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Abstract

We examine the question of whether history variables are necessary in formal

proofs of correctness for coroutines.

History variables are special variables which

are added to a program to facilitate its proof by recording the execution history of
the program. Such varisbles were first used by Clint in his paper "Program Proving:
Coroutines." They have also been used by Owicki and Howard (concurrent programs) and
by Apt (sequential programs). We argue that recording the entire history of a computa-
tion in a single set of variables is inconvenient and leads to extremely complicated
preofs. We propose a modification of Clint's axiom system and a stratepy for construc—

ting proofs which eliminates the need for history variables in verifyinpg simple corcutines.

Examples are given to illustrate this technique of verifying coroutines and our axiom
system is shown to be sound and relatively complete with respect to an operational
semantics for coroutines. Finally, we discuss extensions of the coroutine concent for
which history variables do appear to be needed; we also discuss the question of whether

history variables are necessary in verifying concurrent programs.

1. Introduction

This paper examines some of the problems in-
volved in developing an axiomatic proof system
for a programming language with coroutines. 1In
particular we investigate the question of whether
history wvariables are necessary in proving partial
correctness of coroutines. History variables are
special variables which are added to a program
to facilitate its proof by recording the sequence
of states reached by the program during a computa-
tion; after the proof has been completed the his-
tory variszbles may be deleted. The use of such
variables in correctness procfs was first sug-
gested by Clint [CL73] in a paper entitled "Pro-
gram Proving: Coroutines:" subsequently, history
variables have been used by Owicki [OW75] and
Howard {10757 in verifying concurrent programs
and by Apt [APT77] in verifying sequential pro-
grams., Owicki and Howard have conjectured that
history variables are necessary for proofs of
S0me concurrent programs.

The obvious power of history variables in
program proofs stems from the large amount of
information about a program's behavior which can
be obtained by examining execution sequences. This

power, however, is not available without a sacrifice.

Program histories are much more difficult to manip-
ulate in partial corxectness assertions than simple
program identifiers. Another, less obvious, dis-
advantage is that it is no longer possible to con-
struct program proofs in a top-down manner in which
only the input-output behavior cof a statement 1s
used to relate the statement to the remainder

of the program. Instead it is
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necessary to consider the entire history of the
program's execution in constructing proofs.

Because of these disadvantages we believe that the
use of history variables should be aveided whenever
possible. We conjecture, in fact, that the success
of program verification for actual programs will be
inversely related to the frequency of situations in
which it is necessary to reason about programs
using execution histories.

In this paper we show that history wvariables
are NOT needed in proving the correctness of simple
coroutines. We give a modification of Clint's
axiom system and a strategy for generating proofs
in which the only auxiliary variables needed (in
addition to the program identifiers) are simple
program counters. Since the program counters have
bounded magnitude, they may be encoded by 0,1-
valued auxiliary variables. We illustrate our
method of proving coroutines with examples and give
a proof of soundness and relative completeness for

our axiom system.l Finally, we discuss some exten-—
sions of the coroutine concept which do appear to
require the use of historvy variables. We also
discuss the question of whether a »nroof technique
similar to the one presented in this paper can be
used to aveid historv variahles in concurrent
programs.

lAlthough this completeness proef has been hriefly
menticned in another paper by the author [CK77a],
this is the first detailed account of the proof to
appear in print.



2. Coroutines

A coroutine will have the form:
coroutine Ql’ Q2 end
Ql is the main routine; execution begins in Ql and
also terminates in Q, (the requirement that execu—
tion terminate in Ql is not absolutely necessary

Other-
If

an "exit" statement 1is encountered in Ql, the next

but simplifies the axiom for coroutines).
wise Q1 and Qz behave in identical manners,

statement to be executed will be the statement
following the last "resume" statement in a,.

Similarly, the execution of a "resume" statement
in"Q2 causes execution to be restarted following

the last "exit" statement executed in Ql'
example of a coroutine is:

coroutine

while y#z do
yi=ytl; xi=xty; exity
end,

while true do
yi=y-2; resume;
yi=y+l; resume;
end

end

This example illustrates the use of "exit'" and
"resume" statements within while loops. Note that
if x and y are 1 initially and z21l, then the co-

routine will terminate with y=z2.

