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Abstract

In this paper. we discuss the use of binary decision diagrams to represent general matri-
ces. We demonstrate that binary decision diagrams are an efficient representation for every
special-case matrix in common use, notably block matrices, band matrices, and sparse matrices.
In particular, we demonstrate that for any matrix, the BDD representation can be no larger
than the corresponding sparse-matrix representation. Further, the BDD representation is often
smaller than any other conventional special-case representation: for the n x n Walsh matrix,
for example, the BDD representation is of size O(logn). No other special-case representation
iIn common use represents this matrix in space less than O(n?). We describe termwise, row,
column. block, and diagonal selection over these matrices, standard and Strassen matrix multi-
plication, and LU factorization. We demonstrate that the complexity of each of these operations
over the BDD representation is no greater than that over any standard representation. Further,
we demonstrate that complete pivoting is no more difficult over these matrices than partial
pivoting.

1 Introduction

Binary Decision Diagrams (BDD’s) are a data structure that has been used for years to provide a
cogent representation of Boolean functions. Indeed, they are now such a common part of computer-
aided design research that one can safely assume a working knowlege of BDD’s on the part of
virtually any reader.

BDD’s were introduced by S. B. Akers in 1959[2]. In the early 1980’s, searching for a data
structure to undergird his switch-level simulator, R. E. Bryant[3] demonstrated how a BDD could
be modified to become a canonical representation of a Boolean function. Bryant also demonstrated,
given BDD’s representing two functions f and g, how to compute the functions f ¢ g, where o is
any of the common binary Boolean operators. Finally, Bryant demonstrated, in a famous theorem,
that [fog| < |fllgl.

Bryant’s paper, together with the observation that almost every common function could be built
with a reasonably-sized BDD, opened the floodgates. In 1988, Malik et. al.[7] demonstrated that
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BDD’s could be used to verify large multi-level combinational logic functions. In 1990. Berthet.
Coudert. and Madre[3] demonstrated that one could represent sets of finite-state machine states
cogently using BDD's, and then described an interation in which one could find the reachable states
of a finite-state machine. again represented as a BDD. The key idea was confirmed in separate
experiments by Touati et. al.[10]. In 1992. Coudert and Madre[6] demonstrated a method by
which the primes of very large Boolean functions could be implicitly represented using BDD's.
This year, these techniques were extended to a full implicit logic minimizer.

This year also saw the exploration of the relationship between BDD’s and matrices. In (8], it
is argued that any BDD can be thought of as a vector of length 2", or as a binary matrix of of
size 2"~! x 2"71, or, for that matter, as an object of almost any dimensionality. In (8], a BDD for
a finite-state machine transition function is thought of as a two-dimensional matrix, and a classic
matrix technique is used to find its transitive closure. In [4], it is observed that though a BDD is
generally thought to take only terminals 0 and 1, there is no reason for this restriction; a BDD can
have arbitrary integer terminals, and there is no reason why a BDD should be restricted to only
two terminals; using independently the observations of (8], they argue that any integer matrix or
vector can be represented as a BDD, and give BDD representations for the Walsh matrix and for
the Walsh spectrum of a Boolean function.

We take the ideas introduced in [4] and extend and expand upon them. Specifically, we observe
that there is no reason to restrict the terminals of a BDD to the integers; any finite set will do.
This is a minor contribution. Our central contribution, however, is to begin to answer the following
question. Given that we can represent vectors and matrices as BDD’s, should we? Is the BDD
representation cogent” Do our matrix algorithms translate well onto this new representation?

Our initial answer to these question is remarkably affirmative. Over the next several pages, we
will demonstrate that BDD’s are a cogent representation of matrices and vectors. Further, we will
demonstrate that many popular matrix algorithms translate easily and naturally onto the BDD
representation, occasionally enjoying a clean advantage over other representations.

We do not purport to “prove” in any real sense that BDD’s are a superior representation of
general matrices. This paper is not the end, but rather the beginning of our inquiry. Rather, our
hope is to demonstrate some advantages and spur further research into this area. It is our hope
that the BDD representation of vectors and matrices will prove as fruitful and fulfilling an area for
CAD researchers in synthesis, physical design, and simulation as research into sparse matrices has
been.

