

Lecture 18, Nov 19, 2007

Eric Xing

Reading: J-Chap. 1, KF-Chap. 11

Monte Carlo methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
 - marginals and other expections can be approximated using samplebased averages

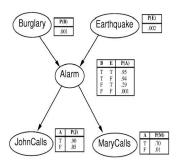
$$E[f(x)] = \frac{1}{N} \sum_{t=1}^{N} f(x^{(t)})$$

- Asymptotically exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or egally useful, see an example later)?
 - how to know we've sampled enough?

Eric Xing

Example: naive sampling

• Construct samples according to probabilities given in a BN.



Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose
it is false...

2) Frequency counting: In the samples right, P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

Eric Xino

E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E0	В0	A0	MO	J1
E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E0	B0	A0	MO	J0
E1	В0	A1	M1	J1
E0	В0	A0	MO	J0
E0	B0	A0	MO	J0
E0	B0	A0	MO	J0

Example: naive sampling

Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

3) what if we want to compute P(J|A1)? we have only one sample ... P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1)?
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner evough samples even after a long time or sampling ...

E0	B0	A0	M0	J0
E0	В0	A0	MO	J0
E0	В0	A0	MO	J1
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E0	В0	A0	M0	J0
E1	В0	A1	M1	J1
E0	В0	A0	MO	J0
E0	В0	A0	MO	J0
E0	В0	A0	M0	J0

Eric Xing

Monte Carlo methods (cond.)

- Direct Sampling
 - We have seen it.
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.
- Likelihood weighting, ...
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs

Fric Xino

5

Rejection sampling

- Suppose we wish to sample from dist. $\Pi(X)=\Pi'(X)/Z$.
 - $\Pi(X)$ is difficult to sample, but $\Pi'(X)$ is easy to evaluate
 - Sample from a simpler dist Q(X)
 - Rejection sampling

$$x^* \sim Q(X)$$
, accept x^* w.p. $\Pi'(x^*)/kQ(x^*)$

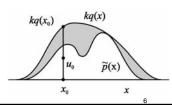
Correctness:

Pitfall ...

$$p(x) = \frac{\left[\Pi'(x)/kQ(x)\right]Q(x)}{\int \left[\Pi'(x)/kQ(x)\right]Q(x)dx}$$

$$\Pi'(x)$$

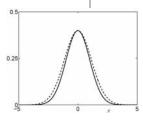
 $= \frac{\Pi'(x)}{\int \Pi'(x) dx} = \Pi(x)$



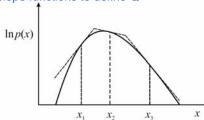
Eric Xino

Rejection sampling

- Pitfall:
 - Using $Q = \mathcal{N}(\mu, \sigma_0 I)$ to sample $P = \mathcal{N}(\mu, \sigma_0 I)$
 - If σ_{q} exceeds σ_{p} by 1%, and dimensional=1000,
 - The optimal acceptance rate $k=(\sigma_o/\sigma_o)^d \approx 1/20,000$
 - Big waste of samples!



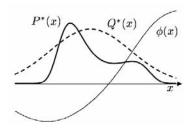
- · Adaptive rejection sampling
 - Using envelope functions to define Q



Eric Xing

Unnormalized importance sampling

- Suppose sampling from $P(\cdot)$ is hard.
- Suppose we can sample from a "simpler" proposal distribution $\mathcal{Q}(\cdot)$ instead.
- If Q dominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can sample from Q and reweight:



$$\langle f(X) \rangle = \int f(x) P(x) dx$$

$$= \int f(x) \frac{P(x)}{Q(x)} Q(x) dx$$

$$\approx \frac{1}{M} \sum_{m} f(x^{m}) \frac{P(x^{m})}{Q(x^{m})} \quad \text{where } x^{m} \sim Q(X)$$

$$= \frac{1}{M} \sum_{m} f(x^{m}) w^{m}$$

Eric Xino

Normalized importance sampling

- Suppose we can only evaluate P'(x) = αP(x) (e.g. for an MRF).
- We can get around the nasty normalization constant α as follows:

• Let
$$r(X) = \frac{P'(X)}{Q(X)}$$
 \Rightarrow $\langle r(X) \rangle_Q = \int \frac{P'(X)}{Q(X)} Q(X) dX = \int P'(X) dX = \alpha$

Now

$$\langle f(X) \rangle_{\rho} = \int f(x)P(x)dx = \frac{1}{\alpha} \int f(x) \frac{P'(x)}{Q(x)} Q(x)dx$$

$$= \frac{\int f(x)P(x)Q(x)dx}{\int P(x)Q(x)dx}$$

$$\approx \frac{\sum_{m} f(x^{m})P^{m}}{\sum_{m} r^{m}} \quad \text{where } x^{m} \sim Q(X)$$

$$= \sum_{m} f(x^{m})w^{m} \quad \text{where } w^{m} = \frac{P^{m}}{\sum_{m} r^{m}}$$

Eric Xing

Normalized vs unnormalized importance sampling

• Unormalized importance sampling is unbiased:

$$E_o[f(X)w(X)] =$$

• Normalized importance sampling is biased, eg for M = 1:

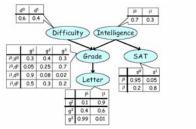
$$E_{\mathcal{Q}}\left[\frac{f(x^1)w(x^1)}{w(x^1)}\right] =$$

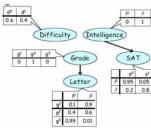
- However, the variance of the normalized importance sampler is usually lower in practice.
- Also, it is common that we can evaluate P'(x) but not P(x), e.g. P(x|e) = P'(x, e)/P(e) for Bayes net, or P(x) = P'(x)/Z for MRF.

Eric Xing

Likelhood weighting

- We now apply normalized importance sampling to a Bayes net.
- The proposal Q is gotten from the mutilated BN where we clamp evidence nodes, and cut their incoming arcs. Call this P_M.





- The unnormalized posterior is P'(x) = P(x, e).
 So for f(X_i) = δ(X_i = x_i), we get P(X_i = x_i | e) = ∑ w_mδ(x_i^m = x_i) / ∑ w_m where $W_m = P'(x^m, e) / P_M(x^m)$.

Likelhood weighting algorithm


```
[x_{1:n}, w] = \text{function LW(CPDs, } G, E)
let X_1, \ldots, X_n be a topological ordering of G
w = 1
x = (0, \dots, 0)
for i = 1:n
   let u_i = x(Pa_i)
   if X_i \not\in E
   then sample x_i from P(X_i|u_i)
    else
        x_i = e(X_i)
        w = w * P(x_i|u_i)
```

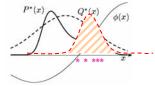
Efficiency of likelihood weighting

- The efficiency of importance sampling depends on how close the proposal Q is to the target P.
- Suppose all the evidence is at the roots. Then Q = P(X|e), and all samples have weight 1.
- Suppose all the evidence is at the leaves. Then Q is the prior, so many samples might get small weight if the evidence is unlikely.
- We can use arc reversal to make some of the evidence nodes be roots instead of leaves, but the resulting network can be much more densely connected.

ric Xing

Weighted resampling

- Problem of importance sampling: depends on how well Q
 matches P
 - If P(x)f(x) is strongly varying and has a significant proportion of its mass concentrated in a small region, r_m will be dominated by a few samples



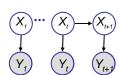
- Note that if the high-prob mass region of Q falls into the low-prob mass region of P, the variance of $r^m = P(x^m)/Q(x^m)$ can be small even if the samples come from low-prob region of P and potentially erroneous .
- Solution
 - Use heavy tail Q.
 - Weighted resampling

$$w^{m} = \frac{P(x^{m})/Q(x^{m})}{\sum_{l} P(x^{l})/Q(x^{l})} = \frac{r^{m}}{\sum_{m} r^{m}}$$

