
Proving the Correctness of
Coroutines without History
Variables

Edmund M. Clarke (Duke
University)

Abstract

We examine the question of whether history variables are necessary in formal
proofs of correctness for coroutines. History v ~ are special variables which
are added to a program to facilitate its Droof by recording the execution history of
the program. Such variables were first used By Clint in his paper "Program Proving:
Coroutines." They have also been used by Owicki and Howard (concurrent programs) and
by Apt (sequential programs). We argue that recording the entire history of a computa-
tion in a single set of variables is inconvenient and leads to extremely complicated
proofs. We propose a modification of Clint's axiom system and a strategy for construc-
ting proofs which eliminates the need for history variables in verifying simple coroutines.
Examples are given to illustrate this technique of verifying coroutines and our axiom
system is shown to be sound and relatively complete with respect to an ooerational
semantics for eoroutines. Finally, we discuss extensions of the coroutine concept for
which history variables do appear to be needed; we also discuss the auestion of whether
history variables are necessary in verifying concurrent programs.

i. Introduction

This paper examines some of the problems in-
volved in developing an axiomatic proof system
for a programming language with coroutines. In
particular we investigate the question of whether
history variables are necessary in proving partial
correctness of coroutines. History variables are
special variables which are added to a program
to facilitate its proof by recording the sequence
of states reached by the program during a computa-
tion; after the proof has been completed the his-
tory variables may be deleted. The use of such
variables in correctness proofs was first sug-
gested by Clint [CL73] in a paper entitled "Pro-
gram Proving: Coroutines;" subsequently, history
variables have been used by Owicki [0W75] and
Howard [H075] in verifying concurrent programs
and by Apt [APT77] in verifying sequential pro-
grams. Owicki and Howard have conjectured that
history variables are necessary for proofs of
some concurrent programs.

The obvious power of history variables in
program proofs stems from the large amount of
information about a program's behavior which can
be obtained by examining execution sequences. This
power, however, is not available without a sacrifice.
Program histories are much more difficult to manip-
ulate in partial correctness assertions than simple
program identifiers. Another, less obvious, dis-
advantage is that it is no longer possible to con-
struct program proofs in a top-down manner in which
only the input-output behavior of a statement is
used to relate the statement to the remainder
of the program. Instead it is

necessary to consider the entire history of the
program's execution in constructinp Drools.
Because of these disadvantages we believe that the
use of history variables should be avoided whenever
possible. We conjecture, in fact, that the success
of program verification for actual programs will be
inversely related to the frequency of situations in
which it is necessary to reason about programs
using execution histories.

In this paper we show that history variables
are NOT needed in proving the correctness of simple
coroutines. We give a modification of Clint's
axiom system and a strategy for generating proofs
in which the only auxiliary variables needed (in
addition to the program identifiers) are simple
program counters. Since the program counters have
bounded magnitude, they may be encoded by 0,1-
valued auxiliary variables. We illustrate our
method of proving coroutines with examples and give
a proof of soundness and relative completeness for

our axiom system. 1 Finally, we discuss some exten-
sions of the coroutine concept which do aDoear to
require the use of history variables. We also
discuss the question of whether a Droof techniaue
similar to the one presented in this DaDer can be
used to avoid history variables in concurrent
programs.

IAlthough this completeness proof has been briefly
mentioned in another paper by the author [CK77a],
this is the first detailed account of the Droof to
appear in print.

160

2. Coroutines

A coroutine will have the form:

coroutine QI' Q2 end

Q1 is the main routine; execution begins in Q1 and

also terminates in Q1 (the requirement that execu-

tion terminate in Q1 is not absolutely necessary

but simplifies the axiom for coroutines). Other-
wise Q1 and Q2 behave in identical manners. If

an "exit" statement is encountered in 01, the next

statement to be executed will be the statement
following the last "resume" statement in Q2"

Similarly, the execution of a "resume" statement
in Q 2 causes execution to be restarted following

the last "exit" statement executed in QI" A simple
example of a coroutine is:

coroutine
while y#z do

y:=y+l; x:=x+y; exit;
en d,

while true do
y:=y-2 ; resume ;
y :=y+l; resume ;
end

end

This example illustrates the use of "exit" and
"resume" statements within while loops. Note that
if x and y are 1 initially and zel, then the co-

2
routine will terminate with y=z .

