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Abstract 

We examine the question of whether history variables are necessary in formal 
proofs of correctness for coroutines. History v ~  are special variables which 
are added to a program to facilitate its Droof by recording the execution history of 
the program. Such variables were first used By Clint in his paper "Program Proving: 
Coroutines." They have also been used by Owicki and Howard (concurrent programs) and 
by Apt (sequential programs). We argue that recording the entire history of a computa- 
tion in a single set of variables is inconvenient and leads to extremely complicated 
proofs. We propose a modification of Clint's axiom system and a strategy for construc- 
ting proofs which eliminates the need for history variables in verifying simple coroutines. 
Examples are given to illustrate this technique of verifying coroutines and our axiom 
system is shown to be sound and relatively complete with respect to an ooerational 
semantics for eoroutines. Finally, we discuss extensions of the coroutine concept for 
which history variables do appear to be needed; we also discuss the auestion of whether 
history variables are necessary in verifying concurrent programs. 

i. Introduction 

This paper examines some of the problems in- 
volved in developing an axiomatic proof system 
for a programming language with coroutines. In 
particular we investigate the question of whether 
history variables are necessary in proving partial 
correctness of coroutines. History variables are 
special variables which are added to a program 
to facilitate its proof by recording the sequence 
of states reached by the program during a computa- 
tion; after the proof has been completed the his- 
tory variables may be deleted. The use of such 
variables in correctness proofs was first sug- 
gested by Clint [CL73] in a paper entitled "Pro- 
gram Proving: Coroutines;" subsequently, history 
variables have been used by Owicki [0W75] and 
Howard [H075] in verifying concurrent programs 
and by Apt [APT77] in verifying sequential pro- 
grams. Owicki and Howard have conjectured that 
history variables are necessary for proofs of 
some concurrent programs. 

The obvious power of history variables in 
program proofs stems from the large amount of 
information about a program's behavior which can 
be obtained by examining execution sequences. This 
power, however, is not available without a sacrifice. 
Program histories are much more difficult to manip- 
ulate in partial correctness assertions than simple 
program identifiers. Another, less obvious, dis- 
advantage is that it is no longer possible to con- 
struct program proofs in a top-down manner in which 
only the input-output behavior of a statement is 
used to relate the statement to the remainder 
of the program. Instead it is 

necessary to consider the entire history of the 
program's execution in constructinp Drools. 
Because of these disadvantages we believe that the 
use of history variables should be avoided whenever 
possible. We conjecture, in fact, that the success 
of program verification for actual programs will be 
inversely related to the frequency of situations in 
which it is necessary to reason about programs 
using execution histories. 

In this paper we show that history variables 
are NOT needed in proving the correctness of simple 
coroutines. We give a modification of Clint's 
axiom system and a strategy for generating proofs 
in which the only auxiliary variables needed (in 
addition to the program identifiers) are simple 
program counters. Since the program counters have 
bounded magnitude, they may be encoded by 0,1- 
valued auxiliary variables. We illustrate our 
method of proving coroutines with examples and give 
a proof of soundness and relative completeness for 

our axiom system. 1 Finally, we discuss some exten- 
sions of the coroutine concept which do aDoear to 
require the use of history variables. We also 
discuss the question of whether a Droof techniaue 
similar to the one presented in this DaDer can be 
used to avoid history variables in concurrent 
programs. 

IAlthough this completeness proof has been briefly 
mentioned in another paper by the author [CK77a], 
this is the first detailed account of the Droof to 
appear in print. 
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2. Coroutines 

A coroutine will have the form: 

coroutine QI' Q2 end 

Q1 is the main routine; execution begins in Q1 and 

also terminates in Q1 (the requirement that execu- 

tion terminate in Q1 is not absolutely necessary 

but simplifies the axiom for coroutines). Other- 
wise Q1 and Q2 behave in identical manners. If 

an "exit" statement is encountered in 01, the next 

statement to be executed will be the statement 
following the last "resume" statement in Q2" 

Similarly, the execution of a "resume" statement 
in Q 2 causes execution to be restarted following 

the last "exit" statement executed in QI" A simple 
example of a coroutine is: 

coroutine 
while y#z do 

y:=y+l; x:=x+y; exit; 
en d, 

while true do 
y:=y-2 ; resume ; 
y :=y+l; resume ; 
end 

end 

This example illustrates the use of "exit" and 
"resume" statements within while loops. Note that 
if x and y are 1 initially and zel, then the co- 

2 
routine will terminate with y=z . 