2 Multi-Terminal Binary Decision Diagrams

The root of BDD’s lies in the Shannon Cofactor Expansion of a Boolean function. Given a Boolean
function f : B" — B, the cofactors of f are the functions obtained by partial evaluation of f.
For example. the cofactor f; s, is the function obtained by setting z; = 1,22 = 0,z4 = 1 and
evaluating f.

Cofactors are given their importance by the famous Shannon Expansion of a function. Given
any boolean function f(z;....,z,), and any variable z;, we may write:

f=zife +Tifm (1)

(1), carried out recursively, gives a full binary tree with leaves 0 and 1. Each internal node
represents a function. its left child its cofactor with respect to Z; for some variable z;, and its right
child its cofactor with respect to z;. This tree is called a Shannon Tree of f.

Bryant’s seminal contribution was to order the variables of the function, so at the kth level from




the root the cofactors with respect to z; were taken. Then, applying the well-known theorem:
g=h <= g;, =h,, and gz = hz (2)

and working up from the leaves, he found the set of distinct functions in the tree. He then obtained
the BDD for f by folding together nodes representing identical functions into a single node.

The central idea behind BDD’s can be easily adapted to more general functions. It is straight-
forward to define functions from the boolean space B™ onto R, where R is any finite set; in general,
we consider R to be an arbitrary finite subset of the reals. It is fairly easy to see that (1)-(2) hold
for any function f:B” — R, and so in precisely the same manner as in the two-terminal case, the
Shannon Tree for such a function may be formed and converted into its BDD representatijon; the
only distinction between a BDD representing a function onto the Booleans and one representing a
function onto a finite subset of the reals is that the latter has multiple leaves, not two as in the
former case. As a result, we christen BDD’s with leaves other than 0 and 1 as Multi- Terminal
BDD’s, or MTBDD’s.

A moment’s thought persuades the reader that MTBDD’s not only represent functions from
a Boolean space B" onto a finite set R. but, more generally, functions from any finite space
D — R:one simply encodes the members of D using [lg|D|] variables. Our interest is in the
case where D is the finite set of the integers {0,...,m — 1}, or the case where it is the finjte set
{0,....,m =1} x {0.....n — 1}. In the former case, f: D~ Ris a vector; in the latter, a matrix.

To make this picture concrete, consider a vector v of length m; the vector is indexed by an
integer of [Ig m] bits; one can think of each bit of the index as representing a separate Boolean

variable: the vector thus becomes a function from the Boolean space B”g m] onto the range of the
vector, and this can be represented as an MTBDD.

In representing a vector as a BDD, of course, some information is lost: specifically, the dimen-
sionality of the vector or matrix and the size of the vector/matrix in each dimension. However,
this information can be kept implicitly in a number of ways, and for the remainder of this paper
will be understood.

Implicitly, when given a vector with index bits {z1,...,z,}, we will assume that z7 is the most
significant bit, and z, the least. For two-dimensional matrices, we by convention denote the row
index bits with the variables {z, .., s} and the column index bits with the variables {n, . yt}s
ordered as before most significant to least significant. A felicitous ordering interleaves the row and
column variables; i.e., a matrix is conceptually a function f(z1,y1,22,72,....) or f(y1,21,...). This
order on the boolean variables associated with the index bits is not required, and may not be ideal
for some matrices. This order, however, leads to the following identification of the cofactors on the
matrix /. when represented by the function f as an MTBDD:

fan fau
fl‘ly'l f1‘1y1
where each submatrix is similarly decomposed.

Note that this ordering identifies each node in the MTBDD at level & from the root with a
rectangular submatrix of size 2°+'=*. This identity is critical, for the following reasons:

1. Significant savings in the MTBDD representation occur when nodes in the BDD have more
than one parent; this corresponds to different cofactors in the Shannon tree mapping on to
identical functions. In matrix terms, this occurs when identical submatrices occur in various
parts of the original matrix. Since many of the special-case matrices that we actually use
(block matrices. sparse matrices, band matrices) have this property, this gives some intuition
to the idea that MTBDD's are a cogent form of these special-case matrices; and
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2. Many matrix algorithms (LU decomposition, Strassen and standard matrix multiplication)
are naturally phrased in terms of recursive-descent procedures on submatrices. Since the
submatrices map naturally onto cofactors of the BDD, the translation onto BDD procedures
is direct.

In the sequel. we will demonstrate the effect of (1) quantitatively, and (2) by giving BDD
versions of efficient matrix procedures.

