CHio-CS-83-155

AUTOMATIC AND HIERARCHICAL VERIFICATION
OF
ASYNCHRONOUS CIRCUITS
USING
TEMPORAL LOGIC!

by
B. Mishra and E. M. Clarke

DEPARTMENT
of

COMPUTER SCIENCE

=

Carnegie-MVlellon University

CrJ-r5-82-155

AUTOMATIC AND HIERARCHICAL VERIFICATION
OF
ASYNCHRONOUS CIRCUITS
USING
TEMPORAL LOGIC!

by
B.Mishra and E. M. Clarke
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

September, 1983

Abstract

Establishing the correctness of complicated asynchronous circuit is in general quite
difficult because of the high degree of nondeterminism that is inherent in such devices.
Nevertheless, it is also very important in view of the cost involved in design and testing
of circuits. We show how to give specifications for circuits in a branching time temporal
logic and how to mechanically verify them using a simple and efficient model checker. We
also show how to tackle a large and complex circuit by verifying it hierarchically.

1.This research was partially supported by NSF Grant Number MCS-8216708.

Contents

Introduction.

CTL and Model Checker.
Verification of Circuits.

Extended Example.

Hierarchical Verification of Circuits.
Conclusion.

Acknowledgement.

Ne g RO

. References.

Appendix.

[o T~ R

12
20
21
21
22

0. Introduction.

Verification of the correctness of asynchronous circuits has been considered an im-
portant problem for a long time. But, a lack of any formal and efficient method of
verification has prevented the creation of practical design aids for this purpose. Since
all the known techniques of simulation and prototype testing are time-consuming and not
very reliable, there is an acute need for such tools. Moreover, as we build larger and more
complex circuits, the cost of a single design error is likely to become even higher. In this
paper, we describe an automatic verification system for asynchronous circuits, in which
the specifications are expressed in a propositional temporal logic. We illustrate the use of
our system by verifying a version of the self-timed queue element given in [MC80].

Bochmann [BO82| was probably the first to recognize the usefulness of temporal logic
to describe circuits; he verified an implementation of a self-timed arbiter using linear
temporal logic and what he called “reachability analysis”. The work of Malchi and Owicki
[MO82] identified additional temporal operators required to express interesting properties
of a circuit and also gave specifications of a large class of modules used in self-timed
systems.

Although these researchers have contributed significantly toward developing an ade-
quate notation for expressing the correctness of asynchronous circuits, the problem of
mechanically verifying a circuit using efficient algorithms still remains unsolved. In this
paper we show how a simple and efficient algorithm, called a model checker, can be used
to verify various temporal properties of an asynchronous circuit. Roughly speaking, our
method works by first building a labelled state-transition graph for an asynchronous cir-
cuit. This graph can be viewed as a finite Kripke Structure. Then by using the model
checker we determine the truth of various temporal formula in this Kripke Structure. As
a result, it is possible to avoid the complexity associated with proof construction.

Most complex circuits are built out of relatively less complex modules in a hierarchical
manner. Hence it should be possible to verify these circuits in a hierarchical manner, i.e.
to verify the correctness of a larger module, given the premises that the smaller modules
are correct. A hierarchical approach to verification is important in practice, because it
enables us to verify circuits incrementally, to localize faults to small submodules and most
importantly, to handle large circuits without a large growth in complexity. We show
how the hierarchical method can be incorporated in a mechanical approach to circuit
verification. '

The paper is organized as follows: Section 1 contains a brief description of the
syntax and semantics of CTL, the temporal logic used in this paper, and also explains the
algorithms used in the model checker. In Section 2, we give a simple step-by-step method
used to verify circuits. In Section 3, we illustrate these methods by establishing some
interesting properties of a Self-Timed Queue (FIFO) Element. In Section 4, we introduce
a Hierarchical method to be used in verifying large and complex circuit and study some of
the model-theoretic properties of the operation of “restriction” on a Kripke Structure. The
paper concludes by pointing out the shortcomings of our approach and with a discussion
of some remaining open problems.

1. CTL and Model Checker.

The logic that we use to give the specifications of a circuit is a propositional temporal
logic of branching time, called CTL (Computation Tree Logic). This logic is essentially
the same as that described in [CES83], [EC80] and [BMPS81].

The syntax for CTL is given below:
Let P be the set of all the atomic propositions in the language, L. Then

L. Every atomic proposition P in P is a formula in CTL.

2. If fy and fy are CTL formule, then so are — f1, fi A fo, VX/1, IXf1, V[f1 U f3]
and 3/, U fa].

In this logic the propositional connectives = and A have their usual meanings of
negation and conjunction. The temporal operator X is the nexttime operator. Hence the
intuitive meaning of VX f, (3Xf,) is that f; holds in every (in some) immediate successor
state of the current state. The temporal operator U is the until operator. The intuitive
meaning of V[f, U fo] (3[f; U f2]) is that for evéry computation path (for some computation
path), there exists an initial prefix of the path such that f2 holds at the last state of the
prefix and f; holds at all other states along the prefix.

We also use the following syntactic abbreviations:
fiVfe=—(mfiN-fo), fi>fo=-fiVfyand fi o fo = (fi = fo) A(f2 = f1)

VF fi = V[true U'f;] which means for every path, there exists a state on the path
at which f; holds.

JF fi = J[true U f,] which means for some path, there exists a state on the path
at which f; holds.