2.1 Axioms for Coroutines

In this section we give a set of axioms for
coroutines and describe a technique for proving
correctness of coroutines which is based on the
use of auxiliary variables. This technique is
different from the technique described by Clint
[CL733, in that the auxiliary variables represent
program counters (and therefore have bounded
magnitude) rather than program histories.

CI. (Coroutines)

{P'} exit {R'}]- {PAb} Q1 {R}

{R'} resume {P'} I- {P'Ab} Q2 {R'}

{PAb} coroutine QI' Q2 end {R}

provided no variable free in b is global
to QI" (This axiom is a modification of

of the one in [CL73]).

C2. (Exit)

{P'} exit {R'}
{P'AC} exit {R'AC}

provided that C does not contain any free
variables that are changed by Q2" (Here we

assume that "exit" occurs in statement Q1 of

"coroutine QI' Q2 end").

C3. (Resume)

{R'} resume {P'}
{R'AC} resume {P'AC}

provided that C does not contain any free
variables that are changed in 01. (Here we

assume that "resume" occurs in statement 02

of"coroutine 01, Q2 end").

C4. (Auxiliary variables)

Let AV be a set of variables such that xeAV
iff x appears in S' only in assignments
y:=e with yeAV. If P and 0 are assertions
which do not contain any free variables from
AV and if S is obtained from S' bv deleting
all assignments to variables in AV, then

{P} S' {q}
{P}" S {q}

(This axiom is essentially the same as the
auxiliary variable axiom in [0W76]).

We illustrate the axioms with an example. We

show that {x=l A y=l A z>-l} A {x=z 2} where ~ --
"coroutine QI' Q2 end" is the coroutine given in

Section 2.1. Our strategy in carrying out the
proof will be to introduce auxiliary variables to
distinquish the various "exit" and "resume" state-
ments from each other and then use axiom C4 to
delete these unnecessary variables as the last
step of the proof. Axiom C2 enables us to adapt
the general exit assumption {P'} exit {~'} to a
specific occurrence of an exit statement in 01.

similar comment applies to axiom C3 for the resume
statement. We prove:

{x=l A y=l A z>-l}
i:=0; j:=0;
coroutine

while y#z do
y :=y+l ; x :=x+¥ ;
i:=l; exit;
end,

while true do
y:=y-2; j:=l; resume;
y:=y+l; j:=0; resume;
end

end

{x=z 2 }

Note that two auxiliary variables are needed (one
for each routine of the coroutine). The auxiliary
variable j of the second routine is assigned a
different value prior to each "resume" statement
and is not changed by the first routine. Thus the
value of j can be used in assertions to distinquish
which of the resume statements has been most
recently executed. The auxiliary variable i of
the first routine has a dual function. This tech-
nique of adding auxiliary variables will be for-
mally described in Section 5; however, the ~eneral
pattern should be clear from the above example.
To complete the proof we choose:

P = {x=l A y=l A z>l A i=0 A j=o}

161

b = {j=0}

R = {x=z 2}

P' = {(x=y2-y+l A j=0 A y~z)

V (x=y2+2y+l A j=l A y~z-l)}

R' = {(x=y2+3y+3 A j=l A y~z-2)

V (x=y 2 A j=0 A y~z)}

The invariant for the while loop of the first rou-
tine is:

INV I = {(x=y2+3y+3 A j=l A y~z-2)

V (x=y 2 A j=0 A y~zl}

The invariant for the While loop of the second
routine is:

INV 2 = {x=y2-y+l A j=0 A y~z}

Using axioms C2-C4 together with the axioms for the
assignment statement and the while statement, it is
possible to prove that:

(a) {P'} exit {R'} I- {PAb} Q1 {R}

and

(b) {R'} resume {P'} I- {P'Ab} Q2 {R'}

both hold. For example, to prove (b~ we assume
{R'} resume {P'} and prove {P'Ab} Q2 {R'}. In

order to prove {P'Ab} Q2 {R'} we show that

(c) P'Ab + INV 2

(d) {INV 2 }

while true do
y:=y-2; j:=l; resume;
y:=y+l; j:=2; resume;
end

{INV2A~true}

(e) INV2A~true + R' are true.

