

Monte Carlo methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution

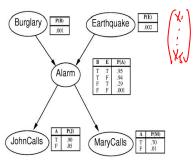
$$\underline{E[f(x)]} = \frac{1}{N} \sum_{t=1}^{N} f(x^{(t)})$$

- Asymptotically exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or egally useful, see an example later)?
 - how to know we've sampled enough?

Eric Xino

Example: naive sampling

Construct samples according to probabilities given in a BN.



Alarm example: (Choose the right sampling sequence) 1) Sampling: P(B)=<0.001, 0.999> suppose it is false, B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose it is false...

2) Frequency counting: In the samples right, P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

Eric Xing

E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E0	В0	A0	MO	J1
E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E1	В0	A1	M1	J1
E0	B0	A0	MO	J0
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0

3

Example: naive sampling

• Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

3) what if we want to compute P(J|A1)? we have only one sample ... P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1)?

No such sample available!

P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner evough samples even after a long time or sampling ...

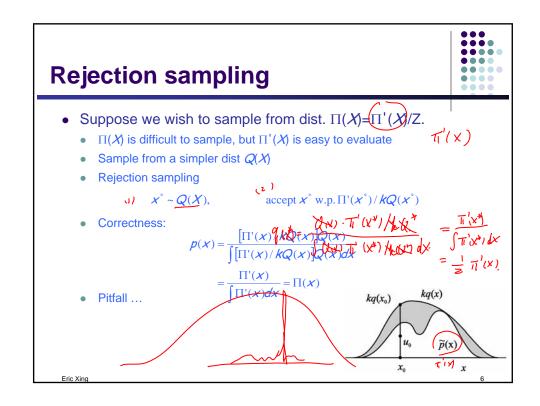
E0	B0	A0	M0	J0
E0	В0	A0	MO	J0
E0	В0	A0	MO	J1
E0	В0	A0	MO	J0
E0	B0	A0	MO	J0
E0	В0	A0	MO	J0
E1	B0	A1	M1	J1
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E0	В0	A0	M0	J0

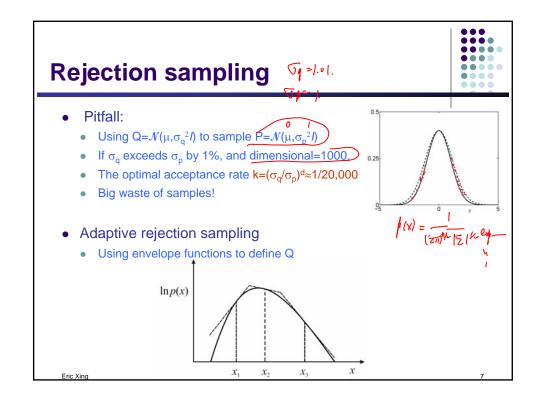
Eric Xing

Monte Carlo methods (cond.)

- Direct Sampling
 - We have seen it.
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.
- Likelihood weighting, ...
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs

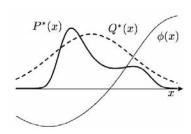
Fric Xino





Unnormalized importance sampling

- Suppose sampling from $P(\cdot)$ is hard.
- Suppose we can sample from a "simpler" proposal distribution $Q(\cdot)$ instead.
- If Q dominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can sample from Q and reweight:



$$\langle f(X) \rangle = \int f(x)P(x)dx$$

$$= \int f(x)\frac{P(x)}{Q(x)}Q(x)dx$$

$$\approx \frac{1}{M}\sum_{m} f(x^{m})\frac{P(x^{m})}{Q(x^{m})} \quad \text{where } x^{m} \sim Q(X)$$

$$= \frac{1}{M}\sum_{m} f(x^{m})w^{m}$$

$$p(x) = \frac{P(x)}{Z}$$

Eric Xino

Normalized importance sampling

- Suppose we can only evaluate $P'(x) = \alpha P(x)$ (e.g. for an
- We can get around the nasty normalization constant α as

• Let
$$r(X) = \frac{P'(X)}{Q(X)}$$
 $\Rightarrow \langle r(X) \rangle_Q = \int_{Q(X)}^{P'(X)} Q(X) dX = \int_{Q(X)}^{P'(X)} P'(X) dX = \alpha$

$$\langle f(X) \rangle_{\rho} = \int f(x)P(x)dx = \frac{1}{\alpha} \int f(x) \frac{P'(x)}{Q(x)} Q(x)dx$$

$$\int F(X) \left(\chi(X) \right) dX = \frac{\int f(x)P(x)Q(x)dx}{\int r(x)Q(x)dx}$$

$$\approx \frac{\sum_{m} f(x^{m}) x^{m}}{\sum_{m} r^{m}} \text{ where } x^{m} \sim Q(X)$$

$$= \sum_{m} f(x^{m}) w^{m} \text{ where } w^{m} = \frac{r^{m}}{\sum_{m} r^{m}}$$