2.1 Axioms for Coroutines 

In this section we give a set of axioms for 
coroutines and describe a technique for proving 
correctness of coroutines which is based on the 
use of auxiliary variables. This technique is 
different from the technique described by Clint 
[CL733, in that the auxiliary variables represent 
program counters (and therefore have bounded 
magnitude) rather than program histories. 

CI. (Coroutines) 

{P'} exit {R'} ]- {PAb} Q1 {R} 

{R'} resume {P'} I- {P'Ab} Q2 {R'} 

{PAb} coroutine QI' Q2 end {R} 

provided no variable free in b is global 
to QI" (This axiom is a modification of 

of the one in [CL73]). 

C2. (Exit) 

{P'} exit {R'} 
{P'AC} exit {R'AC} 

provided that C does not contain any free 
variables that are changed by Q2" (Here we 

assume that "exit" occurs in statement Q1 of 

"coroutine QI' Q2 end"). 

C3. (Resume) 

{R'} resume {P'} 
{R'AC} resume {P'AC} 

provided that C does not contain any free 
variables that are changed in 01. (Here we 

assume that "resume" occurs in statement 02 

of"coroutine 01, Q2 end"). 

C4. (Auxiliary variables) 

Let AV be a set of variables such that xeAV 
iff x appears in S' only in assignments 
y:=e with yeAV. If P and 0 are assertions 
which do not contain any free variables from 
AV and if S is obtained from S' bv deleting 
all assignments to variables in AV, then 

{P} S' {q} 
{P}" S {q} 

(This axiom is essentially the same as the 
auxiliary variable axiom in [0W76]). 

We illustrate the axioms with an example. We 

show that {x=l A y=l A z>-l} A {x=z 2} where ~ -- 
"coroutine QI' Q2 end" is the coroutine given in 

Section 2.1. Our strategy in carrying out the 
proof will be to introduce auxiliary variables to 
distinquish the various "exit" and "resume" state- 
ments from each other and then use axiom C4 to 
delete these unnecessary variables as the last 
step of the proof. Axiom C2 enables us to adapt 
the general exit assumption {P'} exit {~'} to a 
specific occurrence of an exit statement in 01. 

similar comment applies to axiom C3 for the resume 
statement. We prove: 

{x=l A y=l A z>-l} 
i:=0; j:=0; 
coroutine 

while y#z do 
y :=y+l ; x :=x+¥ ; 
i:=l; exit; 
end, 

while true do 
y:=y-2; j:=l; resume; 
y:=y+l; j:=0; resume; 
end 

end 

{x=z 2 } 

Note that two auxiliary variables are needed (one 
for each routine of the coroutine). The auxiliary 
variable j of the second routine is assigned a 
different value prior to each "resume" statement 
and is not changed by the first routine. Thus the 
value of j can be used in assertions to distinquish 
which of the resume statements has been most 
recently executed. The auxiliary variable i of 
the first routine has a dual function. This tech- 
nique of adding auxiliary variables will be for- 
mally described in Section 5; however, the ~eneral 
pattern should be clear from the above example. 
To complete the proof we choose: 

P = {x=l A y=l A z>l A i=0 A j=o} 
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b = {j=0} 

R = {x=z 2} 

P' = {(x=y2-y+l A j=0 A y~z) 

V (x=y2+2y+l A j=l A y~z-l)} 

R' = {(x=y2+3y+3 A j=l A y~z-2) 

V (x=y 2 A j=0 A y~z)} 

The invariant for the while loop of the first rou- 
tine is: 

INV I = {(x=y2+3y+3 A j=l A y~z-2) 

V (x=y 2 A j=0 A y~zl} 

The invariant for the While loop of the second 
routine is: 

INV 2 = {x=y2-y+l A j=0 A y~z} 

Using axioms C2-C4 together with the axioms for the 
assignment statement and the while statement, it is 
possible to prove that: 

(a) {P'} exit {R'} I- {PAb} Q1 {R} 

and 

(b) {R'} resume {P'} I- {P'Ab} Q2 {R'} 

both hold. For example, to prove (b~ we assume 
{R'} resume {P'} and prove {P'Ab} Q2 {R'}. In 

order to prove {P'Ab} Q2 {R'} we show that 

(c) P'Ab + INV 2 

(d) {INV 2 } 

while true do 
y:=y-2; j:=l; resume; 
y:=y+l; j:=2; resume; 
end 

{INV2A~true} 

(e) INV2A~true + R' are true. 

