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Abstract—As a first step, most model checkers used in the hard-
ware industry convert a high-level register-transfer-level (RTL)
design into a netlist. However, algorithms that operate at the netlist
level are unable to exploit the structure of the higher abstraction
levels and, thus, are less scalable. The RTL of a hardware descrip-
tion language such as Verilog is similar to a software program
with special features for hardware design such as bit-vector arith-
metic and concurrency. This paper uses predicate abstraction, a
software verification technique, for verifying RTL Verilog. There
are two challenges when applying predicate abstraction to circuits:
1) the computation of the abstract model in presence of a large
number of predicates and 2) the discovery of suitable word-level
predicates for abstraction refinement. We address the first prob-
lem using a technique called predicate clustering. We address
the second problem by computing the weakest preconditions of
Verilog statements in order to obtain new word-level predicates
during abstraction refinement. We compare the performance of
our technique with localization reduction, a netlist-level abstrac-
tion technique, and report improvements on a set of benchmarks.

Index Terms—Model checking (MC), predicate abstraction,
refinement, register transfer level (RTL), satisfiability (SAT),
verification.

I. INTRODUCTION

MOST NEW hardware designs are implemented at a high
level of abstraction, e.g., using the register transfer level

(RTL), or even at the system level. The RTL of a hardware de-
scription language such as Verilog is very similar to a software
program in ANSI-C and offers special features for hardware de-
signers such as bit-vector arithmetic and concurrency. However,
most formal verification tools used in the hardware industry still
operate on a low-level design representation called a netlist.
This is due to the lack of automated verification techniques
at the RTL. Converting a high-level RTL design into a netlist
results in a significant loss of structure present at the RTL. This
makes verification at the netlist level less scalable.
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A. Model Checking (MC) and Abstraction

MC [11], [13] is an automatic technique for the verifica-
tion of concurrent systems. It has been used successfully in
practice to verify complex circuit designs and communication
protocols. MC systematically explores the state space of a
given design and checks that each reachable state satisfies
the property of interest. When the design fails to satisfy a
desired property, the process of MC produces a counterexample
that demonstrates a behavior which falsifies the property. The
properties (formal specifications) are usually described in linear
temporal logic (LTL) or computational tree logic. By making
use of symbolic algorithms [4], [8] based on binary decision
diagrams (BDDs) [7] and fast satisfiability (SAT) solvers [29],
[31], [32], current model checkers can handle many industrial
designs.

The number of states in industrial hardware designs is ex-
tremely large. This often results in exorbitant resource re-
quirements during MC even when symbolic MC algorithms
are used. One principal method for state-space reduction is
abstraction. Abstraction techniques reduce the state space by
mapping the set of states of the actual concrete system to an
abstract, and smaller, set of states in a way that preserves the
relevant behaviors of the system.

We focus on abstraction techniques that produce a conserv-
ative overapproximation of the concrete system. This implies
that if the abstraction satisfies a given property, the property
also holds on the original concrete system. When MC of the
abstraction fails, it produces an abstract counterexample. The
drawback of the conservative abstraction is that an abstract
counterexample may not correspond to any concrete counter-
example (real error). This is usually called a spurious counter-
example [9].

In order to check if an abstract counterexample is spurious,
the abstract counterexample is simulated on the concrete ma-
chine. This is called the simulation step. As in bounded MC
[4], the concrete transition relation for the design and the given
property are jointly unwound to obtain a Boolean formula.
The number of unwinding steps is given by the length of the
abstract counterexample. The Boolean formula is then checked
for satisfiability using a SAT procedure such as the MiniSat
[31]. If the instance is satisfiable, the counterexample is real,
and the procedure terminates. If the instance is unsatisfiable, the
abstract counterexample is spurious, and abstraction refinement
has to be performed.

The basic idea of abstraction-refinement techniques is to
create a new abstract model that contains more detail in order to
prevent the spurious counterexample [3], [9], [27]. This process
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is iterated until the property is either proved or disproved. It
is known as the counterexample-guided abstraction-refinement
framework (CEGAR) [9].

B. Abstraction Techniques for Software Verification

In the software domain, predicate abstraction [21] has
emerged as a successful technique for verifying large systems.
It abstracts data by only keeping track of certain predicates on
the data. Each predicate is represented by a Boolean variable
in the abstract program, whereas the original data variables
are eliminated. Predicate abstraction of ANSI-C programs,
in combination with CEGAR, was introduced by Ball and
Rajamani [3] and was promoted by the success of the static
driver verifier (SDV) project. The goal of SDV is to verify that
Windows device drivers obey the application programming
interface conventions. The abstraction is computed using a
theorem prover.

