

The need for complex dynamic models

- Complex dynamic systems:
 - Non-linearity
 - Non-Gaussianity
 - Multi-modality
 - ...

Limitation of LDS

$$\hat{\mathbf{x}}_{t+1|t+1} = \hat{\mathbf{x}}_{t+1|t} + K_{t+1}(\mathbf{y}_{t+1} - \mathbf{C}\hat{\mathbf{x}}_{t+1|t})$$

$$P_{t+1|t+1} = P_{t+1|t} - KCP_{t+1|t}$$

- defines only linearity evolving, unimodal, and Gaussian belief states
 - A Kalman filter will predict the location of the bird using a single Gaussian centered on the
 obstacle.
 - A more realistic model allows for the bird's evasive action, predicting that i side or the other.

Eric Xino

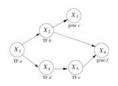
Representing complex dynamic processes

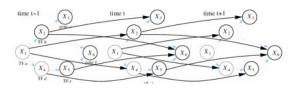
- The problem with HMMs
 - Suppose we want to track the state (e.g., the position) of D objects in an image sequence.
 - Let each object be in K possible states.
 - Then $X_i = (X_i(1), \dots, X_i(D))$ can have K^D possible values.

- ⇒ Inference takes time and
- $\Rightarrow P(X_t|X_{t-1})$ need parameters to specify.

Eric Xing

Dynamic Bayesian Network





space.

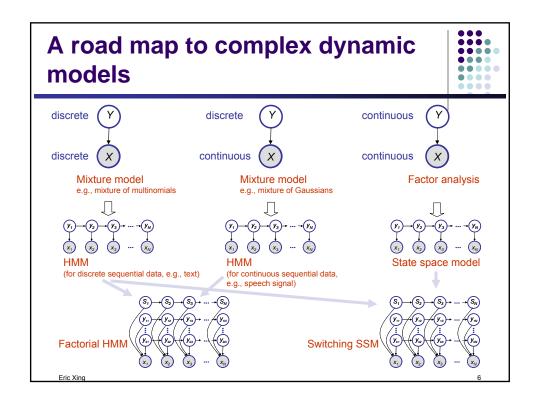
- A DBN represents the state of the world at time t using a set of random variables, X_l(1), ..., X_l(D) (factored/ distributed representation).
- A DBN represents $P(X_t|X_{t-1})$ in a compact way using a parameterized graph.
 - \Rightarrow A DBN may have exponentially fewer parameters than its corresponding HMM.
 - ⇒ Inference in a DBN may be exponentially faster than in the corresponding HMM.

Eric Xino

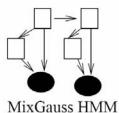
DBNs are a kind of graphical model

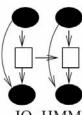
- In a graphical model, nodes represent random variables, and (lack of) arcs represents conditional independencies.
- DBNs are Bayes nets for dynamic processes.
- Informally, an arc from X_t to X_{t+1} means X_t causes X_t.
- Can "resolve" cycles in a "static" BN

Eric Xino



HMM variants represented as **DBNs**





IO-HMM

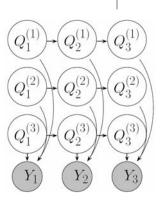
 The same code (standard forward-backward, viterbi, and Baum-Welsh) can do inference and learning in all of these models.

Fric Xino

7

Factorial HMM

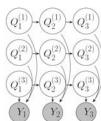
- The belief state at each time is $X_t = \left\{Q_t^{(1)}, \dots, Q_t^{(k)}\right\}$ and in the most general case has a state space $O(d^k)$ for k d-nary chains
- The common observed child Y_t couples all the parents (explaining away).
- But the parameterization cost for fHMM is $O(ka^{\ell})$ for k chain-specific transition models $P(Q_{r}^{(i)} | Q_{r-1}^{(i)})$ rather than $O(a^{\ell k})$ for $P(X_{r} | X_{r-1})$



Eric Xino

Factorial HMMs vs HMMs

- Let us compare a factorial HMM with D chains, each with K values, to its equivalent HMM.
- Num. parameters to specify $p(X_t | X_{t-1})$
 - HMM:
 - fHMM:



- Computational complexity of exact inference:
 - HMM
 - fHMM:

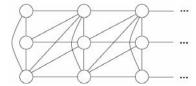
Eric Xino

a

Triangulating fHMM

• Is the following triangulation correct?

