

- Recitation?
- Exam dates, poster dates, etc.
- Mailing list
- Questions?

Eric Xin

Representing Multivariate Distribution

 Representation: what is the joint probability dist. on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8,)$$

- How many state configurations in total? --- 28
- Are they all needed to be represented?
- Do we get any scientific/medical insight?

A

Factored representation: the chain-rule

$$\begin{split} &P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\ &= P(X_1)P(X_2 \mid X_1)P(X_3 \mid X_1, X_2)P(X_4 \mid X_1, X_2, X_3)P(X_5 \mid X_1, X_2, X_3, X_4)P(X_6 \mid X_1, X_2, X_3, X_4, X_5) \\ &P(X_7 \mid X_1, X_2, X_3, X_4, X_5, X_6)P(X_8 \mid X_1, X_2, X_3, X_4, X_5, X_6, X_7) \end{split}$$

- This factorization is true for any distribution and any variable ordering
- Do we save any parameterization cost?
- If X_i 's are independent: $(P(X_i|\cdot) = P(X_i))$

```
\begin{split} &P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\ &= P(X_1) P(X_2) P(X_3) P(X_4) P(X_5) P(X_6) P(X_7) P(X_8) = \prod P(X_i) \end{split}
```

What do we gain?What do we lose?

Eric Xing

- Even in the simplest case where these variables are binary-valued, a joint distribution requires the specification of 2ⁿ numbers the probabilities of the 2ⁿ different assignments of values x₁, . . . , x_n
- Today's lecture is about ...
 - how independence properties in the distribution can be used to represent such high-dimensional distributions much more compactly.
 - how a combinatorial data structure a directed acyclic graph can provide us with a general-purpose modeling language for exploiting this type of structure in our representation.

Eric Xino

Two types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$\begin{split} &P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}) \\ &= P(X_{1}) P(X_{2}) P(X_{3} | X_{1}) P(X_{4} | X_{2}) P(X_{5} | X_{2}) \\ &P(X_{6} | X_{3}, X_{4}) P(X_{7} | X_{6}) P(X_{8} | X_{5}, X_{6}) \end{split}$$

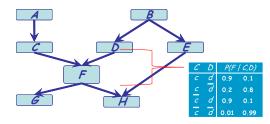
 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

```
\begin{split} &P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}) \\ &= \frac{1/Z}{E} \exp\{E(X_{1}) + E(X_{2}) + E(X_{3}, X_{1}) + E(X_{4}, X_{2}) + E(X_{5}, X_{2}) \\ &+ E(X_{6}, X_{3}, X_{4}) + E(X_{7}, X_{6}) + E(X_{8}, X_{5}, X_{6})\} \end{split}
```


Eric Xing

Specification of a directed GM

- There are two components to any GM:
 - the *qualitative* specification
 - the quantitative specification



Eric Xino

Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.
- It is a data structure that provides the skeleton for representing a
 joint distribution compactly in a factorized way;
- It offers a compact representation for a set of conditional independence assumptions about a distribution;

We can view the graph as encoding a generative sampling process
 executed by nature, where the value for each variable is selected by
 nature using a distribution that depends only on its parents. In other
 words, each variable is a stochastic function of its parents.

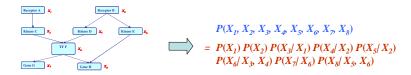
Bayesian Network: Factorization Theorem

• Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

where X_{π_i} is the set of parents of X_i , d is the number of nodes (variables) in the graph.



Eric Xino

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply link a certain architecture (e.g. a layered graph)
 - •

Eric Xing

9

Local Structures & Independencies

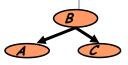
- Common parent
 - Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"

- Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"
- V-structure
 - Knowing C couples A and B
 because A can "explain away" B w.r.t. C
 "If A correlates to C, then chance for B to also correlate to B will decrease"
- The language is compact, the concepts are rich!

Eric Xing

A simple justification

ALC/B.



$$\frac{P(A,C|B)}{P(A,B,C)} = \frac{P(B) \cdot x P(A|B) \times P(C|B)}{P(B)}$$

$$= \frac{P(B) \cdot x P(A|B) \times P(C|B)}{P(B)}$$

$$= \frac{P(A|B)}{P(C|B)}$$

Eric Xing

...

