OPTIMIZATION OF BUSY WAITING

IN CONDITIONAL CRITICAL REGIONST

by

Lishing Liu%*

Edmund M. Clarke**

TR-16-79

+This research was supported in part by National Science Foundation
Grant No. MCS-79-08365.

*Author's address: Mitre Corporation, Bedford, Mass. 01730

**Author's address: Aiken Computation Lab., Harvard University,
Cambridge, Mass. 02138

OPTIMIZATION OF BUSY WAITING

IN CONDITIONAL CRITICAL REGIONS

Lishing Liu '
Mitre Corporation
Bedford, Mass. 01730

 Edmund M. Clarke*
Harvard University
Cambridge, Mass. 02138

Abstract

Standard implementations of conditiomal critical regions and monitors can lead to
"busy waiting" if processes are allowed to wait on arbitrary boolean expressions.
Techniques from global flow analysis may be employed at compile time to obtain
information about which critical regions (monitor calls) are enabled by the execu-

tion of a given critical region (monitor call).

This information may be used to

obtain more efficient scheduling algorithms.

1. INTRODUCTION

Many different synchronization primitives have been
proposed for controlling access to shared re-
sources in parallel programs. A particularly pow-
erful example is the conditional critical region
([HO72], [BH73]) which permits processes to wait

on arbitrary boolean conditions. With this primi-
tive variables which must be accessed by more than
one process are grouped together as resources.
Individual processes access resources in critical
regions of the form "with R when b do A od", where
R is a resource name, b is a boolean expression,
and A is a block of statements. When a conditicnal
critical region is reached during execution of a
process, the process is delayed until no other pro-
cess is using R and the condition b is true. The
block A is then executed with exclusive use of the
resource.

The standard implementation ([BH73]) of conditional
critical regions uses two queues for each resource
R: a "main queue" Ry and a "wait queue" Ry. Each
process wishing to enter a critical region for-R

is first placed on Ry. Processes on Ry are allow-
ed to enter their critical regions one at a time
and examine whether the entry conditiom b is sat-
isfied. If so, the process completes execution of
the block A; otherwise, the process releases the
resource and is put on Ry. Each time a process
completes the execution of a critical region for R
all processes waiting on Ry must be moved to Ry,
since the execution of the body of a critical
region may change the entry conditions of some of
the waiting processes from false to true. Note
that in this implementation a process may be trans-
ferred back and forth many times between Ry and Ry
before its entry condition finally becomes true.

* This work was partially supported by NSF Grant
MCS-7908365. ‘

This busy waiting is "the price we pay for the con-
ceptual simplicity achieved by using arbitrary
boolean expressions as synchronizing conditions
[BH73]". Essentially the same type of busy waiting
can occur with monitors [H073] if monitor proce-
dures are allowed to wait on arbitrary boolean con-
ditions.

More efficient implementations of conditional crit-
ical regions are possible if programs are prepro-
cessed to obtain scheduling information. Consider,
for example, the unbounded buffer problem. In this
problem a class of producer processes and a class of
consumer processes communicate by means of an un-
bounded buffer. Synchronization is necessary to
avoid buffer underflow and to insure that only cne
process from each class is working on the buffer at
a given time. A well-known solution is as follows:
the shared resource UB contains three variables

np, nc, and p indicating respectively the number of
active producers, the number of active consumers,
and the number of full slots currently in the
buffer; initially all are zero. Each producer is
of the form

producer: repeat
PR1: with UB when np=0 do np:=npt+l od;

produce;
PR2: with UB when true do np:=np-1;
p:=p+tl od
forever, :

and each consumer process has the form

consumer: repeat
CSl: with UB when nc=0 & p>0 do
v nci=nc+l; p:=p-1 od;
consume;
€S2: with UB when true do nc:=nc-1 od
forever.

Suppose that a consumer process '"consumerl" is
waiting on Ry and another consumer process 'con-
sumer2" is executing the body of the critical
region CS1. After the execution of CS1 by con-
sumer2 it is unnecessary to move consumerl from Ry
to Ry since nc>0 at this point. On the other hand,
‘the execution of PR2 always makes np =0, and hence
a producer waiting to execute PRl can be activated
without testing the entry condition.

