A SUMMARY OF RESEARCH ON
PROGRAM DERIVATION

*
Edmund M. Clarke

Department of Computér Science
Duke University

October 10, 1978

C5-1978-9

%
Supported by National Science Foundation Grant No. MCS-7508146

A SUMMARY OF RESEARCH ON PROGRAM DERIVATION

1. INTRODUCTION

The prospect of enhancing the reliability of computer software by mathematical
proofs of program correctness has been frequently discussed in the computer écience
literature. Critics of this method for obtaining reliable software have pointed to
two apparent obstacles: (1) a high degree of mathematical sophistication is required
of programmers and (2) proofs of pPrograms of moderate size seem excessively complex.
If these obstacles are to be overcome , it is necessary to formulate simple proof
systems for realistic programming languages and to develop methods of automating
the coﬁstruction of program proofs. While the problems associated with proofs of
sequential programs are well understood, they are not well understood for recursive
programs, coroutines, or concurrent programs. Our research has dealt with the
aevelopment of proof techniques for these three classes of programs. Specifically,
we have developed a fized point theory of program invariants which applies to both
recu;sive and concurrent programs. This fixed point theory simplifies the deriva-
tion of sound and complete proof systems for recursive programs and permits the
automatic synthesis of resource invariants for concurrent programs. We have also
developed techniques which do not require the use of program histories for proving
the correctness of coroutines.

Section 2 contains an account of the fixed point theory of progf;m invariants
as it applies to recursive programs. A detailed account of this research [CK77b]
was presented at the 18th FOCS conference in Providence, Rhode Island in November
1977 and has also been accepted for publication in Cbm?;ting. Section 3 outlines
how this fixed point theory can be modified to apply to concurrent programs, and

in particular, to the synthesis of resource invariants. An account of this research

will be presented at the 6th POPL conference in San Antonio, Texas in January 1978.

In Section 4 a proof system for coroutines is described which permits proofs to
be constructed without the use of program histories. A& full account of this proof
System appears in [CK78a] and has been submitted for publication in deta Informatiea.

The paper concludes in Section § with a discussion of pPlans for future research.

2. PROGRAM INVARTIANTS AS FIXED POINTS

Proof systems for correctness of computér Programs may be treated as formal
logical systems. Of particular interest are deductive systems for partial correct-
ness based on the use of tnvariant assertions. Examples of such systems are de-
scribed by Floyd [FL67] and Hoare [HO69] . Formuias in Floyd-Hoare Axiom Systems
are triples {P} A {Q} where A is a Statement of the programming language and
P and Q are predicates in the languagé of first order predicate calculus (the
assertion language). A partial correctness formula {p} A {Q} is true iff when-
ever P is satisfied by the initial program state and A is executed, then either
A will fail to_terminate or Q will be satisfied by the final program state. an
axiom or rule of inference is associated with each statement type in the pProgramming

language, e.g.

{PAb} a {p}
{P} while b do & {BA~B} .

Proofs of correctness for programs are constructed by using the rules of inference
for the individual statements together with a proof system for the assertion lan-
guage.

Once a method of proof has been formalized, it becomes important to determine
which steps in the proof process are most difficult. With Floyd-Hoare Axiom Systems
experience shows that there are two main sources of difficulty: (1) choosing the
correct program invariants (e.g. P in the while axiom above) and (ii) demonstrating

the truth of formulas in the underlying assertion language. This observation is

-3=

justified by the work of Cook [5075] on relative completeness theorems for Floyd-
Hoare Axiom Systems. Cook gives an axiom system for a subset of Algel including
the while statement and nonrecursive procedures. He proves that (a) if the asser-
tion language satisfies a natural expressibility condition which guarantees the
existence of program invariants, and (b) if there is a2 complete proof system for
the assertion language (e.g. the set of true formulas of the assertion language) ,
then a partial correctness formula is true iff it is provable. Extensions of
Cook's work to other language features are discussed by Gorelick ([G075], recur-
Ssive procedures), Owicki ([OW76al, concurrent processes), Clarke ([CK77a], proce-~
dures with procedure parameters under various restrictions on scope of variables),
and Cherniavsky ([cu771, loop languages). Incompleteness results for language
features, such as call-by~-name paramter passing, are given inVClarke [CX77a] and
in Lipton and Snyder [EE773 ..