Eric Xing

Weighted resampling

- Sampling importance resampling (SIR):
 - 1. Draw N samples from $Q: X_1 ... X_N$
 - 2. Constructing weights: $w_1 \dots w_N$, $w^m = \frac{P(x^m)/Q(x^m)}{\sum_i P(x^i)/Q(x^i)} = \frac{r^m}{\sum_m r^m}$ 3. Sub-sample x from $\{X_1 \dots X_N\}$ w.p. $(w_1 \dots w_N)$
- Particular Filtering
 - A special weighted resampler
 - Yield samples from posterior $p(X_t|Y_{1:t})$



Sketch of Particle Filters

• The starting point

$$p(X_{t}|\mathbf{Y}_{1:t}) = p(X_{t}|Y_{t}, \mathbf{Y}_{1:t-1}) = \frac{p(X_{t}|\mathbf{Y}_{1:t-1})p(Y_{t}|X_{t})}{\int p(X_{t}|\mathbf{Y}_{1:t-1})p(Y_{t}|X_{t})dX_{t}}$$

• Thus $p(X_t|Y_{1:t})$ is represented by

$$\left\{\boldsymbol{\mathcal{X}}_{t}^{m} \sim p(\boldsymbol{\mathcal{X}}_{t} \mid \mathbf{Y}_{1:t-1}), \ \boldsymbol{w}_{t}^{m} = \frac{p(\boldsymbol{\mathcal{Y}}_{t} | \boldsymbol{\mathcal{X}}_{t}^{m})}{\sum\limits_{m=1}^{M} p(\boldsymbol{\mathcal{Y}}_{t} | \boldsymbol{\mathcal{X}}_{t}^{m})}\right\}$$

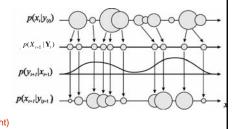
- · A sequential weighted resampler
 - Time update

$$p(X_{t+1} \mid \mathbf{Y}_{1:t}) = \int p(X_{t+1} \mid X_t) p(X_t \mid \mathbf{Y}_{1:t}) dX_t$$

 $= \sum w_t^m p(X_{t+1} | X_t)$ (sample from a mixture model)

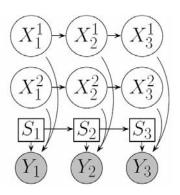
Measurement update

$$\begin{split} & p(X_{t+1} | \mathbf{Y}_{1:t+1}) = \frac{p(X_{t+1} | \mathbf{Y}_{1:t}) p(Y_{t+1} | X_{t+1})}{\int p(X_{t+1} | \mathbf{Y}_{1:t}) p(Y_{t+1} | X_{t+1}) dX_{t+1}} \\ \Rightarrow & \left\{ X_{t+1}^m \sim p(X_{t+1} | \mathbf{Y}_{1:t}), \ \ \mathbf{W}_{t+1}^m = \frac{p(Y_{t+1} | X_{t+1}^m)}{\sum\limits_{\substack{n \\ m=0}}^{p}(Y_{t+1} | X_{t+1}^m)} \right\} \ \ \text{(reweight)} \end{split}$$
 Eric Xing



PF for switching SSM

• Recall that the belief state has O(2t) Gaussian modes



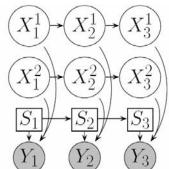
Eric Xing

4-7

PF for switching SSM

 Key idea: if you knew the discrete states, you can apply the right Kalman filter at each time step.

- So for each old particle m, sample $S_t^m \sim P(S_t | S_{t-1}^m)$ from the prior, apply the KF (usomg parameters for S_t^m) to the old belief state $(\hat{x}_{t-1|t-1}^m, P_{t-1|t-1}^m)$ to get an approximation to $P(X_t | y_{1:t}, s_{1:t}^m)$
- Useful for online tracking, fault diagnosis, etc.