2,1 Axioms for Coroutines

In this section we give a set of axioms for
coroutines and describe a technique for proving
correctness of corocutines which is based on the
use of auxiliary variables, This technique is
different from the technique desc¢ribed by Clint
[CL73]}, in that the auxiliary variahles represent
program counters (and therefore have bounded
magnitude) rather than program histories,

Cl. <(Coroutines}
{P'} exit {R'} |- {PAB} Ql {Rr}
{R'} resume {P'} |- {P" b} Q, {R"}

{PMbT} coroutine Q, Q, end {R}

provided no variable free in b is global
to Ql' (This axiom is a modification of

of the one in [CL73]).
c2. (Exit)

{P'} exit {R'}
{P'ACY exit {RTAC}

provided that C does not contain any free
variables that are changed by Q- (Here we

assume that "exit" occurs in statement a, of

" + "
coroutine Ql’ Q2 end").

A simple

C3. (Resume)

{R'} resume {P'}
{R'AC} resume {P'AC}

provided that C does not contain any free
variables that are changed in Ql. (Here we

assume that "resume" occcurs in statement 0

end") .

2
of meoroutine 0 0
'1' 2

C4, {(Auxiliarv variables)

Let AV be a set of variables such that xeAV
1ff x appears in S' onlv in assignments
yvi=e with veAV., If P and 0 are assertions
which do not contain any free variables from
AV and if § is obtained from §' by deleting
all assignments to variasbles in AV, then

{p} 8" {0}
{r} s {q}

(This axiom is essentially the same as the
auxiliary variable axiom in [OW76]).

We illustrate the axioms with an example. We

show that {x=1 A y=1 A =zz1} & {x=zz} where & =
"coroutine Ql’ Q2 end" is the coroutime given in

Section 2.1, Our strategy in carrying out the
proof will be to introduce auxiliary variables to
distinquish the various "exit" and "resume" state-
ments from each other and then use axiom C& to
delete these unnecessary variables as the last
step of the proof. Axiom C2 enables us to adant
the general exit assumption {P'} exit {R'} to a
specific occurrence of an exit statement in 01. A

similar comment apnlies to axiom C3 for the resume
statement. We prove:

{x=1 A y=1 A z=1}
i:=0; §:=0;
coroutine
while y#z do
yi=y+l; x:i=xty;
1:=1; exit;
end,
while true do

yi=y~2: ji=1; resume;
yi=y+l; j:=0; resume;
end
end
{x=2”)

Note that two auxilliary variables are needed (one
for each routine of the coroutine). The auxiliary
variable j of the second routine is assipned a
different value prior to each "resume" statement
and is not changed by the first routine. Thus the
value of j can be used in assertions to distinquish
which of the resume statements has been most
recgntly executed. The auxiliarvy variable i of

the first routine has a dual function. This tech-
nigue of adding auxiliarv variahles will he for-
mally described in Section 53 however, the peneral
pattern should be clear from the above example.

To complete the proof we -choose:

P = {x=1 A y=1 A z21 A i=0 A jy=n}
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b = {j=0}
R = {x=zz}
P' = {(x=y2—y+l A j=0 A ygz)})
v (x=y2+2y+l A =1 A y=z-1)}
R' = {(x=y™k3y+3 A j=1 A y<z-2)

v (x=y2 A 3=0 A y=2})}
The invariant for the while loop of the first rou-
tine is:

INV

= {Gooy?+3y+3 K 3=1 A ysz-2)

v [x=y2 A 3=0 A y=g}}
The invariant for the while loop of the second

routine is:

INV, = {x=y2—y+l A j=0 A ysz}

2

Using axioms C2-C4 together with the axioms for the
assignment statement and the while statement, it is
possible to prove that:

(a) {P'} exit {R'} |. {PAb} Q1 {R}
and
(b) {R'} resume {P'} |- {P'ab} Q, Rr'}

both hold. TFor example, to prove (b) we assume

{R'} resume {P'} and prove {P'Ab} Q, {R'}, In
order to prove {P'Ab} Q2 {R'} we show that
{c) P'Ab > INV2
(d) {INV2}
while true do

yi=y-2; j:=1; resume;

vi=y+l; j:=2; resume;

end

{INVZANtrue}

(e) INV2Amtrue > R' are true.
Steps (¢) and (e} are easily verified. Step (d)

follows from the while axiom and the sequence of
assertions below:

(d1) assignment

{INV,Atrue} yi=y-2; j=1 {R'Aj=1}
(d2) resume

{R'Aj=1) resume {P'Aj=1}
(d3) assignment

{P"Aj=1} vi=y+1; j=0 {R'Aj=0}
(dl‘) Ifesume

{R"Aj=0} resume {[P'A3=0}
(d5) arithmetic

P'Aj=0 + INV,

Once (a) and (b) have been established, the desired
conclusion follows immediately by axiom Cl.

3. An Operational Semantics for Coroutines

To substantiate cur claim that history vari-

162

statement "begin A

statement "coroutine 0

ables are not necessary for verifying simple co-
routines, we prove that the axiom system of Section
2 is sound and complete with respect to an opera-
tional semantics for coroutines. In this section
we describe the svntax and semantics of a simple
programming lanpuage for coroutines (LFC)}. In
Sections 4 and 5 the soundness and commleteness
proofs will be given.

An LFC statement is either an assignment

I

statement "x:=e", a conditional statement b
A, A", a while-sstatement "b#A", a compound

1’ 72
Ik Az;...An end", or a coroutine
)y 5 02 end".
tine statement, two additional statement tywmes are
possible: the "exit" statement in Ql and the

exit
Since we are interested

Within a corou-

"resume" statement in Qz.
in the correctness of LFC programs, we must also
specify the logical system in which the correctness
assertions are expressed. In this paper the
arsertion ‘liarguage is a first order language with
equality which we denote by AL. To simplify the
semantics of LFC programs, we require that the
boolean expressions of LFC conditicnals be guan-
tifier-free formulas of AL, and that the right
hand sides of LFC assignment statements be terms
in AL,

An imterpretation T for AL consists of a set
D (the domain of the interpretation), an assignment
of functions on D to the function symbels of AL
and an assignment of predicates on D to the predi-
cate symbols of AL. Let ID be the set of identi-
fiers (i.e. variables) of AL, and let I be an
interpretation for AL with domain D. 2 propram

state 1s a mapping from ID to N piving the "value"

associated with each identifier. The set of all
program states will be denoted hv §. If t is a
term of AL with variables Xy, Xy X and s is a

program state, then t{s) will denote

¢ s&xl)...s(xn)

Xl,...,Xn

i,e, the term cobtained from t by simultanecusly
substituting s(xl),...s(xn) for Hyweo K

Similarly, we may define P(s) where P is a
formula of AL.

It will also be convenient to identify a
predicate P with the set {s | I[P(s)] = truel
of program states which make P true. False will
correspond to the empty state set, true will
correspond to the set 8 of all program states, and
logical operations on predicates may be interpreted
as set theoretic operations on subsets of S, i.e.
"or" becomes "union', "and” becomes "intersection”,
"not" becomes "complement", and "implies™ becomes
“"is a subset of". In peneral there will be meany
sets of states which are not expressible by
formulas of the assertion languape AL.

Meanings of LFC statements are specified hv a
state~transition function COMP(A,s) which associ-
ates with statement A and state s, a new state s'.
Intuftively s' is the state resulting if 2 is

executed with initial state s. The definition of
COMP(A,s) is by cases on A:
(1} A is "xi=e" > ¢! where s'(y)=s(y)

if y#x% and s' &X)=I[e(s)].