A number of heuristics have been developed by
Schmid [SC76] for determining which conditional
critical regions are enabled by the execution of a
given conditional critical region. The heuristics
assume that each conditional critical region has
the form

CCR: with R(X) when ajxj +...+ apx +apy1>0 do
x3:=x3+by; ... xpi=x,+b, od

and use only local information. Thus, Schmid's
technique does not easily generalize to more com-
plicated critical regions where, for example, the
entry condition is an equality ajxjy +... apx, +
an41 = 0. Also since only local information is
used, his technique does not reveal in the case of
the unbounded buffer problem that execution of

PR2 always enables PRl and that execution of CS1
always disables CSl. '

In this paper we show how global data flow analysis
can be used to obtain useful scheduling irformation
for parallel programs where processes wait on
arbitrary boolean cenditions. Our technique does
not depend on a particular syntax for the boolean
conditions and is able to exploit the global struc-
ture of the parallel program. As with most opti-
mization techniques we cannot claim that our sched-
uling algorithm is optimal. However, it can be
shown that our algorithm is conservative, i.e, our
algorithm never fails to determine that an enabled
conditional critical region is really enabled.

In Section 2 we describe a simple parallel program-—
ming langauge in which processes access shared data
via conditional critical regions. In Section 3 we
present the basic ideas of global data flow anal-
ysis and show how flow graphs can be constructed
for parallel programs. We also show in Section 3
how Kildall's algorithm can be modified to obtain
information about which conditional critical re-
gions may be enabled by the execution of a given
conditional critical region. We show in Section 4
how this information can be used to obtain more
efficient scheduling algorithms. In Section 5 we
briefly discuss some of the problems involved in
extending our results to monitors and in making

the flow analysis more efficient.

2, PARALLEL PROGRAMS

A parallel program will consist to two parts: an
initialization part "X:=8" in which values are
assigned to the program variables X, and a parallel
execution part "resource R(X):cobegin P1//P2//...Pt
coend' which permits the simultaneous or inter-

leaved execution of the statements in the processes

Pl,...,Pt. Each process Pi is a sequential program
composed of simple Algol statements (assignment,
conditional, while, etc.) and conditional critical
regions. The conditional critical regions have the
form "with R when b do A od", where b is a boolean
expression and A is a sequence of assignment state-
ments. Shared variables can only be accessed with-
in critical regions and must be listed in the pre-~
fix R(X) of the parallel execution part. This
syntax is illustrated by the unbounded buffer pro-
gram shown below. Here, each of the m producer
processes and n consumer processes has the syntax
described in Section 1.

np,nc,b:=0,0,0;

resource R{np,nc,b):

cobegin
producer_1//producer_2//...//producer m//
consumer_1//consumer_2//...//consumer_n

" coend

Let P be a parallel program of the form described
above where = (X],...Xp) is the set of shared
variables. A state of P is an (m+t) - tuple 0 =
(Vis++esVysPls..-,Pp) where v§ is the integer value
of variable xj, and p; is the program counter for
process Pi, Thus, 045= (8,1,...,1) denotes the
state of the program after the initialization part
X:=€ has been executed. The function pc; @) gives
the value of the ith program counter in state g,
and the function val(x,0) gives the value of shared
variable x in state . Both functions are extended
in the natural manner to apply to sets of states.

3
We write 0 =5 o' if critical region C; can be
executed in state 0 to produce state ', Likewise,

Oo=g 0 indicates that state 0 can occur during
execution of program P on initial state 0,. We use
L to denote the set of all possible states for the
program P,

Let CCR be the set of conditional critical regions

in program P, An enable relation for P is a binary
relation ea on CCR with the property that (Ci,Cj)E
ea whenever there is a computation of P of the form

)4 c
Op=> Oy =§ Ok+1 E; Ok+2 and condition bj of region

C; is false in state Oy. Similarly, we may define
a disable relation da for P such that (C4,Cy) € da
whenever there exists a computation

°o=£ Ok ﬁ; Ok+1 with bj true in Ok but not in Ogyj. .