I-maps

• **Defn (3.2.2):** Let P be a distribution over X. We define L(P) to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter values).

 Defn (3.2.3): Let K be any graph object associated with a set of independencies I(K). We say that K is an *I-map* for a set of independencies I, I(K) ⊆ I.

K-> ICK)

• We now say that G is an I-map for P if G is an I-map for I(P), where we use I(G) as the set of independencies associated.

Eric Xing

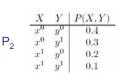
Facts about I-map

 For G to be an I-map of P, it is necessary that G does not mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have additional dependencies that are not reflected in G

• Example:





$$P(\chi) = \begin{cases} 0.4 & \nu \\ \nu.6 & \rho \end{cases}$$

$$P(\eta) = \begin{cases} 0.2 & \nu \end{cases}$$

Eric Xing

13

What is in I(G) --local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X_1, \ldots, X_n .

local Markov assumptions

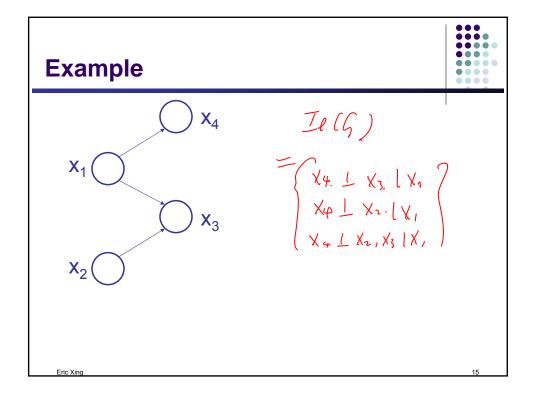
• Defn (3.2.1):

Let Pa_{xi} denote the parents of X_i in G, and $NonDescendants_{xi}$ denote the variables in the graph that are not descendants of X_i . Then G encodes the following set of *local conditional independence assumptions* $I_x(G)$:

$$I_{s}(G)$$
: $\{X_{i} \perp NonDescendants_{v_{i}} \mid Pa_{v_{i}} : \forall i\}$,

In other words, each node X_i is independent of its nondescendants given its parents.

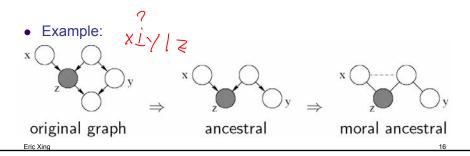
Eric Xin



Graph separation criterion

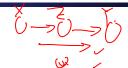
 D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

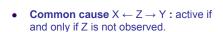


Active trail

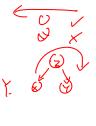
Causal trail $X \rightarrow Z \rightarrow Y$: active if and only if Z is not observed.



 Evidential trail X ← Z ← Y : active if and only if Z is not observed.



 Common effect X → Z ← Y : active if and only if either Z or one of Z's descendants is observed



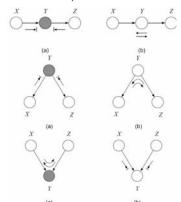
Definition (3.3.2): Let X, Y, Z be three **sets** of nodes in G. We say that X and Y are *d-separated given* Z, denoted *d-sep*_{\mathcal{C}} $(X;Y \mid Z)$, if there is **no** active trail between any node $X \in X$ and $Y \in Y$ given Z.

Fric Xina

17

What is in I(G) --Global Markov properties of BN

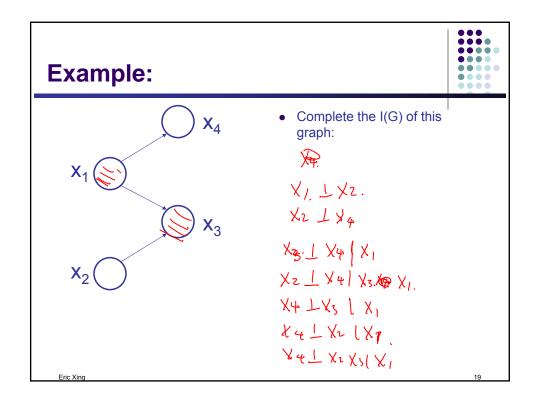
 X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