COMP(A),8)  aeh
(2) Ais ™ » Al’ A2"¢
COMP(AZ,S) otherwige
COMP(”b*Al",COMP(Al,s)) seb
(3) Aidis "bxA)" ----=
1 .
s otherwise
(4} A is "begin Al; A2;...A11 end" ----+
COMP ("begln A,...A end",COMP(4,s))
(5) A is "begin end" ----» s
{6) COoMP{"Coroutine Ql’ Q2 end",s) is defined in
terms of two mutually recursive procedures Cl
and €2 as follows:
COMP(""Coroutine Ql’ Q2 end",s) = Cl(Ql, QZ’ s)
where Cl(Rl’ R2, s) is defined by cases on Rl'
(R represents the remainder of statement Rl).
(6a) R, = "x:=e; R" --— C1(R,R,,s")
1 2
where s'(y)=s(y) if v¥x and s'(x)=I[e(s)].
(eb) Cl("Al;R",RQ,s) seb
Ry = "buA A5 R >
Cl("Az;R”,Rz,s) otherwise
(6e) Cl("Al;b*Al;R",Rz,s) seh
Ry = '%*Al; R" ———+
Cl(R,Rz,s) otherwise
{6d) Rl = "begin Al;AQ"'An end; R" —-w=s
" . : . 1"
c1( Al, begin AQ"'Ah end; R", RZ’ s)
(6e) R = "begin end; R" ---- C1l(R, R2, s)
(6£) R1 = "exit; R" ---+ C2(R, R2, s)
(6g) Ry = 4 (i.e. R, is the empty string) ---+ s,

The definition of CZ(Rl, Ry, s) 1s the dual of the
definition of Cl except that CZ(Rl, A s 8) =
Cl(Rl, A s 35).

always terminates in Ql'

Thus execution of the coroutine
Note also that the

definition of COMP does not allow for nested co-

routines. Clause 6 could be modified to handle

this case as well; however, nesting of coroutines

is unnecessary to illustrate most of the dif-

ficulties involved in using the axioms of Section 2.
Partial correctness formulas will have the

form (P} A {Q} where A is an LFC statement and P

and Q are formulas of the assertion language AL,

3,1 Definition: {P} A {Q} is true with respect to

interpretation T ([:I (P} A {0}) iff vs , s'eS
[seP A COMP(A,s) = g' => s5'e].

In order to prove partial correctness formulas
involving LFC statements, five additional axioms
and rules of inference are needed:

(1) assignment

{QE} w=e  {Q}
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(H2) conditional
{Pab} Ay {o}, {Pab} A, {n}

[PT b+ 4, A, {0]

(H3) while

{PAb} A {P}, PAB > O
{P} bxa 10}

(H42) composition

{P} A [0}
{P} begin A end {Q}

(H4h) composition
{r} A {R}, {R} Begin A

{P} begin A

qe -4 end {0}
n
A ...A end {0}
2 n

l;
(H5) consequence
PR, {Rl} A {RZ], R, +©

{r} A {0}

Proofs of partial correctness formulas are con-
structed from basic partial correctness axioms Hl-
H5, the coroutine axioms Cl-C4, and a proof system
T for the true formulas of the agssertion language
AL. Tormally, a proof will consist of a sequence
of partial correctness formulas {P} A {0} and
formulas of AL each of which is either an axiom or
follows from previous formulas by a rule of infer-
ence. If {P} A {0} occurs as a line in such a
proof, then we write [- {P} A {0}. In a similar

manner we may define I {- N, where I; and I,

are sets of partial correctness formulas.

4. Soundness

A deduction system is sound iff every theorem
is actually true. In order to prove the soundness
of our deduction system for coroutines, we must
show that each axiom is true and that if all of
the hypothesis of a rule of inference are trye, the
conclusion will be true also. For all of the axioms
and rules of inference except Cl, soundness is
efither trivial ox has been previously demonstrated
([ck77al, [CK77b], THO741). Thus, in this section
we restrict our attention to the rule of inference
€l for coroutines. We assume that we are given two
proofs of the form