Eric Xing

Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p , and conditional on that, compute expected value of rest X_d analytically:

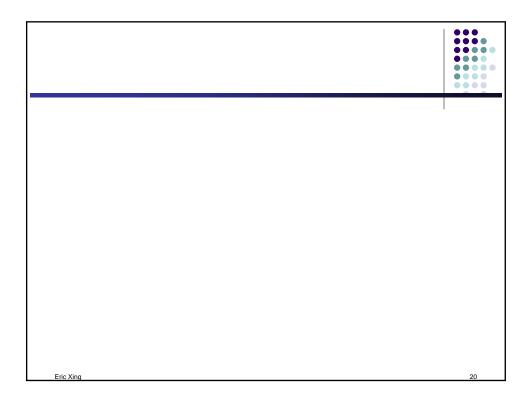
$$\begin{split} E_{p(X|e)}[f(X)] &= \int p(x_p, x_d \mid e) f(x_p, x_d) dx_p dx_d \\ &= \int_{x_p} p(x_p \mid e) \left(\int_{x_d} p(x_d \mid x_p, e) f(x_p, x_d) dx_d \right) dx_p \\ &= \int_{x_p} p(x_p \mid e) E_{p(X_d \mid x_p, e)} [f(x_p, X_d)] dx_p \\ &= \frac{1}{M} \sum_{m} E_{p(X_d \mid x_p^m, e)} [f(x_p^m, X_d)] \qquad x_p^m \sim p(x_p \mid e) \end{split}$$

• This has lower variance, because of the identity:

$$\operatorname{var} \left[\tau(X_p, X_d) \right] = \operatorname{var} \left[E\left[\tau(X_p, X_d) \mid X_p \right] \right] + E\left[\operatorname{var} \left[\tau(X_p, X_d) \mid X_p \right] \right]$$

• Hence $\operatorname{var} \! \left[\! E \! \left[\tau(X_p, X_d) \! \mid \! X_p \right] \! \right] \! \leq \! \operatorname{var} \! \left[\! \tau(X_p, X_d) \right]$, so $\tau(X_p, X_d) \! = \! E \! \left[\! f(X_p, X_d) \! \mid \! X_p \right]$ is a lower variance estimator.

ling 1



Markov chain Monte Carlo (MCMC)

- Importance sampling does not scale well to high dimensions.
- Rao-Blackwellisation not always possible.
- MCMC is an alternative.
- Construct a Markov chain whose stationary distribution is the target density = P(X|e).
- Run for Tsamples (burn-in time) until the chain converges/mixes/reaches stationary distribution.
- Then collect M (correlated) samples x_m .
- Key issues:
 - Designing proposals so that the chain mixes rapidly.
 - Diagnosing convergence.

Markov Chains

- Definition:
 - Given an n-dimensional state space
 - Random vector $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$
 - $\mathbf{x}^{(t)} = \mathbf{x}$ at time-step t
 - $\mathbf{x}^{(t)}$ transitions to $\mathbf{x}^{(t+1)}$ with prob $\mathsf{P}(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}, \dots, \mathbf{x}^{(1)}) \overset{\cdot}{=} \mathsf{T}(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}) = \mathsf{T}(\mathbf{x}^{(t)} \boldsymbol{\to} \mathbf{x}^{(t+1)})$
- **Homogenous**: chain determined by state $\mathbf{x}^{(0)}$, fixed *transition* kernel T (rows sum to 1)
- Equilibrium: $\pi(x)$ is a stationary (equilibrium) distribution if $\pi(\mathbf{x'}) = \Sigma_{\mathbf{x}} \pi(\mathbf{x}) \mathsf{T}(\mathbf{x} \rightarrow \mathbf{x'}).$

i.e., is a left eigenvector of the transition matrix $\pi^{I}T = \pi^{I}T$.

$$(0.2 \quad 0.5 \quad 0.3) = (0.2 \quad 0.5 \quad 0.3) \begin{pmatrix} 0.25 & 0 & 0.75 \\ 0 & 0.7 & 0.3 \\ 0.5 & 0.5 & 0 \end{pmatrix}$$