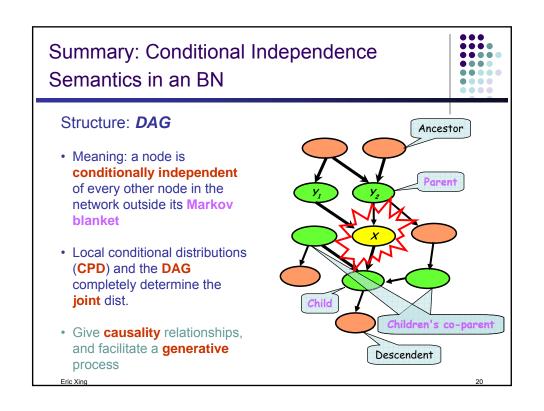


 Defn: I(G)=all independence properties that correspond to dseparation:

$$I(G) = \left\{ X \perp Z \middle| Y : dsep_G(X; Z \middle| Y) \right\}$$

 D-separation is sound and complete (more details later)





Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- The Equivalence Theorem

For a graph G,

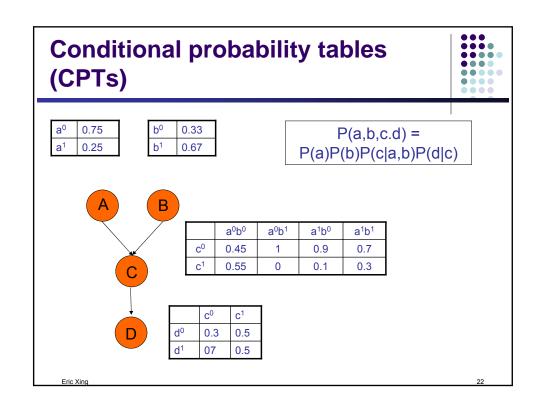
Let \mathcal{D}_1 denote the family of **all distributions** that satisfy I(G), Let \mathcal{D}_2 denote the family of **all distributions** that factor according to G.

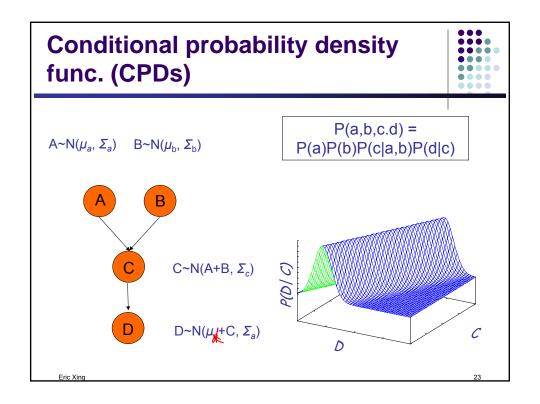
$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

Then $\mathfrak{D}_1 \equiv \mathfrak{D}_2$.

 For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

ric Xing 21

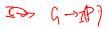




Summary of BN semantics

- **Defn (3.2.5):** A *Bayesian network* is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.
 - Conditional independencies imply factorization
 - Factorization according to G implies the associated conditional independencies.
 - Are there other independences that hold for every distribution P that factorizes over G?

Eric Xin



Soundness and completeness

D-separation is sound and "complete" w.r.t. BN fastorization law

Soundness:

In CG P -> IP)

Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

"Completeness":

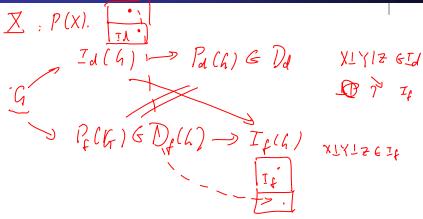
"Claim": For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$ then $d\text{-}sep_G(X; Y \mid Z)$.

Contrapositive of the completeness statement

- "If *X* and *Y* are **not** *d*-separated given *Z* in G, then *X* and *Y* are dependent in all distributions P that factorize over G."
- Is this true?