C. Abstraction Techniques for Hardware Verification

Most model checkers used in hardware verification operate
on a very low level design, usually a netlist. At the netlist level,
the most commonly used abstraction technique is localization
reduction [22], [27], [39]. The abstract model is created from
the given circuit by removing a large number of latches together
with the logic required to compute their next state. The latches
that are removed are called the invisible latches. The latches re-
maining in the abstract model are called the visible latches. The
initial abstract model is created by making the latches present
in the property visible and the rest invisible. The refinement is
done by moving more latches from the set of invisible latches
to the set of visible latches.

Clarke et al. [15] introduce a SAT-based technique for predi-
cate abstraction of netlist-level circuits. The use of a SAT solver
like zChaff [32] in order to perform the abstraction allows pre-
cise modeling of bit-vector semantics. However, their approach
suffers from two drawbacks. 1) Each transition in the abstract
model is computed by a separate run of the SAT solver. Thus,
the learning done by a SAT solver in the form of conflict clauses
is lost when computing other transitions in the abstract model.
2) If refinement becomes necessary, only bit-level predicates
are introduced. This method of refinement closely resembles
refinement techniques for localization reduction.

While localization reduction is a special case of predicate
abstraction, predicate abstraction can result in a much smaller
abstract model. As an example, assume that a circuit contains
two registers, each encoding a number. Predicate abstraction
can keep track of a numerical relation between the two numbers
using a single predicate and, thus, using a single state bit in
the abstract model. In contrast, localization reduction typically
turns all bits of the two registers into visible latches, and thus,
the abstraction is identical to the original model.

Predicate abstraction is only effective if the predicates can
cover the relationship between multiple latches. This typically
requires a word-level model given in the RTL of a hardware
description language. The RTL models are similar to programs
written in a language, such as the ANSI-C. We apply predicate
abstraction to word-level models given in RTL Verilog.

Software verification tools use theorem provers for com-
puting the predicate abstraction. Theorem provers model the
variables using unbounded integers. Overflow or bitwise opera-
tors are not modeled. However, hardware description languages
like Verilog provide an extensive set of bitwise operators. For
hardware designs, the use of these bit-level constructs is ubiq-
uitous. As in [12], we use a bit-level SAT solver to compute the
abstract-transition relation. This allows us to precisely model
the bit-vector semantics of hardware designs during abstraction
computation.

We view our technique as a word-level verification tech-
nique since the predicates that are used for computing the
abstraction are at the word level. The abstract model contains
the relationships between the word-level predicates and not
the individual latches. The use of a bit-level SAT solver as
a decision procedure can be replaced by a word-level solver.
Such a solver eliminates or reduces the need to flatten a given
formula to the bit level. However, existing word-level solvers
for hardware description languages are not yet competitive with
bit-level SAT solvers.

D. Contribution

This paper applies predicate abstraction and refinement for
verifying circuits given in RTL Verilog. Two problems arise
when applying predicate abstraction to circuits: 1) the compu-
tation of the abstract model in presence of a large number of
predicates, and 2) the discovery of suitable word-level predi-
cates for abstraction refinement.

In order to address the first problem, we divide the set of
predicates into clusters of related predicates. The abstraction
is computed separately with respect to the predicates in each
cluster. Since each cluster contains only a small number of
predicates, the computation of the abstraction becomes more
efficient. We refer to this technique as predicate clustering. This
technique allows us to tune the abstraction step between the two
extremes of eager abstraction [12] and lazy abstraction [24].
The eager technique refers to the case when all predicates are
within a single cluster, whereas lazy abstraction corresponds to
the case in which many clusters of small cardinality (size) are
used for computing the abstraction.

When refining the abstract model using a spurious counterex-
ample, we distinguish between two cases of spurious behavior
[15]. 1) Spurious transitions are abstract transitions that do
not have any corresponding concrete transitions. By definition,
spurious transitions cannot appear in the most precise predicate
abstraction which is computed by the eager approach. How-
ever, predicate clustering usually produces coarse abstractions,
which can give rise to spurious transitions. 2) Spurious prefixes
are prefixes of a spurious counterexample, which do not have
a corresponding concrete path. This happens when the set of
predicates is not rich enough to capture the relevant behaviors
of the concrete system even for the most precise abstraction.