Completeness results appear to be an important tool in investigations of
program'correctness; however, many basic open questions femain about the derivation
and interpretation of such resﬁlts. Although proofs of soundness and completeness
are often léng and tedious, it seems that the undérlying ideas are quite simple.
Are there general theorems from which many different completeness results may be
obtained as special cases? What is the relationship between Cook's definition of
completeness and the definition of completeness used in the earlier work of Manna
[MA70] and deBakker and Meertens [DE73]? Gorelick [GO75], for example, has shown
that a set of three axioms gives completeness for a language with parameterless
recursive procedures. DeBakker and Meertens [DE73], on the other hand, prove that
an infinite pattern of inductive assertions is necessary to obtain completeness for
the same class of Programming languages. Is there a way of reconciling these

'apparently contradictory results?

In [CK77b] we argue that the relative soundness and completeness
theorems of Cook et al. are really fized point theorems. We give a
characterization of program invariants as maximal firxed points of
functionals which may be obtained in 4 natural manner from the program
text. We further show that within the framework of this fixed point
theory, relative soundness and compleﬁeﬁess theorems have a very simple
interpretation. Completeness of a Floyd-Hoare Axiom System is equivalent
to the existence of a fixed point for an appropriate functional, and the
soundness of the axiom system follows from the maximality of this fixed
point.

The functionals associated with regular recursive procedures (i.e.,
flow-chartable recursions) are similar to the predicate transformers of
Dijkstfa ([Db173], [DE73], [GE75]). Let, WT([AI(Q) (WP[A](Q)) be the
weakest precondition for total correctness (partial correctness)
associated with statement A and postcondition Q. If "PROC X=T" is
é reqular procedure declaration and Q is a predicate, then the partigl
correctness functional T associated with ¥ and Q 1is defined as

follows: T'(U) = G[T](Q) where

(a) G[Al;Az)] (R) = G{Al] (G[A2] (R))
(B) Gl(b>a,,A)I(R) = (bAGAT(R) v (~bA'GrA2} (R))
(C) GIAl(R) = WT[A](R) = WP [A] (R) if A is a null statement

Oor an assignment statement

(D) GIXI(R)

I

u

S will represent the set of all possible program states.

THEOREM (Regular Fixed Point Theorem): Let PROC X = T be a
regular procedure declaration, Q S s be a predicate, and T be the
partial correctness functional associated with X and Q. Then the

fized points of T (invariants of Xx) from a complete lattice under the

natural partial ordering on 25, The top element of the lattice (unique
maximal fixed point) is WPI[X](Q) and the bottom element of the lattice

(unique minimal fized point) is WTI[X](Q).

In order to treat non-reqular recursions we must generalize the
notion of a program invariant from a single predicate to a binary relation
on predicates which is preserved by procedure calls. The appropriate
functional in this case is a generalization of the predicate transformer
concept which we call a relational transformer. The relational traﬁs—
former maps a programming language statement into the paitial correctness
relation determined by that statement. Since this mapping is continuous,
a fixed point theorem characterizing the partial correctness relations of
recursive procedures may be obtained.

Applications of the fixed point theorems include (a) a proof of tﬁe
soundness and completeness of the induc£ive assertion method, (b) a proof
of the inadequacy of the inductive assertions method for non-regular
recursion schemes, and (c) alternate derivations of the completeness
results of deBakker [DE73] and Gorelick [GO75] for non-regular recursion
schemes. We believe that the fixed point theory in [CK77b] may also be
helpful in understanding recent incompleteness theorems for Floyd-Hoare
~axiom systems ([CK77], [LI77]). These theorems use classical undecidability

techniques to show that for certain programming language constructs it is

impossible to obtain axiom systems which give soundness and completeness.
We conjecture that for many programming language constructs it may be
easier to prove the non-existence of a fixed point than to prove an
undecidability result. Finally, we are exploring the question of whether
the explicit formulas for program invariants given in [CK77b] may be used
to automatically generate invariants éf loops and recursive procedures.