Notation: in the sequel. we will use superscripts to denote vertices on the Boolean space B"
and subscripts to denote individual variables. Hence z* stands for an assignment of values to the
variables ri.....z,. while r} refers to one such variable.

Remark: For matrices A of size other than 2" x 2™, we use the standard trick [1] of attaching
an identity submatrix:

A0
0 I

For vectors v of length other than 2", we attach a special element ¢ to represent missing entries:
g p p g

[v¢]

3 Size of MTBDD’s as a Matrix Representation

We can derive an upper bound on the size of an MTBDD by counting the number of paths in
the data structure. Since each path involves at most log n nodes, where n is the dimension of the
matrix (number of rows for a vector. number of rows or number of columns for a matrix), and since
each node must lie along some path. it follows that in an MTBDD with p paths, there are at most
plog n nodes.

This is a worst-case upper bound, and corresponds to the case where the MTBDD is simply
the Shannon Tree: i.e., where the folding process has not resulted in any reduction of the tree.

Lemma 3.1 Let f: B" — R be any boolean vector function. Choose any element r of R. If there
are k elements 1. ....2% of B" such that f(z') = r, then there are at most k paths from the root of
the MTBDD for f tor.

Proof: Induction on n. For n = 0. trivial, since the only Boolean vector functions are the constant
functions over R. and the MTBDD’s for these functions have a single node and no paths. Now
suppose for all n < N. and consider some function from B" — R. Let the left child of f be
denoted fL and the right child fR. If there are k elements z!,...,z* of BY such that f(zt) = r.
- there are 0 < ! < k elements of BV~! such that fL(z?) = r, and k — | elements of BN~! such that
fR(+') = r. By the inductive hypothesis, there are at most ! paths from fL to the terminal r, and
at most k — [ paths from fF to the terminal r. Since each path from the root to r is an extension
of either a path from the right child or a path from the left child, it follows that there are at most
[ +k —1=Fk paths from the root to r. [

Lemma 3.2 In any MTBDD, each non-terminal node must be on at least one path to each of two
distinct terminal elements.

Proof: This is obvious from a casual inspection of any BDD. A particularly fastidious reader can

construct an induction. if desired. .
We begin by comparing MTBDD’s to the dense-matrix representation of a matrix of total

dimension n: clearly a lower bound on the size of such a matrix is O(n). We have the following:




Theorem 3.1 The MTBDD representation of a matrir with total dimension n is of space com-
plezity O(n).

Proof: Since there are n elements, there are at most n leaves of the MTBDD. The worst-case size
of an MTBDD occurs when there is no sharing of internal nodes, i.e., when the MTBDD becomes
a binary tree. It is well-known that a binary tree with n leaves has n internal nodes, giving the
result., u

This comparison is somewhat of a straw man; dense matrices do not occur in practice very
often. A more interesting comparison is to sparse matrices: matrices where there are m nonzero
elements and total dimension n, for m << n.

Theorem 3.2 The MTBDD representation of a matriz of dimension n and m nonzero elements
is of space complezity O(mlogn).

Proof. By lemma 3.1, there are at most m paths terminating in a nonzero terminal in such an
MTBDD: since each path is of length O(log n), there are at most O(m log n) internal nodes on these
paths. Further. by lemma 3.2, each internal node must be on a path to at least two terminals, i.e.,
on at least one path to a nonzero terminal. There are at most O(mlogn) nodes on these paths,
and hence at most O(mlogn) nodes in the MTBDD. .

Note that the standard sparse-matrix representation has at least one pointer per row, and one
pointer per column, as well as space complexity proportional to the number of nonzero elements;
this gives total space complexity of O(m + n); note that if m < 1——, the worst-case complexity
of the MTBDD representation is superior to that of the standard sparse-matrix representation. In
fact. the following lemma is of interest.

Theorem 3.3 Let R be any representation of matrices of total dimension n with m nontrivial
entries, m << n. Then there exists at least one matrizr M of total dimension n with m nontrivial
entries, m << n, such that |M|r = O(mlogn)

Proof: Given that there are n possible positions in the matrix, and m total non-trivial entries, it

follows that even if each non-trivial entry is identical there are ( m ) such matrices. Since m <<

n . . . . . .
n. ( m ) &~ n™ over the domain of interest. Any representation valid for k objects must be of size

O(log k). hence the size of at least one matrix under R must be at least O(logn™) = O(mlogn)
(] ‘
Note that this implies that MTBDD’s are the optimal representation for very sparse matrices.
A similar, but much more complex and longer argument, demonstrates that for a matrix made
up of m constant blocks, total dimension =, the size is at most O(mlogn).