- Wednesday 6-7 pm
- Thursday: 6-7pm
- Friday: 5-6pm
- Questions:

Distributional equivalence and I-equivalence



- All independence in I_d(G) will be captured in I_f(G), is the reverse true?
- Are "not-independence" from G all honored in P_f?

Eric Xing

27

Soundness and completeness

- Contrapositive of the completeness statement
 - "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over G."
 - Is this true?

- No. Even if a distribution factorizes over G, it can still contain additional independencies that are not reflected in the structure
 - Example: graph A->B, for actually independent A and B
 (the independence can be captured by some subtle way
 of parameterization)

$$\begin{array}{c|cccc}
A & b^0 & b^1 \\
\hline
a^0 & 0.4 & 0.6 \\
a^1 & 0.4 & 0.6
\end{array}$$

P(A,B) = P(A)P(BlA)

• **Thm**: Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y are dependent in **some** distribution P that factorizes over G.

Eric Xin

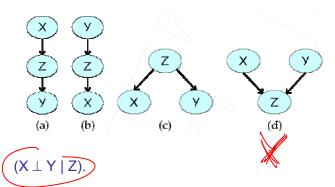
 Theorem 3.3.6: For almost all distributions P that factorize over G, i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that I(P) = I(G)

Eric Xing

29

Uniqueness of BN

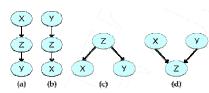
 Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.



Eric Xino

I-equivalence

- **Defn (3.3.9):** Two BN graphs G1 and G2 over *X* are *l*-equivalent if I(G1) = I(G2).
 - The set of all graphs over *X* is partitioned into a set of mutually exclusive and exhaustive *I-equivalence classes*, which are the set of equivalence classes induced by the *I-equivalence* relation.



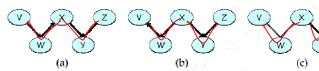
- Any distribution P that can be factorized over one of these graphs can be factorized over the other.
- Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
- This observation has important implications with respect to our ability to determine the directionality of influence.

Fric Xina

31

Detecting I-equivalence

• **Defn (3.3.10):** The *skeleton* of a Bayesian network graph G over *V* is an undirected graph over *V* that contains an edge {*X*, *Y*} for every edge (*X*, *Y*) in G.



- Thm (3.3.11): Let G_1 and G_2 be two graphs over V. If G_1 and G_2 have the same skeleton and the same set of v-structures then they are I-equivalent.
 - graph equivalence
 - Same trail
 - But not necessarily active

Eric Xing

Minimum I-MAP

- Complete graph is a (trivial) I-map for any distribution, yet it does not reveal any of the independence structure in the distribution.
 - Meaning that the graph dependence is arbitrary, thus by careful parameterization an dependencies can be captured
 - We want a graph that has the maximum possible I(G), yet still $\subseteq I(P)$
- **Defn 3.4.1:** A graph object G is a *minimal I-map* for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from G renders it not an I-map.

ALBIC

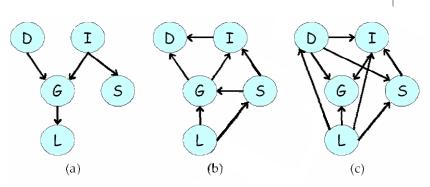
工(一)

0-0-0 45 03 0-0 C

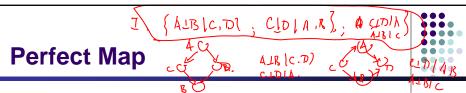
Eric Xing

33

Minimum I-MAP is not unique



Eric Xing

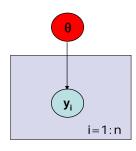


- **Defn (3.4.3):** We say that a graph object G is a *perfect map* (*P-map*) for a set of independencies I if we have that I(G) = I. We say that G is a perfect map for P if I(G) = I(P).
 - The fact that G is a minimal I-map for P is far from a guarantee that G captures the independence structure in P
 - Not all P has a perfect map as DAG!
 - The P-map of a distribution *is* unique up to I-equivalence between networks. That is, a distribution P can have many P-maps, but all of them are I-equivalent.

dic Xing

Conditionally Independent Observations Model parameters Life Xing Model parameters Bric Xing