The work of Suzuki [SU76] and Couscot [CU77] suggests that invariants can

indeed be generated in this manner.

3. SYNTHESIS OF RESOURCE INVARIANTS

Researchers in program verification have often argqued that it is
premature to deve£0p methods for proving the correctness of concurrent
programs. The argument usually runs as follows: "Since sequential
pPrograms are a subset of concurrent programs, how can we expect to
develép methods for verifying concurrent programs when practical methods
do not yet exist for the verification of -sequential programs." If we
view sequential programs as a subclass of concurrent programs, and if we
attempt to prove the same type of correctness results for concurrent
- programs as for sequential programs (e.g., program P computes function
F), then the above argument may be correct. On the other hand, if we
abstract from a concurrent program that portion of the program which
deals with synchronization (the synchronization skeleton), and if we

restrict correctness proofs to synchronization properties (e.g., absence

of deadlock}, then it is possible to argue that concurrent programs are

easter to verify than sequential programs. Three reasons in support of
this view are:

(1) The synchronization skeleton of a concurrent program is generally
very small in comparison to the entire pProgram. A crude count of the UNIX
operating system indicates that less than 5% of the total statements are
synchronization statements. Because lbgg concurrent programs need not
have long synchronization skeletons, we believe that the arguments
expressed in [DE77] regarding the feasibility of correctness proofs for
sequential programs are not appliéable to procfs of correctness for
synchronization skeletons.

(2) In many cases, it is rel#tively easy to isolate the
synchronization skeleton of a concurrent program from the sequential
part of the program. Consider, for example, the typical producer-consumer
program in which two processes communicate via a message buffer; here the
~ synchronization skeleton is independent of the sequential producer and
consumer processes.

(3) A large class of synchronization problems are counting problems.
Thus, the verification conditions generated in the correctness proofs can
be expressed in terms of linear inequalities involving the synchronization
variables, and techniques such as integer programming can be exploited to
determine their validity. |

What verification techniques are best suited for proving the
correctness of synchronization skeletons? Hoare [HO72], and Owicki and
Gries [OW76b] have developed a proof system for conditional ecritical

regions in which logically related variables which must be accessed by

more than one process are grouped together as resources. Individual

Processes are allowed to access a resource only within a conditional

critical region for that resource. 'Proofs of synchronization Properties

"~ been described by Habermann [HA72], Lauer [LU72], Keller [KE76], Lamport
[IM771, and Pneuli [PN77].

In constructing Correctness proofs for Synchronization skeletons
using the proof System of Hbare~0wicki&Gries, the programmer is required
to supply the resource invariants. -In [CK78b] we investigate the problem
of automatically synthesizing resource invariants for Synchronization
skeletons of concurrent Programs. The Synchronization skeletons are
-expressed in a simple concurrent Programming language (SCL) in which

. bParallelism ig introduced vias "cobegin...coend" blocks and Processes
access shared data via conditional critical regions. We consider only
invariance [PN77] or safety properties [LA76] of scr, Programs. Thig
class of pfoperties includes mutual exclusion and absehce of deadlock ang
is analogous to Partial correctness of Sequential programs. Correctness
Proofs of scL Programs are exXpressed in a Proof system similar to the

sSystem of Hoare—Owicki—Gries; we will refer to such proofs ag resource

tnvariant proofs.

loops of the form "cycle Sl""’sn end" and the only statements

allowed in a Process are P and v Operations on Semaphores. We call

this class of scrL programs PV programs. For pv Programs there is a simple
method for generating resource invariants, i.e., the semaphore invariant
method of Habermann [HA72] which exXpresses the current value of a semaphore
in terms of its initial value and the number of P ang V operations
which have been exXecuted. Although the semaphore invariant is simple to

state, it is quite pPowerful as a techniqﬁe for proving pv bPrograms. We

reduction method of Liptén [LI75] for proving freedom from deadlock.