Steps (c) and (e) are easily verified. Step (d] 
follows from the while axiom and the sequence of 
assertions below: 

(dl) assignment 

{INV2Atrue} y:=y-2; j=l {R'Aj=I} 

(d2) resume 

{R'AJ=I} resume {P'Aj=I} 

(d3) 

(d4) 

assignment 

{P'Aj=I} y:=y+l; j=0 {R'Aj=0} 

resume 

{R'Aj=0} resume {P'Aj=0} 

(d5) arithmetic 

P'Aj=0 + INV 2 

Once (a) and (b) have been established, the desired 
conclusion follows immediately by axiom CI. 

3. An Operational Semantics for Coroutines 

To substantiate our claim that history vari- 

ables are not necessary for verifying simple co- 
routines, we prove that the axiom system of Section 
2 is sound and complete with respect to an opera- 
tional semantics for coroutines. In this section 
we describe the syntax and semantics of a simple 
programming language for coroutSnes (L~C). In 
Sections 4 and 5 the soundness and comnleteness 
proofs will be given. 

An LFC sta~6ement is either an assiFnment 

'TE" eT', st~atement .= a conditional statement "b -> 

AI, A2" , a whi-le~s~tement "b*~", a compound 

statement "begin ~i" ~2;'''An end", or a coroutine 

statement "coroutine QI' 02 end". Within a corou- 

tine statement, two additional statement tyoes are 
possible: the "exit" statement in QI and the 

"resume'" statement in 02 . Since we are interested 

in the correctness of LFC programs, we must also 
specify the logical system in which the correctness 
assertions are expressed. In this paper the 
~sse~tio~ la~igUage is a first order language with 
equal~ty which we denote by AL. To simplify the 
semantics of LFC programs, we require that the 
Boolean expressions of LFC conditionals be quan- 
tifier-free formulas of AL, and that the right 
hand sides of LFC assignment statements be terms 
in AL. 

An in~6e~re~6ation I for AL consists of a set 
D (the domain of the internretation), an assignment 
of functions on D to the function symbols of ~L 
and an assignment of predicates on D to the predi- 
cate symbols of AL. Let ID be the set of identi- 
fiers (i.e. variables) of ~L, and let I be an 
interpretation for ~L with domain D. ~ ~rogram 
state is a maoping from ID to D giving the "value" 
associated with each identifier. The set of all 
program states will be denoted bv S. If t is a 
term of AL with variables Xl, x2...x n and s is a 

program state, then t(s) will denote 

t S(Xl)...s(x n) 

Xl,.-,,X n 

i.e. the term obtained from t by simultaneously 

substituting s(x I) .... s(x n) for x I .... x n. 

Similarly, we may define P(s) where P is a 
formula of AL. 

It will also be convenient to identify a 
predicate P with the set {s I l[P(s)] = true} 
of program states which make P true. False will 
correspond to the empty state set, true will 
correspond to the set S of all program states, and 
logical operations on predicates may be interpreted 
as set theoretic operations on subsets of S, i.e. 
"or" becomes "union", "and" becomes "intersection", 
"not" becomes "complement", and "implies" becomes 
"is a subset of". In general there will be many 
sets of states which are not expressible by 
formulas of the assertion language ~L. 

Meanings of LFC statements are specified by a 
state-transition function COMP(~,s) which associ- 

ates with statement A and state s, a new state s'. 
Intuitively s' is the state resultinp if ~ is 
executed with initial state s. The definition of 
COMP(A,s) is by cases on ~: 

(i~ A is "x:=e" -~ s' where s'(v)=s(y) 

if y@x and s'(x)=I[e(s)]. 
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I COMP (AI ~s) 
(2) A is "b ÷ AI, A^'~÷~ 

Z ~ COMP CA 2 ~ s) otb_erwise 

(3) A is "b,Al" ____->~COMP("b*AI"'COMP(AI'S)) s~b 

i s otherwise 

(4) A is "begin AI; A2;...A n end" .... ÷ 

COMP ("begin A2...An end" ,COMP(AI,S ) ) 

(5) A is "begin end" ----÷ s 

(6) COMP("Coroutine QI' Q2 end",s) is defined in 

terms of two mutually recursive procedures C1 
and C2 as follows: 

COMP("Coroutine QI' Q2 end",s) = CI(QI , Q2' s) 

where CI(RI, R2, s) is defined by cases on R I. 