Steps (c) and (e) are easily verified. Step (d]
follows from the while axiom and the sequence of
assertions below:

(dl) assignment

{INV2Atrue} y:=y-2; j=l {R'Aj=I}

(d2) resume

{R'AJ=I} resume {P'Aj=I}

(d3)

(d4)

assignment

{P'Aj=I} y:=y+l; j=0 {R'Aj=0}

resume

{R'Aj=0} resume {P'Aj=0}

(d5) arithmetic

P'Aj=0 + INV 2

Once (a) and (b) have been established, the desired
conclusion follows immediately by axiom CI.

3. An Operational Semantics for Coroutines

To substantiate our claim that history vari-

ables are not necessary for verifying simple co-
routines, we prove that the axiom system of Section
2 is sound and complete with respect to an opera-
tional semantics for coroutines. In this section
we describe the syntax and semantics of a simple
programming language for coroutSnes (L~C). In
Sections 4 and 5 the soundness and comnleteness
proofs will be given.

An LFC sta~6ement is either an assiFnment

'TE" eT', st~atement .= a conditional statement "b ->

AI, A2" , a whi-le~s~tement "b*~", a compound

statement "begin ~i" ~2;'''An end", or a coroutine

statement "coroutine QI' 02 end". Within a corou-

tine statement, two additional statement tyoes are
possible: the "exit" statement in QI and the

"resume'" statement in 02 . Since we are interested

in the correctness of LFC programs, we must also
specify the logical system in which the correctness
assertions are expressed. In this paper the
~sse~tio~ la~igUage is a first order language with
equal~ty which we denote by AL. To simplify the
semantics of LFC programs, we require that the
Boolean expressions of LFC conditionals be quan-
tifier-free formulas of AL, and that the right
hand sides of LFC assignment statements be terms
in AL.

An in~6e~re~6ation I for AL consists of a set
D (the domain of the internretation), an assignment
of functions on D to the function symbols of ~L
and an assignment of predicates on D to the predi-
cate symbols of AL. Let ID be the set of identi-
fiers (i.e. variables) of ~L, and let I be an
interpretation for ~L with domain D. ~ ~rogram
state is a maoping from ID to D giving the "value"
associated with each identifier. The set of all
program states will be denoted bv S. If t is a
term of AL with variables Xl, x2...x n and s is a

program state, then t(s) will denote

t S(Xl)...s(x n)

Xl,.-,,X n

i.e. the term obtained from t by simultaneously

substituting s(x I) s(x n) for x I x n.

Similarly, we may define P(s) where P is a
formula of AL.

It will also be convenient to identify a
predicate P with the set {s I l[P(s)] = true}
of program states which make P true. False will
correspond to the empty state set, true will
correspond to the set S of all program states, and
logical operations on predicates may be interpreted
as set theoretic operations on subsets of S, i.e.
"or" becomes "union", "and" becomes "intersection",
"not" becomes "complement", and "implies" becomes
"is a subset of". In general there will be many
sets of states which are not expressible by
formulas of the assertion language ~L.

Meanings of LFC statements are specified by a
state-transition function COMP(~,s) which associ-

ates with statement A and state s, a new state s'.
Intuitively s' is the state resultinp if ~ is
executed with initial state s. The definition of
COMP(A,s) is by cases on ~:

(i~ A is "x:=e" -~ s' where s'(v)=s(y)

if y@x and s'(x)=I[e(s)].

162

I COMP (AI ~s)
(2) A is "b ÷ AI, A^'~÷~

Z ~ COMP CA 2 ~ s) otb_erwise

(3) A is "b,Al" ____->~COMP("b*AI"'COMP(AI'S)) s~b

i s otherwise

(4) A is "begin AI; A2;...A n end" ÷

COMP ("begin A2...An end" ,COMP(AI,S))

(5) A is "begin end" ----÷ s

(6) COMP("Coroutine QI' Q2 end",s) is defined in

terms of two mutually recursive procedures C1
and C2 as follows:

COMP("Coroutine QI' Q2 end",s) = CI(QI , Q2' s)

where CI(RI, R2, s) is defined by cases on R I.

(R represents the remainder of statement R I) .

(6a) R 1 = "x:=e; R" ---+ CI(R,R2,s')

where s'(y)=s(y) if y#x and s'(x)=IFe(s)].