4 Operations

Of course. no data structure is complete without a definition of the operations over it. In this
section we describe a set of operations over MTBDD’s, with complexity results.

4.1 On Hashing

Computations over BDD’s derive great efficiency from the idempotency of operations; the results of
a BDD operation depend only upon the operands, not upon the context. As a result, modern BDD




packages ensure that every BDD node represents a distinct function, and memorizes the results of
every operation. typically using a hash table. If the operation is ever repeated. no computation is
done: the result is directly returned. As a result, no operation is ever performed twice. This leads
to complexity bounds in the case of termwise operations that are linear in the sizes of the operands.

We use hashing extensively in our matrix package; virtually every operation has its results
remembered for later re-use.

4.2 Accessing and Setting Submatrices

In a matrix represented as an MTBDD, one accesses individual elements, column, row, and diagonal
vectors, and submatrices using a single mechanism: partial evaluation. Full evaluation - setting
each variable — obtains an individual element. Setting each z variable obtains a single row, and
setting each y variable obtains a single column. Setting some z variables and some y variables
obtains a submatrix.

Elements. rows, columns, and blocks are set using a similar scheme. Any submatrix is simply
an MTBDD free of some variables: these variables are the indices of the submatrix within the
larger matrix. The set routine takes in three arguments: the matrix itself (here denoted f), the
submatrix to be inserted (g) and a list of variables and values which indicate where the submatrix
g is to be inserted in f. As with all MTBDD routines, underlying this is the Shannon Expansion.
Set is a recursive-descent procedure, which walks through the MTBDD representing the matrix f
and creates the MTBDD with the appropriate submatrix set to g. '

At each level of the recursion, Set examines the top (most significant) variable of each of its
three arguments. There are four cases.

1. top_var(list) > top.var(f). Return a BDD in which one cofactor is the Set of f with
respect to ¢ and the remainder of list, and the other is simply f.

2. top.var(g) > top.var(f). Return a BDD whose cofactors are the Set of f with respect to
the cofactors of g.

3. z; = top.var(f) = top.var(g). In this case, the children of f are Set recursively appro-
priately with the children of g.

4. ¢; = top_var(f) = top_var(list). In this case, the appropriate cofactor of f is recursively
Set to g.

In the case where more than one of these cases apply, the identity of the top variable determines
the action. For example, if the top variable belonged to 1ist alone, case (1) would apply even if
case (3) applied as well.

The terminal case occurs when 1ist is empty: in this case g is returned as the result.

It is easy to see that the cost of Set is bounded above by O(|f||g|); this is a gross upper bound,
and the expected cost is O(logn), where n is the total dimension of f.

4.3 Termwise Operations

Many operations are performed termwise over the elements of a matrix; examples are matrix
addition, matrix inner product, scalar multiplication, and (in the case of the binary matrices) the
Boolean operations. Briefly. a termwise operation ¢ over a matrix is any operation such that, for
any pair of n x m matrices M and M', (M o M');; = M;; 0 M,-’j.




For termwise operations. we simply use Bryant’s APPLY operator. This derives from the fol-
lowing classic theorem:

Theorem 4.1 Let f,g be any vector Boolean functions, f,g : B* — R, o any termwise operator
h=fogiff hy, == fr, 09, and hz, == fz, 0 gs,.

This theorem permits the use of Bryant's Apply procedure, or Rudell’s subsequent improve-
ments. In this code, newMTBDD is a procedure which takes as input a variable and two MTBDDs,
and returns an MTBDD indexed with the variable and whose left and right children are the two
arguments.

In our BDD package, newMTBDD does not simply create a new BDD, but, rather, keeps a
lookup table of existing BDD'’s, and if one is found that matches the requested BDD, the old BDD
is returned. In this manner there is exactly one BDD per function, which simplifies greatly the
lookup computations that permeate the matrix package.