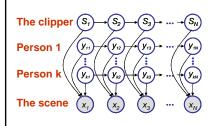
Here is a triangulation



• We have created cliques of size k+1, and there are O(kT) of them. The junction tree algorithm is not efficient for factorial HMMs.

Eric Xing

Special case: switching HMM



 Different chains have different state space and different semantics

The exact calculation is intractable and we must use approximate inference methods

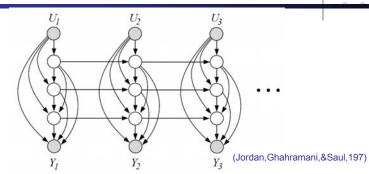
Multi-View Face Tracking with Factorial and Switching HMM

Peng Wang , Qiang Ji
Department of Electrical, Computer and System Engineering
Rensselaer Polytechnic Institute
Troy, NY 12180

Eric Xing

11

Hidden Markov decision trees



- A combination of decision trees with factorial HMMs
- This gives a "command structure" to the factorial representation
- Appropriate for multi-resolution time series
- Again, the exact calculation is intractable and we must use approximate inference methods

Eric Xing

Recall State Space Models (SSMs)

 Also known as linear dynamical system, dynamic linear model, Kalman filter model, etc.

$$X_t \in \mathbb{R}^D, \, Y_t \in \mathbb{R}^M$$
 and

$$P(X_t|X_{t-1} = \mathcal{N}(X_t; AX_{t-1}, Q)$$

$$P(Y_t|X_t) = \mathcal{N}(Y_t; BX_t, R)$$

• The Kalman Iter can compute $P(X_t | Y_{1t})$ in $O(\min\{M^3; D^2\})$ operations per time step.

Eric Xing

13

Factored linear-Gaussian models produce sparse matrices

- Directed arc from X_{t-1}^i to X_t^j iff A(i,j) > 0 (undirected arc between X_t^i to X_t^j iff $\Sigma^{-1}(i,j) > 0$
- e.g., consider a 2-chain factorial SSM with

$$P(X_t^i | X_{t-1}^i) = \mathcal{N}(X_t^i; A^i X_{t-1}^i, Q^i)$$

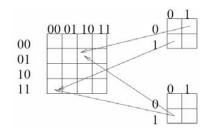
$$P(X_{t}^{1},X_{t}^{2}\mid X_{t-1}^{1},X_{t-1}^{2})=$$

Eric Xing

Discrete-state models

- Factored discrete-state models do NOT produce sparse transition matrices
- e.g., consider a 2-chain factorial HMM

$$P(X_{t}^{1}, X_{t}^{2} \mid X_{t-1}^{1}, X_{t-1}^{2}) = P(X_{t}^{1} \mid X_{t-1}^{1}) P(X_{t}^{2} \mid X_{t-1}^{2})$$

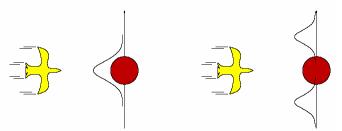


Eric Xing

15

Problems with SSMs

- linearity
- Gaussianity
- Uni-modality

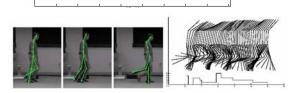


Eric Xing

Switching SMM

- Possible world:
 - multiple motion state:

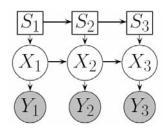
• Trajectory prediction



- Model:
 - Combination of HMM and SSM

$$\begin{split} p(X_{t} = X_{t} \mid X_{t-1} = X_{t-1}, S_{t} = i) &= \mathcal{N}(X_{t}; A_{i}X_{t-1}, Q_{i}) \\ p(Y_{t} = Y_{t} \mid X_{t} = X_{t}) &= \mathcal{N}(t_{t}; CX_{t}, R) \\ p(S_{t} = j \mid S_{t-1} = i) &= \mathcal{M}(i, j) \end{split}$$