{P'} exit {R'} I~ {PAb} n {r}

and
{R'} resume {P'} |- {P"ib} n, {r'}

(4,1

(2.7

Without loss of generalitv we may also assume that
there are no redundant lines in the proofs of 4.1
and 4.2 since there s a simple alporithm for
eliminating them. We must show that

|= {PAb} coroutine Ql’ Q2 end (R}

Let I, be the set of LFC statements cccurring
in the proofs of 4.1 and 4.2, In constructing L we
distinquish between multiple occurrences of the same

statement at different points in "coroutine Ql, Q2
end", Thus if Ql contains five different "exit"

statements, L will contain five different exit state-
ments. We alsc construct two functions pre and



1 .
post™ which map the statements of L to assertions
and satisfy the following conditions:

(1) Qs Q, € L. pre(Ql)=PAb, post(Q1)=R
pre(Q2)=P'Ab, post(Q2)=R'
(2) If Ain L is "x:=e", then pre(A)=post(A)§ .
(3 If Ain L is "bsA
also in L and
pre(A)Ab pre(Al)
pre(a) b pre(Az)
post(Al) -+ post(A)

A.2 , then A, and A_ are

1’ 1 2

post(Az) - post(A).
{(4) If A in L is "b*Al", then A1 e L and
pre{A)Ab > pre(Al)
pre(A)Avb > post(a)
post(A) + pre(a)

{5) If Ain L is "begin A, end", then A, ¢ L and

1 1
pre(d) - pre(4,)
post(Al) + post(A)
{(6) If Ain L is "begin Al; AZ;...; A end",
then Ay e L, "begin Agiee-A end" e L and

pre(A) »—pre(Al)
post(Al) + pre(begin Agieerh end)
2.-.An end) + post(A)

(7) If Ain L is "exit, ", then there is a
predicate Ci which“does not involve any free

variables changed by Q2 such that
. -— T
pre(ex1ti) =P ACi
1 - 1
post(exlti) =R ACi
(8) If Ain L is "resume "

i
which does not invelve any free

post(begin A

, then there is a
predicate Di
variables which are changed by Ql such that

pre(resumei) = R‘ADi
= p!
post(resumei) AR

Since the construction of the pre and post func-
tions is relatively straipghtforward, we will not
discurs the detalls of the construction any
further in this paper., The next theorem is the
main technical result of this section, From the
theorem we are immediately able to deduce the
soundness of rule C1,

4.3 Theorem: Let sePAb, If Cl(Al, g s")

(CZ(Al, Ays 8')) occurs as the i step in the
computation COMP("coroutine Ql’ Q2 end", s) then
1 1 1 1
(@) Al—Al, AZ""An where each AiEL
2 2 2
(2) A2 1, 2,...Am where each AieL

lPre and post functions were filrst used in soundness
proofs by S. Owicki [OW76].

(3) s'apre(Ai) (s'snre(pi))

(4) post(r,) ¢ pre(Ai+1), 1si<n

n

[ N pon o

(5) post(A)) ¢ pre(Ai+1), 1<i<m

[

(6) post(A’)

In

R (post(Az) €< R")
m

=]

Proof: (By induction on the number of steps in the
computation COMP("coroutine Ql, Q2 end", s)).

{Basis) The theorem is true initially since
COMP ("coroutine 01, Q2 end",s)=Cl(Q1, QZ’ s),

QeL, sePhb ¢ pre(Ql), and post(Ql) c R

(Induction) We assume that the theorem is true at

step i and show that it is also true at step i+1l.

Assume that step i is Cl(Al, Az, s'). By induction
1,1 1

(1) Aj=A"; A TR

1
1 1, 9 where AleL

i

2) s'enre(Ai), DOSt(Ai) cF

1 .
(3 Dost(Ai) < Dre(Ai+1) 1si<n
The i+1™" step in the computation will be deter-
wmined by Al. We will consider the cases in which

1
Al is an assignment statement, a while statement,

and an exit statement. The remaining statements
are similar and will be left to the reader.