(6b) ~ CI("A 1 ;R" ,R 2 ,s) seb

R 1 = "b->AI,A2; R" -~ ~CI("A2;R",R2,s) otherwise

(6c) ~ CI("AI;b*AI;R",R2,s) s~b

R 1 = "b,Al; R" ----~ ~ CI(R,R2,s) otherwise

(6d) R 1 = "begin AI;A2...A n end; R" ---÷

CI("AI; begin A2...A n end; R", R2, s)

(6e) R I = "begin end; R" ----+ CI(R, R2, s)

(6f) R I = "exit; R" ----~ C2(R, R2, s)

(6g) R 1 = A (i.e. R 1 is the empty string) ----> s.

The definition of C2(RI, R2, s) is the dual of the

definition of C1 except that C2(RI, A , s) =

CI(R I, A , s). Thus execution of the coroutine

always terminates in QI" Note also that the

definition of COMP does not allow for nested co-
routines. Clause 6 could be modified to handle
this case as well; however, nesting of coroutines
is unnecessary to illustrate most of the dif-
ficulties involved in using the axioms of Section 2.

Partial correctness formulas will have the
form {P} A {Q} where A is an LFC statement and P
and Q are formulas of the assertion language AL.

3.1 Definition: {P} A {Q} is true with re spec t to
interpretation I ([:I {P} A {Q}) iff V s ~ s'cS

[scP A COMP(A,s) = s' :> s'EQ].

In order to prove partial correctness formulas
involving LFC statements, five additional axioms
and rules of inference are needed:

(HI) assignment

{~x } x:=e {Q}

(H2) conditional

{P^b} A 1 {0}, {PAth} ~2 {n}

(~3) while

{PAb} A {P}~ PA~b + O
{P} b*A {q}

(H4a) composition

{P} A {q}
{P} begin A end {Q}

(H4b) composition

{P} A 1 {R}, {R} begin A2...A ~ end {Q}

{P} Begin AI; A2...A n end {q}

(Hb) consequence

P -> RI, {R I} A {R2} , R 2 ÷ O

{P} ~ {o}

Proofs of partial correctness formulas are con-
structed from basic partial correctness axioms H1-
H5, the coroutine axioms CI-CA, and a Proof system
T for the true formulas of the assertion language
AL. Formally, a proof will consist of a sequence
of partial correctness formulas {P} A {O} and
formulas of AL each of which is either an axiom or
follows from previous formulas by a rule of infer-
ence. If {P} A {Q} occurs as a line in such a
proof, then we write [- {P} A {0}. In a similar
manner we may define ~i I- ~2 where ~i and ~2

are sets of partial correctness formulas.

4. Soundness

A deduction system is sound iff every theorem
is actually true. In order to prove the soundness
of our deduction system for coroutines, we must
show that each axiom is true and that if all of
the hypothesis of a rule of inference are true, the
conclusion will be true also. For all of the axioms
and rules of inference except CI, soundness is
either trivial or has been previously demonstrated
([CK77a], [CK77b], ~HO74]). Thus, in this section
we restrict our attention to the rule of inference
C1 for coroutines, l~Ye assume that we are given two
proofs of the form

{P'} exit {P'} I- {PAb} 01 {P} (Z..I)

and
{R'} resume {P'} I- {P'Ah} Q2 {P'} (z..2)

Without loss of generality we may also assume that
there are no redundant lines in the proofs of 4.i
and 4.2 since there is a simole algorithm for
eliminating them. We must show that

I= {PAb} coroutine QI' Q2 end {R}

Let L be the set of LFC statements occurring
in the proofs of 4.1 and 4.2. In constructing L we
distinquish between multiple occurrences of the same
statement at different points in "coroutine QI' Q2

end". Thus if Q1 contains five different "exit"

statements~ L will contain five different exit state-
ments. We also construct two functions p re and

163

i
post which map the statements of L to assertions
and satisfy the following conditions:

(i) QI' Q2 e L. pre(Ql)=PAb, post(Ql)=R

pre(Q2)=P'Ab, post(Q2)=R'

(2) If A in L is "x:=e", then pre(A)=post(A) e .
X

(3) If A in L is "b+Al, A2", then A 1 and A 2 are

also in L and

pre(A)Ab ÷ p re(A I)

pre(A)A~b -~ pre(A2)

post(A I) ÷ post(A)

post(A 2) -~ post(A).