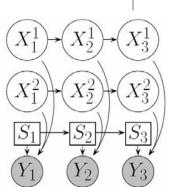
• Belief state has O(k) Gaussian modes:



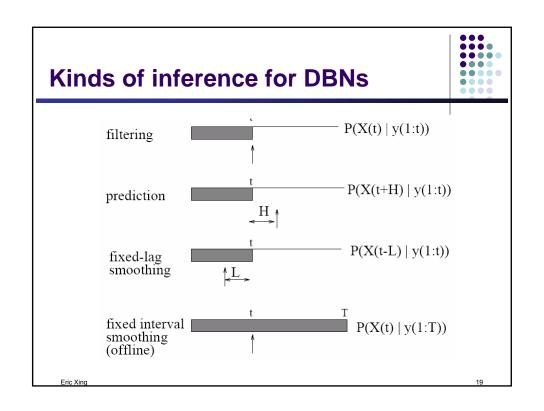
Eric Xing

Data association (correspondence problem)

- Optimal belief state has O(k^t) modes.
- Common to use nearest neighbor approximation.
- For each time slice, can enforce that at most one source causes each observation
- Correspondence problem also arises in shape matching and stereo vision.



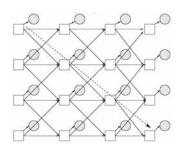
Eric Xino



Complexity of inference in DBN

- Even with local connectivity, everything becomes correlated due to shared common influences in the past.
- E.g. coupled HMM (cHMM)

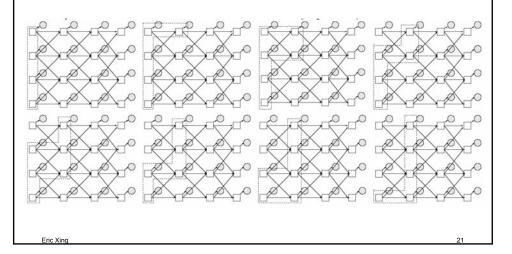




 Even though CHMMs are sparse, all nodes eventually become correlated, so P(X_t|y_{1:t}) has size O(2^N).

Eric Xin

Junction tree for coupled HMMs $\bullet \;\;$ Cliques form a frontier that snakes from $X_{t^{-1}}$ to X_{t}



Approximate Filtering

- Many possible representations for belief state $\alpha_t = P(X_t \mid Y_{1:t})$:
 - Discrete distribution (histogram)
 - Gaussian
 - Mixture of Gaussians
 - Set of samples (particles)

Belief state = discrete distribution

- Discrete distribution is non-parametric (flexible), but intractable.
- Only consider k most probable values --- Beam search.
- Approximate joint as product of factors (ADF/BK approximation)

$$\alpha_t \approx \widetilde{\alpha}_t = \prod_{i=1}^C P(X_t^i \mid Y_{1:t})$$

Example: Assumed density filtering (ADF)

- ADF forces the belief state to live in some restricted family F, e.g., product of histograms, Gaussian.
- Given a prior $\tilde{\alpha}_{t-1} \in \mathcal{F}$, do one step of exact Bayesian updating to get $\hat{\alpha}_t \notin \mathcal{F}$. Then do a projection step to find the closest approximation in the family:

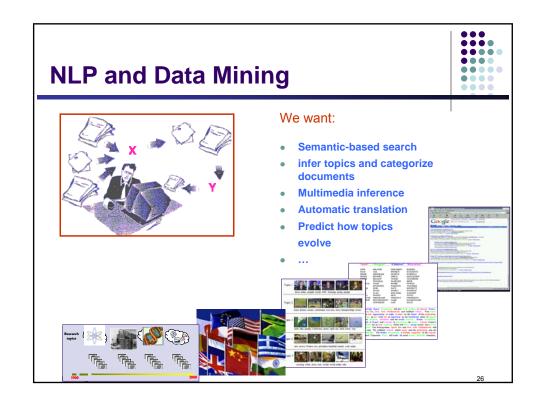
$$\widetilde{\alpha}_t \in \arg\min_{q \in \mathscr{F}} \mathrm{KL}(\widehat{\alpha}_t \parallel q)$$