"Plate" Notation



Model parameters

Data =
$$\{y_1, ..., y_n\}$$

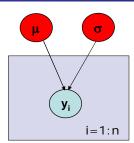
Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Eric Xing

37

Example: Gaussian Model

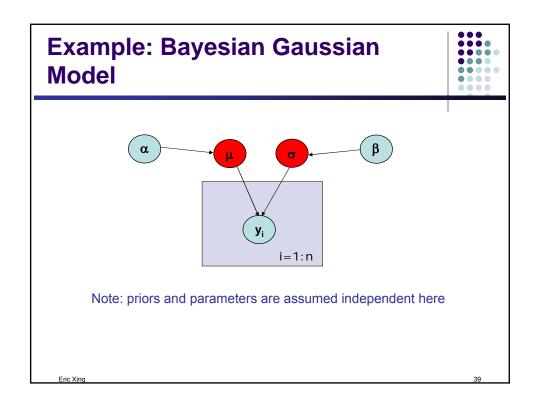


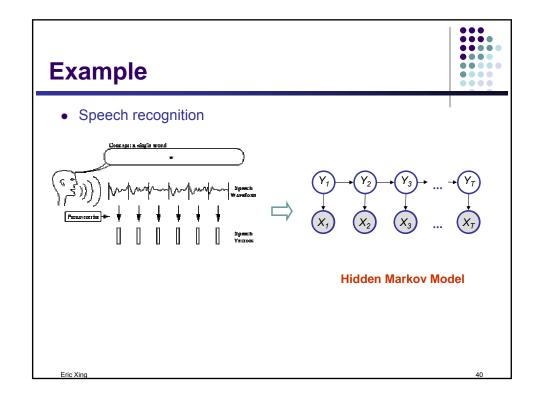
Generative model:

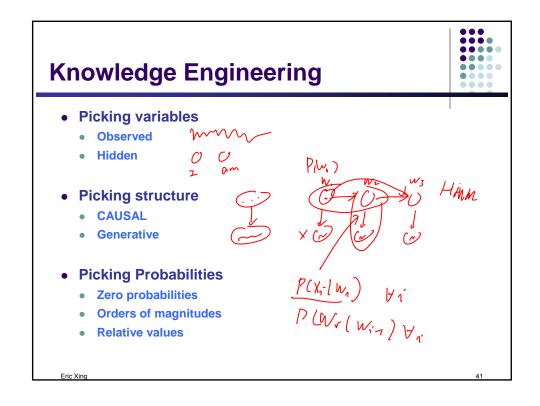
$$\begin{split} p(y_1, \dots y_n \mid \mu, \, \sigma) &= \prod_i p(y_i \mid \mu, \, \sigma) \\ &= p(\text{data} \mid \text{parameters}) \\ &= p(D \mid \theta) \\ \text{where } \theta = \{\mu, \, \sigma\} \end{split}$$

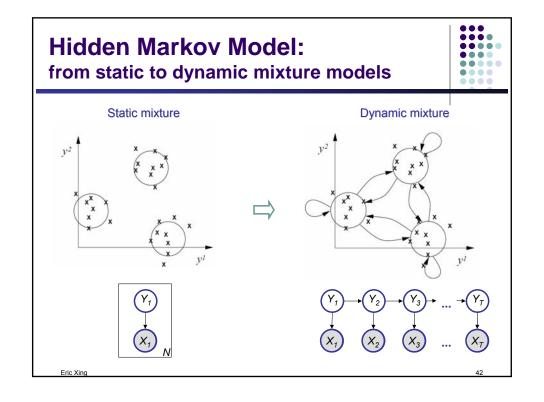
- Likelihood = p(data | parameters)= p(D | θ)= L (θ)
- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
 - Often easier to work with log L (θ)