VG f, =-JF - f1 which means for every path, at every node on the path f; holds.
JGfiy =— VF - f; which means for some path, at every node on the path f, holds.

V[fi W fo] == 3[(f1 A f2) U (= f1 A f2)] which means that for every computation
path, and for every initial prefix of the path, if fy holds at all the states along the prefix
then f; holds at all the states along the same prefix.

[fi W fo] == V[(fi A f2) U (= fi A f2)] which means that for some computation
path, and for every initial prefix of the path, if fs holds at all the states along the prefix
then f; holds at all the states along the same prefix.

In the last two formule W is the while operator. The formula V[fi W fo] (3[fi W fa])
is read as “for every (some) path f; while f3”.

The semantics of a CTL formula is defined with respect to a labelled state-transition
graph. A CTL structure is a triple M = (S, R, IT) where

1. S is a finite set of states.

2. R is a total binary relation on § (R C S X &) and denotes the possible transitions
between states.

3. II is an assignment of atomic proposition to states, i.e. IT : S 27,

A path is an infinite sequence of states (sg, s1, s2,...) such that V;[(s;, s;+1) € R]. For
any structure M = (S, R, IT) and state sg € S, there is an infinite computation tree with
root labelled sp such that s — ¢ is an arc in the tree ¢ff (s,t) € R.

The truth in a structure is expressed by M,so = f, meaning that the temporal
formula f is satisfied in the structure M at state sy. The semantics of temporal formulae
is defined inductively as follows:

so = P iff P € I(sg).

so = f iff so i~ f.

so = f1 A fo iff so = fi and so |= fa.

so = VXf, iff for all states ¢ such that (so,t) € R, ¢t = fi.

so = dXf1 iff for some state ¢ such that (so,t) € R,t = fi.
3

80 l': v[fl U fz] z;fffor all paths (30;51: S2, .. -),31‘20[5{ |: fa A Vogj<i{8j |= fl]]
So }‘—— E[f]_ U fg} ’e:ﬁ.ror some pai}h (30,81,83,...), 3,’20[81'): fg /\Vosj<,‘[6‘j I—T— flﬂ

From these it is quite easy to sce that the semantics of U, the until operator can be
easily given in terms of a least fized-point characterization:

Yifi U fol = u7.fo Vr(fl AVXF).
3fi U fo]l = pF. 2V (i A HX.T)

The Model Checker for CTL can now be thought of as an algorithm that determines
the satisfiability of a given temporal formula f; in a model M, by computing these fixed
points. A full description of the algorithm is given in [CESS83].

In order to determine if a CTL formula f is true in a structure M =— (S,R,IT), the
algorithm labels each state of S so that when the algorithm terminates, the label of each
state s € S, label(s), will be equal to {f’ € sub(f) | M,s = f’}, where each element of
sub(f) is either a subformula of [or the negation of the subformula. Hence M,s = f iff
[€ label(s) at the termination of the algorithm.

The labelling algorithm works in several stages. In the 7** stage the algorithm labels
the states by the subformule of length <. The labels assigned in the carlier stages,
corresponding to the subformula of length less than 7 are used to perform the labelling in
this stage. It can be shown that the algorithm makes at most n — |f| stages of computation
and that the total amount of the work involved in each stage is O(||S|| + || R||). Hence the
time complexity of the Model Checker is O(|f| - (/|S|| + ||R]]))- The algorithm is also fairly
simple, since it involves only a few straightforward graph theoretic algorithms.

2. Verification of Circuits,

Given a circuit to be verified, the steps involved in using the Model Checker to assert
the correctness of the temporal specifications are as follows:

Step 1. Building the Model.

The structure associated with the circuit is essentially a finite state-transition graph,
with its vertices corresponding to the distinct states and the edges corresponding to the
(possibly nondeterministic) transition between the states. The initial label associated with
each state is the set of propositions true in that state. This labelled state-transition graph
can be built using the following simple algorithm:

4

begin
L := {initial state};
while L 5% 0 do
choose a state, say s from L and delete it from L;
for all sets of inputs, possible in s do
simulate s with this set of inputs;
let L' be the set of new states;
for each s’ € L' do
s’ is a successor of s;
if s’ has not been visited then
add s’ to L;
end;
end;
end;
end.

_ Algorithm 2.1 . _
The Algorithm to build the Kripke Structure for an Asynchroncus Circuit.

Step 2. Giving the Specifications of the Circuit in CTL.

This corresponds to the specifications of the temporal behaviour of the circuit. It
usually involves structural properties (t.e. the specifications for different components of
the circuit, specifications of the signalling scheme used for communication with various
other modules, etc.), safeness properties and liveness properties. It should probably be
pointed out that one need not give the complete specification of the circuit in order to
verify some selected properties of the circuit using the model checker.

Step 8. Verifying the Circuit using the Model Checker.

This step involves the model ¢hecker which checks the truth of the specification (a
formula in CTL) in the structure constructed in the step 1. The working of the Model
Checker is described in the previous section.

5

3. Extended Example.

We illustrate the ideas presented so far by verifying some interesting properties of an
asynchronous circuit. The example chosen for this purpose is one element of a Self-timed
(FIFO) Queue , which originally appeared in an article by C.Seitz on self-timed system

IMC80).