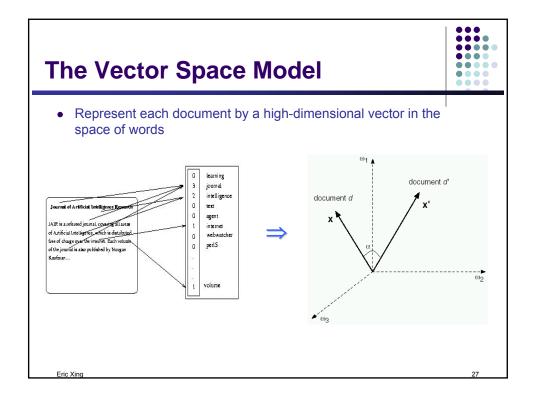
• e.g., let Fbe a product of (singleton) marginals:

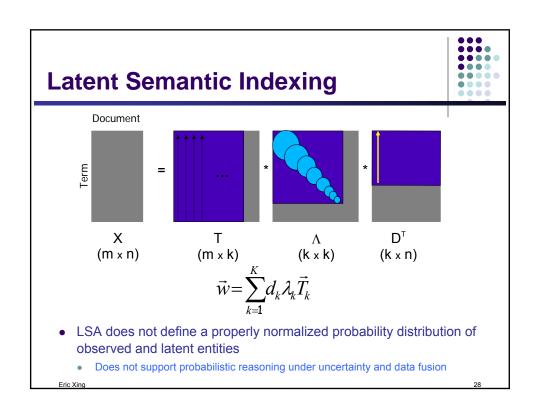
- The Boyen-Koller (BK) algorithm is ADF applied to a DBN
- This is also a variational method, and the updating step can still be intractable

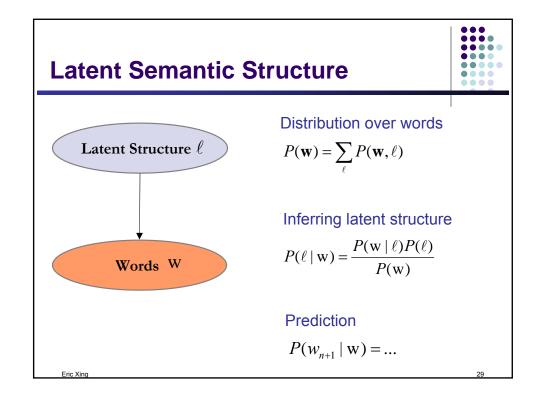
Approximate smoothing (off-line)

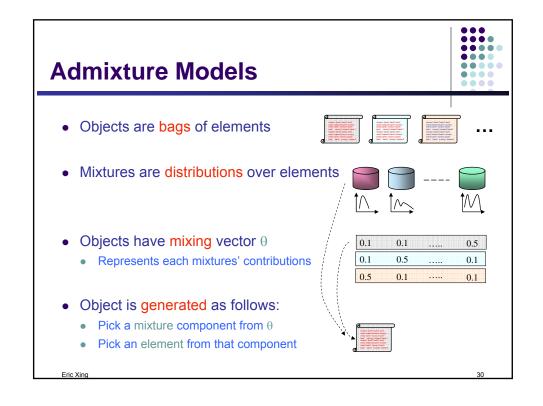
- Two-Iter smoothing
- Loopy belief propagation
- Variational methods
- Gibbs sampling
- Can combine exact and approximate methods
- Used as a subroutine for learning