The semaphore invariant method, however, is not complete for Proving
either absence of deadlock or mutual exclusion of pv Programs. We prove
that it is possible to devise PV pPrograms for which deadlock (mutual
exclusion) is impossible, but the semaphore invariant method is not
' sufficiently powerful to estab%}sh this fact. This incompleteness result
'is important because it demonstrates the role of convexity in the
generation of powerful resource invariants. We also give a characterization
of the class of pv brograms for which the semaphore invariant method is

complete for proving absence of deadlock (mutual exclusion).

problems including the dining philosopher's Problem, the reader's writers
Problem and the cigarette smoker's Problem can be expressed. Although the
generalized semaphore invariant fails to be complete for exactly the same
reason as the standard semaphore invariant method, it is sufficiently
pPowerful to permit Proofs of mutual exclusion and absence of deadlock for
a significant class of concurrent programs {e.g., an implementation of the

readers and writers problem with writer priority).

-10-

When the generalized semaphore invariant is not sufficiently powerful
to prove some desired préperty of an SCL program, is it possible to
synthesize a stronger resource invariant? We argue that resource in-
variants are fized points, and that by viewing them as fixed points it is

possible to automatically generate invariants which are considerably

'
]

stronger than the semaphore invariants previously described. Specifically
we show that the resource invariants of an SCL program C are fixed points
of a functional FC which can be obtained in a natural manner from the
text of program C. The least fixed point u(FC) of F_ is the

c

"strongest" such resource invariant, e.g., if the program ¢ is free of
deadlock then this fact may be estabiished using p(FC). Since the
functional Fc is continuous, the least fixed point u(FC) may be
expressed as the limit u(FC) = V?;l Fg(false).-Because of the infinite dis-
junction in the formula for u(FC}, this characterization of u(FC)
cannot be used directly to compute u(FC) unless C has only a finite
number of possible different states.

By using the notion of widening of Cousot [CU78] however, we are
able to speed up the convergence of the chain Fg(false) and obtain a
close approximation to p(FC) in a finite number of steps. The widening
operator which we use exploits our earlier observation on the importance
of convexity in the generation of resource invariants. Examples are given
in [CK78b] to illustrate the power of this new technique for generating
resource invariants. Although fixed point techniques have been previously
used in the stud? of resource invariants ([LA76], [EN77]), we believe that

this is the first research on methods for speeding up the convergence of

the sequence of approximations to p(FC).

wilw

4. PROVING CORRECTNESS OF COROUTINES WITHOUT HISTORY VARIABLES

A number of iﬁportant theoreticél problems arise in the development
of axiomatic proof systems for Programming languages which allow co-
routines. One such problem is the question of whether history variables
are necessary in proving partial correaness of coroutines. History,
variables are special variables which are added to 4 program to facilitate
its proof by recording the sequence of states reached by the program
during a computation; after the proof has been completed the history
variables may be deleted. The use of such variables in correctness proofs
was first suggested by Clint {CL73]lin @ paper entitled "Program Proving:
Coroutines"; subsequently, history variables have been used by Owicki
[OW76] and Howard [HW76] in verifying concurrent Programs and by Apt
[APT77] iﬂ'verifying sequential programs. Owicki and Howard have con-
jectured that history variables are necessary for proofs of some concurrent
programs.

The obvious power of ﬁistory v#riables in program proofs stems from
the large amount ﬁf information about a pProgram's behavior which can be
obtained by examining execution Sequences. This power, however, is not
available without a sacrifice. Prdgram histories are much more difficult
to manipulate in partial correctness assertions than simple program
identifiers. Another, less obvious, disadvantage is that it is ne longer
possible to construct Program proofs in a top-down manner in which only
the input-output behavior of a statement is used to relate the statement
to the remainder of the Program. Instead it is necessary to consider the

entire history of the program's execution in constructing proofs. Because

]2«

of these disadvantages we believe that the use of history variables should

be avoided whenever possible. Since history variables seem to be essential
for correctness proofs of certain language constructs, it becomes important
to identify the constructs where such variables can be avoided.