Apply Operator(f, g, Op) {
Results = hash_table();
Return Apply(f, g, Op);
}
Apply(f, g, Op) {
if((Result = Lookup(f, g, Op, Results)) # NULL) return Result;
if(f is a terminal)
if(g is a terminal) Result = f op g;
else
Result = newMTBDD(g.var, Apply(f, g.left, Op), Apply(f, g.right, OP));
elsif (g is a terminal)
Result = newMTBDD(f.var, Apply(f.left, g, Op), Apply(f.right, g, Op));
elsif (top variables of f and g are equal)
Result = newMTBDD(f.var, Apply(f.left,g.left, Op), Apply(f.right, g.right, 0p));
elsif(top variable of f precedes top variable of g)
Result = newMTBDD(f.var; Apply(f.left, g, Op), Apply(f.right, g, Op));
else
Result = newMTBDD(g.var, Apply(f, g.left, Op), Apply(f, g.right, Op));
Store(Results, f, g, Op, Result);

Note immediately that there is at most one node in the resulting MTBDD for each call to this
routine. The storage of results and their lookup ensure that there is at most one call per pair of
nodes from f and g. Hence if h = f o g then |h| < |f||g|. This of course recaps Bryant’s seminal
theorem for two-terminal BDD’s.

4.4 Vector Multiplication

Up until now, we have spoken only of the total dimension of a matrix, without considering its exact
shape, or number of dimensions. For vector operations, of course, both the size and the shape of
the matrix is relevant in determining the result. Of course, the shape of a matrix represented by
an MTBDD is arbitrary. and must be specified separately.




4.4.1 Multiplication of a Vector by a Vector

The result of vector multiplication is quite straightforward. Given vectors, f and g. both of length
m, we have:

m—1
fog=>_ fai
1=0

When f, g are represented as Boolean functions, f, g : Bllogm] ., R, this is rewritten:

_ 9
]
and hence:

fog=frnogsn + fr, 09z (4)

(4) forms the basis of the recursion procedure.

Vector Multiply(f.g.i.n) {
if ((Result = Lookup(f.g¢.i)) # NULL)
return Result;
if(i > n) Result = fg;
else Result = Vector Multiply(f:,gz,7+ 1,n) + Vector Multiply(f. .g:,,i+ 1,n)
Store(f, g, i, Result);
return Result;

The initial call on two length—n vectors f and g is Vector Multiply(f,¢,0,n).

The termination conditions are fairly simple. When ¢ > n, the recursion has bottomed: f and
g are constant nodes. and the result is simply fg. The second condition is more interesting. Note
that after each computation, the result is stored; one termination condition is simply the case where
a stored result is retrieved: in this case, the computation proceeds no further — the stored result is
simply returned. The storage and retrieval of results implies that there is at most one multiplication
for each triple (u.v, k), where p is a node of f, v is a node of g, and k is an integer between 0
and n: hence there are at most O(|f||g|n) multiplications. Further, there is at most one lookup
on a triple (p.v.n) per unique pair ( Parent (1), Parent (v)); hence there are at most O(|fl|g]|n|)
separate hash table lookups. Hence the complexity of vector multiplication is O(|f||g||n|).

4.4.2 Multiplication of a Matrix By a Vector

The case of multiplying a matrix by a vector is almost identical to that of multiplying a vector by
a vector. In general, we have:

h(l‘l, sy zm) = f(xla Y1:-s Tm, yn) o g(ylﬁ teey yn)
The use of the variables (¥, ..., ¥m) to index the rows of f gives us the following picture of f:
ffly'l fflyx
f-'l-'ly-l leyl

and the following picture of matrix multiplication:

hfl = ffly'l fflyl 9w
hrl frlyi f11y1 I




Hence:
hy_x = ffly_l °gn + fll.lﬁ © 94z,
hy] = fflyl °gs + frlyl RER
This forms the basis of the recursion procedure.

Multiply Matrix.By Vector(f,g,i,n) {

if ((Result = Lookup(f, g, i)) # NULL)
return Result;

if(i > n) Result = fg;

else Ri = Multiply Matrix By Vector(fsygy,,t+ 1,n) + Multiply Matrix By Vector(fz, g,,.i+ 1,
R2 = Multiply Matrix By Vector(f;ygy,t+ 1,n) + Multiply Matrix By Vector(f; g, .i+ 1,n)
Result = r; R1 + z; R2;

Store(f.g.!, Result);

return Result;

4.4.3 Multiplying a Matrix By A Matrix

Consider the problem of finding a matrix product: h = fg, where f and g are matrices. By now
the recursion is familiar to the reader:

hz: hz. - feg fay 95z 932

hzz hg: frﬂ fry 9yz fyz
Once again the recursion suggested is the straightforward one given by the equations, and once
again it is easy to see that an integer n is required to keep track of the sizes of the constant blocks.