I Input cell ! Inner cell. repeated II Output cell I’
; : | [
: | } i
1> 1 ~
i ,‘ r - |
I . 1 l » : !
I I ' |
oo i :
I e T‘ |
5 e T == B
Ack In | A FullO
I | — '
(L& | D"— |

Input “ I

Link J ! F _q [

(20) I f' Full1 :' !
:;_g i | |

Reqlin : Initialize |' -R >; rJ
e o I SR _Req Out
i i v, i
inv

:’?igure. 3.1.
Queue (FIFO) element

a. Self-Timed FIFO Queue Element: The electrical circuit shown in figure.
3.1 is an implementation of a single FIFO queue element combined with some input and
output logic. This circuit is of very practical importance; in pipeline processes in which
operation times are variable, increased throughput can be achieved by interconnecting
the processing elements through queues. The implementation uses simple asynchronous
control and hence, can be used to build very fast and arca-efficient queues.

6

The inner cell is intended to be replicated as many times as the number of words -
the queue is to be able to store, and the same control will operate a queue of any word
length. The input cell and the output cell can be thought of as logic circuits converting
the two-cycle signalling scheme at the input link to a four-cycle signalling scheme at the
internal link and wvice versa. The inner cell can be thought of as a latch that stores the
state of the cell (z.e. whether the cell is full or empty), together with logic to generate
a load signal and a set of static registers to store the bits. However, the design shown is
not speed-independent, and uses the 3/2-rules. That is one may expect misoperation if
particular sets of 3 gates have a smaller cumulative propagation delay time than other sets
of 2 gates.

In the following subscctions we specify and verify some interesting properties of the
Queue element with a single inner cell.

b. Temporal Specifications for the Self-Timed Queue Element: We give
examples of the ways in which various properties of a circuit can be given in CTL. In
case of the Queue Element some of the structural properties that we might like to specify,
are that the two-cycle signalling used at the input links and the output links is safe and
live. Recall that the structural properties aré specifications for various components and
signalling schemes and thus, may be considered as premises that must be true in any CTL .
structure modelling the circuit. Hence the request signal must satisfy the following safeness
and liveness conditions. (In the following CTL specifications we will use symbols Req and
Ack for the request and the acknowledgement signals respectively.)

Safeness Conditions for the Reqﬂest Signal.
1.VG((—ReqAAck) — V[-Req W Ack])
2.YG((RegA —Ack) — V[Req W —Ack])

These two CTL formula essentially express that if the Req and Ack signals are non-
equipotential then the Req signal will remain in its stable logic value while Ack signal is in
its stable value. In other words, Req will not be given unless acknowledgement to previous
request signal has arrived.

Liveness Conditions for the Request Signal.
1. VG((ReqAAck) — VF(—Req))
2. YG((—RegA —Ack) — VF(Req))

These two CTL formula express the property that if the Req and Ack signals are
equipotential then eventually the Req signal will change its logic value, thus indicating an
arrival of a request. '

In a similar manner, we can specify the properties of the response signal.
Safeness Conditions for the Response Signal.

1. VG((RegAAck) — V[Ack W Req])

2. VG((-RegqA ~Ack) — V[-Ack W —Req])

Informally, they express the fact that Ack will not be given unless there has been a
Req signal to cause it.

Liveness Conditions for the Response Signal.
1.YG((RegA —Ack) — VF(Ack))
2.YG((~RegAAck) — VF(—~Ack))

That is, if there had been a Req signal then eventually there will be an Ack signal in
response to the request.

We can also give the safeness and the liveness properties of the FIFO Queue element
in CTL. The following is a representative list of some of the properties, and by no means,
exhaustive and complete. In the CTL formule given below, Regln stands for request at
the input links, Ackln, for acknowledgement at the input links, ReqOut, for request at the
output links, AckOut, for acknowledgement at the output links and Tulll, for the state of
the queue element when it holds some data.

Some Safeness Properties of the Queue Element.

1.VG(~ (Reqln=AckIn)A - (ReqOut=AckOut) — V[~ (Regln=AckIn) U (ReqOut=
AckOut)]) :

This formula states that if there have been a Reqln and a ReqOut, then Ackln will
not be given until AckOut has arrived.

Some Liveness Properties of the Queue Element.
1.YG(~ (RegIln=AckIn)A —Fulll— VF(A))

This formula states that if there has been a Regln, and the memory element was
empty, then eventually it will be loaded with the input data.

2.YG(Fulll— YF(- (ReqOut=AckOut)))

That is the Queue Element is full then eventually a request at the output links will be
generated in order to move the data to the next element in the queue.

3.YG((ReqOut=AckOut) — VI'(~Fulll))

That is if the acknowledgement arrives at the oulput links thus indicating that the data
stored in the current Queue Illement has been moved to the next element, then eventually
the Queue Element will mark its state as empty. :

In the next subsection we show how these specifications can be verified automatically
by using a Model Checker.

c. Verification of the Circuit: As a first step for the verification of the circuit, we
build a labelled finite state-transition graph corresponding to the circuit given in figure.
3.1, using the algorithm given in section 2. For this model, we assume that each gate of
the circuit has one unit delay. This is done in order to take care of the speed-dependent
properties of the circuit. This is equivalent to assuming that for any state in the graph,
any of the successor states is arrived at after one unit gate-delay. The label associated
with each state is the set of nodes in the circuit which assume the logical value 1 in that
state. The nodes of the circuit are — Ackln, Reqln, D, A, F'ullo, Fulll, C, B, E1, E2, E3,
ReqOut and AckOut. The initial state corresponds to the situation when Reqln and AckIn
as well as ReqOut and AckOut are equipotential.