When a spurious counterexample is encountered, we first
check whether each transition in the counterexample can be
simulated on the original program. This is done by creating
a SAT instance for the simulation of each abstract transition.
If the SAT instance for an abstract transition is unsatisfiable,
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Fig. 1. Abstraction-refinement (CEGAR) loop in this paper.

then the abstract transition is spurious. In this case, we refine
the abstraction by adding constraints to the abstract-transition
relation, which eliminate the spurious transition. We make
use of the proof of unsatisfiability of the SAT instance to
identify a small subset of the existing predicates that cause the
transition to be spurious. The fewer predicates are found, the
more spurious transitions are eliminated in one step.

When all SAT instances for the simulation of abstract
transitions are satisfiable, it means that none of the abstract
transitions is spurious due to the clustering. The immediate
conclusion is that the spurious counterexample is due to the
fact that the predicates used for computing the abstraction
were insufficient. For this case, we use the idea of weakest
precondition (WP) from software MC [3], [33]. We compute the
WP of the property (or existing predicates) with respect to the
transition function given by the circuit to obtain new word-level
predicates. To the best of our knowledge, syntactic WP-based
refinement has not been used before for verifying circuits. We
present a technique to avoid the blowup in the size of the WPs
when computing new predicates. The overall flow of the various
techniques described previously is shown in Fig. 1.

E. Further Related Work

Wang [40] proposes a combination of localization reduction
and predicate abstraction at the netlist level. This is useful in
some cases, for example, when we need to precisely track the
value of an n bit counter c in an abstract model. In this case,
it is inefficient to introduce 2n predicates of the form c = ν,
where 0 ≤ ν ≤ 2n − 1. In localization reduction, the value c
can be precisely tracked by making each bit in c a visible latch.
It is possible to get the benefits of localization reduction in our
technique as well by adding c[i] as a predicate.

Andraus and Sakallah [2] present a scheme for automatic
abstraction of behavioral RTL Verilog to the CLU language [6].
The CLU language allows modeling using terms, uninterpreted
functions, equality, lambda expressions, and counters. In order
to remove spurious behaviors from the abstract model, a refine-
ment procedure is described in [1]. The techniques in [1] and
[2] were shown to be useful in the context of microprocessor
correspondence checking. The techniques described in this
paper are different from those in [1] and [2] and are geared
toward property (assertion) checking of hardware designs.

Predicate discovery for abstraction refinement is still an open
area of research. We use the WPs for discovering new predi-

Fig. 2. Verilog program used as a running example.

cates. An alternative technique for discovering new predicates
is based on interpolation [30]. In order to apply this idea to
circuits, an interpolating theorem prover for bit-vector logic is
required. Currently, it is not known how to build such a prover
for bit-vector logic.

A preimage computation generates a set of states from which
it is possible to reach a given set of states with one transition.
It is a basic operation in MC [11]. The idea of computing
a preimage is the same as computing the WP of a given set
of states, although the latter term is more commonly used in
software verification. Most existing hardware model checkers
compute the preimage at the netlist level and represent it
symbolically using BDDs. As in software verification, our use
of the WPs or preimages is at the word (expression) level.
Outline: We describe our way of modeling circuits in

Section II. Section III describes SAT-based predicate abstrac-
tion with the help of an example. Techniques for clustering a
given set of predicates are presented in Section IV. We discuss
techniques for abstraction refinement in Section V. We report
experimental results in Section VI.

II. WORD-LEVEL TRANSITION FUNCTIONS

Let R = {r1, . . . , rn} denote the set of registers and external
inputs in a given Verilog program. For example, the state of the
Verilog program in Fig. 2 is defined by the value of the registers
x and y, and each of them has a storage capacity of 8 bits. Let S
denote the set of states for a given Verilog program. Let Q ⊆ R
denote the set of registers. We denote the next-state function
of a register ri ∈ Q by fi(r1, . . . , rn), or fi(r̄) using vector
notation, where r̄ = 〈r1, . . . , rn〉. The value of ri in the next
state is given by fi(r̄) as a function of the current state. We use
the next-state functions to define the transition relation R(r̄, r̄′).
It relates the current state r̄ ∈ S to the next state r̄′ ∈ S and is
defined as follows:

R(r̄, r̄′) :=
∧

ri∈Q
(r′i = fi(r̄)) .