(R represents the remainder of statement R I) . 

(6a) R 1 = "x:=e; R" ---+ CI(R,R2,s') 

where s'(y)=s(y) if y#x and s'(x)=IFe(s)]. 

(6b) ~ CI("A 1 ;R" ,R 2 ,s) seb 

R 1 = "b->AI,A2; R" -~ ~CI("A2;R",R2,s) otherwise 

(6c) ~ CI("AI;b*AI;R",R2,s) s~b 

R 1 = "b,Al; R" ----~ ~ CI(R,R2,s) otherwise 

(6d) R 1 = "begin AI;A2...A n end; R" ---÷ 

CI("AI; begin A2...A n end; R", R2, s) 

(6e) R I = "begin end; R" ----+ CI(R, R2, s) 

(6f) R I = "exit; R" ----~ C2(R, R2, s) 

(6g) R 1 = A (i.e. R 1 is the empty string) ----> s. 

The definition of C2(RI, R2, s) is the dual of the 

definition of C1 except that C2(RI, A , s) = 

CI(R I, A , s). Thus execution of the coroutine 

always terminates in QI" Note also that the 

definition of COMP does not allow for nested co- 
routines. Clause 6 could be modified to handle 
this case as well; however, nesting of coroutines 
is unnecessary to illustrate most of the dif- 
ficulties involved in using the axioms of Section 2. 

Partial correctness formulas will have the 
form {P} A {Q} where A is an LFC statement and P 
and Q are formulas of the assertion language AL. 

3.1 Definition: {P} A {Q} is true with re spec t to 
interpretation I ([:I {P} A {Q}) iff V s ~ s'cS 

[scP A COMP(A,s) = s' :> s'EQ]. 

In order to prove partial correctness formulas 
involving LFC statements, five additional axioms 
and rules of inference are needed: 

(HI) assignment 

{~x } x:=e {Q} 

(H2) conditional 

{P^b} A 1 {0}, {PAth} ~2 {n} 

(~3) while 

{PAb} A {P}~ PA~b + O 
{P} b*A {q} 

(H4a) composition 

{P} A {q} 
{P} begin A end {Q} 

(H4b) composition 

{P} A 1 {R}, {R} begin A2...A ~ end {Q} 

{P} Begin AI; A2...A n end {q} 

(Hb) consequence 

P -> RI, {R I} A {R2} , R 2 ÷ O 

{P} ~ {o} 

Proofs of partial correctness formulas are con- 
structed from basic partial correctness axioms H1- 
H5, the coroutine axioms CI-CA, and a Proof system 
T for the true formulas of the assertion language 
AL. Formally, a proof will consist of a sequence 
of partial correctness formulas {P} A {O} and 
formulas of AL each of which is either an axiom or 
follows from previous formulas by a rule of infer- 
ence. If {P} A {Q} occurs as a line in such a 
proof, then we write [- {P} A {0}. In a similar 
manner we may define ~i I- ~2 where ~i and ~2 

are sets of partial correctness formulas. 

4. Soundness 

A deduction system is sound iff every theorem 
is actually true. In order to prove the soundness 
of our deduction system for coroutines, we must 
show that each axiom is true and that if all of 
the hypothesis of a rule of inference are true, the 
conclusion will be true also. For all of the axioms 
and rules of inference except CI, soundness is 
either trivial or has been previously demonstrated 
([CK77a], [CK77b], ~HO74]). Thus, in this section 
we restrict our attention to the rule of inference 
C1 for coroutines, l~Ye assume that we are given two 
proofs of the form 

{P'} exit {P'} I- {PAb} 01 {P} (Z..I) 

and 
{R'} resume {P'} I- {P'Ah} Q2 {P'} (z..2) 