Now,the model checker can take a description of the model and a temporal formula
specifying some property of the circuit, and determine truth of the formula in that model.
However the circuit shown does not obey the 3/2 rule as advertised, and the model checker
determines that the safeness property of the queue element, given in the previous subsection
is not true.

-

Informally, the problem can be described as follows: When an AckOut is received in
response to the ReqOut signal, the AckOut signal travels via two different electrical paths
— one involving three inverters and the other involving four gates. This creates a race
condition and produces a glitch of about one gate delay on the ReqOut bus. Though this
glitch may not always be able to drive the bus to create a spurious ReqOut, it has the
potential to do so. However, this problem can be easily rectified by making the inverters
slow or by putting five inverters on that path instead of three. The labelled state-transition
graph for the corrected circuit is shown in figure. 3.2.

Figure. 3.2.
~ The State-Transition Graph for the Self-Timed Queue Element

10

The state-transition graph shown in figure. 3.2. is only one portion of the complete
state-transition graph for the FIFO Queue Element and corresponds to the initial state
where both Reqln and Ackln are both at logical-zero value and both ReqOut and AckOut
are at logical-zero value. But the state in which both Regln and Ackin are at logical-
zero and both ReqOut and AckQut are at logical-one can not be reached from this state-
transition graph. In fact the state-graph with this situation as the initial condition is
symmetric to the one shown and the complete state-transition graph consists of both of
these components. '

time: (1453 168)

|=.AG(((” ReqIn & AckIn) | (ReqIn & ~ AckIn)) &

((" ReqOut & AckOUt) | (ReqOut. & ~ AckOut)) -> [< 7 secs.]
A[((" RegIn & AckIn) | (ReqIn & ~ AckIn)) U

((ReqOut & AckOut) | (~ ReqOut & ~ AckOut))])

t

time: (2263 300) , '
= AG(((” ReqIn & AckIn) | (ReqIn & ~ AckIn)) & (~ Fulll) -> AF(A))
[< 8 secs.]

time: (2694 300)
. |= AG(Fulll -> AF(((~ ReqOut & AckOut) | (ReqOut & ~ AckOut))))
[< 8 secs.]
t

time: (3150 300) _
= AG(((ReqOut & AckOut) | (~ ReqOut & ~ AckOut)) -> AF(™ Fulll))

[< 7 secs.]
&

- Figure. 3.3
A sample run using the Model Checker.

11

A sample run using the model checker is shown in figure. 3.3. In the formula shown
A stands for V, E for 3, | for V, & for A, ~ for = and -> for —. Similarly, G, F, U and
W will stand for G, F, U and W, respectively. The first component of “time:” is the
cumulative time in 60th of a second; the second component is the portien of the cumulative
time allocated to ‘garbage collection’. The number to the right of each formula gives the
time taken to determine the truth of the formula.

4. Hierarchical Verification of Circuits.

The scheme given so far can be practical only for very small circuits. This is because
it suffers from the problem that the state transition graph may have number of states,
exponential in number of gates. However, this problem can be avoided, if circuits are
verilied in a hierarchical manner. That is, first small modules are verified and then bigger
module is verified assuming that the smaller modules it is composed of are correct. Since
at any hierarchical level, the number of small modules that a big module is composed of is
relatively small, this method is amenable to proving correctness of large circuits without
a large growth of the time complexity. Moreover, hierarchical verification permits the
localization of faults to small submodules, thus allowing the designer to rectify the fault
by redesigning the Appropriate submodule.

|

In a hierarchical approach, the state transition graph for a circuit is built out of the
descriptions of the constituent submodules. We obtain short a description of a module by
using an operation called ‘restriction’. If L is the language for the module with a set of
atomic propositions P, corresponding to the input, output and internal nodes, then the
operation restriction on [, obtains a L' with atomic propositions P’, corresponding to the
input and the output nodes only.

Roughly speaking, the effect of restriction is to make the internal nodes invisible, since
in building the state transition graph for the bigger module, we only require input-output
behaviour of the constituent submodules. But when the ‘nternal nodes are made invisible,
certain portions of the state graph will have same labelling of the atomic (input and output)
propositions. The restriction operation defines exactly when such states can be collapsed
into a single state. ' ‘ g

Unfortunately, when we restrict a CTL structure to obtain a smaller structure, some
formule that are true in'the former structure may not be true in the restricted structure.
However, by appropriately constraining CTL, we can show that the formul® in the con-
strained logic have the desirable property that the truth properties of such formula are
preserved with respect to the restriction operation. All of the formule used in section 3.
have the desired syntax.

12

Let the CTL structure for L be M = (S, R,II). Let P be the set of all atomic
propositions in the language [, consisting of I, the set of atomic propositions corresponding
to the inputs; O, the set of atomic propositions corresponding to the outputs and Int, the
set of atomic propositions corresponding to the internal nodes of the circuit. That is P =
I'UO U Int. Let L' be the language with the atomic propositions, P/ = I (U 0. Define
Opi : S+ 27" to be the restriction of I7 to P, ie. Voes[Mpi(s) = I(s) N P'). Now we
can define a relation £ (€ C S X S) over the set of states of M such that

s&s’ iff for some path (s, 81y...,5n) of M, n >0, s = sg and s, = s’ and for each
predecessor of s;, s (1 <7 < n), Ipi(s;) = Hpi(s;). '

)

It is quite easy to see that the relation & over S, is reflexive and transitive but not
symmetric. The transitive closure of & can be defined as

E =CUEUE3IY...UE™ ...