(4) If A in L is '~*AI", then A 1 e L and

pre(A)Ab -~ pre(Al)

pre(A)A~b -> post(A)

post(A I) ÷ pre(A)

(5) If A in L is "begin A 1 end", then A 1 e L and

pre(A) ÷ pre(A I)

post(A I) ÷ post(A)

(6) If A in L is '~oegin AI; A2;...; A end"
n

then A 1 e L, "begin A2;...A n end" e L and

pre(A) -~ pre(A I)

post(Al) ÷ pre(begin A2;...An end)

post(begin A 2...An end) -~ post(A)

(7) If A in L is "exit ", then there is a
predicate C i whichidoes not involve any free

variables changed by Q2 such that

pre(exiti) = P,AC i

post(exit i) = R'AC i

(8) If A in L is "resumei" , then there is a

predicate D i which does not involve any free

variables which are changed by Q1 such that

pre(resume i) = R'AD i

post(resume i) = P'AD.
1

Since the construction of the pre and post func-
tions is relatively straightforward, we will not
discu.~s the details of the construction any
further in this paper. The next theorem is the
main technical result of this section• From the
theorem we are immediately able to deduce the
soundness of rule CI.

4.__~3 _Th_eore_m- Let sePAb. If CI(AI, A2, s')

(C2(AI, A2, s')) occurs as the i th step in the

computation COMP("coroutine QI' Q2 end", s) then

(i) AI=AII; A2;.I ..A In where each AIeLI

2 2 A 2 where each A2eL (2) A2--AI; A2;''" m z

ipre and post functions were first used in soundness
proofs by S. Owicki [0W76].

, 2
(3) s'epre(A I) (s eDre(AI))

(4) post(A) c_ pre(Ai+l), l<_i<n

(5) post (Ai 2) A 2 c_ pre(i+]), l-<i<m

(6) post(A I) c_ R (post(A 2) c_ R')
n m

Proof: (By induction on the number of steps in the
computation COMP("coroutine QI' Q2 end", s)).

(Basis) The theorem is true initially since
COMP("coroutine Ql' Q2 end"'s)=Cl(Ql' Q2' s),

QIeL, sePAb 9_ pre(Q I), and post(Ql) c R.

(Induction) We assume that the theorem is true at
step i and show that it is also true at step i+l.
Assume that step i is el(A1, A2, s'). By induction

1 1 .A 1 where A~eL (i) AI=AI ; A2;'" n

1 n I (2) s eDre(AI) , Dost(A) c_ p

(3) post (AI) _ I c Dre(Ai+l) , l_<i<n

The i+l th steD in the computation will be deter-

1 We will consider the cases in which mined by A I.
1

A 1 is an assignment statement, a while statement,

and an exit statement. The remainin~ statements
are similar and will be left to the reader.

i ,,x :=e,,. (a) A 1 is In this case the next computa-

~ • A ! tion, step will be CI(A ;, . n' A2' s*) where

s (y)=s'(y) if y~x and s (x)=I[e(s')]. Since
1 1

s epre(A I) and pre(A I) c_ post(A) , we see

le * 11 that s'epost(Al) x or that s epost(A). Since

post(A) c pre(A~), it follows that s epre(A2).

Clearly the other conditions of the theorem
are satisfied.

1 is '~o,E". If s'eb then the next computation (b) A I

1 .A I'' A 2 s') . step will be CI("F; b,E: A2;.. n ' '

Since Dre(A~)Ab + Dre(E) and s' e Dre(AI), it

follows that s' e pre(E). Since Dost(E) +

i
pre(A I) , we see that the theorem will also hold

for the i+l th computation step. The case in
which s'{b is similar and will be left to the
re ade r.

I " In this case the next computation A I is "exlti".

step is C2("A21;.. A I'' A2, s'). By construction of
• n

the pre function we have s'epre(exit) c p'AC i-

There are two subcases depending on whether the

164

second routine (Q2) of the coroutine has been pre-

vious ly executed.

Case i: Suppose A2=Q2 and that Q2 has not been

previously executed. In this case P'Ab c
pre(Q2) = pre(A2). Thus s'eP' and s'eb. It

follows that s'eP'Ab c pre(A2).