In [CK78a] we show that history variables are NOT needed in proving

]
3

the correctness of simple coroutines. We give a modification of Clint's
axiom system and a strategy for generating proofs in which the only
auxiliary wvariables needéd (in addition to the program identifiers) are
éimple program counters. Vsince the program counters have bounded magnitude,
they may be encoded by 0, l-valued auxiliary variables. We illustrate our
method of proving coroutines with examples and give a proof of soundness
and relative completeness for our axiom system. Finally, we discuss some
extensions of the coroutine concept which do appear to require the use of
.history variables. A brief description of our axiom system and an example
illustrating our technique for avoiding the use of history variables are
given in the remainder of this section.

A coroutine will have the form:
coroutine Ql' Q2 end

is the main routine; execution begins in and also terminates in
1 9 1

Ql (the requirement that execution terminate in Q is not absolutely

1
necessary but simplifies the axiom for coroutines). Otherwise Ql and
Q2 behave in identical manners. If an "exit" statement is encountered
in Ql, the next statement to beAexecuted will be the statement following

the last "resume" statement in Qz. Similarly, the execution of a "resume"

statement in Q2 causes execution to be restarted following the last

=i 3=

"exit" statement executed in Ql' A simple example of a coroutine is:

Coroutine
while y#z do
yi=y+l; x:=x+y; exit;
end,
while true do
y:=y=2; resume;
y:=y+l; resume;
end
end
This example illustrates the use of "exit" and "resume" statements within

while loops. Note that if x and y are 1 initially and z>1, then the
coroutine will terminate with y==zz.

Four axioms are needed to adequately specify the semantics of the
eoroutine statement. These axioms are given below. Although axiom C1
is similar to Clint's coroutine axiom, our strategy for generating proofs
'is different from that advocated by Clint; auxiliary variables represent

program counters (and therefore have bounded magnitude) rather than

arbitrary stacks.

cl. (Coroutinesi
{p'} exit (R'} } {pAblQ {R}

{R'} resume {p'} F{P'f\b}Qz{R'}
{PADb} coroutine Ql, Q2 end {R}

provided that no variable free in b is global to Ql. (This axiom

is a modification of the one in [CL73].)

-14=

C2. (Exit)

{P'} exit {r'}
{P'AC} exit {R'ACT

provided that C does not contain any free variables that are changed
by Qz. (Here we assume that "exit" occurs in statement Q1 of

1

"coroutine Ql, Q2 end".)

C3. (Resume)

{R'} resume {p'}
i{R'AC} resume (P'ACT

provided that C does not contain any free variables that are changed
in Ql. (Here we assume that "resume" occurs in statement QZ of

-

"coroutine Ql' Q. end".)

2

C4. (Auxiliary Variables)

Let AV be a set of variables such that x €AV if and only if =x
appears in S' only in assignments y:=e with Y EAV. If P and.-
Q are assertions which do not contain any free variables from AV
and if S is obtained from §°' by deleting all assignments to

variables in AV, then

{r}s'{o}
Prsig)

(This axiom is essentially the same as the auxiliary variable axiom

in [owW76].)

=15~

We illustrate the axioms with an example. We show that
2 - . ’ .
{x=lﬁ.y=la\zZl}A{x=z } where A = "coroutine 9+ Q, end" is the coroutine
given in Section 2. Our strategy in carrying out the proof will be to
introduce auxiliary variables to distinguish the various "exit" and "resume"
Statements from each other and then use axiom C4 to delete these unnecessary
variables as the last step of the proof. Axiom C2 enables us to adapt the
general exit assumption {P'} exit {R'} to a specific occurrence of an
exit statement in Ql. A similar comment applies to axiom C3 for the
resume statement. We prove:
'{x=lAy=1Azzl}
i:=0; j:=0;
coroutine
while y#z do

Yr=y+l; x:=x+y;

i:=1; exit;

end,

while true do
¥:=y-2; j:=1; resume;
Yi=y+l; j:=0; resume;

end
end

{x=2"}
Note that two auxiliary variables are needed (one for each routine of thé
coroutine). The auxiliary variable j of the second routine is assigned
a different value prior to each "resume" statement and is not changed by
the first routine. Thus the value of j can be used in assertions to
distinguish which of the resume Statements has been most recently executed.
The auxiliary variable i of the first routine has a dual function. This
technique of adding auxiliary variables will be formally described in
[CK78a] however, the general pattern should be clear from the above example.