For the unbounded buffer program we see by inspec-
tion that any enable relation must be a superset
of eapin={(PR1,PR1), (PR2,CO1l), (C02,C02)}.
Similarly, anydisable relation must be a superset
of dag;,= {(PR1,PR1), (CO1,C01)}. 1Imn [CL79b)} we
show that, in general, it is extremely difficult to
exactly compute the minimal enable and disable re-
lations for a given parallel program P. By using
techniques from global flow analysis, however, it
is possible to find good approximations for these
relations, -

3. GLOBAL DATA FLOW ANALYSIS FOR
PARALLEL PROGRAMS

In data flow analysis, programs are modeled by
directed graphs where the nodes corespond to in-
dividual statements and the arcs represent the
flow of control. We restate below the formal de-
finition of a flow graph together with the neces-
sary related terminology from graph theory.

Let G=(N,E) be a directed graph. If e=(n,n')cE,
.we call n' a successor of e and n a predecessor of
n'. Succ(n) will denote the set of all successors
of the node n. A sequence of edges 7= (ng,,n1),
(nl,nz),...,(nk_l,nk) is called a path from n, to
np of length k. A path of length o is called a
null path. Path(n,n') will denote the set of all
paths from n to n'.

3.1 DEFINITION: A flow graph G==(N,E,no) is a

finite diracted graph (N,E) together with a dis-
tinguished entry node n, such that n, has no pre-
decessor and path(n,,n) # ¢ for all neN, 0

Many flow analysis problems can be formulated as
information propagation problems in flow graphs
([cw76}, [LD79]). :

3.2 DEFINITION: An information propagation pro-
blem is a triple <G,F,x,> where

(1) 6= (4,E,ny) is a flow graph,

(2) F={fe: L) +RAI)|ecE} is a set of

transition functions, and

(3) x,el is the initial information attach-
ed at node ng,. 0

A transition function f,:9XI)+39XAL), where ecE,
"specifies how information changes when it flows
‘through edge e. To solve an information propaga-
tion problem is to merge, for each node n of the
flow graph, the set of information which can be
propagated from x, through a path from n, to n.
Let P be a parallel program with processes Py,
:Pz,...,Pt. Assume that Cil’CiZ""’Ciki are the

‘eritical regions which occur in process P; and
that each Cij has the form "with R when bjj do Ayj
od", where Aij consists of assignment statements.

Let ST(i,j)={oo, =P>d, pci©) =3} be the set of
program states which may preceed the execution of
ICij' In general it is impossible to calculate
ST(i,j) since this would require simulation of all
possible executions of the program P. However, by
using techniques from global flow analysis it is
possible to obtain good approximations for ST(i,j).
Before discussing such techniques we describe how
flow graphs are constructed for parallel programs.

We assume that for each process P; a flow graph
Gj= (Ni»Ei:“io) is constructed such that every con-
ditional critical region Cjj is represented by a
single node. Each process also has a special start
node nj,. The composite flow graph G= (N,E,ng) for
P is constructed as follows:

: t
1. N=y NjUln,}

i=1

t
2. E= U EjU{(ng,ni,)|1<1<t}UE" where
i=1

E'= {(niq,n)1#3 and niq,nyr represent con-
conditional critical regions}.

The flow graph for the unbounded buffer program
with one producer process and one consumer process
is shown in Figure 1.

Figure 1

In the flow graph an undirected edge (n,n') between
critical regions in different processes represents
two directed edges (nm,n') and (n',n). Note that
many of the interprocess edges are unnecessary be~
cause they are not part of possible execution paths.
During the execution of our flow analysis algorithms
the interprocess edges need never be explicitly con-
structed, and many inactive edges will not be used
at all,

Transition functions f.:P(I)+ (I) for a flow graph
G may be defined as follows: with each node n of G
we associate a function f,:L)*JAL) such that
£,(X) = {post(n,0) |0 €X and the instruction at n is
executable under ¢}. Here, post(n,g) is the

state which results when the instruction at node n
is executed in state ¢, Thus, if n represents a
conditional critical region Cjj, fn(X)= {Ai1ﬁ1)l
oeX and by (©)=true}. TFor an edge e= (n,n")
where n' =npq the function fo: P(Z) +#() is de~
fined by fe(X) = {0€ £,(X)|pc @) =ql.