Case ii: Suppose that "resumei" was the last state-

ment executed when control was previously in
Q2" Assume also that pre(resumei)=R'AD i and

post(resumei)=P'AD i. Since D.I does not contain

any free variables changed by QI' s'eDi" Since

s'¢P', we have s'eP'AD i c post(resumei) c

p re (A 2) .

This completes the induction step in the proof of
Theorem 4.3. The reader will observe that the
omitted cases in the proof including the "resume"
statement for C2 are analoguous to the cases con-
sidered. Note also that if scPAb and
COMP("coroutine Q1 • Q2 end", s) = s', then by

Theorem 4.3 s'epost(A I) c_ R. Thus

I = {PAb} coroutine QI' Q2 end {R}. This completes

the proof of soundness for the rule of inference
C1 for coroutines.

5.. Completeness

A deduction system is complete iff every true
formula is provable. Unfortunately• if the proof
system T for the assertion language is axiomatizable
and if a sufficiently rich interpretation (such as
number theory) is used for the assertion language,
then it is impossible to specify a proof system for
partial correctness of LFC programs which is both
sound and complete. This follows from the fact
that the divergence problem for turing machines
can be expressed as a partial correctness problem
for LFC programs [C075]. We can, however, prove
a relative completeness theorem similar to the one
proposed by Cook for simple Algol programs [C075].
If the proof system T for the assertion language
is complete and if the assertion language satis-
fies a natural expressibility condition, then
every true LFC partial correctness formula will he
provable using the axioms and rules of inference
described in Sections 2 and 4. Furthermore, these
proofs of partial correctness do not involve the
use of history variables.

Before describing the notion of expressibility
used in the relative completeness theorem, it is
necessary to introduce some additional notation.

Since our primary interest is the coroutine
statement, we will restrict our attention to LFC
programs of the form "coroutine QI' Q2 end". We

will represent the computation of such a program
with initial state s O by

1 i i
<QI' Q2' So> <QI I" Q2' Sl>'"<Ql' Q2' si>""

_i+l 2+1 where detailed rules for deriving <ql ' Q ' Si+l >

from <QI' Q2' si> may be obtained from the semantics

for coroutines given in Section 3.
If A is an LFC statement, then SUB(A) is the

set of substatements of A. Any statement is a
substatement of itself; for composite statements A
such as"b÷Al, A2" any substatement of A 1 or A 2 is

also a substatement of A. Note that different
occurrences of the same statement in A are distin-
quished in SUB(A).

Given a coroutine statement A of the form
"eoroutine 01' O2 end" and a predicate P, we define

functions PRE and POST which associate sets of
states with the statements in SUB(A). These func-
tions are the duals of the pre and post functions
used in the soundness proof of Section 4. Intu-
itively, PRE(AI) (POST(A1)) is the set of program

states in which A can be immediately before (after)
the execution of substatement AI~ if the initial

state of A satisfies the predicate P. When A 1 is

a substatement of 01, we may formally define

PRE(AI) and POST(AI) by

PRE(Al)={s*Ithere is a computation of A of the form

<QI' Q2' s> Q , s l > . . . < A 1;Q , 0.2,s >
and seP}

POST(Al)={s*Ithere is a computation of A of the form

<QI' Q2 s> < I 1 I * * • QI • Q , s >...<AI;QI, Q2,s">

""<QI' Q2' s > and seP}

Analogous definitions may also be given when A I is

a suhstatement of Q2"

5.1 Definition: The assertion language AL is
expressive with respect to interpretation I iff for
all programs A of the form "coroutine QI' 02 end"

and all predicates P in AL, P~E(A I) and POST(A I)

are expressible by formulas of AL whenever
Ale SUB (A).

There are examples of assertion languages and inter-
pretations which fail to be expressive; however,
realistic choices for AL and I do give expressi-
bility. If for example AL is the language of arith-
metic and I is an interpretation for AL in which
the symbols of number theory receive their usual
interpretations, then AL is expressive with respect
to I [C075]. Also if I is a finite interpretation,
then the assertion language will be expressive
[CK76a]. In the remainder of this paper we will
always assume that the expressibility condition is
satisfied by the assertion language and interpre-
tion that we are using.

Additional important properties of the PRE and
POST functions are listed below; proofs of these
properties may be obtained directly from the defi-
nitions of the PRE and POST functions and will not
be given in this paper.