The values of the external inputs (R\Q) are not constrained
by the transition relation. The next-state function for the
register x in Fig. 2 is given as follows. If the value of x in
the current state is less than 100, then the value of x in the
next state is equal to the sum of the current values of x and
y, i.e., x + y. If the value of x is greater than or equal to 100,
then the value of x in the next state remains unchanged. The
value of y in the next state is equal to the value of x in the
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Fig. 3. State transition graph of the Verilog program in Fig. 2.

current state. We use the ternary choice operator c?g : h to
denote a function that evaluates to g if the condition c is true
and, otherwise, to h. We denote the next-state functions of x
and y by fx(x, y) and fy(x, y), respectively, and the transition
relation by R(x, y, x′, y′)

fx(x, y) := ((x < 100)?(x + y) : x)

fy(x, y) := x

R(x, y, x′, y′) := (x′=((x < 100)?(x + y) : x)) ∧ (y′=x) .

In a netlist-level representation, there is a next-state function for
each bit in the registers x, y. In contrast, we have a next-state
function for the whole registers x, y and not for the individual
bits in x, y. We represent the circuit using register- or word-level
next-state functions. We formalize the semantics of the subset
of Verilog that we handle in a technical report [14].
Example: We use the Verilog program in Fig. 2 as a running

example. We wish to show that the value of x is always less than
200. That is, we want to prove that the given program satisfies
the safety property G(x < 200), where G is an LTL operator
[11] that stands for globally. The property holds because the
value of x follows a sequence starting from 1 to 144. Upon
reaching the value 144, the guard in the next-state function for
x becomes false, and its value remains unchanged. The values
of x and y in each state are shown in Fig. 3.

We follow the CEGAR framework in order to (dis)prove a
given property. The first step of the CEGAR loop is to obtain
an abstraction of the given program.

III. PREDICATE ABSTRACTION

Let S denote the set of all possible valuations of the program
variables. In predicate abstraction [21], the variables of the
concrete program are replaced by the Boolean variables. Each
Boolean variable corresponds to a predicate on the variables in
the concrete program. Predicates are functions that map con-
crete states r̄ ∈ S to a Boolean value. Let B = {π1, . . . , πk} be
the set of predicates. When applying all predicates to a specific
concrete state, one obtains a vector of Boolean values, which
represents an abstract state b̄. We denote this function by α(r̄).
It maps a concrete state into an abstract state and is therefore
called an abstraction function.

We construct an existential abstraction [10], i.e., the abstract
model can make a transition from an abstract state b̄ to b̄′ iff
there is a transition from r̄ to r̄′ in the concrete model, r̄ is
abstracted to b̄, and r̄′ is abstracted to b̄′. We call the abstract
machine T̂ , and we denote the transition relation of T̂ by R̂

R̂ :=
{
(b̄, b̄′)|∃r̄, r̄′ ∈ S :

(α(r̄) = b̄) ∧ R(r̄, r̄′) ∧ (α(r̄′) = b̄′)
}

. (1)

We refer to a set and its Boolean representation interchangeably.
For example, in the earlier equation, R̂ denotes a set of abstract
transitions. A Boolean (characteristic) function representing
this set is denoted as R̂(b̄, b̄′).

The initial state I(r̄) is abstracted as follows. An abstract
state b̄ is an initial state in the abstract model if there exists a
concrete state r̄ that is an initial state in the concrete model and
is abstracted to b̄

Î(b̄) := ∃r̄ ∈ S :
(
α(r̄) = b̄

)
∧ I(r̄). (2)

The abstraction of a safety property P (r̄) is defined as follows.
For the property to hold on an abstract state b̄, the property must
hold on all states r̄ that are abstracted to b̄

P̂ (b̄) := ∀r̄ ∈ S :
(
α(r̄) = b̄

)
=⇒ P (r̄). (3)

Thus, if P̂ holds on all reachable states of the abstract model,
P also holds on all reachable states of the concrete model.

The techniques described in this paper can be used to check
any LTL safety property. This is because the spurious coun-
terexamples for LTL safety properties are always finite acyclic
paths [16]. Such spurious counterexamples can be removed
during the refinement phase (Section V). Predicate abstraction
can also be used to verify an arbitrary LTL property, including
liveness properties, if the transition relation is total. However,
this requires the removal of counterexamples containing loops
and is left for future research.