The &-closure of a state s is defined by £"(s) = {s' | s&"s'} = {s' | 5€5'}, since € is a
transitive relation, t.e. £ = £.

For a set of sets {u,}, max({u;}) will denote the set of all distinct sets in {u;} maximal
under inclusion. We define a mapping ¢ : S +» 25 such that for each s € S,

w(s) == max({H; | s € H; A 33,-685*(85) = H;}),

t.e. ©(s) is the set of maximal &-closures containing s. We consider the following subsets
of S,)
I = (8] = U ©(s).

sES

Since every element s € S belongs to at least one subset H; of A, A is called a
decomposition of S and the H;’s are called the blocks of the decomposition. We will say s
dominates s', if s€s’. We define the dominant states of H;, dom(H;) as the set of states
that dominate every other states in H,."

The decomposition A naturally leads to a substructure of a model M (notation M/ =
(8", R, II') = M/A). The states of M’ will be the blocks of A. A block H; of A, when
considered as an element of S’, will be denoted by H;. Let R’ (R" C 8" X S’) be the total
binary relation on §’, corresponding to 12 and induced by the decomposition A i.e.

(Hi,H;)€ R', for 1 7 j iff for some s; € H;, s, € Hj,(si,s5) € R and s; & H;.
(H;, H,) € R iff for.éome 5i,8; € Hy,s; £s; and (s, s;) € R.

13

Similarly, let 7' : S’ — 2”' be the mapping corresponding to /I and induced by the -
decomposition A, 1.e.

() = P’ n) (s

SEHi

The model M" = (S', R’, IT') is called a restriction of M — (S, R, IT) with respect to
P Py

In the following theorem, we show that there are CTL formule whose truth properties
are not preserved with respect to restriction.

THEOREM 4.1. There exists a CTL structure M = (8, R, IT) and a formula 7 where ¥ is
a CTL formula such that .

Mso=7 but M, Hy £ 7, and sg € dom(Hy).

Proof We give counter-examples involving formulze of the form VX P, 3XP and V[3FP, U
Py].

We first give a model M = (S, R, IT) over a language L such that M, so F VXP and
M, s0 = 3XP, but M/, H, = VXP and M/, Hy [~ 3XP, where M’ is a restriction of M
and sg € dom(Ho)

Define M = (S, R, IT) over a language L with the set of propositions P,

e={ Py, P!

)

Pint} and
g = {So, 31,32} and -

R = {(30; Sl); (313 32): ('92; 32>} .

and II to be II(so) = {P,, Pin:}, II(s1) = {Pin} and II(sy) = {Pm,Pmt} Clearly,
M, s0 = VXP;, and M, sg = 3XP;,. Now if we take restriction of .M for language L'
with the set of propositions P/,

Pl= {PimP:'n}’

then we get M’ = (S', R/, IT") where
8 = {FO:FI};-
R = {(FO;FI):(Fls—EI)}

and IT' to be H'(HO) == { P} and II'(Hy) = {P)}. It can be easily seen that M/, Hg [~
VXP;, and M’, Hy [# 3XP,,.

14

Pl'P » _PI‘PZ.
EFP, ~EFP,,
ALEFP, UP,] ALEFP, UP,]

So € @ ¢ > S,

~P,,~P,, ~Py,~P,, “P,,~B,.,
EFPl- EFPI' "EFPI,
~ACEFP, UP,]

~ALEFP, UP,] ~A[EFP, UP,]

Py By, ~P,.P,,
EFP,, ~EFP |
ALEFP, UP,]

ALEFP, UP,]

~Py =Py,
ERB,,
ALEFP, UP,]

Figure. 3.2.
Countér-Ezample for Theorem 4.1.

15

Similarly, we present a model M = (S, R, II) such that M, sg = V[(3FP) U Py,
but M’, Hg V[(3FP,) U P;], where M’ is a restriction of M and so € dom(Hy).

Define M = (S, R, II) over a language L with the set of propositions P

P = {Pl:PfZaPintl;PintQ} and
B == {80,81,32,33,34} and
k= {(30: 31); (Sl: 32);{‘913 53): (32) 34)) (33) 6‘3), (341 34)}

and IT to be II(sg) = {Pinu1}, (sy) = 0, (s2) = {Pint2}, (s3) = {Py, P2} and
II(s4) = {P,}. The labellings in figure 4.1 show that M, so =-Y((3FP) U Py

Now if we take restriction of M for language L’ with the set of propositions P’ —
{Pi,PQ}, then we get N == (S’,R’, H’) where
S = {‘F_IO)—El:ILTQ}) and
R' = {(Ho, H:), (Ho, Ha),(H,, Hy), (Hz, H)}

and II" to be II'(Hy) = 0, II'(H,) = {P,} and IT'(Hy) = {P;, P;}. Now the labelliﬂgs
in figure 4.1 show that M/, H = VI(EBFP) U Py). g

However, there exists a large subclass of CTL formulz with the desirable property
that if a formula in this subclass is satisfiable in the unrestricted CTL structure, M, then
it is satisfiable in the CTL structure, M’ obtained by restriction. We call this subclass
CTL~.