In the case of the matrix multiplication, the recursion is somewhat simpler due to the symmetry
of the operands:

Matrix Multiply(f.g.i.n) {

if (Result = lookup(f.g,!, MULT)) return Result;

if(f and g are both constants) return fg2";

Q: = Apply( Matrix Multiply(f:ys.¢sz,t+1,n—1),
Matrix Multiply(fsy, .9y 5.1+ 1,n—1), ADD);

Q2 = Apply( Matrix Multiply(f:y,@4.,t+1,n—1),
Matrix Multiply(fz,,.9y,..1+ 1,n—1), ADD);

@3 = Apply( Matrix Multiply(f:.s.ggs.t+1,n—1),
Matrix Multiply(f;,,,.9y.5,.1+1,n—1), ADD);

Q4 = Apply( Matrix Multiply(f: s ,942.!+1,n—1),
Matrix Multiply(f:.y,,9y.z.t+ 1,m—1), ADD);

R1 = newMTBDD(z;, @1, @2);

R2 = newMTBDD(z;, @3, Q4);

Result = newMTBDD(x;, R1, R2);

Store(f.g.i, MULT, Result);

return Result;

The variable ¢ in this case is used to track which set of variables is being used at this level of
recursion. For clarity, here we have used the natural order of the variables, and have interleaved

the x.y.and: variables.




This routine can be improved by using the Strassen[9]products at each level of the recursion.
rather than the simple, naive block method outlined here.

5 Permutation Matrices

An interesting class of matrix well worth study is the permutation matrir A permutation matrix is
simply a square binary matrix with precisely one one in each row and one one in each column; its
effect, when applied to a vector, is to permute the elements of the vector.

Permutation matrices arise most often in LU decomposition and Gaussian elimination. The
most common representation is as a vector V of length n, where V; = j iff P; = 0. Such a
representation is easily seen to be of size O(nlogn); since there are n! permutation matrices, this
is optimal.

A simple consequence of the sparse matrix theorem is that the space complexity of the MTBDD
representation of a permutation matrix is also O(nlogn). This is not the most interesting measure,

“however. A more precise estimate is found for an n x n permutation matrix which permutes only

k elements.
n

It is easy to see that there must be O( k (k! — 2¥=1)) such matrices, and hence any repre-
sentation must be of size O(klogn). The most obvious efficient representation - a linked list of &
elements, where the (i, ) coordinate of each permuted element is stored - is plainly O(klogn), i.e.,
optimal. Qur purpose here is to investigate the MTBDD representation.

A permutation matrix that moves exactly k elements has precisely k one elements off the main
diagonal. Such a matrix can be written:

P=I,¢eM

where I, is the n x n identity matrix, @ is the termwise EXCLUSIVE-OR operation (addition modulo
2) and M is a matrix defined as follows:

) B i#]
A/II’J_{P;]' i:j

Note that A has 2k one elements. By the sparse matrix theorem, therefore, M is of size O(klogn).
Since P = I, & M. by Bryant’s Theorem |P| < |I,||M|. By construction, I, is of size O(logn),
and hence we conclude that P is of size at most O(klog?n). This is a loose upper bound. In fact,
it seems likely that the tight bound is O(klogn) (i.e., MTBDD’s are optimal), but this has yet to
be shown.

A permutation matrix is constructed precisely in the manner given in the proof above; specifi-
cally. the “deviation™ of the permutation matrix from the identity is constructed; the result is then
exclusive-or'd to the identity matrix.

The deviation matrix is easy to form; it is easy to see that if k elements are permuted, it is
equivalent to a logic function of 2k minterms.

6 Inverting An Upper or Lower Triangular Matrix

Lower (upper) triangular matrices are always invertible, of course, and the result is always lower
(upper) triangular. To see this in the case of the lower triangular matrix, we decompose into
quadrants. as always, to obtain:

Loo O Moo Moy \ _ (I O
Ly Ln Mo My 0 I

10




Simple multiplication vields:

LooMoy = LioMoo+ L11Mwe = 0
LooMoo = LioMoy+ LMy = 1
Solving vields Mg, = 0. thus demonstrating that M is in fact lower-triangular, and that Mgy = 501

and M;; = Ll"ll. By induction. Moo and My, exist and are lower-triangular, and M, is easily found
as -—(11\111[,10.1]00).