‘The flow analysis algorithm that we use (see Fig.

2) 1s a modification of Kildalls' algorithm [KI73].
To insure that our algorithm terminates we use a
widening operator W [CO76]. For each neN, the
successive values assigned to COV(n) at statement 9

‘Algorithm F

. input: An information propagation problem
1=<G,{fe},$>

output: A mapping COV:N +3(L)

method:
begin
1. for each node neN do CoV(n):=¢ od;
2, modify list:=list of all nodes in N;
3. while modify list#¢ do
4, pop n from modify | 1ist;
5. for i=1 to t do
6. for quci(COV(n)) do
7. " 3et n' be the node Niqs
8. save:=COV(n');
9. covin'): "W(COV(n')Ufin n')
(cov(n));
10. If save # COV(n') and n' ¢
modify list
11. ’ then add n' to modify list;
12. od
13. od
14, od
15. end
FIGURE 2: Flow Analysis Algorithm

form an ascending chain in $XI). The purpose of the
widening operator is to guarentee a finite bound
on the length of such chains.

3.3 DEFINITION: A mapping W: L)) is a
widening operator if it satisfies the following
properties for all X and Y in AL):

(1) W is monotone, i.e. XS‘)Y implies
W(X)cw(Y)

(2) W is increasing, i.e. XCW(X). O

We say that W is finitely convergent if for any
ascending chain UjcUsc... in&(L), the chain
defined by V4=W(U;) for 1>1 is eventually stable
(i.e., 3IK>0{Vi=Vg for all i>K]).

In [CL79b} we show that ST(1,J)C:COV(n1 +) for
critical regions njj of the parailel program.

This means that our algorithm always produces
“conservative approximations" for the state sets
ST(i,j). Thus, any property of the parallel pro-
gcam that holds for all states in COV(n) must also
hold at node n during the actual execution of the
program. Because of this fact our scheduling
algorithm will never fail to determine that an en-
abled process is really enabled.

The usefulness of algorithm F strongly depends on
the widening operator that is used. If the widen-
ing operator is very difficult to compute, our
optimization techniques may become prohibitively
expensive. On the other hand, a widening operator
that throws away too much information will cause
the scheduler to make many redundant queue opera-
tions. The widening operator that we describe
below uses intervals to represent sets of states
and appears to avoid both of these problems.

We first consider a widening operator Wy for &(2),

where Z is the set of integers and I= [a,b] is a

finite interval in Z. For each XedXZ) we define

WI(X)= U Vi(r) where Vi(r) is (~~,a) if r<a,
reX

(b,+°) if r>b, and r otherwise.

For a general parallel program with m variables and
t processes, we define a widening operator WIl,...,

I F(E)*HA(L), where I;,...,I, are given finite
'

intervals in Z, such that

m t
Wppseensp,) = 1):1 Wy (val; (0) x j):l pcy(X) .

This widening operator not only collapses the values
of each shared variable, but also widens the col-
lapsed value sets into intervals. The intervals
Iy,...,1I,; may be chosen by examining the program
text. One heuristic for this purpose is as follows:
Let aj and by be the maximum and minimum constants
which are assigned to or compared with x4 in the
program text., Let ci(di,resp) be the maximum
(mimimum, resp.) integer k such that xj:=xi+k
appears in the program text. Then we choose Ij as
the interval [min(aj,a;+dj),max(bi,bi+cyid].

If we apply the above heuristic to the parallel pro-
gram for the unbounded buffer problem, we get I]=
I,=13=[-1,1]. Using the widening operator
w11,12’13 we obtain the approximation:

COV(ng) = ¢, COV(nyg) = COV(npg) = {og}
COV(np;) = {0} x [0,1] x [0,°) x {1} x {1,2}
COV(njp) ={1} % [0,1] x [0,») x {2} x {1,2}
COV(ngy) = [0,1] x {0} x [0,%) x {1,2} x {{}
' COV(ng,) = [0,1] x {1} x [6,=) x {1,2} x {2}

Note that the flow analysis algorithm determines
exact values for the variables np and nc.