Markov Chains

- An MC is *irreducible* if transition graph connected
- An MC is aperiodic if it is not trapped in cycles
- An MC is ergodic (regular) if you can get from state x to x'
 in a finite number of steps.
- **Detailed balance**: $prob(x^{(t)} \rightarrow x^{(i-1)}) = prob(x^{(t-1)} \rightarrow x^{(t)})$

$$p(\mathbf{x}^{(t)})T(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}) = p(\mathbf{x}^{(t-1)})T(\mathbf{x}^{(t)} | \mathbf{x}^{(t-1)})$$

summing over $\mathbf{x}^{(t-1)}$

$$p(\mathbf{x}^{(t)}) = \sum_{\mathbf{x}^{(t-1)}} p(\mathbf{x}^{(t-1)}) \mathcal{T}(\mathbf{x}^{(t)} \mid \mathbf{x}^{(t-1)})$$

Detailed bal → stationary dist exists

Eric Xing

23

Metropolis-Hastings

- Treat the target distribution as stationary distribution
- Sample from an easier proposal distribution, followed by an acceptance test
- This induces a transition matrix that satisfies detailed balance
 - MH proposes moves according to Q(x \(\)\(x \)) and accepts samples with probability A(x \(\)\(x \)\(x \).
 - The induced transition matrix is $T(x \to x') = Q(x'|x)A(x'|x)$
 - Detailed balance means

$$\pi(x)Q(x'|x)A(x'|x) = \pi(x')Q(x|x')A(x|x')$$

Hence the acceptance ratio is

$$A(x'|x) = \min\left(1, \frac{\pi(x')Q(x|x')}{\pi(x)Q(x'|x)}\right)$$

Eric Xin

Metropolis-Hastings

- 1. Initialize $x^{(0)}$
- 2. While not mixing // burn-in
 - x=x(t)
 - *t* += 1,
 - sample $u \sim \text{Unif}(0,1)$
 - sample $x^* \sim Q(x^*|x)$

- if
$$u < A(x^*|x) = \min\left(1, \frac{\pi(x^*)Q(x|x^*)}{\pi(x)Q(x^*|x)}\right)$$

• $x^{(t)} = x^*$ // transition
- else
• $x^{(t)} = x$ // stay in current state

Function
Draw sample (x(t))

- Reset t=0, for *t* =1:*N*
 - x(t+1) \leftarrow Draw sample (x(t))

Eric Xing

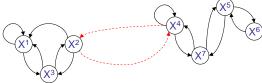
25

Mixing time

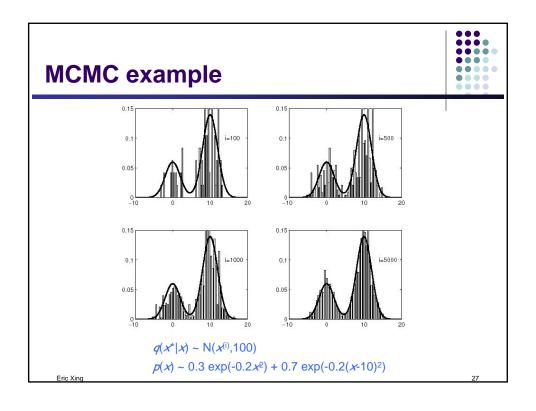
• The ε mixing time T_{ε} is the minimal number of steps (from any starting distribution) until $D_{\text{var}}(P^{\text{TI}}, \pi) \leq \varepsilon$, where D_{var} is the variational distance between the two distance:

$$D_{\text{var}}(\mu_1, \mu_2) \stackrel{\text{def}}{=} \sup_{\mathcal{A} \subset \mathcal{S}} \left| \mu_1(\mathcal{A}) - \mu_2(\mathcal{A}) \right|$$

- Chains with low bandwidth (conductance) regions of space take a long time to mix.
- This arises for GMs with deterministic or highly skewed potentials.



Eric Xing



Summary of MH

- Random walk through state space
- Can simulate multiple chains in parallel
- Much hinges on proposal distribution Q
 - Want to visit state space where p(X) puts mass
 - Want $A(x^*|x)$ high in modes of p(X)
 - Chain mixes well
- Convergence diagnosis
 - How can we tell when burn-in is over?
 - Run multiple chains from different starting conditions, wait until they start "behaving similarly".
 - · Various heuristics have been proposed.