A. SAT-Based Predicate Abstraction

In [12], a SAT solver is used to compute the abstraction
of a sequential ANSI-C program. This approach supports all
ANSI-C integer operators, including the bit-vector operators.
We use a similar technique for computing the abstraction of
Verilog programs. We describe the computation of the abstract-
transition-relation R̂ (1) in more detail next.
Computing R̂ Using SAT: A symbolic variable bi is as-

sociated with each predicate πi. Each concrete state r̄ =
〈r1, . . . , rn〉 maps to an abstract state b̄ = 〈b1, . . . , bk〉, where
bi = πi(r̄). If the concrete machine makes a transition from
state r̄ to state r̄′ = 〈r′1, . . . , r′n〉, then the abstract machine
makes a transition from state b̄ to b̄′ = 〈b′1, . . . , b′k〉, where b′i =
πi(r̄′). We refer to πi(r̄) as a current-state predicate and πi(r̄′)
as a next-state predicate. For example, if x = y is a current-
state predicate, then the corresponding next-state predicate is
x′ = y′.

The formula that is passed to the SAT solver directly follows
from the definition of the abstract-transition relation R̂ as given
in (1)

R̂ :=
{
(b̄, b̄′)|∃r̄, r̄′ : Γ(r̄, r̄′, b̄, b̄′)

}

where

Γ(r̄, r̄′, b̄, b̄′) :=
k∧

i=1

bi ⇔ πi(r̄) ∧ R(r̄, r̄′) ∧
k∧

i=1

b′i ⇔ πi(r̄′).

(4)
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Fig. 4. Abstraction of the Verilog program in Fig. 2 using the predicates x <
200, x < 100, and x + y < 200. It is in the format accepted by the SMV
model checker.

The set of abstract transitions R̂ is computed by transforming
Γ(r̄, r̄′, b̄, b̄′) into a conjunctive normal form (CNF) formula and
passing the resulting formula to a SAT solver. Suppose the SAT
solver returns r̄, r̄′, b̄, b̄′ as the satisfying assignment. We project
out all variables but b̄ and b̄′ from this satisfying assignment
to obtain one abstract transition (b̄, b̄′). Since we want all
the abstract transitions, we add a blocking clause to the SAT
equation that eliminates all satisfying assignments which assign
the same values to b̄ and b̄′ and restart the solver. This process
is continued until the SAT formula becomes unsatisfiable. The
disjunction of the abstract transitions obtained gives us the
abstract-transition relation R̂.

The predicates used for abstraction are arbitrary Boolean
expressions allowed by the Verilog syntax. Thus, the predicates
can involve operators for concatenation, extraction, and so on.
For example, a[3 : 0] > 7 and ram[{addr, 1′b0}] == d[9 : 2]
are allowed as predicates. Predicates can refer to individual bits
in a register. For example, rg[i] is a valid predicate, where rg
is a register, and i is an index.
Example: We continue our example based on Fig. 2. Assume

that {x < 200, x < 100, x + y < 200} is the set of predicates.
We associate symbolic variables b1, b2, and b3 with each
predicate, respectively. In order to compute R̂, the following
equation is converted to CNF and passed to a SAT solver:

(b1 ⇔ (x < 200)) ∧ (b2 ⇔ (x < 100))

∧ (b3 ⇔ (x + y < 200)) ∧ R(x, y, x′, y′)

∧ (b′1 ⇔ (x′ < 200)) ∧ (b′2 ⇔ (x′ < 100))

∧ (b′3 ⇔ (x′ + y′ < 200)) .

The abstract-transition relation obtained is given by the
symbolic model verifier (SMV) [17], [34] TRANS statement in
Fig. 4. It is a disjunction of cubes. The cube (b1 & !b2 &
!b3 & next(b1) & !next(b2) & !next(b3)) corresponds to the
transition from the abstract state in which b1 is true and b2 and
b3 are false to the same abstract state (100 → 100 for short).
Intuitively, this abstract transition is possible because b2 = 0
in the current abstract state, which means that x ≥ 100 in the
concrete system. Subsequently, the value of the register x in the
next state (x′) is x, and the values of the predicates x < 200
and x < 100 in the next state remain unchanged. The value of

Fig. 5. Finite-state machine for the abstract model in Fig. 4. The abstract states
010 and 011 are not possible, as this would require x < 200 to be false and
x < 100 to be true at the same time.

register y becomes equal to x (as y′ = x). Since both x′ and y′

range between 100 and 200, x′ + y′ can be greater than or equal
to 200. Thus, the transition 100 → 100 is possible. All possible
abstract transitions are shown explicitly in Fig. 5.

