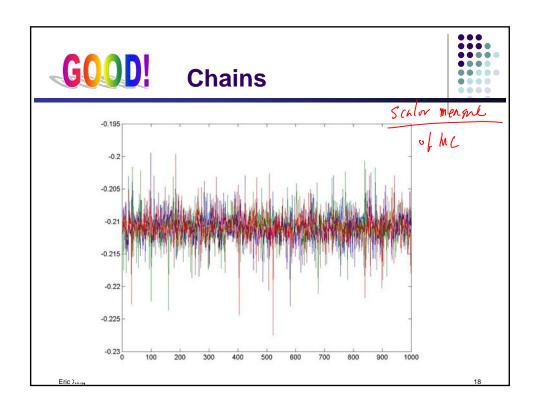
Eric Xino

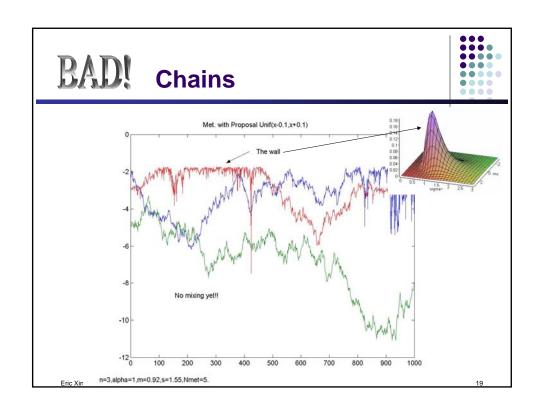
Gibbs sampling

- Scheduling and ordering:
 - Sequential sweeping: in each "epoch" t, touch every r.v. in some order and yield an new sample, $x^{(t)}$, after every r.v. is resampled
 - Randomly pick an r.v. at each time step
- Blocking:
 - Large state space: state vector X comprised of many components (high dimension)
 - Some components can be correlated and we can sample components (i.e., subsets of r.v.,) one at a time
- Gibbs sampling can fail if there are deterministic constraint

- Suppose we observe Z=1. The posterior has 2 modes: P(X=1, Y=0|Z=1) and P(X=0, Y=1|Z=1). if we start in mode 1, P(X|Y=0, Z=1) leaves X=1, so we can't move to mode 2 (Reducible Markov chain).
- If all states have non-zero probability, the MC is guaranteed to be regular.
- Sampling blocks of variables at a time can help improve mixing.

Eric Xina





The Art

of simulation

- Run several chains
- Start at over-dispersed points
- Monitor the log lik.
- Monitor the serial correlations
- Monitor acceptance ratios
- Re-parameterize (to get approx. indep.)
- Re-block (Gibbs)
- Collapse (int. over other pars.)
- Run with troubled pars. fixed at reasonable vals.

Eric Xino

Example: Recall Latent Dirichlet Allocation

- Blei, Jordan and Ng (2003)
- Generative model of documents (but broadly applicable e.g. collaborative filtering, image retrieval, bioinformatics)
- · Generative model:
 - choose

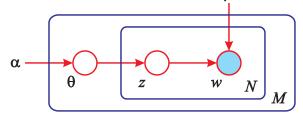
$$heta \sim \mathsf{Dir}(lpha)$$

choose topic

$$\mathbf{z}_n \sim \mathsf{Mult}(oldsymbol{ heta})$$

choose word

$$\mathbf{w}_n \sim p(\mathbf{w}_n | \mathbf{z}_n, \boldsymbol{\beta})$$



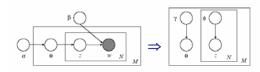
Eric Xino

21

Variational Approximation

Naïve Mean Field:

$$\begin{aligned} q(\theta, z) &= q_{\theta}(\theta) q_{z}(z) \\ &= \mathrm{Dir} (\theta \mid \gamma = f(\alpha, \langle z \rangle)) \times \\ &\qquad \qquad \mathrm{Multi} (z \mid \phi = f(\beta_{w}, \langle \ln \theta \rangle)) \end{aligned}$$



$$\begin{array}{lll} \phi_{ni} & \propto & \beta_{iw_n} \exp\{ \mathbb{E}_q[\log(\theta_i) \,|\, \gamma] \} \\ \gamma_i & = & \alpha_i + \sum_{n=1}^N \phi_{ni}. \end{array}$$

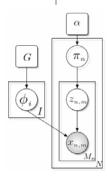
Eric Xing

Collapsed Gibbs sampling of M³

model (Tom Griffiths & Mark Steyvers)

- Collapsed Gibbs sampling
 - Integrate out π

For variables $\mathbf{z} = z_1, z_2, ..., z_n$ Draw $z_i^{(t+1)}$ from $P(z_i | \mathbf{z}_{-i}, \mathbf{w})$ $\mathbf{z}_{-i} = z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{i-1}^{(t+1)}, z_{i+1}^{(t)}, ..., z_n^{(t)}$



Eric Xing

23

Gibbs sampling

- •••
- Need full conditional distributions for variables
- Since we only sample z we need

 $P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto P(w_i | z_i = j, \mathbf{z}_{-i}, \mathbf{w}_{-i}) P(z_i = j | \mathbf{z}_{-i})$ $= \frac{n_{-i,j}^{(w_i)} + \beta}{n_{-i,j}^{(\cdot)} + W\beta} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(d_i)} + T\alpha}$

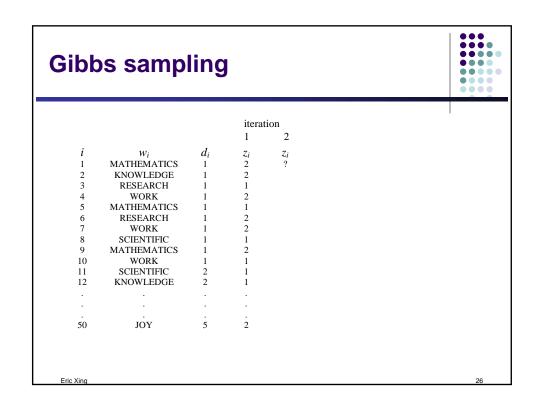
 β ϕ_{i} $z_{n,m}$ $z_{n,m}$ $z_{n,m}$

 $n_i^{(w)}$ number of times word w assigned to topic j

 $n_j^{(d)}$ number of times topic j used in document d

Eric Xing

```
Gibbs sampling
                             iteration
         MATHEMATICS
         KNOWLEDGE
          RESEARCH
            WORK
         MATHEMATICS
          RESEARCH
            WORK
    8
          SCIENTIFIC
         MATHEMATICS
    10
           WORK
          SCIENTIFIC
    11
         KNOWLEDGE
    12
            JOY
    50
```



```
Gibbs sampling
                                                   iteration
                                                   1
                                                             \frac{z_i}{?}
                MATHEMATICS
                KNOWLEDGE
                  RESEARCH
                     WORK
                MATHEMATICS
        5
6
7
8
9
                  RESEARCH
                     WORK
                  SCIENTIFIC
                MATHEMATICS
       10
                    WORK
                 SCIENTIFIC
       11
                KNOWLEDGE
                      JOY
       50
                                                      P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto rac{n_{-i,j}^{(w_i)} + eta}{n_{-i,j}^{(\cdot)} + Weta} rac{n_{-i,j}^{(d_i)} + lpha}{n_{-i,\cdot}^{(d_i)} + Tlpha}
```