Eric Xing

Gibbs sampling

- Gibbs sampling is an MCMC algorithm that is especially appropriate for inference in graphical models.
- The procedue
 - we have variable set $X=\{x_1, x_2, x_3, ..., x_N\}$ for a GM
 - at each step one of the variables X_i is selected (at random or according to some fixed sequences), denote the remaining variables as X_i, and its current value as x_i(t-1)
 - Using the "alarm network" as an example, say at time t we choose X_E and we denote the current value assignments of the remaining variables, X_E, obtained from previous samples, as x_{-(F-1)} = {x_R⁽⁻¹⁾, x_A⁽⁻¹⁾, x_A⁽⁻¹⁾, x_B⁽⁻¹⁾}
 - the conditional distribution $p(X_i | \mathbf{x}_i^{(t-1)})$ is computed
 - a value $x_i^{(f)}$ is sampled from this distribution
 - the sample $\mathbf{x}_{i}^{(t)}$ replaces the previous sampled value of \mathbf{X}_{i} in \mathbf{X}_{i} .

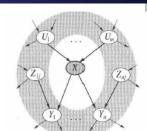
• i.e.,
$$\mathbf{X}^{(t)} = \mathbf{X}_{-F}^{(t-1)} \cup \mathbf{X}_{F}^{(t)}$$

Eric Xing

20

Markov Blanket

- Markov Blanket in BN
 - A variable is independent from others, given its parents, children and children's parents (dseparation).



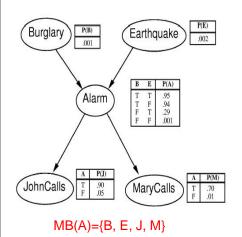
- MB in MRF
 - A variable is independent all its non-neighbors, given all its direct neighbors.

$$\Rightarrow p(X_i | X_j) = p(X_i | MB(X_j))$$

- Gibbs sampling
 - Every step, choose one variable and sample it by P(X|MB(X)) based on previous sample.

Eric Xing

Gibbs sampling of the alarm network



- To calculate P(J|B1,M1)
- Choose (B1,E0,A1,M1,J1) as a start
- Evidences are B1, M1, variables are A, E, J.
- Choose next variable as A
- Sample A by
 P(A|MB(A))=P(A|B1, E0, M1,
 J1) suppose to be false.
- (B1, E0, A0, M1, J1)
- Choose next random variable as E, sample E~P(E|B1,A0)
- ...

31

Gibbs sampling

 $MB(E)=\{A, B\}$

- · Gibbs sampling is a special case of MH
- The transition matrix updates each node one at a time using the following proposal:

$$Q((\mathbf{X}_{i}, \mathbf{X}_{-i}) \rightarrow (\mathbf{X}_{i}', \mathbf{X}_{-i})) = p(\mathbf{X}_{i}' | \mathbf{X}_{-i})$$

- This is efficient since for two reasons
 - It leads to samples that is always accepted

$$\begin{split} A\Big((\boldsymbol{x}_{i}, \mathbf{x}_{-i}) \rightarrow (\boldsymbol{x}_{i}^{'}, \mathbf{x}_{-i})\Big) &= \min \left(1, \frac{p(\boldsymbol{x}'_{i}, \mathbf{x}_{-i})Q\big((\boldsymbol{x}'_{i}, \mathbf{x}_{-i}) \rightarrow (\boldsymbol{x}_{i}, \mathbf{x}_{-i})\big)}{p(\boldsymbol{x}_{i}, \mathbf{x}_{-i})Q\big((\boldsymbol{x}_{i}, \mathbf{x}_{-i}) \rightarrow (\boldsymbol{x}'_{i}, \mathbf{x}_{-i})\big)} \right) \\ &= \min \left(1, \frac{p(\boldsymbol{x}'_{i}|\mathbf{x}_{-i})p(\mathbf{x}_{-i})p(\boldsymbol{x}_{-i}|\mathbf{x}_{-i})}{p(\boldsymbol{x}_{i}|\mathbf{x}_{-i})p(\mathbf{x}'_{-i}|\mathbf{x}_{-i})} \right) = \min (1, 1) \end{split}$$