If [={P} coroutine QI' Q2 end {R}, then

(I) P = PRE(QI) , POST(01) c R

(2) PRE(x:=e) = POST(x:=e) e
X

(3) PRE(b÷AI•A2)Ab = PRE(A I)

PRE(b÷AI,A2)A~b = PRE(A2)

POST(A I) E POST(h÷AI,A 2)

165

POST(A2) c POST(b+AI,A2)

(4) PRE(b,A)Ab = PRE(A)

PRE (b,A) A~b = POST(b,A)

POST(A) = PRE(b*A)

(5) PRE(begin A end) = PRE(A)

POST(begin A end) = POST(A)

(6) PRE(begin AI; A2...A n end) = PRE(A I)

POST(A I) = PRE(begin A2...An end)

POST(begin A2...A n end) = POST(begin AI; A 2...
A end)
n

(7) V PRE(exit.) = PRE(Q2) v V POST(resume.)
i l j 3

V POST(exiti) = V PRE(resume.) v POST(Q 2)
i j J

The index i in (7) ranges over all distinct "exit"
statements in SUB(Q1). The index j ranges over all

distinct "resume" statements in SUB(Q2) Q

We are now ready to begin the proof of relative
completeness. Assume that {P} coroutine QI' Q2 end

{R} is true; we must show that it is provable using
the axioms and rules of inference in Sections 2 and
3 and the complete proof system T for the true
formulas of the assertion language. Without loss
of generality we may assume that auxiliary variables
i, j have been added to the coroutine program so
that it has the form:

i:=0; j:=0;
coroutine

begin

i :=i 0 ;
QI exit. ;

10

end,

begin

J :=J0;
Q2 resume. ;

30

end
end

Let P' = V PRE(exit i) = PRE(Q 2) v V PRE(resumej)
i j

R' = V POST(exit i) = V PRE(resumej) v POST(Q2)
i j

b = {i=0 A j=0}

By the expressibility condition P', R', and b are
representable by formulas of AL. Note also that
all of the following conditions are satisfied:

P' A (i=i 0) ---PRE(exiti0)

R' A (i=i 0) -POST(exiti0)

P' A b -- PRE(O 2)_~ -

PAb - PRE(QI)

POST(Q I) + R

POST(Q2) + R'
Proofs of these formulas may be obtained using the
complete proof system T for AL. We need only es-
tablish that

{P'} exit {R'} I- {PRE(01)} Q1 {POST(QI)} (5.2)
and

{R'} resume {P'} !- {PRE(O2)} Q2 {POST(O2)}(5"3)

We will outline a proof that (5.2) holds; (5.3) is
si1~ilar and will Be left to tBe reader. The proof
of 5.2 uses induction on the structure of QI" Let

A be a substatement of QI; we will show that

{P'} exit {~'} I- {P~E(~)} ~ {PnST(~)}. If ~ is
any statement but an "exit" or "resume" statement,
this is trivial. For example, suppose that A is
"b÷A1, A2" , then

{PRE(A I)} A 1 {POST(A I)}

and
{PRE(A 2)} A 2 {POST(A 2)}

are provable by the induction hypothesis. Thus,

{PRE(b÷AI~ A2)Ab} A I {POST(b÷A I, A2)}

and
{PRE(b+A I, A2)A~b} A 2 {POST(b÷A I, A2)}

may be proved using the rule of consequence. From
the rule of inference for the conditional, we con-
clude that {PRE(b÷AI, A2)} b÷Al, A 2 {POST(b+AI, A 2) }

is provable as required.
If A is the statement "exit. ", then we may

l 0

use the coroutine axiom C2 and the hypothesis
{P'} exiti0 {R'} to deduce {P'Ai=io} exiti0

{R'Ai=i0}. Since P 'A(i= i O) -- PRE(exi t i0) and

R'A(i=i 0) --- POST(exiti0) , we conclude that

{PRE(exiti0)} exiti0 {POST(exitio)} is ~rovable

aiso.
This concludes the outline of the relative

completeness proof. Note that history variables
are not needed in the construction; in fact, since
the variables i and j used in the proo~ have
bounded magnitudes, the entire construction call be
carried out with only 0,l-valued auxiliary vari-
ble.