To complete the proof we choose:

-16=

P = {x=1Ay=1A231Ai=0Aj=o}

b = {j=0}

R = {x=2°}
, 2 : 2 . ‘

P' = {(x=y"-y+1Aj=0Ay<z) v (x=y"+2y+1 A j=lAy < z-1)}
: 2 . -

R' = {(x=y +3y+3 A=l Ay <z-2) v (x=y AJ=0Ay<z)}

The invariant for the while loop of the first routine is:

v, = {(x=y2+3y+3Aj=1Ayfz-2) v (x=Y2AJ'=0"Y.<.Z)}

The invariant for the while loop of the second routine is:

- oW, = '{x=y2-y+1Aj=0Ayf z}

Using axioms C2-C4 together with the axioms for the assignment statement

and the while Statement, it is possible to prove that:

@ {p'} exit (&'} - (Al {r}
and

) {&'} resume (2} [(2" anlo, (a)

both hold. For example, to prove (b) we assume {R'} resume {p'} ana

prove {P'ADb}Q. {R'}. In order to prove {P'Ab}Q {R'} we show that
2 2

() P'Ab+IM@

e

a@) {INVZ}

while true do
y:=y=-2; j:=1; resume;
y:=y+l; j:=0; resume;
end

' {INV2 A ntrue}

(e) INV2 Afi..true—)-R' are true.

Steps (c) and (e) are easily verified. Step (d) follows from the while

axiom and the sequence of assertions below:
{(dl) assignment

" {INV, A true} y:=y-2; j=1{R' A j=1}

2
(d2) resume

"{R'A j=1} resume {P'A j=1}
(d3) assignment

{P' A 3=1} y:=y+l; j=0{R'A j=0}
(d4) - resume

"{R" A =0} resume {P'Aa j=0}
{d5) arithmetic

P' A J=0>INV, %

Once (a) and (b) have been established, the desired conclusion follows

immediately by axiom Cl.

-18-

5. DIRECTIONS FOR FUTURE RESEARCH

An obvious opeén question concerﬁs the use of history variables in
correctness proofs for concurrent brograms. Owicki, for example, shows
that her proof system for conditional critical regions is sound and
complete with respect to an operational'semantics for her language [ow76al.
The proof of completeness requires the use of history variables to record
the order in which critical regions are entered. 1In fact, it is not
difficult to construct examples of programs in which the number of history
variables required to express the resource invariants is greater than the
number of variables in the original program. In general the number of
history variables needed appears to deéend on the product of the number
of processes and the number of different resources. Because of the numberl.
required and the amount of information recorded, we believe that the use
of history variables in proofs of program correctness is unnatural and
should be avoided. Gerhart [GE76] has shown that history variables are
unnecessary in proofs of cérrectness for sequential programs. We con-
jecture that they-are also unnecessary for large classes of concurrent
programs. We are currently investigating ways of modifying the resource
invariant axioms of Hoare and Owicki to support this conjecture.

Finally the author is currently designing an automatic verification
system for concurrent programs based on the ideas in Section 4. This
system will extract the syﬁchronization skeleton of a concurrent program
and use the techniques of [CK78b] to generate the appropriate resource
invariants. If this System or some similar system is successful in

generating correctness proofs for synchronization skeletons, then a

=19

particularly intriguing idea for verifying large concurrent Programs
would be to combine formal Proofs of correctness for the synchronization
part of the program with other techniques such as testing or symbolic

execution for the sequential part of the program.

[APT77] Apt, K. R., Bergstra, J. A., and Meertens, L. G. L. T.

Recursive
assertions are not enough--or are they? Mathematical Centre
IW 92/77.

[CH77] Cherniavsky, J. and S. Kamin. A complete and consistent Hoare
axiomatics for a simple programming language. Proceedings of
the 4th POPL, 1977.