Without loss of generality we may also assume that 
there are no redundant lines in the proofs of 4.i 
and 4.2 since there is a simole algorithm for 
eliminating them. We must show that 

I= {PAb} coroutine QI' Q2 end {R} 

Let L be the set of LFC statements occurring 
in the proofs of 4.1 and 4.2. In constructing L we 
distinquish between multiple occurrences of the same 
statement at different points in "coroutine QI' Q2 

end". Thus if Q1 contains five different "exit" 

statements~ L will contain five different exit state- 
ments. We also construct two functions p re and 

163 



i 
post which map the statements of L to assertions 
and satisfy the following conditions: 

(i) QI' Q2 e L. pre(Ql)=PAb, post(Ql)=R 

pre(Q2)=P'Ab, post(Q2)=R' 

(2) If A in L is "x:=e", then pre(A)=post(A) e . 
X 

(3) If A in L is "b+Al, A2", then A 1 and A 2 are 

also in L and 

pre(A)Ab ÷ p re(A I) 

pre(A)A~b -~ pre(A2) 

post(A I) ÷ post(A) 

post(A 2) -~ post(A). 

(4) If A in L is '~*AI", then A 1 e L and 

pre(A)Ab -~ pre(Al) 

pre(A)A~b -> post(A) 

post(A I) ÷ pre(A) 

(5) If A in L is "begin A 1 end", then A 1 e L and 

pre(A) ÷ pre(A I) 

post(A I) ÷ post(A) 

(6) If A in L is '~oegin AI; A2;...; A end" 
n 

then A 1 e L, "begin A2;...A n end" e L and 

pre(A) -~ pre(A I) 

post(Al) ÷ pre(begin A2;...An end) 

post(begin A 2...An end) -~ post(A) 

(7) If A in L is "exit ", then there is a 
predicate C i whichidoes not involve any free 

variables changed by Q2 such that 

pre(exiti) = P,AC i 

post(exit i) = R'AC i 

(8) If A in L is "resumei" , then there is a 

predicate D i which does not involve any free 

variables which are changed by Q1 such that 

pre(resume i) = R'AD i 

post(resume i) = P'AD. 
1 

Since the construction of the pre and post func- 
tions is relatively straightforward, we will not 
discu.~s the details of the construction any 
further in this paper. The next theorem is the 
main technical result of this section• From the 
theorem we are immediately able to deduce the 
soundness of rule CI. 

4.__~3 _Th_eore_m- Let sePAb. If CI(AI, A2, s') 

(C2(AI, A2, s')) occurs as the i th step in the 

computation COMP("coroutine QI' Q2 end", s) then 

(i) AI=AII; A2;.I ..A In where each AIeLI 

2 2 A 2 where each A2eL (2) A2--AI; A2;''" m z 

ipre and post functions were first used in soundness 
proofs by S. Owicki [0W76]. 

, 2 
(3) s'epre(A I) (s eDre(AI)) 

(4) post(A ) c_ pre(Ai+l), l<_i<n 

(5) post (Ai 2 ) A 2 c_ pre( i+]), l-<i<m 

(6) post(A I) c_ R (post(A 2) c_ R') 
n m 

Proof: (By induction on the number of steps in the 
computation COMP("coroutine QI' Q2 end", s)). 

(Basis) The theorem is true initially since 
COMP("coroutine Ql' Q2 end"'s)=Cl(Ql' Q2' s), 

QIeL, sePAb 9_ pre(Q I), and post(Ql ) c R. 

(Induction) We assume that the theorem is true at 
step i and show that it is also true at step i+l. 
Assume that step i is el(A1, A2, s'). By induction 

1 1 .A 1 where A~eL (i) AI=AI ; A2;'" n 

1 n I (2) s eDre(AI) , Dost(A ) c_ p 

(3) post (AI) _ I c Dre(Ai+l) , l_<i<n 

The i+l th steD in the computation will be deter- 

1 We will consider the cases in which mined by A I. 
1 

A 1 is an assignment statement, a while statement, 

and an exit statement. The remainin~ statements 
are similar and will be left to the reader. 

i ,,x :=e,,. (a) A 1 is In this case the next computa- 

~ • A ! tion, step will be CI(A ;, . n' A2' s*) where 

s (y)=s'(y) if y~x and s (x)=I[e(s')]. Since 
1 1 

s epre(A I) and pre(A I) c_ post(A ) , we see 

le * 11 that s'epost(Al) x or that s epost(A ). Since 

post(A ) c pre(A~), it follows that s epre(A2). 