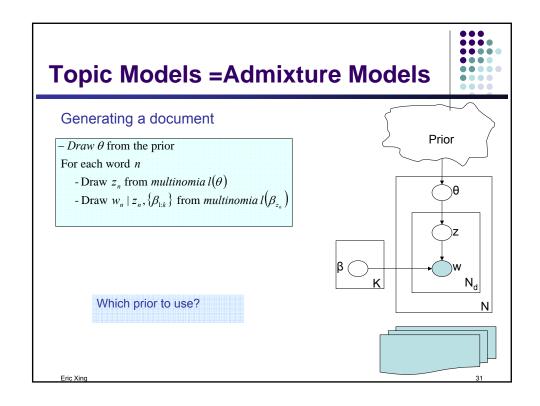








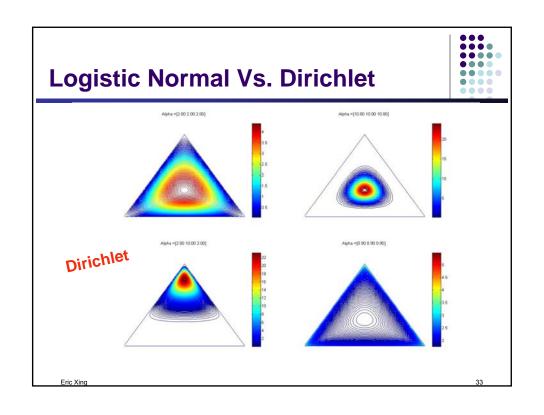


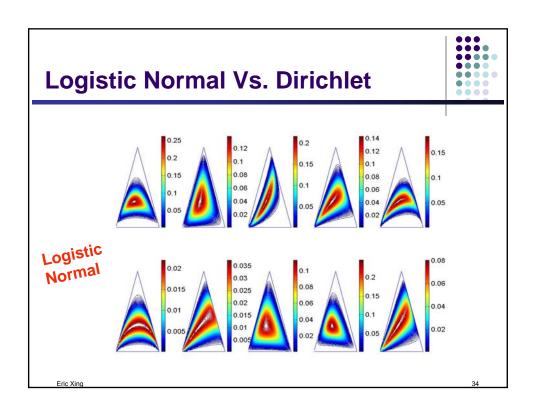


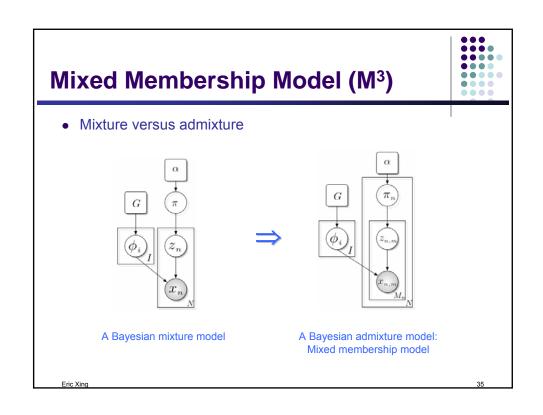
Choice of Prior

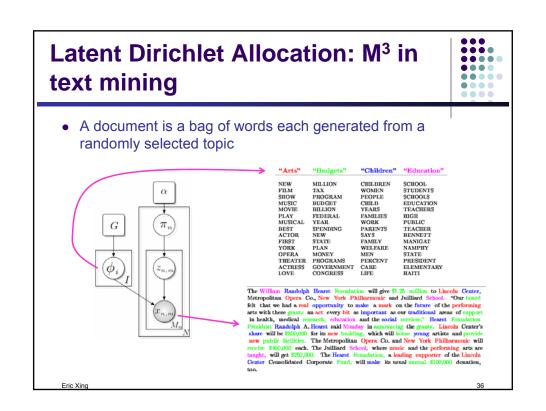
- Dirichlet (LDA) (Blei et al. 2003)
 - Conjugate prior means efficient inference
 - Can only capture variations in each topic's intensity independently
- Logistic Normal (CTM=LoNTAM) (Blei & Lafferty 2005, Ahmed & Xing 2006)
 - Capture the intuition that some topics are highly correlated and can rise up in intensity together
 - Not a conjugate prior implies hard inference

Eric Xin



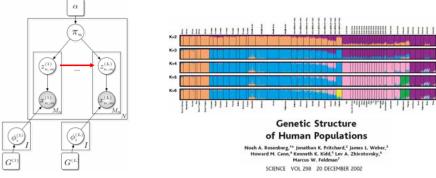






Population admixture: M³ in genetics

 The genetic materials of each modern individual are inherited from multiple ancestral populations, each DNA locus may have a different generic origin ...