In Fig. 5, consider the abstract transitions from any state with
b2 = 0 to any state with b3 = 1. There are four such transitions,
namely, 100 → 101, 101 → 101, 000 → 001, and 001 → 001.
In these transitions, b2 = 0 holds in the current abstract state,
which means that x ≥ 100 in the concrete system. Thus, in
the next state, x′ = y′ = x holds. At first glance, it seems that
x′ + y′ must be greater than or equal to 200 as x′ ≥ 100 and
y′ ≥ 100. However, an overflow may occur during the addition
of two 8 bit registers x′ and y′ such that the 8 bit result x′ + y′

is less than 200. Thus, the predicate x′ + y′ < 200 can be
true. This explains why b2 = 0 and b′3 = 1 in the four abstract
transitions mentioned previously. Note that such overflows are
allowed by the semantics of hardware description languages
and must be taken into account when computing the abstraction
of hardware designs.

The set of abstract initial states (2) can be enumerated using a
SAT solver in a similar manner as R̂. The set of abstract initial
states is given by the INIT statement in Fig. 4. There is only
one abstract initial state in which all the Boolean variables b1,
b2, and b3 are true.

The property G(x < 200) is abstracted using the Boolean
variable b1 for the predicate (x < 200). The abstracted property
is given by the SPEC statement in Fig. 4. The abstract model
satisfies the property G b1, as the only states reachable from the
initial abstract state (111) are {111, 101, 100} (Fig. 5). Since
the property holds on the abstract model, we can conclude
that the property G(x < 200) holds on the Verilog program
in Fig. 2.

IV. PREDICATE CLUSTERING

A. Computing Multiple Abstract-Transition Relations

We call the computation of the exact existential abstraction,
as described in the previous section, as the eager approach (4).
A single abstract-transition relation is computed using all the
available predicates. In the worst case, the number of satisfying
assignments generated from (4) is exponential in the number
of predicates. In practice, computing abstractions using the
eager approach can be very slow even for a small number of
predicates.

The abstraction step can be accelerated if we do not aim at
the most precise abstract-transition relation. That is, we allow
our abstraction to be an overapproximation of the abstract-
transition relation generated by the eager approach. Software
predicate-abstraction tools abstract the individual statements or
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basic blocks separately. As only a small number of predicates
are typically affected at each statement or basic block, simple
heuristics can be used to compute the abstraction quickly. The
SLAM toolkit, for example, limits the number of predicates in
each theorem prover query. In contrast, each transition in an
RTL circuit consists of simultaneous assignments to all regis-
ters. All predicates might change their value in each transition
of the circuit. Thus, more sophisticated techniques are needed
to compute the predicate abstraction of circuits efficiently.

Our solution to the aforementioned problem is as follows.
The set of the predicates and their next-state versions is clus-
tered into smaller sets of related predicates. We call these
sets as clusters and denote them by C1, . . . , Cl, with Cj ⊆
{π1, . . . , πk, π′

1, . . . , π
′
k}. Note that we do not require the

clusters to be disjoint, i.e., they can have common predicates.
We abstract the transition system with respect to each cluster
C1, . . . , Cl. This results in a total of l abstract-transition rela-
tions R̂1, . . . , R̂l, which are conjoined to form R̂

R̂ :=
l∧

i=1

R̂i. (5)

The equation for abstracting the transition system with re-
spect to Cj is given as follows:

R̂j :=∃r̄, r̄′ :
∧

πi∈Cj

bi ⇔ πi(r̄)∧R(r̄, r̄′)∧
∧

π′
i
∈Cj

b′i ⇔ πi(r̄′).

The satisfying assignments to the previous equation corre-
spond to the abstract-transition relation R̂j . The number of
satisfying assignments is limited by the size of cluster Cj ,
i.e., to at most 2|Cj |. Clearly, by limiting the size of Cj , we
can compute the abstract-transition relations much faster as
compared to the eager approach.

We refer to the earlier technique of generating smaller clus-
ters from a given set of predicates, and using these clusters
for computing the abstraction R̂, as predicate clustering. The
following claim states that R̂ is an overapproximation of the
most precise predicate abstraction.
Proposition 1: If Q̂ denotes the abstract-transition relation

obtained by using the eager approach (4), and R̂ denotes the
abstract-transition relation obtained by predicate clustering (5),
then Q̂ ⇒ R̂ or Q̂ ⊆ R̂ using set notation.

We present a proof in the Appendix. We discuss techniques
for creating predicate clusters next. Let var(e) denote the set of
variables (state elements and inputs) appearing in an expression
e. For example, var (x′ + y′ < 200) is {x′, y′}. If e contains
combinational elements, we replace them by their definitions in
terms of state elements and inputs before computing var(e).