Clearly the other conditions of the theorem 
are satisfied. 

1 is '~o,E". If s'eb then the next computation (b) A I 

1 .A I'' A 2 s') . step will be CI("F; b,E: A2;.. n ' ' 

Since Dre(A~)Ab + Dre(E) and s' e Dre(AI), it 

follows that s' e pre(E). Since Dost(E) + 

i 
pre(A I) , we see that the theorem will also hold 

for the i+l th computation step. The case in 
which s'{b is similar and will be left to the 
re ade r. 

I " In this case the next computation A I is "exlti". 

step is C2("A21;.. A I'' A2, s'). By construction of 
• n 

the pre function we have s'epre(exit) c p'AC i- 

There are two subcases depending on whether the 
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second routine (Q2) of the coroutine has been pre- 

vious ly executed. 

Case i: Suppose A2=Q2 and that Q2 has not been 

previously executed. In this case P'Ab c 
pre(Q2) = pre(A2). Thus s'eP' and s'eb. It 

follows that s'eP'Ab c pre(A2). 

Case ii: Suppose that "resumei" was the last state- 

ment executed when control was previously in 
Q2" Assume also that pre(resumei)=R'AD i and 

post(resumei)=P'AD i. Since D.I does not contain 

any free variables changed by QI' s'eDi" Since 

s'¢P', we have s'eP'AD i c post(resumei) c 

p re (A 2) . 

This completes the induction step in the proof of 
Theorem 4.3. The reader will observe that the 
omitted cases in the proof including the "resume" 
statement for C2 are analoguous to the cases con- 
sidered. Note also that if scPAb and 
COMP("coroutine Q1 • Q2 end", s) = s', then by 

Theorem 4.3 s'epost(A I) c_ R. Thus 

I = {PAb} coroutine QI' Q2 end {R}. This completes 

the proof of soundness for the rule of inference 
C1 for coroutines. 

5.. Completeness 

A deduction system is complete iff every true 
formula is provable. Unfortunately• if the proof 
system T for the assertion language is axiomatizable 
and if a sufficiently rich interpretation (such as 
number theory) is used for the assertion language, 
then it is impossible to specify a proof system for 
partial correctness of LFC programs which is both 
sound and complete. This follows from the fact 
that the divergence problem for turing machines 
can be expressed as a partial correctness problem 
for LFC programs [C075]. We can, however, prove 
a relative completeness theorem similar to the one 
proposed by Cook for simple Algol programs [C075]. 
If the proof system T for the assertion language 
is complete and if the assertion language satis- 
fies a natural expressibility condition, then 
every true LFC partial correctness formula will he 
provable using the axioms and rules of inference 
described in Sections 2 and 4. Furthermore, these 
proofs of partial correctness do not involve the 
use of history variables. 

Before describing the notion of expressibility 
used in the relative completeness theorem, it is 
necessary to introduce some additional notation. 

Since our primary interest is the coroutine 
statement, we will restrict our attention to LFC 
programs of the form "coroutine QI' Q2 end". We 

will represent the computation of such a program 
with initial state s O by 

1 i i 
<QI' Q2' So> <QI I" Q2' Sl>'"<Ql' Q2' si>"" 

_i+l 2+1 where detailed rules for deriving <ql ' Q ' Si+l > 

from <QI' Q2' si> may be obtained from the semantics 

for coroutines given in Section 3. 
If A is an LFC statement, then SUB(A) is the 

set of substatements of A. Any statement is a 
substatement of itself; for composite statements A 
such as"b÷Al, A2" any substatement of A 1 or A 2 is 

also a substatement of A. Note that different 
occurrences of the same statement in A are distin- 
quished in SUB(A). 