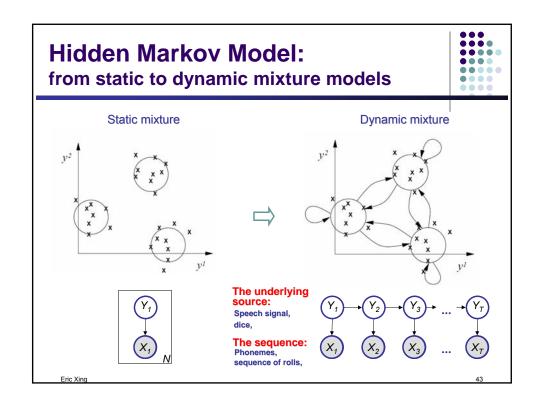
Eric Xing



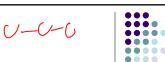








The Dishonest Casino



A casino has two dice:

- Fair die
 - P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
- Loaded die

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

 $P(6) = 1/2$

Casino player switches back-&-forth between fair and loaded die once every 20 turns

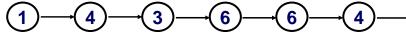
Game:

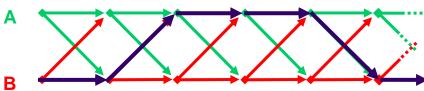
- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

Eric Xin

A stochastic generative model

• Observed sequence:





• Hidden sequence (a parse or segmentation):

Eric Xing

45

Definition (of HMM)

Observation space

Alphabetic set: $C = \{c_1, c_2, \dots, c_k\}$ Euclidean space: R^d

Index set of hidden states

$$I = \{1, 2, \cdots, M\}$$

Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$

or $p(y_t | y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,1}, ..., a_{i,M}), \forall i \in I.$

• Start probabilities $p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$.

• Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,1}, \dots, b_{i,K}), \forall i \in I.$$

or in general:

$$p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in I.$$

Eric Xing

Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

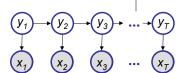
- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

P(X) P(X)(X=1)

Eric Xing

Probability of a parse

- Given a sequence x = x₁.....x_T
 and a parse y = y₁,, y_T
- To find how likely is the parse: (given our HMM and the sequence)

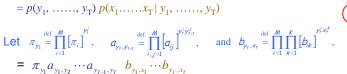


$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$
 (Joint probability)

$$= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$$

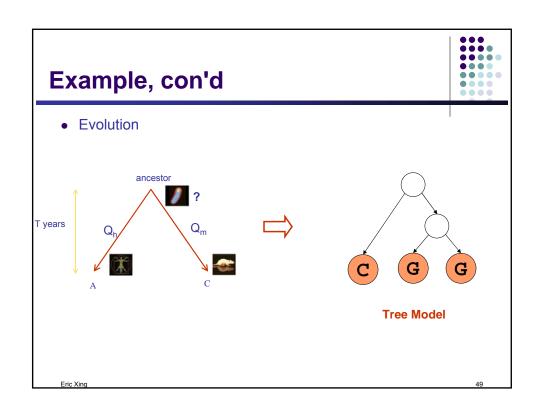
$$= p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)$$

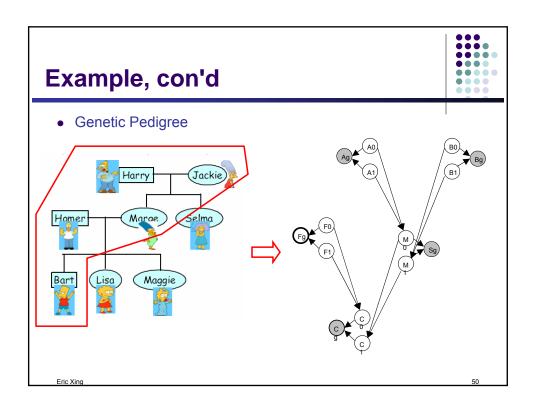
$$= p(y_1, \dots, y_T) p(x_1, \dots, x_T | y_1, \dots, y_T)$$



- Marginal probability: $p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=1}^{T} a_{y_{t-1}, y_t} \prod_{t=1}^{T} p(x_t \mid y_t)$
- Posterior probability: $p(\mathbf{y} | \mathbf{x}) = p(\mathbf{x}, \mathbf{y}) / p(\mathbf{x})$

Eric Xing





Summary of BN semantics

• **Defn (3.2.5):** A *Bayesian network* is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.

Eric Xing