Given a set of atomic propositions P:
1. Every atomic proposition P € P is a propositional formula in CTL—.
2. If fy and fy are propositional formula in CTL™, then so are - fi, fi A fo.

-

3. If fi is a propositional formula and f, is a CTL™ formula, then V[f; U f,] and
3[f1 U f3] are CTL™ formule.

THEOREM 4.2. Let 7 be a CTL™ formula in L'. Then

M,so =7 iff M, Hy = 7, where so € dom(Hy).

Proof. TFrom lemma 4.3. and 4.4. (see appendix for statement and proof of the lemmas.)
|

16

With each model M, one can associate an automaton such that jtg states and transi- .
tions are same as that of M, but the transitions are additionally labelled with the set of
input signals that cause the transition and the set of output signals associated with the
transition. let A and A’ be the automata associated with the models M and M/, respec-

and hence A’ is 4 covering of A [GI68]. The above result can be strengthened, if we notice
that?

~1lasrA o A’ -1
P Me'ae' B e'oe*® , and
—IarA — arA’
2 ;&g T € o’y and
~1
pp .:_D_ IS“’J

where M4 and pmA' are the transition functions and where N4 apd N4’ are the output
functions of the automata A and A, respectively.

THEOREM 4.3, [et A and A" be the automata associated with the models M and M,
respectively. Then the models M and M’ are input-output equivalent in the sense that for
a sequence of input signals, , o ‘ '

NZ C pN4 and pTIN2 = N4

where N4 gnd NA' are the output functions of the automata A and A’, respectively.

Proof. See appendix for a proof of the theorem. g

We show how to build M from M in the following three steps. M’ is essentially a restriction
of M with additiona] optimizations and labelling of the transitions of the state-transition

step 1. Relabel the vertices and the edges of the OTL structure M. (a) Label each
state by the subset of the propositions involving only the inputs and the outputs of the
module. (4) Label the edges between two states with the same set of atomic Propositions,
by e.

step 2. Construct the blocks of M, by first determining the dominant states using a
depth first search over the underlying graph. Build M’ by replacing each block by a single
state. The graph can be optimized further by collapsing the “indistinguishab]e nodes” (i.e.
nodes with the same labe] and successor states) into single node.

1.We represent the composition of functions ¢, : Dy Dy and 2 :Dg — Dg by P1p2: Dy Dj,
The transition function js M:¥ (S S) and the output function is N : 3} (S 0).

17

figure.- 4.2,
The Restricted State Transition Graph.

This construction is illustrated by taking the restriction of the state-transition graph
for the FIFO Queue Element shown in figure. 3.2. The states shown in groups are the
blocks constructed in step 2. The resulting labelled state-transition graph is shown in

figure. 4.2.

It should be mentioned that since we combine successive states in the operation of
step 2, the restricted model may not be a unit-delay model even if the original unrestricted
model was so. This notion is essentially captured in Theorems 4.1. and 4.2,

18

However, this does not pose a problem, since good design methodology forces the de-
signer not to make the modules at higher level in the hierarchy speed-dependent. Moreover,
since a speed-dependent circuits must be small enough to fit in an equipotential region and
equipotential regions must be small enough that the potential on any wire in this area will
equalize in a “short” time for any large circuit, the moduleb at higher level have to be
speed-independent [MC80].

As the first step for verifying the correctness of a circuit using a hierarchical approach,
we construct a CTL structure for a module at some hierarchical level, using the CTL
structures for the submodules at the immediately lower level. In order to avoid building
large-sized CTL structures, we use the restriction operation on the CTL structures of the
submodules and obtain smaller descriptions of these. Moreover, the transitions of the
state-transition graph are additionally labelled with the associated set of input signals and
set of output signals, as explained earlier in this section.

Given two submodules A and B which are used to build a module C at a higher level
by connecting the inputs and outputs of A and B, we show how to build a CTL structure
for the module C' using an operation called “composition”. It can be shown that the
composition operation is commutative and associative and hence can be generalized easily
to the case where a module consists of more than two submodules. The reader may note
a close analogy between the operations we define and the operations defined in [MI80].

Let the restricted models of the submodules A and B be My — (Sa,Ra,1l4) and
Mp = (SB, Rp, IIg), respectively. We assume that the propositions associated with A and
B are renamed so that the input and output nodes of A and B that are connected have the
same proposition associated with them. Furthermore, we make the 1mp0rtant assumption
that these connections are made using “short’ bilateral wires.