Given a coroutine statement A of the form 
"eoroutine 01' O2 end" and a predicate P, we define 

functions PRE and POST which associate sets of 
states with the statements in SUB(A). These func- 
tions are the duals of the pre and post functions 
used in the soundness proof of Section 4. Intu- 
itively, PRE(AI) (POST(A1)) is the set of program 

states in which A can be immediately before (after) 
the execution of substatement AI~ if the initial 

state of A satisfies the predicate P. When A 1 is 

a substatement of 01, we may formally define 

PRE(AI) and POST(AI) by 

PRE(Al)={s*Ithere is a computation of A of the form 

<QI' Q2' s> Q , s l > . . . < A  1;Q , 0.2,s > 
and seP} 

POST(Al)={s*Ithere is a computation of A of the form 

<QI' Q2 s> < I 1 I * * • QI • Q , s >...<AI;QI, Q2,s"> 

""<QI' Q2' s > and seP} 

Analogous definitions may also be given when A I is 

a suhstatement of Q2" 

5.1 Definition: The assertion language AL is 
expressive with respect to interpretation I iff for 
all programs A of the form "coroutine QI' 02 end" 

and all predicates P in AL, P~E(A I) and POST(A I) 

are expressible by formulas of AL whenever 
Ale SUB (A). 

There are examples of assertion languages and inter- 
pretations which fail to be expressive; however, 
realistic choices for AL and I do give expressi- 
bility. If for example AL is the language of arith- 
metic and I is an interpretation for AL in which 
the symbols of number theory receive their usual 
interpretations, then AL is expressive with respect 
to I [C075]. Also if I is a finite interpretation, 
then the assertion language will be expressive 
[CK76a]. In the remainder of this paper we will 
always assume that the expressibility condition is 
satisfied by the assertion language and interpre- 
tion that we are using. 

Additional important properties of the PRE and 
POST functions are listed below; proofs of these 
properties may be obtained directly from the defi- 
nitions of the PRE and POST functions and will not 
be given in this paper. 

If [={P} coroutine QI' Q2 end {R}, then 

(I) P = PRE(QI) , POST(01 ) c R 

(2) PRE(x:=e) = POST(x:=e) e 
X 

(3) PRE(b÷AI•A2)Ab = PRE(A I) 

PRE(b÷AI,A2)A~b = PRE(A2) 

POST(A I) E POST(h÷AI,A 2) 
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POST(A2) c POST(b+AI,A2) 

(4) PRE(b,A)Ab = PRE(A) 

PRE (b,A) A~b = POST(b,A) 

POST(A) = PRE(b*A) 

(5) PRE(begin A end) = PRE(A) 

POST(begin A end) = POST(A) 

(6) PRE(begin AI; A2...A n end) = PRE(A I) 

POST(A I) = PRE(begin A2...An end) 

POST(begin A2...A n end) = POST(begin AI; A 2... 
A end) 
n 

(7) V PRE(exit.) = PRE(Q2) v V POST(resume.) 
i l j 3 

V POST(exiti) = V PRE(resume.) v POST(Q 2) 
i j J 

The index i in (7) ranges over all distinct "exit" 
statements in SUB(Q1). The index j ranges over all 

distinct "resume" statements in SUB(Q2) Q 

We are now ready to begin the proof of relative 
completeness. Assume that {P} coroutine QI' Q2 end 

{R} is true; we must show that it is provable using 
the axioms and rules of inference in Sections 2 and 
3 and the complete proof system T for the true 
formulas of the assertion language. Without loss 
of generality we may assume that auxiliary variables 
i, j have been added to the coroutine program so 
that it has the form: 

i:=0; j:=0; 
coroutine 

begin 

i :=i 0 ; 
QI exit. ; 

10 

end, 

begin 

J :=J0; 
Q2 resume. ; 

30 

end 
end 

Let P' = V PRE(exit i) = PRE(Q 2) v V PRE(resumej) 
i j 

R' = V POST(exit i )  = V PRE(resumej) v POST(Q2) 
i j 

b = {i=0 A j=0} 

By the expressibility condition P', R', and b are 
representable by formulas of AL. Note also that 
all of the following conditions are satisfied: 

P' A (i=i 0) ---PRE(exiti0) 

R' A (i=i 0) -POST(exiti0) 

P' A b -- PRE(O 2)_~ - 

PAb - PRE(QI ) 

POST(Q I) + R 

POST(Q2) + R' 
Proofs of these formulas may be obtained using the 
complete proof system T for AL. We need only es- 
tablish that 