The naive algorithm suggested by these equations has complexity equivalent to that of matrix
multiplication. as can be seen by the following argument. Let T(n) be the number of operations
required to invert an n X n lower (upper) triangular matrix. Casual inspection of the equations
yields a recurrence equation:

T(n) = 2T(n/2) + 2M(n/2) (5)

where M(n) is the complexity of multiplying two n X n matrices. A simple induction shows
T(n) < ¢M(n) for constant ¢, and so inverting an n X n upper- or lower-triangular matrix is about
the asvmptotic cost of a constant number of matrix multiplications.

7 L/U Decomposition

The problem of L/U decomposition is that of factoring a (non-singular) m x m matrix A into
three matrices P. L. U such that A = PLU and L is unit lower-triangular (L has zeroes everywhere
above the diagonal and ones on the diagonal), U is upper-triangular (zeroes everywhere above the
diagonal). and P is a permutation matrix. The classic iterative algorithm for L/U Decomposition
is well-known, and is based on Gaussian Elimination.

LU Decomp(A) {
n —|Al; U—A; L—I,;P—1I,
for(i—0; i< n; ++1)
U',; is the maximal element of U ,;;
P;; is the associated permutation matrix;
lv'—Fsz‘; P—-PPJ',';
for(j—i+1; j<n; ++7)
Lji—Uji/Uss
U;i—0;
for(h—i+1l; k<n; ++k)
Uix—Uji — l"j,'/l"ii;

Conceptually. on the ith iteration, the ith column of U is turned to 0 from ¢ + 1 to n, and the
multiplicands necessary to do that are stored in the elements Lj;, for i < j < n.

The important thing to notice about the iterative LUP decomposition algorithm is the obser-
vation that the upper-triangular matrix U is found by Gaussian Elimination on the original matrix
A; the multiplicands form the column entries of L.

Now consider the recursive-descent procedure; as usual, we break A into

A.‘Z‘ A:Ey

Az‘ Ary
We begin by factoring Azy into Lzz and Uzy; this may involve some pivoting, so we also pass the
submatrix Az, as the source for the required pivots and compute an initial permutation matrix P,.

w @
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At this point we have:

Li; 0 Uszg Us
AP: ry ry zy
=5 T ()

We are left to compute L,;: following the logic of the iterative procedure. and noting that as an
upper-triangular. nonzero matrix, Uzy is invertible, we write:

(API)I:(? = Lrgerg
And so we derive:
Leg = (AP)5U5

We now find:
B = (AP), - (AP); U5 Us

Note that:
By = ((AP): ~ (AP)UZ Uz);

(AP1)zg = (AP)egU Uzg
= 0

We recursively factor B, to produce L., P;!, Uz, P! and Py, a a permutation matrix of the form:

(o %)

The identity matrix in the top-left corner of P, indicates that the first half of the columns are left
untouched by the second factorization.
The final product is returned as:

Lz 0
L = Ty
b= ()
_ [ Usy UszyPs
v = (% )
P = P1P2

The algorithm is simple. Loosely, given cubes ¢, d, and integer k, where ¢ is a vertex over
the space {x;....,xx_1} and d is the corresponding vertex over the space {y1,.... Yx—1}, factor LU
factorizes the submatrix A4, pivoting as necessary.

factor(d, ¢, A, k) {

J—Bgr o (Vdﬂ)‘l ;

1. ifth=m)

2. § is the minterm with the maximum element of A;
3. . P— permute(d,s);

4. L—1;

5. U—AoP;

6. else

7. (K. V.Q)— factor(dyi.cTr. Am. bk + 1);

8. B—4, 0Q71;

9.
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10. C—B-Jol;

11. (M. W, R)— factor(dyi,czy,C.k+ 1);
12. LTy N + 246 d + zye M ;

13. U—75(Vo R V) + o, W;

14. P—QoR;

15. return(L.U,P)
We have the following lemma and proof, adapted to MTBDD’s from the original in [1].