(a) Al is "x:=e", 1In this case the next computa-

%
tion step will be CI(A A;, Ayy 8 )} where
5 (y) s (y) if y#x and s (x) I[e(s Y]. Since

s Epre(Al) and pre(Al) = post(A1};5 we see

*
that s'epost(A.l)g or that s epost(Al). Since

post(A ) ¢

Clearly the other conditions of the theorem
are satisfied.

pre(A,), it follows that s Epre(A ).

(b) Ai is "baE". TIf s'eb then the next computation
step will be C1({"F; baF: A%;...Ai", Ay s').

Since Dre(Ai)Ab -+ pre(F) and s' ¢ nre(Ai), it

follows that s' £ pre(E). Since post(E) -

pre(Ai), we see that the theocrem will also hold

for the i+1th computation step. The case in
which s'¢b is similar and will be left to the
reader.

In this case the next computation
1

AT, A, 8T

the pre function we have s'epre(exit) c P'ACi.

1 . " ] u
Al is ex1ti .

step is CZ("A;; By construction of

There are two subcases depending on whether the



second routine (QZ) of the coroutine has been pre-
viously executed.
Case i: Suppose A2=Q2 and that Q2 has not been

previously executed. In this case P'Ab c

pre(Qz) = pre(Az). Thus s'eP' and s'eb. It
follows that s'eP'Ab g,pre(Az).
Case ii: Suppose that "resumei" was the last state-—

ment executed when control was previously in
Q,. Assume also that pre(resumei)=R'ADi and

post(resumei)=P'ADi. Since D, does not contain

any free variables changed by Ql’ s'sDi. Since

s'cP', we have s'cP'AD, < post(resumei) =

pre(Ai).

This completes the induction step in the proof of
Theorem 4.3, The reader will cobserve that the
omitted cases in the proof including the "resume™
statement for C2 are analoguous to the cases con-
sidered. Note also that if sePAb and

COMP ("coroutine Qs Q end", s) = s', then by

Theorem 4,3 s'epost(Ai) c R, Thus
[= {PAb} coroutine Ql’ Q, end {R}. This completes

the proof of soundness for the rule of inference
Cl for coroutines,

5, Completeness

A deduction system is complete iff every true
formula is provable. TUnfortunately, if the proof
system T for the assertion languape is axfiomatizable
and if a suffieciently rich interpretation (such as
number theory) is used for the assertion language,
then it is impossible to specify a proof system for
partial correctness of LFC programs which is both
sound and complete. This follows from the fact
that the divergence problem for turing machines
can be expressed as a partial correctness problem
for LFC programs [CO75]. We can, however, prove
a relative completeness theorem similar tc the one
proposed by Cook for simple Algol programs [C075].
If the proof system T for the assertion language
is complete and if the assertion language satis-
fies a natural expressibility condition, then
every true LFC partial correctness formula will be
provable using the axicms and rules of inference
described in Sections 2 and 4, Furthermore, these
proofs of partial correctness do not involve the
use of history variables.

Before describing the notion of expressibility
uged in the relative completeness thecorem, it is
necessary to introduce some additional notation.

Since our primary interest is the coroutine
statement, we will restrict our attention to LFC
programs of the form "coroutine Ql’ QZ end". We

will represent the computation of such a program
with initial state s, by

0
1 1
<Q1) Qz; SO> <Q1, QZ, Sl>.-

<Q 2’ si>
i+l

where detailed rules for deriving <Q . QZ .

Si+1”
from <Qi, Q;, s> may be obtained from the semantics
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for coroutines given in Section 3.

If A is an LFC statement, then SUB(A) is the
set of substatements of A. Any statement is a
substatement of i1tself; for composite statements A

such as"b+A1, AQ" any substatement of Al or A, is

also a substatement of A. Note that different
occurrences of the same statement in A are distin-
quished in SUB(A).