{P'} exit {R'} I- {PRE(01)} Q1 {POST(QI)} (5.2) 
and 

{R'} resume {P'} !- {PRE(O2)} Q2 {POST(O2)}(5"3) 

We will outline a proof that (5.2) holds; (5.3) is 
si1~ilar and will Be left to tBe reader. The proof 
of 5.2 uses induction on the structure of QI" Let 

A be a substatement of QI; we will show that 

{P'} exit {~'} I- {P~E(~)} ~ {PnST(~)}. If ~ is 
any statement but an "exit" or "resume" statement, 
this is trivial. For example, suppose that A is 
"b÷A1, A2" , then 

{PRE(A I)} A 1 {POST(A I)} 

and 
{PRE(A 2)} A 2 {POST(A 2)} 

are provable by the induction hypothesis. Thus, 

{PRE(b÷AI~ A2)Ab} A I {POST(b÷A I, A2)} 

and 
{PRE(b+A I, A2)A~b} A 2 {POST(b÷A I, A2)} 

may be proved using the rule of consequence. From 
the rule of inference for the conditional, we con- 
clude that {PRE(b÷AI, A2)} b÷Al, A 2 {POST(b+AI, A 2) } 

is provable as required. 
If A is the statement "exit. ", then we may 

l 0 

use the coroutine axiom C2 and the hypothesis 
{P'} exiti0 {R'} to deduce {P'Ai=io} exiti0 

{R'Ai=i0}. Since P 'A( i= i  O) -- PRE(exi t i0)  and 

R'A(i=i 0) --- POST(exiti0) , we conclude that 

{PRE(exiti0)} exiti0 {POST(exitio)} is ~rovable 

aiso. 
This concludes the outline of the relative 

completeness proof. Note that history variables 
are not needed in the construction; in fact, since 
the variables i and j used in the proo~ have 
bounded magnitudes, the entire construction call be 
carried out with only 0,l-valued auxiliary vari- 
ble. 

6. Open Problems 

We have argued that history variables are not 
needed in proofs of correctness for simple corou- 
tines. One might wonder if history variables are 
ever needed in correctness proofs. In an earlier 
paper [CK77a] we proved that it is impossible to 
obtain a sound and relatively complete P_oare axiom 
system for a programming language with coroutines, 
if the coroutines are allowed to contain local 
recursive procedures. _The notion of expressibility 
used in this incompleteness proof did not allow the 
use of history variables. If history variables 
were permitted, would the completeness theorem of 
Section 5 extend to handle local recursive 
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proceduresalso? We conjecture that the answer to 
this question is YES; if so, an alternative inter- 
pretation of the results in [CK76a] would be that 
history variables are necessary in correctness 
proofs of the extended coroutine language. We 
suspect, however, that the difficulty of using 
history variables in actual correctness proofs, 
would limit the use of this technique to very simple 
programs. 

History variables have also been used in cor~ 
rectness proofs for concurrent programs. Owicki, 
for example, describes a proof system for a con- 
current programming language in which synchromiza- 
tion is handled by conditional critical regions 
[OW76]. She also shows that her proof system is 
sound and relatively complete with respect to an 
operational semantics for her language. The proof 
of completeness requires the use of history vari- 
ables to record the order in which critical regions 
are entered. Other researchers, including Howard 
[HW76], have also used history variables in correct- 
ness proofs for concurrent programs. 

Are history variables necessary for formal 
verification of concurrent programs? In the case 
of Owicki's language, any concurrent program can 
be transformed into an equivalent nondeterministic 
Algol program in which the nondeterminism is used 
to simulate the possible interleavings of statements, 
Since deBakker and Meertens [DE73] have shown that 
a sound and relatively complete proof system may be 
given for nondeterministic Algol which does not 
require the use of history variables, it follows 
that history variables are not needed in proofs of 
partial correctness for Owicki's language. This 
solution is not completely satisfactory, however, 
since it is not clear that the transformation into 
nondeterministic Algol preserves such important 
properties of concurrent programs as absence of 
starvation. A more interesting open question is 
whether there is a proof system similar to the one 
originally described by Owicki which does not 
require the use of history variables. 

In view of these remaining open problems, we 
believe that the question of whether history 
variables are really necessary and whether their 
use significantly complicates correctness proofs 
is far from settled and deserves additional 
research. 
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