Lemma 7.1 Let A be a matriz with 2™~* rows, rank 2™=* such that every column left of the first
column indezed by cube d is 0. Then factor(c,d, A, k) returns L,U, P such that:

1. A=LolUoP; and

2. P is a2™ x 2™ permutation matriz and P;; = 1 for every i preceding the first integer in the
cube ¢; and

3. if k< mthen Uy g5z = 0: and
4. Uq is an upper-triangular non-singular matriz of dimension 2™~* x 2m~k. gnd
5. L is a unit lower-triangular non-singular matriz of dimension 2m—*% x om-F,

Proof: Induction on m — k. If m — k = 0, then k¥ = m, A has one row, and is of rank one. Since
A is of rank one, it has at least one nonzero element, and since all the columns to the left of d are
zero the nonzero element s must lie to the right of d. By construction P is a 2™ x 2™ permutation
matrix that permutes two elements, d and s > d; hence all the elements left of d are not permuted,
establishing 2. Uy and L are nonzero scalars, establishing 4 and 5. Since k = m, 3 is irrelevant.
For 1. by construction ' = Ao P;since L =1, LolU = Ao P,ie., LolUoP~1= A. Since P
permutes two elements. P = P~!, establishing the result.

Now suppose for all m — k < N and consider m — k = N. Since A is a matrix of 2V rows of
rank 2, Az is a matrix of 2V~! rows of rank 2V-1. By induction, K o V o Q = Az, K is unit
lower- mangular Vayr is upper-triangular. We claim:

K 0 | %
A:(BMO‘MI)O<C)OQ (6)

To establish the claim. we note that, since Vyy; is upper-triangular and nonsingular, it is invertible
and hence \a._ exists; similarly, since @ is a permutation matrix, Q! exists. Hence B and J are
well-defined. and hence C' is well-defined. Multiplying (6), we see:

Az =KoV oQ

and
Arkz(Bdﬁon'y;.oVJrC)oQ

and (6) is established if both these hold. The first is immediate from induction. Substituting for
B.C and J. we have:

A = (A, 0 Q Nggr 0 ‘d;_: oV + A, 0Q7 - (A, 0 Q Vg 0 (Vagg) 1o V)o@
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or. sirﬁplifying:
Ark = Ark © in OQ = Ark

and done. establishing (6). Now, since A is of rank 2™~ the right hand side of (6) must be of rank

2m=k and therefore < 2, ) must be of rank 2™~*%, and so C must be of rank 2m—*-1, Further,

Cagz = (B = J o V)agr = Bagr — (Bagz © (Vigz) ™! 0 V)agz). Since the y variables index the columns,
it is easy to establish that this is equivalent to:

By — Bagz o (Vagg) ™" o Vi)

which is of course 0. The recursive call to factor on line 11 therefore meets the premises of the
lemma. and so by induction 1-5 hold for the recursive call. We must establish 1-5. For 1, note from

(6):
K 0 Vv
1= (pevz 1) (0 )0

C=MoWoR

and by induction:

Noting that V"= oV o R™! o R. we may write:

() =(5 )= ("3 )on

| E 0 I 0 Vo R
A“(Bmox;i;_: 1>°(0 M)°( W )°R°Q

Multiplying the first two matrices together, and the last two; and noting P = Ro Q, we get:

K 0 VoR™!
A:<J M)O( W )OP
KN 0
L_(J M)

and substituting:

Noting that

" and

, VoR™!
U= W

We have A = LUP. establishing 1. Further. since A" and M are unit lower-triangular, so is L,
establishing 5. Since neither @ nor R perturb any elements preceding d, neither does R o Q,
establishing 2. Since Vg is upper-triangular non-singular, and since R does not perturb any
elements preceding dy;. it follows that (V o R)g; = Vi is upper-triangular and nonsingular.
Further. Wy, is upper-triangular and nonsingular. Now:

Vy = (Vo R)az (Vo R)ay,
Wvdy_k Wdyk
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Since Cygr = 0. and €' = M o W o R, and since R did not perturb the columns of dz. it follows

that (M o 11" )zz; = 0. It is easy to see that (M o W)gyr = M o Wygr, and since M is nonsingular it
follows Wy = 0, i.e..

(VoR)s (VoR)
V, = Yk JaYk
d ( 0 Wrdyk.

and this is plainly nonsingular upper-triangular, establishing 4. Further, U, 45z = War = 0,
establishing 3, and this gives the result. [

8 Conclusions and Further Work

We have implemented most of the major algorithms in this package and are currently engaged in
an intensive experimental program. The theory developed herein gives us strong reason to believe
that MTBDD’s are a superior data structure for the representation of general, sparse, and block
matrices. However, we still must discover whether the advantages are extensive enough to warrant
re-engineering our standard matrix packages.
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