6. Open Problems

We have argued that history variables are not
needed in proofs of correctness for simple corou-
tines. One might wonder if history variables are
ever needed in correctness proofs. In an earlier
paper [CK77a] we proved that it is impossible to
obtain a sound and relatively complete P_oare axiom
system for a programming language with coroutines,
if the coroutines are allowed to contain local
recursive procedures. _The notion of expressibility
used in this incompleteness proof did not allow the
use of history variables. If history variables
were permitted, would the completeness theorem of
Section 5 extend to handle local recursive

166

proceduresalso? We conjecture that the answer to
this question is YES; if so, an alternative inter-
pretation of the results in [CK76a] would be that
history variables are necessary in correctness
proofs of the extended coroutine language. We
suspect, however, that the difficulty of using
history variables in actual correctness proofs,
would limit the use of this technique to very simple
programs.

History variables have also been used in cor~
rectness proofs for concurrent programs. Owicki,
for example, describes a proof system for a con-
current programming language in which synchromiza-
tion is handled by conditional critical regions
[OW76]. She also shows that her proof system is
sound and relatively complete with respect to an
operational semantics for her language. The proof
of completeness requires the use of history vari-
ables to record the order in which critical regions
are entered. Other researchers, including Howard
[HW76], have also used history variables in correct-
ness proofs for concurrent programs.

Are history variables necessary for formal
verification of concurrent programs? In the case
of Owicki's language, any concurrent program can
be transformed into an equivalent nondeterministic
Algol program in which the nondeterminism is used
to simulate the possible interleavings of statements,
Since deBakker and Meertens [DE73] have shown that
a sound and relatively complete proof system may be
given for nondeterministic Algol which does not
require the use of history variables, it follows
that history variables are not needed in proofs of
partial correctness for Owicki's language. This
solution is not completely satisfactory, however,
since it is not clear that the transformation into
nondeterministic Algol preserves such important
properties of concurrent programs as absence of
starvation. A more interesting open question is
whether there is a proof system similar to the one
originally described by Owicki which does not
require the use of history variables.

In view of these remaining open problems, we
believe that the question of whether history
variables are really necessary and whether their
use significantly complicates correctness proofs
is far from settled and deserves additional
research.

[C)75]

[DE73]

[FL67]

[G075]

[H069]

[H074]

[HW76]

[MA70]

[0W76]

[WA76]

Cook, S.A. Axiomatic and interpretative
semantics for an Algol fragment. Tech-
nical Report 79, Department of Computer
Science, University of Toronto, 1975
(to be published in SCICOMP).

deBakker, J.W. and Meertens, L.G.L.T. On
the completeness of the inductive asser-
tion method. Mathematical Centre,
December 1973.

Floyd, R.W. Assigning meaning to programs.
In: Mathematical Asp#cts of Computer
Science Proc. Symposia in Applied Mathe-
matics, J.T. Schwartz, Ed., 19:19-32,
Amer. Math. Soc., 1967.

Gorelick, G. A complete axiomatic system
for proving assertions about recursive
and non-recursive programs. Technical
Report No. 75, Department of Computer
Science, University of Toronto, January
1975.

Hoare, C.A.R. An axiomatic approach to
computer programming. CACM, 12:322-329,
October 1969.

Hoare, C.A.R. and Lauer, P.E. Consistent
and complementary formal theories of the
semantics of programming languages. Acta
Informatica, 3:135-154, 1974.

Howard, J.H. Proving monitors. COMM ACM,
19(5):273-279, May 1976.

Manna, Z. and Pnuefi, A. Formalization of
properties of functional programs. JACM,
17(3):555-569, 1970.

Owicki, S. A consistent and complete de-
ductive system for the verification of
parallel programs. 8th Annual Symposium
on Theory of Computing, 1976.

Wand, M, A new incompleteness result for
Hoare's system. 8th Annual Symposium on
Theory of Computing, 1976.

References

[APT77] Apt, K.R., Bergstra, J.A., and Meertens,
L.G.L.T. Recursive assertions are not
enough--or are they? Mathematical Centre
Report IW 92/77.

[CK77a] Clarke, E.M. Programming language con-
structs for which it is impossible to
obtain good Hoare-like axiom systems.
Proceedings of the 4th POPL, 1977.

[CK77b] Clarke, E.M. Program invariants as fixed
points. Proceedings of the 18th FOCS,
1977.

[CL73] Clint, M. Program proving: Coroutines.
Acta Informatica, 2:50-63, 1973.

167