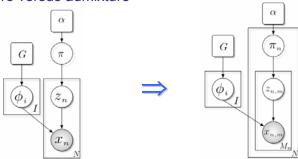
Ancestral labels may have (e.g., Markovian) dependencies

Eric Xing

37

Inference in Mixed Membership Models

Mixture versus admixture



$$p(D) = \sum_{\{z_{n,m}\}} \int \cdots \int \left(\prod_{n} \left(\prod_{m} p(x_{n,m} \mid \phi_{z_{n}}) p(z_{n,m} \mid \pi_{n}) \right) p(\pi_{n} \mid \alpha) \right) p(\phi \mid G) d\pi_{1} \cdots d\pi_{N} d\phi$$

• Inference is very hard in M³, all hidden variables are coupled and not factorizable!

$$p(\pi_{n} \mid D) \sim \sum_{\{z_{-n}\}} \int \left(\prod_{n} \left(\prod_{m} p(x_{n,m} \mid \phi_{z_{n}}) p(z_{n,m} \mid \pi_{n}) \right) p(\pi_{n} \mid \alpha) \right) p(\phi \mid G) d\pi_{-i} d\phi$$

Eric Xing

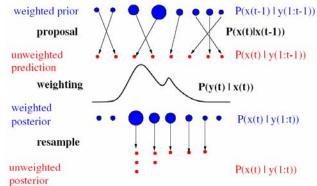
Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - The junction tree algorithms
- Approximate inference techniques
 - Monte Carlo algorithms:
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Variational algorithms:
 - Belief propagation
 - Variational inference

ing

Example: Particle filtering (sequential Monte Carlo)

- Represent belief state as weighted set of samples (non-parametric).
- Can handle nonlinear transition/emission and multi-modality.
- · Easy to implement.
- Only works well in small dimensions.

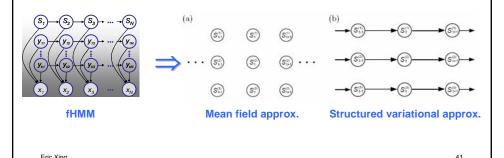


Example: Structured Variational approximation

Finds an optimal q*() in a tractable family to approximate the original joint p()

$$q^*() \in \arg\min_{q \in \mathcal{T}} F(q \parallel p)$$

• There can be many different choices of \mathcal{F} and F().



Monte Carlo methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
 - marginals and other expections can be approximated using samplebased averages

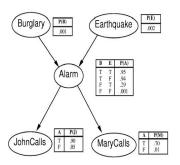
$$E[f(x)] = \frac{1}{N} \sum_{t=1}^{N} f(x^{(t)})$$

- Asymptotically exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or egally useful, see an example later)?
 - how to know we've sampled enough?

Eric Xing

Example: naive sampling

Construct samples according to probabilities given in a BN.



Alarm example: (Choose the right sampling sequence) 1) Sampling:P(B)=<0.001, 0.999> suppose it is false, B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose it is false...

2) Frequency counting: In the samples right, P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

Eric Xino

E0	B0	A0	M0	J0
E0	В0	A0	M0	J0
E0	В0	A0	M0	J1
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E1	В0	A1	M1	J1
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0

Example: naive sampling

• Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

3) what if we want to compute P(J|A1)? we have only one sample ... P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1)?
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner evough samples even after a long time or sampling ...

E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E0	B0	A0	M0	J1
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E1	В0	A1	M1	J1
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0
E0	В0	A0	M0	J0

Eric Xing