The CTL structure of C = Ao B is given by Mg = Maop — (SaoB, Raos, I asB),
where Sqo € Sa X Sp. The assignment function D aop : Sacg — 274UPs ig deﬁned by
II(saon) = II(sa) U II(sg) where the state s4oB = (54, 5p). The initial state of M¢ is

$0(A0B) == (S04, S0B)-

The transition relation Raop (Raon C Saop X Saos) is defined as follows. Assume
that there is a transition (sy4,s24) € R4 such that (s;4, s24) has associated with it,
the input set o and the output set 3. Slmﬁarly, assume that there is a transition
(s1B,s28) € Rp such that (s1B, s2p) has associated with it the input set 7 and the output
set 6. Furthermore, assume that « is parttioned into disjoint subsets o’ and o” such
that o is associated with the inputs of C (i.e. the input transitions for o/ are generated
externally and the transitions for o/ are generated internally.) Similarly, assume that ~
is parttioned into disjoint subsets 7" and 4”. Then in the CTL structure for C, there will
be following transitions: (i) if o/’ = 0, then there is a transition ((s;4, s1B),(s24, s1B)) €

19

Raop, with associated input o and output B; (ii) if o = 0, then there is a transition -

((s14,51B), (514, 528)) € Raop, with associated input v and output §; and (iii) if (a) both
"=0and 4" =0, or (b) a” £ 0 and o” C § or (c) ¥ % 0 and 4" C B, then there is a

transition ({514, s18), (524, 528)) € Raon, with associated input e {J v and output fUE.

The step of constructing the successor states for {(s1a,s18) can be thought of as
simulating C at (s14,s;g) for all possible sets of inputs and can be easily incorporated
into algorithm 2.1. Now various properties of C' with respect to the model Me can be
determined using the model checker algorithm, as explained in the earlier sections.

5. Conclusion.

We have shown that it is possible to do automatic verification of asynchronous:circuit
efficiently. We have also indicated how this method can be extended to do hierarchical
verification of large and complex circuits. We believe that this approach may eventually
turn out to be quite practical. '

However, there are many problems that need to be addressed before this approach is
made feasible in practice. In this paper we have used a unit-delay model for the circuit.
Similarly, it is quite easy to use a steady-state model, in which each state in the state-
transition graph corresponds to a stable state and only in response to an input change does
a state change occur. While the steady-state model is useful for speed-independent self-
timed circuits, the unit-delay model is needed to model properties of a speed-dependent
circuit. Unfortunately, even for the speed-dependent circuits the assumption that each
gate has one unit gate-delay is rather unrealistic, because two similar gates may have
different delays depending on process variations, fan-outs of a gate etc. Moreover, because
of various capacitive eﬂ‘ecté, the delay associated with a 0-to-1 transition is not equal to
the one associated with a 1-to-0 transition. It is felt that it is necessary to find models that
capture these properties better. Also, we do not know how to handle the effect of large
fan-out, charge sharing etc. In addition, we felt that CTL is rather weak for succinctly
expressing many properties of circuits. A notation based on temporal mtervals [HMM83]
may be more suitable for this purpose

An interesting area for future research is the usefulness of restriction operation in
the context of hierarchical verification. We have defined a “restriction” operation and
shown that the truth-properties of the CTL™ formul® are preserved with respect to the
operation of restriction. It appears that any weaker version of “restriction” will not
result in any substantial reduction of the size of the CTL structures and hence will make
hierarchical verification rather expensive. On the other hand, it seems any stronger version
of “restriction”, will severely limit the class of CTL formule that will be preserved with
respect to restriction.

20

6. Acknowledgement.

Thanks to Larry Rudolph of C-M. U. and Chuck Seitz of Caltech for helpful discus-

sions.

7. References.

[BMP81] M. Ben-Ari, Z. Manna and A. Pnueli, “The Logic of Nexttime”, Eighth ACM
Symposium on Principle of Programming Languages, Williamsburg, VA, January 1981.

[BO82] G.V.Bochmann, “Hardware Specification with Temporal Logic: An Example”,
IEEE Transactions on Computers, Vol C-31,No. 3, March 1982.

[CES83] E.M. Clarke, E. A.Emerson and A.P.Sistla, “Automatic Verification of Fi-
nite-State Concurrent Systems using Temporal Logic Specifications: A Practical Approach”,
Tenth ACM Symposium on Principles of Programming Languages, Austin, Texas, January
1983. '

[CM83] E. Clarke and B.Mishra, “Automatic Verification of Asynchronous Circuits”,
in Proceedings of C-M.U. Workshop on Logics of Programs (ed. E. Clarke and D.Kozen),
Pittsburgh, PA, 1983 (to appear in Springer Lecture Notes in Computer Science).

[EC80] E. A. Emerson, E. M. Clarke, “Characterizing Properties of Parallel Programs
as Fixpoints”, Proccedings of the Seventh International Colloquium on Automata, Lan-
guages and Programming, Lecture Notes in Computer Science No. 85, Springer Verlag,

1981. _ , ' ’

[GI68] A.Ginzburg, Algebraic Theory of Automata, Academic Presé, New York .
London, 1968. '

[HMMS83] J. Halpern, Z. Manna and B. Moszkowski, A Hardware Semantics based on
Temporal Intervals, Report No. STAN-CS-83-963, Department of Computer Science,
Stanford University, Stanford University, Stanford, CA 94305, March 1983.

[MC80] C.A.Mead and L. A.Conway, Introduction to VLSI Systems, Reading, MA,
Addison- Wesley, 1980, Ch. 7. - :

[MI80] R.Milner, A Calculus of Communicating Systems, University of Edinburgh,
June 1980.

[MOS81] Y. Malchi and S.S. Owicki, “Temporal Specifications of Self-Timed Systems”,
in VLSI Systems and Computations (Ed. H.T.Kung, Bob Sproull, and G. Steele), Com-
puter Science Press, 1981.