Normalized vs unnormalized importance sampling

• Unormalized importance sampling is unbiased:

$$E_{\varrho}[f(X)w(X)] = \int f(X)w(X) \& (x) dX = \int f(x) \frac{p(x)}{\& (x)} \& x | dx) = \int f(x)p(x)dx$$

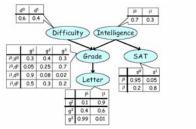
• Normalized importance sampling is biased, eg for
$$M = 1$$
:
$$E_{\varrho} \left[\frac{f(x^{1})w(x^{1})}{w(x^{1})} \right] = E_{\varrho} \left(f(x^{1}) \right) + E_{\varrho} \left[f(x) \right] \qquad W^{l} = \frac{p^{l}(x)}{(u(x))}$$

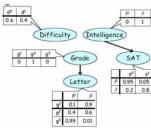
$$W^{l} = \frac{w^{l}}{2w^{l}}.$$

- However, the variance of the normalized importance sampler is usually lower in practice.
- Also, it is common that we can evaluate P'(x) but not P(x), e.g. P(x|e) = P'(x, e)/P(e) for Bayes net, or P(x) = P'(x)/Z for MRF.

Likelhood weighting

- We now apply normalized importance sampling to a Bayes net.
- The proposal Q is gotten from the mutilated BN where we clamp evidence nodes, and cut their incoming arcs. Call this P_M.





- The unnormalized posterior is P'(x) = P(x, e).
 So for f(X_i) = δ(X_i = x_i), we get P(X_i = x_i | e) = ∑ w_mδ(x_i^m = x_i) / ∑ w_m where $W_m = P'(x^m, e) / P_M(x^m)$.

Likelhood weighting algorithm


```
[x_{1:n}, w] = \text{function LW(CPDs, } G, E)
let X_1, \ldots, X_n be a topological ordering of G
w = 1
x = (0, \dots, 0)
for i = 1:n
   let u_i = x(Pa_i)
   if X_i \not\in E
   then sample x_i from P(X_i|u_i)
    else
        x_i = e(X_i)
        w = w * P(x_i|u_i)
```

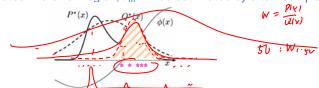
Efficiency of likelihood weighting

- The efficiency of importance sampling depends on how close the proposal Q is to the target P.
- Suppose all the evidence is at the roots. Then Q = P(X|e), and all samples have weight 1.
- Suppose all the evidence is at the leaves. Then Q is the prior, so many samples might get small weight if the evidence is unlikely.
- We can use arc reversal to make some of the evidence nodes be roots instead of leaves, but the resulting network can be much more densely connected.

King

Weighted resampling

- Problem of importance sampling: depends on how well Q
 matches P
 - If P(x)f(x) is strongly varying and has a significant proportion of its mass concentrated in a small region, r_m will be dominated by a few samples



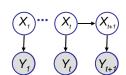
- Note that if the high-prob mass region of Q falls into the low-prob mass region of P, the variance of $r^m = P(x^m)/Q(x^m)$ can be small even if the samples come from low-prob region of P and potentially erroneous .
- Solution
 - Use heavy tail Q.
 - Weighted resampling

$$w^{m} = \frac{P(x^{m})/Q(x^{m})}{\sum_{l} P(x^{l})/Q(x^{l})} = \frac{r^{m}}{\sum_{m} r^{m}}$$

Eric Xing

Weighted resampling

- Sampling importance resampling (SIR):
 - Draw N samples from $Q: X_1 ... X_N$
 - Constructing weights: $w_1 \dots w_N$, $w^m = \frac{P(x^m)/Q(x^m)}{\sum_i P(x^i)/Q(x^i)} = \frac{P(x^m)/Q(x^m)}{\sum_i P(x^i)$
- Particular Filtering
 - A special weighted resampler
 - Yield samples from posterior $p(X_t|Y_{1:t})$



Sketch of Particle Filters

The starting point

$$p(X_{t}|Y_{1:t}) = p(X_{t}|Y_{t}, Y_{1:t-1}) = p(X_{t}|Y_{1:t-1}) p(Y_{t}|X_{t})$$

$$p(X_{t}|Y_{1:t-1}) p(Y_{t}|X_{t})$$

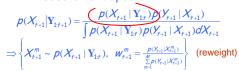
• Thus $p(X_1|Y_{1:t})$ is represented by