In the above example we have implicitly assumed an
efficient interval calculus [C076]. The interval
calculus is usually easy to implement: [a,b]+
[c,d]=[a+c,b+d], [a,b](-1)={[-b,-a], etc. We
will not discuss interval calculus further in this
paper, however. By using more sophisticated
widening operators it should be possible to get
faster convergence and to obtain even better ap-
proximation solutions. Various propagating se-
quences [RE79] can also be constructed to further
limit the number of interprocess edges considered
in the flow analysis.

4, CONSTRUCTION OF THE SCHEDULER

‘Our scheduler is an extension of the one describad

by Schmid [SC76]. In Schmid's implementation (see
Fig.3) the conditional critical regions in a pro-
gram are divided into "equivalence classes" so

that all regions with the same condition are placed'
in the same class. The ea and da relations among
these equivalent classes are constructed using
heuristics about how the execution of one critical

region affects the condition of another. During
‘execution of a program, all processes that want
to enter a conditional critical region are enter-
ed in the queue Q. When a process has entered

a region CCRy and found that the condition is not
satisfied, the process is placed in the queue Qi

enabled list
scheduler

Figure 3

together with all other processes that want to
execute a region of the same equivalence class.
When a process has executed a region CCRy, it
enters into the enabled list all (classes of)
"regions" CCRj for which (CCRy,CCRj) € ea holds.
‘The "Scheduler" examines whether the condition for
‘a class in enabled list is true. If this is the
case, it transfers the processes that are waiting
in Q; for that class to the queue Qg. If (CCRy,
»CCRi§€ da, then only one of the waiting processes
is transferred; otherwise they all are. The queue
Qs has the highest priority; a process can only
enter a critical region if there is no process
ahead of it on Qg. ’

We will use the same diagram that Schmid used (Fig.
3) to describe our implementation. In our imple-
mentation an enable relation ea (disable relation
da) for a program P is decomposed into two dis-
Joint relations sea and wea (sda and wda, resp.).
The prefix letter "s" ("w'") stands for "strong"
("weak') and indicates that the corresponding
property occurs in all possible (in only some)
executions of the program. The four relations
sea, wea, sda, and wda can be formally defined as
follows: -

1. (CCRi,CCRj)E:sea iff there is no computation
of the form 0y =50 ngi Ok+1 such that con-

dition by of critical region CCRy is false in
state 0y and also in Ok+1-

2, wea=ea- sea,

3. (CCRi,CCRj)C sd; ifécaéere is no computation
of the form 0y =0 "=>1 gy41 such that con-

dition by of critical region CCR; is true in
state 0) and also in °k+1'

4, wda=da~-sda,

The information obtained by the flow analysis can

be used in a straightforward manner to approximate
the six enable and disable relatioms. Let G be a
flow graph for a parallel program in which condi-
tional critical regions are indexed as described

in Section 3. Assume that after executing Algorithm
F we obtain the approximation COV:N-+F(Z) for the
solution to the information propagation problem
<G,{fo},0>. Let n and n' be essential nodes re-
presenting two critical regions Cjiq and er which
occur in different processes and are therefore con-
nected by edge e= (n,n') in the flow graph. To
simplify our notation, we identify a predicate with
the set of states which make it true. For each con-
ditional critical region C, we use C to denote the
equivalence class of C.

A. Put'(aiq,Ejr) in ea if there exists a state
geqovgn) nbiq Abj, such that ¢'=f_ () €bjy
and PCy @")=r,

B.* Put (Eiqujr) in sea if there does not exist a
state 0 € COV(n) ﬂbiqnsjr such that o' =
fe©) ebjr and pe, c')=r.

C. Put (Siq,gjr) in wea if (Ciq,Ejr)E ea - sea.

D. Put (Ciq,Cjr) in da if there exists a state
0 eCOV(n) NbigNbjy such that o' =£,(0) €byyp
and pey@')=r.

E. Put (Eiq,Ejr) in sda if there does not exist a
state 0 € COV(@E)N biqn bjr such that o'=fe() ¢
bjr at:d psj ") =r.

F. Put (Ciq,er

Note that efficient computation of the four enable

and disable relations also requires the use of
interval arithmetic.