[CK77a] Clarke, E. M. Programming language constructs for which it is
impossible to obtain good Hoare-like axiom systems. Proceedings
of the 4th POPIL, 1977. :

[CK77b] Clarke, E. M. Program invariants as fixed points. Proceedings of
the 18th FOCS, 1977.

[CK78a] Clarke, E. M. Proving correctness of coroutines without history
variables. Technical Report No. Cs-1978-4, Department of
Computer Science, Duke University, 1978.

[CK78b] Clarke, E. M. Synthesis of resource invariants. To be prasented
at the 6th POPL conference in San Antonia, Texas in January 1979.

[CL73] Clint, M.

Program proving:

Coroutines.
1973. :

Acta Informatica, 2:50—63,
[CO75] Cook, S. A. Axiomatic and interpretative semantics for an algol

‘ fragment. Technical Report 79, Department of Computer Science,
University of Toronto, 1975.

[cu77] Cousot, P. and R. Cousot. Abstract Interpretation:

A unified
lattice model for static analysis of programs by construction
Or approximation of fixpoints.

Proceedings of the 4th POPL, 1977;
[DE73]

deBakker, J. W. and Meertens, L. G. L. T

phe inductive assertion method.
1973.

On the completeness of
Mathematical Centre, December

[DI73] Dijkstra, E. E.

A simple axiomatic basis for Programming language
constructs.

Lecture notes from the Internation Summer School on
Structured Programming and Programmed Structures, Munich, Germany
1973. ' :

[FL67] Floyd, R. W.

Assigning meaning to Programs. In Schwarts, J. T., Ed.,
Mathematical Aspects of Computer Science Proc. Symposia in Applied
Mathematics 19, pp. 19-32, Amer. Math. Soc.,

1967.
[FN77]

Flon, L. and Suzuki, N. Nondeterminism and the correctness of
parallel programs. Carnegie Mellon University, Department of
Computer Science, May 1977.

[GE75] Gerhart, S. L.

Proof theory of partial correctness verification
systems.

SIAM J. Comput., Vol. 5, No. 3, September 1975.

[GO75]

[HA72]

[HOE9]

[HO72]

[HW76]

[KE76]

[LA76]

[LI75]

[1M77]

[MA70]

[OW76a]

[OW76b]

[PN77]

[Su771]

Gorelick, G. A complete axiomatic system for proving assertions
about recursive and' non-recursive programs. Technical Report
No. 75, Department of Computer Science, University of Toronto,
January 1975.

Habermann, A. N. Synchronization of communicating processes. Comm.
ACM, 15, 3(March 1972), 171-17s.

Hoare, C. A. R. An axiomatic approach to computer programming,
CACM 12, 10(October 1969), pp. 322-329.

Hoare, C. A. R. Towards a theory of parallel programming. Operating
Systems Techniques, C. A. R. Hoare, R. H. Perrot, Editors,

Academic Press, 1972.
Howard, J. H. Proving monitors. COMM ACM, 19(5) :273-279, May 1976.

Keller, R. M. Formal verification of parallel programs. CACM, 19(7),
1976.

van Lamsveerde, A. and Sintzoff, M. Formal derivation of strongly
correct parallel programs. MBLE Research Report, Brussels, Belgium
197s6.

Lipton, R. J. Reduction: A new method of proving properties of systems
of processes. Proceeding of 2nd ACM Symposium on Principles of
Programming Languages, 78-86, 1975.

Lamport, L. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2), 1977, 125-143.

Manna, Z. and Pnueli, A. Formalization of properties of functional
programs. JACM 17(3):555-569, 1970.

Owicki, S. A consistent and complete deductive system for the veri-
fication of parallel programs. 8th Annual Symposium on Theory of
Computing, 1976.

Owicki, S. and Gries, D. Verifying properties of parallel programs:
An axiomatic approach. CACM 19(5):279-284, 1976.

Pnueli, A. The temporal logic of programs. 18th Annual Symposium
on Foundations of Computer Science, November 1977.

Suzuki, N. and Ishihata, K. Implementation of an Array Bound Checker.
Proceedings of the 4th POPL, 1977.