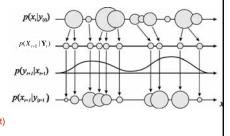
$$\left\{ \underbrace{X_{t}^{m} \sim p(X_{t} \mid \mathbf{Y}_{1:t-1}), \left(W_{t}^{m} = \frac{p(X_{t} \mid X_{t}^{m})}{\sum_{i=p(X_{t} \mid X_{t}^{m})}^{M}} \right)} \quad P(X_{t+1} \mid Y_{1:t+1}) \right\}$$

- · A sequential weighted resampler
 - Time update

$$\begin{split} & p(X_{t+1} \mid \mathbf{Y}_{1:t}) = \int p(X_{t+1} \mid X_{t}) p(X_{t} \mid \mathbf{Y}_{1:t}) dX_{t} \\ & = \sum_{m} w_{t}^{m} p(X_{t+1} \mid X_{t}^{(n)}) \text{ (sample from a mixture model)} \end{split}$$

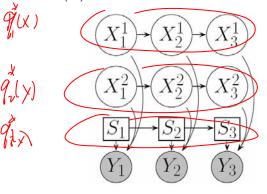
Measurement update





PF for switching SSM

• Recall that the belief state has O(2t) Gaussian modes



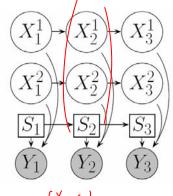
Eric Xino

4-7

PF for switching SSM

 Key idea: if you knew the discrete states, you can apply the right Kalman filter at each time step.

- So for each old particle m, sample $S_t^m \sim P(S_t \mid S_{t-1}^m)$ from the prior, apply the KF (usomg parameters for S_t^m) to the old belief state $(\hat{x}_{t-1|t-1}^m, P_{t-1|t-1}^m)$ to get an approximation to $P(X_t \mid y_{1:t}, S_{1:t}^m)$
- Useful for online tracking, fault diagnosis, etc.



 \int_{M}

Eric Xin

Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p , and conditional on that, compute expected value of rest X_d analytically:

$$\begin{split} E_{p(X|e)}[f(X)] &= \int p(x_p, x_d \mid e) f(x_p, x_d) dx_p dx_d \\ &= \int_{x_p} p(x_p \mid e) \Biggl(\int_{x_d} p(x_d \mid x_p, e) f(x_p, x_d) dx_d \Biggr) dx_p \\ &= \int_{x_p} p(x_p \mid e) E_{p(X_d \mid x_p, e)} \Bigl[f(x_p, X_d) \Bigr] dx_p \\ &= \frac{1}{M} \sum_{m} E_{p(X_d \mid x_p^m, e)} \Bigl[f(x_p^m, X_d) \Bigr], \qquad x_p^m \sim p(x_p \mid e) \end{split}$$

• This has lower variance, because of the identity:

$$\operatorname{var} \left[\tau(X_p, X_d) \right] = \operatorname{var} \left[E\left[\tau(X_p, X_d) \mid X_p \right] \right] + E\left[\operatorname{var} \left[\tau(X_p, X_d) \mid X_p \right] \right]$$

ing

Eric Xing

Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p , and conditional on that, compute expected value of rest X_d analytically:

$$\begin{split} E_{p(X|e)}[f(X)] &= \int p(x_p, x_d \mid e) f(x_p, x_d) dx_p dx_d \\ &= \int_{x_p} p(x_p \mid e) \Biggl(\int_{x_d} p(x_d \mid x_p, e) f(x_p, x_d) dx_d \Biggr) dx_p \\ &= \int_{x_p} p(x_p \mid e) E_{p(X_d \mid x_p, e)} \Bigl[f(x_p, X_d) \Bigr] dx_p \\ &= \frac{1}{M} \sum E_{p(X_d \mid x_p, e)} \Bigl[f(x_p^m, X_d) \Bigr] \qquad x_p^m \sim p(x_p \mid e) \end{split}$$

• This has lower variance, because of the identity:

$$\operatorname{var} \! \left[\tau(\boldsymbol{X}_{p}, \boldsymbol{X}_{d}) \right] \! = \! \operatorname{var} \! \left[E \! \left[\tau(\boldsymbol{X}_{p}, \boldsymbol{X}_{d}) \, | \, \boldsymbol{X}_{p} \right] \! \right] \! + E \! \left[\operatorname{var} \! \left[\tau(\boldsymbol{X}_{p}, \boldsymbol{X}_{d}) \, | \, \boldsymbol{X}_{p} \right] \right] \!$$

• Hence $\operatorname{var} \left[E \left[\tau(X_p, X_d) \mid X_p \right] \le \operatorname{var} \left[\tau(X_p, X_d) \right]$, so $\tau(X_p, X_d) = E \left[f(X_p, X_d) \mid X_p \right]$ is a lower variance estimator.

ic Xina

21

Summary: Monte Carlo Methods

- Direct Sampling
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.
- Likelihood weighting, ...
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs

Eric Xing