Given a coroutine statement A of the form
"coroutine 01, QZ end" and a predicate P, we define

functions PRE and POST which associate sets of
states with the statements in SUB(A). These func-
tions are the duals of the pre and post functions
used in the soundness preof of Section 4. Intu-—
itively, PRE(AI) (POSI(Al}) is the set of progranm

states in which A can be immediately before (after)
the executicn of substatement Al’ if the initial
state of A satisfies the predicate P. When Al is
a substatement of Ol, we may formally define
PRE(A ) and POST(A ) by

PKE(A Y={s*|there is a computatlon of A of the form

1 ® &
<le sz 5> <Ql’ QZ’ s >"'<A19Q19 .215 >
and seP}

POST(A )= {s [there is a computatlon of A,of the form

i

<Ql$ Qza ke <Qll st s >“‘<A13Q19 Q2)5 >

...<Ql, Q2, ] *s and seP}
Analogous definitions may also be given when A1 is

a substatement of 0O 2y

5.1 Definition: The assertion language AL is
expressive with respect to lnterpretation T iff for
all programs A of the form “coroutine 01, Q end"

and all predicates P in AL, PRE(AI) and POST(Al)

are expressible by formulas of AL whenever

AleSUB(AJ.

There are examples of assertion languages and inter-
pretations which fail to be expressive; however,
realistic choices for AL and I do pive expressi-
bility. TIf for example AL is the language of arith-
metie and T is an interpretation for AL in which
the symbols of number theory receive their usual
interpretations, then AL is expressive with respect
to I [CO75]. Also if I is a finite interpretation,
then the assertion language will be expressive
[CK76a]. In the remainder of this paper we will
always assume that the expressibility cendition is
satisfied by the assertion language and interpre-
tion that we are using.

Additional important properties of the PRE and
POST functions are listed below; proofs of these
properties may be obtalned directly from the defi-
nitions of the PRE and POST functicns and will not
be given in this paper.

If !={P} coroutine Q. Q, end R}, then
Q¥ r-= PRE(QI), POST(Q;) < R
(2} PRE(x;i=e) = POST(x:=e)§-
(&)} PRE(b+A1,A2)Ab = PRE(A,)
PRE(D+A A IAb = PRE(A )
POST(A ) POST(b+.A1,A )



POST(AZ) = POST(baAl,AZ)
(4) PRE(bxA)Ab = PRE(A)
PRE(bxA)Avh = POST(bxA)
POST(A) = PRE(bx#A)
(5} PRE(begin A end) = PRE(A)
POST(begin A end) = POST(A)
(6) PRE(begin Al; AZ"'Ah end) = PRE(Al)
POST(Al) = PRE(begin AZ"'An end)
POST (begin AZ"'An end) = POST(begin Al; AZ"'

Ah end)
(N v PRE(exiti) = PRE(QZ) vV POST(resumej)
i k|
v PDST(exiti) =y PRE(resumej) v POST(QZ)
i 3

The index i in (7) ranges over all distinct "exit"
statements in SUB(Ql). The index j ranges over all

distinct "resume" statements in SUB(QZ).

We are now ready to begin the proof of relative
completeness, Assume that {P} coroutine Ql’ Q2 end

{R} is true; we must show that it is provable using
the axioms and rules of inference in Sections 2 and
3 and the complete proof system T for the true
formulas of the assertion language. Without loss

of generality we may assume that auxiliary variables
1, j have been added to the coroutine program so
that it has the form:

i:=0; j:i=0;
coroutine
begin
Ql i:=iO;
exiti H
0
end,
bepin
Q, 3:=1ps
resume, 3
Jo
end
end
let P' =V PRE(exiti) = PRE(QZ) vV PRE(resumej)
i i
R' =V POST(exiti) =y PRE(resumej) v POST(QZ)
i J

b = {i=0 A j=0}

By the expressibility condition P', R', and b are
representable by formulas of AL. Note also that
all of the following conditions are satisfied:

' = - .
P' A (1 10) = PRE(exlti )
1]
\ s - .
R' A (i 10) = POST(ex1tiO)

P' Ab = PRE(QE)
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PAb = PRE(Q,)
POST(Q;) + R
POST(Q,) ~ R'

Proofs of these formulas may be obtained using the
complete proof system T for AL. We need only es-
tablish that