Thus

$$T((\mathbf{X}_i, \mathbf{X}_{-i}) \to (\mathbf{X}_i', \mathbf{X}_{-i})) = p(\mathbf{X}_i' | \mathbf{X}_{-i})$$

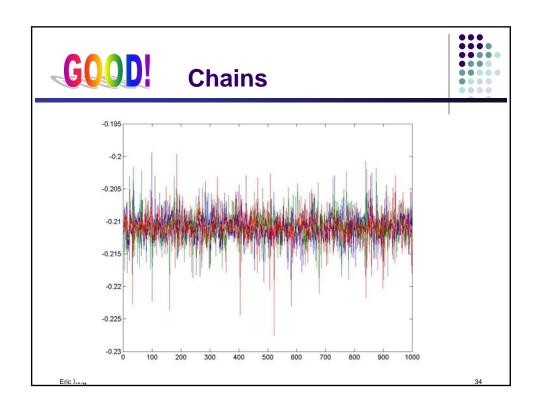
• It is efficient since $p(\mathbf{x}_i^{\cdot} | \mathbf{x}_{-i})$ only depends on the values in \mathbf{X}_i° s Markov blanket

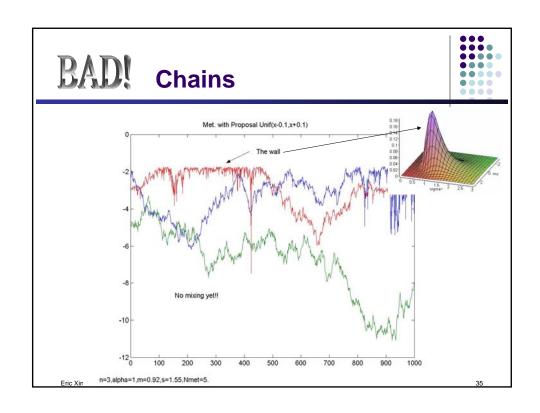
Eric Xino

- Scheduling and ordering:
 - Sequential sweeping: in each "epoch" t, touch every r.v. in some order and yield an new sample, x^(t), after every r.v. is resampled
 - Randomly pick an r.v. at each time step
- Blocking:
 - Large state space: state vector X comprised of many components (high dimension)
 - Some components can be correlated and we can sample components (i.e., subsets of r.v.,) one at a time
- Gibbs sampling can fail if there are deterministic constraint

- Suppose we observe Z=1. The posterior has 2 modes: P(X=1, Y=0|Z=1) and P(X=0, Y=1|Z=1). if we start in mode 1, P(X|Y=0, Z=1) leaves X=1, so we can't move to mode 2 (Reducible Markov chain).
- If all states have non-zero probability, the MC is guaranteed to be regular.
- Sampling blocks of variables at a time can help improve mixing.

Eric Xina





The Art

of simulation

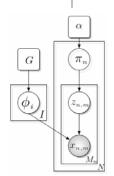
- Run several chains
- Start at over-dispersed points
- Monitor the log lik.
- Monitor the serial correlations
- Monitor acceptance ratios
- Re-parameterize (to get approx. indep.)
- Re-block (Gibbs)
- Collapse (int. over other pars.)
- Run with troubled pars. fixed at reasonable vals.