21

Let £ = (s;,5i+1,..-) be any path in M with s; € dom(H;) and Rp:(€) = £ =
(H;,H;i.1,...) be the corresponding path in M'. By above, Jp>:M,Hy = fa. Let
p > ¢ be the smallest index such that s, € Hg. Hence sp € dom(H}y). By induction
hypothesis M, Sp # f2. Since vaQ<P35Sl<ksq € Hy, and V,‘Sl<kM’,Fg % fi and f; is a
propositional formula, we have Vi<g<pM, sq = f1. llence using the semantics of the U
operator, we get '

MH; =F=MH;=VYfi U fi
‘= for all paths (H;, Hit1,...) of M/, _
eilM, Hi = fa AVici<k[M, Hi = fil]
= for all paths (s;, s;41,...) of M,
Ip=ilM, 5p = f2 AVi<q<p[M, 5q = fil]
= M,s; =V[f1 U fa
= M, S |= 7. |

In the next lemma we will make use of following simple lacts about a CTL™ formula
and blocks Hy, which we state without proof,

FACT 4.1. If a state of Hy satisfies a propositional formula g, then all the states of Hy
must satisfy g. 18

FACT 4.2. Any quantified CTL™ formula fy can be written in an ezpanded form

Qi[o: U Qzl02 U -+ Qulgn U gng1] -]

where Q1, Qa,...Q, are path quantifiers V or 3, and g1,92,.. .gns1 ar€ propositional
formule. 1§

FACT 4.3. If gnt| holds in any state, so do the formule Q;[g; U Q;11[gj+1 U -+ Q.[9. U

Guit])] for all 1 < j < n. Similarly, if Qilgi U Qivilgit1 U -+ Qnlgn U gnia] -]
holds in any state so do the formule Qj[g; U Qj+1[g9j+1 U -+~ Qnlgn U Gn+1]-]| for all
1 < j <i. Conversely, if Qi[g1 U Qzlg2 U -+ Qnlgn U gn+1]--[] holds in some state
then for some 1 < j <mn, g; and Q;(g9; U Qj+1(gj+1 U -+ Qulgn U gnt1]: -] hold tn
that state or gnyi holds in that state. 1§ - '

LEMMA 4.4. Let ¥ be a CTL™ formula in L'. Then

MsiE=7F = M H; = 7, where s; € dom(H;).

24

Proof. We prove this by induction over a labelled computation tree, rooted at s; and
with branches corresponding to transitions in M. For the purpose of this proof we use
an initial portion of the tree with the root at s;, with branches corresponding to the
transitions in block H; and leaves corresponding to the dominating states of the blocks.
Since 7 is in CTL™, it is either of the form g or Qi[91 U Qz[92 U -+ Qulgn U gpnyi)- 1],
where g¢’s are propositional formulae. M, s; = 7, by assumption. We now label the
tree as follows: if 7 = g, then we label s; with g. On the other hand, if ¥ = Qg1 U
Q292 U +-- Qnlgn U gnsy]--]], then depending on whether Q, is V (3), for all (some)
computation paths starting from s;, there exists an initial prefix of the path, such that
Q:2[92 U Q393 U - Qu[gn U gny1] -] holds at the last state of the prefix and g; at all
other states along the prefix. We label the states corresponding to the prefix with ¢g; and
continue the similar labelling procedure for all the last states of the prefix. Without loss
generality we assume that M, s; = g;.

This process stops when either some non-leaf is found to satisfy gn4; or some leaf
is reached and the leaf satisfies Q;[g; U Qi+1[95+1 U - Qqulgn U gnt1) -]] for some
1<j<n. Let 7 be called the characteristic index of that state with respect to the formula

Ql[gl' U Qg[gg U "‘Qn[g‘n U gn+1]"'”" .

Basis Step: Either the formula ¥ is of the form ¢ or ¥ is of the form Q191 U Q392 U .
++Qnlgn U gniy1]--+]] and some non-leaf state of the initial portion of the computation
tree satisfies g .1. '

In the first case, since M,s; = g and g is a propositional formula, it is easy to show
that M, H; |= g. In the second case, by Fact 4.1. M, s; = gnt1, and as in the first case,
M',Ei = gni1. By Fact 4.3. M', H; = Qil91 U Q292U ---Q,[9. U gn+1)- - J]. Hence
M8y b= F, Co. :

Induction Step: Formula 7 is of the form Q;[g; U Q, [92 U Qulgn U gnyy]--]] and
gn+1 does not hold in any non-leaf state. Let k be the maximum over the characteristic
indices of the leaves. Then there are two cases to consider:

Case A: Qq, Qa,...Qr_; argé all V quantifiers.

In this case all the leaves must satisfy Q,[g; U Qj+1(95+1 U -+ Qulgn U gny1]---]]
for some 1 < j < k. By induction on computation tree, we have for the corresponding
blocks H, M', H |= Q;[g; U Qi+1(9j41 U - Qulg9, U gn+1]+-]]. By Fact 4.3. M/, H |=
Qil91 U Q2l92 U ---Qufgn, U gn+1]-+-]]. But in the restricted structure M’ , each of
these H is a successor of I1;. (By Lemma 4.1.(i)). Hence M’, H; = Qi[g1 U Q292 U
" Qulgn U gny1]--]]. Hence M', H; = 7.

Case B: Qy, Q2,...Q_; are not all V quantiﬁers. Assume Q; , Qi,,... Qi,, (1<
11 S1g <o <4y < k—1) are 3 quantifiers.

25