'} exit {R"} |- WMMQQ}Ql{PmTMQ} (5.2)
and
{R"} resume {P'} |- {PRE(O?)} Q, {POST(OZ)}(S.S)

We will outline a proof that (5.2) heolds; (5.3) is
similar and will Be left to the reader., The proof

of 5.2 uvses induction on the structure of Ql. Tet
A be a substatement of 01; we will show that
{P'} exit {R'} |- {PRE(A)} & {P0ST(A}}. 1If A is

any statement but an "exit" or Yresume" statement,
this is trivial. TFor example, suppose that A is
"b+Al, Az", then

{PRE(Al)} A {POST(AI)}

and
{PRE(AQ)} A2 {POST(AZ}]

are provable by the induction hypothesis. Thus,
{PRE(b+A1, Az)Ab} Al {POST(_B+A1, Az)}

and
{PRE(b+A1, AZ)Amb} A2 {POST(b+A1, Az)}

may be proved using the rule of consequence. From
the rule of inference for the conditional, we con-
clude that {PRE(b+A1, AZ)} b+Al, A2 {POST(b+Al, AZ)}

is provable as required.
1f A is the statement ”exiti
Q
use the coroutine axiom C2 and the hypothesis
{P'} exit, {R'} to deduce {P'Al=i } exit,
10 ) 10
Since P'A(i=1.) = PRE(exit, ) and
0 i
R'A(itio) = POST(exiti Y}, we conclude that
0
{PRE(exit. )} exit. {POST(exit, )} is provable
‘0 1o *n

", then we may

{R'Ai=io}.

also.

This concludes the outline of the relative
completeness proof. Note that history variables
are not needed in the construction; in fact, since
the variables 1 and j used in the proof have
bounded magnitudes, the entire construction can be
carried out with only 0,1-valued auxiliary vari-
ble.

6. Open Problems

We have argued that history variables are not
needed in proofs of correctness for simple corou-
tines. One might wonder if history variables are
ever needed in correctness proofs. In an earlier
paper [CK77a] we proved that it is impossible to
obtain a sound and relatively complete Hoare axiom
system for a programming lanpuape with coroutines,
if the coroutines are allowed to contain local
recursive procedures. The notion of expressibility
used in this incompleteness proof did not allow the
uge of history variables., If history wvariables
were permitted, would the completeness theorem of
Section 5 extend to handle local recursive



procedures -also? We conjecture that the answer to
this question is YES; if so, an alternative inter—
pretation of the results in [CK76a] would be that
history variables are necessary in correctness
proofs of the extended coroutine language. We
suspect, however, that the difficulty of using
history variables in actual correctness proofs,
would limit the use of this technique to very simple
programs.

History variables have also been used in cor-
rectness proofs for concurrent programs. Owicki,
for example, describes a proof system for a con—
current programming language in which synchromiza-
tion is handled by conditional critlcal regions
[OW76€]. ©She alsc shows that her proof system is
sound and relatively complete with respect to an
operational semantics for her language. The proof
of completeness requires the use of history vari-
ables to record the order in which critical regions
are entered. Other researchers, including Howard
[HW76], have also used history variables in correct-
ness proofs for concurrent programs,

Are history variables necessary for formal
verification of concurrent programs? In the case
of Owicki's language, any concurrent program can
be transformed into an equivalent nondeterministic
Algol program in which the nondeterminism is used
to simulate the possible interleavings of statements.
Since deBakker and Meertens [DE73] have shown that
a sound and relatively complete proof system may be
given for nondeterministic Algol which does not
require the use of history variables, it follows
that history variables are not needed in proofs of
partial correctness for Owicki's language. This
solution is not completely satisfactory, however,
since it is not clear that the transformation into
nondeterministic Algol preserves such important
properties of concurrent programs as absence of
starvation. A more interesting open question is
whether there is a proof system similar to the one
originally described by Owicki which does not
require the use of history variables.

In view of these remaining open problems, we
believe that the question of whether history
variables are really necessary and whether their
use significantly complicates correctmness proofs
is far from settled and deserves additional
research.
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