) in wda if (Eiq,Ejr) € da - sda.

During execution the system works as follows: A
process that wants to enter a critical region is
placed in Q,. When a process has entered a region
CCRj and found out that the condition for CCRy

does not hold, the process is placed in Qj. When

a process has executed a region CCR; and leaves it,
the system will move a process Py to Qg if there is
a process Py waiting in Qi such that (CCRi,CCR-)E
sea. Then all other critical regions CCRy with
(CCRj,CCRp) € ea are pushed on enabled list. At the
same time all critical regions CCR; on enabled list
with (CCRi,CCRj)E sda are removed from enabled list.
The scheduler still works the same way as described
in {SC76].

To illustrate how the scheduling algorithm works we
consider the conditional critical region solution
to the dining philosophers' problem [BH73]. 1In
this problem five philosophers, numbered 0-4, sit
around a circular dining table (see Fig. 4). 1In
tront of each philosopher there is a plate of
spaghetti, When a philosopher wishes to eat, he
picks up the two forks next to his plate. Since
there are five forks on the table, a philosopher
can only eat when none of his neighbors are eating.
In the conditional eritical region solution each

Figure 4

~dining philosopher is represented by a process,
and a shared array fork(0:4) is used to indicate
the status of the forks:

Resource R(fork):
Cobegin D1//...//P5 coend

When philosopher i is ready to eat, he must
simultaneocusly pick up the two forks immediately
‘adjacent to his plate:

Di:repeat
Dil:with R when fork(i)=0Afork(i™) =0 do

fork(i):=1; fork(it):=1 od
eat;
Di2:with R when true do
fork(i):=0; fork(i*):=0 od

forever

(4* and i~ denote the mod 5 successor of i and the
mod 5 predecessor of i, respactively).

The flow‘graph for this parallel program is shown
in Figure 5. 1In order to simplify the diagram we
have not included the edges connecting critical
regions in different processes.

No

-Figure 5

Each state 0 of the program is a 10-tuple of the
form 0= (f5,.0.,f4,Pgs++.,p4) where 1<pi <2 is the
program counter for process DI, The set Ip of all
such states is clearly finite., Thus, a simpler
widening operator can be used in this example than

was used in the unbounded buffer example. We use:
10 :

W)= X vj(x) where 7y is the projection of X
j=1

to the ith component. When algorithm F is applied
with this widening operator we obtain the covering
shown below:

Coving) =¢

€ov(n:) = {(0,0,0,0,0,1,1,1,1,1,)}

CoV(ni1) ={o e Splo=(fy,.00,£4,P0s-+-,P4) and p

COV(n2) ={0 € Ep|0= (fo,+0sf4sPoseresP4)s Pi=
%_=%+=1,MMfi=%*=U

i=l}
2,

The method described earlier in this section can
then be used to compute the enable and disable
relations for the program., The resulting relations
are summarized in Figure 6 where sda, wea, and sea
are represented by using < Dy m——— >, and cee*>
respectivealy,

Figure 6

This information, in turn, can be used to construct
the efficient implementation for the dining philo-
sopher's problem shown in Figure 7. The procedures
enter and remove are used to access the various
queues used by the implementation. The scheduler
will only check the conditions of critical regions
on the enabled list when determining which process
to run next.

'biwfégeat ‘ .
Dil:with R do

~if not (fork(i) =0 Afork(i+) 0)
then enter Dil on wait queue;
fork(i):=1; fork(it):=1;
remove p1+1and Di~1 from the enabled list

od;
eat;
Djz:with R do
fork(i):=0; fork(i):=
enter Di” L Dll, and D1+l in the enabled list
od;
forever .
FIGURE 7
‘5. CONCLUSION

We have shown how global flow analysis can be used
to reduce busy waiting in implementations of con-
ditional critical regions. Currently, we are
trying to extend our flow analysis techniques to
monitors. As noted in Section 1, the same type

of busy waiting can occur in monitor implementa-
tions if monitor procedures are allowed to wait

on arbitrary boolean expressions. In this case, -
the flow analysis is complicated by the transmis-—
sion of parameters that is associated with a moni-
tor call, It appears that some type of interpro-
cedural data flow analysis may be necessary to cor-
rectly handle monitors.