Clarke et al. [9] call the two formulas g1 and g2 interfer-
ing iff var(g1) ∩ var(g2) �= ∅. The authors use the notion of
interference to partition a set of formulas into various formula
clusters. This technique can be used for clustering the set of
predicates as well. However, our early unreported experiments
indicate that this results in clusters that are too large. Thus,
we make the conditions for keeping the two predicates to-
gether stronger, which leads to a smaller number of predi-
cates per cluster. We evaluate three different techniques for

creating predicate clusters used in predicate clustering. Two
of these techniques, the cone clustering and the clustering
for lazy abstraction, are described next. The third clustering
technique, the semantic predicate clustering, is described in
Section V-A.

B. Syntactic Cone Clustering

This technique clusters the next-state predicates with the
current-state predicates that are related to each other. In order to
identify when a next-state predicate is related to a current-state
predicate, we use a cone-of-influence-like computation [11].

Given the formula g′ in terms of next-state variables r̄′, the
current-state variables r̄ that affect the value of the variables in
var(g′) are denoted by cone(g′). It is defined as follows. The
variables in the next-state functions for the registers mentioned
in g′ form the cone of g′. Recall that the set of registers is
denoted by Q. The next-state function of a particular register
ri ∈ Q is given by fi(r̄)

cone(g′) :=
⋃

r′
i
∈var(g′) ∧ ri∈Q

var (fi(r̄)) .

The value of g′ in a given state depends on the values of
variables in cone(g′) from the previous state.
Example: Let g′ be a′ < b′. Let the next-state functions for

a′ and b′ be x + b and c, respectively. Here, var(g′) := {a′, b′},
and cone(g′) := {x, b, c}. Given the values of x, b, c in a state,
the value of the predicate a < b in the next state (i.e., the value
of a′ < b′) is x + b < c. We would like to keep the current-
state predicates over the variables {x, b, c} and the next-state
predicate a′ < b′ in the same cluster. This allows the value of
a′ < b′ to be tracked precisely in the abstract model.

The clusters of the predicates and their next-state versions
{π1, . . . , πk, π′

1, . . . , π
′
k} are created by the following two

steps.

1) The next-state predicates that have identical cone sets
are kept in a single cluster. Intuitively, these predicates
depend on exactly the same set of variables from the
previous state and, hence, are related to each other. That
is, if cone(πi

′) = cone(πj
′), then πi

′ and πj
′ are kept

in the same cluster. Let C ′
1, . . . , C

′
l be the clusters of

{π′
1, . . . , π

′
k} obtained after this step. Since all the predi-

cates in a given cluster C ′
i have the same cone, we define

cone(C ′
i) as the cone of any element in C ′

i.
2) The final set of clusters is given by {C1, . . . , Cl}. Each

Ci contains all the next-state predicates from C ′
i and the

current-state predicates that mention variables in the cone
of C ′

i. Formally, Ci is defined as follows:

Ci := C ′
i ∪ {πj | var(πj) ⊆ cone (C ′

i)} .

Example: Let the transition relation R(x, y, z, x′, y′, z′) be
x′ = y ∧ y′ = x ∧ z′ = x. Let the set of predicates be {x = 2,
y = 1, z > 3, x′ = 2, y′ = 1, z′ > 3}. The cone sets for the
next-state predicates x′ = 2, y′ = 1, and z′ > 3 are {y}, {x},
and {x}, respectively. After the first step of the clustering,
the clusters are C ′

1 := {x′ = 2} and C ′
2 := {y′ = 1, z′ > 3}.
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Even though y′ = 1 and z′ > 3 do not share a common set of
variables, they are kept in the same cluster as they have the
identical cone set {x}.

Since cone(C ′
1) := {y} and cone(C ′

2) := {x}, the clusters
obtained after the second step of the clustering are C1 := {y =
1, x′ = 2} and C2 := {x = 2, y′ = 1, z′ > 3}. Observe how
the predicates in a given cluster affect each other. For example,
in C2, if x = 2 is true, then we know that y′ = 1 and z′ > 3
will be false (as y′ and z′ equal x). If x = 2 is false, then y′ = 1
can be either true or false, and z′ > 3 can be either true or false.
However, both y′ = 1 and z′ > 3 cannot be true together.

Since cone clustering attempts to keep all related predicates
together, the abstractions produced are not much coarser than
those produced by the eager approach. However, in general,
there is no bound on the number of predicates in a given cluster.
In the worst case, there might be a cluster containing most of
the current- and next-state predicates.