Eric Xino

Collapsed Gibbs sampling of M³

- Collapsed Gibbs sampling
 - Integrate out π

For variables $\mathbf{z} = z_1, z_2, ..., z_n$ Draw $z_i^{(t+1)}$ from $P(z_i | \mathbf{z}_{-i}, \mathbf{w})$ $\mathbf{z}_{-i} = z_1^{(t+1)}, z_2^{(t+1)}, ..., z_{i-1}^{(t+1)}, z_{i+1}^{(t)}, ..., z_n^{(t)}$



Eric Xing

37

Gibbs sampling

- Need full conditional distributions for variables
- Since we only sample z we need

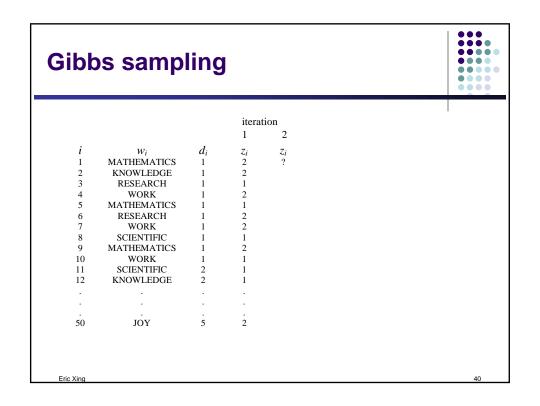
 $P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto P(w_i | z_i = j, \mathbf{z}_{-i}, \mathbf{w}_{-i}) P(z_i = j | \mathbf{z}_{-i})$ $= \frac{n_{-i,j}^{(w_i)} + \beta}{n_{-i,j}^{(\cdot)} + W\beta} \frac{n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(d_i)} + T\alpha}$

 $n_j^{(w)}$ number of times word w assigned to topic j

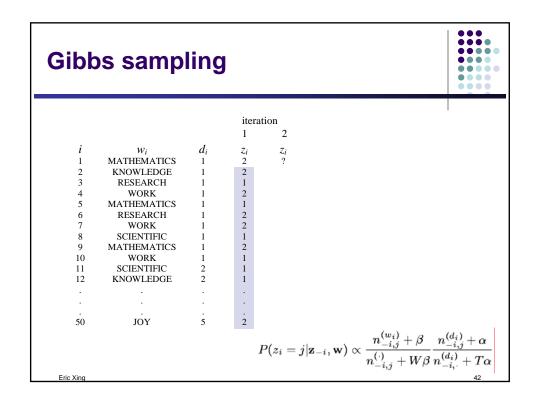
 $n_j^{(d)}$ number of times topic j used in document d

Eric Xing

```
Gibbs sampling
                             iteration
                             1
         MATHEMATICS
         KNOWLEDGE
          RESEARCH
            WORK
         MATHEMATICS
          RESEARCH
            WORK
    8
          SCIENTIFIC
         MATHEMATICS
    10
           WORK
          SCIENTIFIC
    11
         KNOWLEDGE
    12
            JOY
    50
```



```
Gibbs sampling
                                                  iteration
                                                  1
                                                            2
                                                            \frac{z_i}{?}
               MATHEMATICS
                KNOWLEDGE
                  RESEARCH
                    WORK
               MATHEMATICS
                  RESEARCH
        6
7
8
9
                     WORK
                  SCIENTIFIC
               MATHEMATICS
       10
                    WORK
                 SCIENTIFIC
       11
                KNOWLEDGE
                      JOY
       50
                                                     P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto rac{n_{-i,j}^{(w_i)} + eta}{n_{-i,j}^{(\cdot)} + Weta} rac{n_{-i,j}^{(d_i)} + lpha}{n_{-i,\cdot}^{(d_i)} + Tlpha}
```



```
Gibbs sampling
                                                 iteration
                                                         2
               MATHEMATICS
                KNOWLEDGE
                 RESEARCH
                    WORK
               MATHEMATICS
       5
6
7
8
9
                 RESEARCH
                    WORK
                 SCIENTIFIC
               MATHEMATICS
       10
                    WORK
                 SCIENTIFIC
       11
                KNOWLEDGE
                     JOY
       50
                                                    P(z_i = j | \mathbf{z}_{-i}, \mathbf{w}) \propto rac{n_{-i,j}^{(w_i)} + eta}{n_{-i,j}^{(\cdot)} + Weta} rac{n_{-i,j}^{(d_i)} + lpha}{n_{-i,\cdot}^{(d_i)} + Tlpha}
```