We are also investigating ways of increasing the
efficiency of our flow analysis algorithm. An
obvious problem is determining which widening
operators should be used with a particular par-
allel program., This problem is important since
the widening operator determines how quickly the
flow analysis algorithm converges. The efficiency
can also be improved by developing methods to limit
the number of interprocess edges that are consid-
ered during the flow analysis.

Finally, we believe that flow analysis techniques
may be applicable to other important problems in
parallel computation such as determining when two
statements are mutually exclusive. Results in
[CL77] suggest that flow analysis might also be
useful in the automatic veriflcatlon of parallel
programs. .

REFERENCES

[AC76]) Allen, F. E., J. Cocke. A Program Data
Flow Analysis Procedure., CACM 19:3, 137-

147,)
Allen, F, E.

[AL70]} Control Flow Analysis. SIG-
PLAN Notices 5:7, 1-19.

[AU73] Aho, A, V., J. D, Ullman. The Theory of
Parsing, Translation and Compiling, Vol. II:
Compiling. Prentice Hall, Englewood Cliffs,
NJ.

[BH73] Brinch Hansen, P. Operating System Princi-

-ples, Prentice Hall, Englewood Cliffs, NJ.

[cL79]

{CL79b)

[CcO76]

[6w76]

[HO72]

[HO73]
[HU75]

[KE71]

[KI73]

[XL77]

[Ku76]
[LD79]
[LI76]
[M167]

[ow76]

[RE79]

[5C76]

" Analysis.

Clarke, E. M. Synthesis of Resource In-
variants for Concurrent Programs, 6th POPL
Conference, January 1979,

Clarke, E, M, and L, Liu. Approximate
Algorithms for Optimization of Busy Waiting
in Parallel Programs. 20th FOCS Conference,
October 1979,

Cousot, P,, R, Cousot. Static Determina-
tion of Dynamic Properties of Programs.
Proc. 2nd International Symposium on Pro-
gramming, B. Robinet, Ed., Dunod, Paris,
April 1976.

Graham, S, L., M, Wegman. A Fast and
Usually Linear Algorithm for Global Flow
JACM 23:1, January 1976, 172-202,

Hoare, C.,A.R. Towards a Theory of Parallel
Programming. In: Hoare, C.A.R., R. H.
Perrot, Eds., Operating System Techniques.
London, Academic Press, 1972, 61-71.

Hoare, C.A,R, Monitors: An Operating System

Structuring Concept. IFIP-WG 2.3, Munich
1973. |
Hecht, M. S., J. D. Ullman. A Simple Al-

gorithm for Global Data Flow Analysis Pro-
grams, SIAM J, Computing 4:4, 519-532.

Kemnedy, K. A Global Flow Analysis Al-
gorithm, Int'l, J. Computer Math, 3, 5-13.

Kildall, G. A. A Unified Apprcach to Pro-
gram Optimization. Proc., ACM Symp. on
Principles of Programming Languages, 1973.

Keller, R, M. Generalized Petri Nets as
Models for System Verification, Computer
Science Dept., Technical Report, University
of Utah, 1977,

Kam, J. B.,, J. D. Ullman,
Flow Analysis Frameworks,
7:3, 305-318,

Monotone Data
Acta Informatica

Liu, Lishing and A, Demers. Unpublished
manuscript.
Lipton, R. The Reachability Problem ané

Boundedness Problem for Petri Nets is
Exponential-space Hard. Conf. on Petri XNets
and Related Methods, MIT, July 1975.

Minsky, M. L. Computation:
finite Machines. Prentice Hall,

Owicki,:S., D. Gries, Verifying Properties
of Parallel Programs: An Axiomatic Ap-
proach. CACM 19:5, 279-284, 1976.

Reif, J. Data Flow Analysis of Communica-
ting Processes. 6th POPL, January 1979.

Schmid, H. A. On the Efficient Implementa-
tion of Conditional Critical Regions ané

Construction of Monitors. Acata Informatica
6, 227-249, 1976. ' :

Finite and In-
1967.