C. Syntactic Clustering for Lazy Abstraction

The idea of lazy abstraction [24] is to start with a coarse
initial abstract model, which is refined on-demand as required
by a spurious counterexample. Since a coarse abstract model
is computed, the abstraction step is usually very fast. This
prevents the abstraction step from becoming a bottleneck when
computing the abstraction of large circuits or when a large
number of predicates are in use.

A completely lazy abstraction corresponds to using no pred-
icate clusters. Thus, the initial abstract-transition relation is
simply true (allows all abstract transitions). We follow a variant
of this technique: All current-state predicates that contain the
same set of variables are kept in the same cluster. That is,
if var(πi) = var(πj), then πi and πj are kept in the same
cluster. This is useful if the given set of predicates contains
many mutually exclusive (or related) predicates such as x = 1,
x = 2, and x > 2. Keeping these predicates together in a cluster
eliminates a large number of abstract states that do not corre-
spond to any concrete states, which are also known as spurious
abstract states. For example, an abstract state in which both
predicates x = 1 and x = 2 are true is spurious.

The next-state predicates are not used in the clusters. Thus,
the abstraction produced only contains predicate relationships
that hold in each abstract state (not between states). If needed,
the relationships between current- and next-state predicates are
discovered lazily using refinement techniques.
Example: Let the set of current-state predicates be {x < 2,

x = 1, y = 1, z > 1}. The clusters produced for lazy abstrac-
tion are C1 := {x < 2, x = 1}, C2 := {y = 1}, and C3 :=
{z > 1}.

Loss of precision: In the earlier example, let the next-state
function of y be equal to x (i.e., y′ = x). The predicates
involving x and y′ are not present together in any cluster. Thus,
the abstract model generated using lazy abstraction allows an
abstract transition from a state where x = 1 to a state where
y �= 1. This is a spurious transition because the value of y in
the next state must be equal to the value of x in the previous
state. This spurious transition will not occur in the abstraction
computed using cone clustering, as the predicates x = 1 and
y′ = 1 will be in the same cluster.

The abstract-transition relation for a predicate cluster de-
pends on the predicates contained in that cluster. Clusters of
small size speed up the abstraction computation at the cost
of making the abstraction less precise. If needed, the abstract
model obtained can be made more precise by using refinement
techniques. The loss in precision due to clustering is beneficial
as long as the cost of potential refinement steps is smaller than
the cost of computing the most precise abstraction.

Once the abstraction of the concrete system is obtained, we
model-check it using a model checker for finite-state systems
like the SMV [17], [34]. Fig. 4 shows an abstract model.
If the abstract model satisfies the property, the property also
holds on the original concrete circuit. If MC of the abstraction
fails, we obtain a counterexample from the model checker. In
order to check if an abstract counterexample corresponds to a
concrete counterexample, a simulation step is performed. If the
counterexample cannot be simulated on the concrete model, it is
called a spurious counterexample. The elimination of spurious
counterexamples from the abstract model is described in the
next section.

V. ABSTRACTION REFINEMENT

When refining the abstract model, we distinguish between
two cases of spurious behavior as done in [15].

1) Spurious transitions are abstract transitions that do not
have any corresponding concrete transitions. By defi-
nition, spurious transitions cannot appear in the most
precise abstraction, which is computed by the eager ap-
proach. However, as we noted earlier, computing the most
precise abstract model is expensive, and thus, we make
use of various predicate clustering techniques. This can
result in many spurious transitions.

2) Spurious prefixes are prefixes of the abstract counterex-
ample that do not have a corresponding concrete path.
This happens when the set of predicates is not rich enough
to capture the relevant behaviors of the concrete system
even for the most precise abstraction.

Given a spurious counterexample, we first check if any
transition in the counterexample is spurious. If a spurious
transition is found, it is eliminated from the abstract model by
adding a constraint to the abstract model. If no transition in the
counterexample is spurious, then new predicates are generated
in order to eliminate a spurious prefix in the counterexample.
We treat the entire spurious counterexample as a spurious prefix
and do not find the shortest spurious prefix.

An abstract counterexample of length l is a sequence of
abstract states s̄(0), . . . , s̄(l), where each abstract state s̄(j)
corresponds to a valuation of the k predicates π1, . . . , πk. The
value of πi in a state s̄ is denoted by s̄i. Given an abstract
state s̄, let β(s̄) denote the conjunction of predicates (or their
negation), depending upon their values in s̄. For example, let s̄
be an abstract state in which the predicate x < 2 is true and the
predicate x = y is false. Then, β(s̄) = x < 2 ∧ ¬(x = y)

β(s̄) :=
k∧

i=1

πi ⇔ s̄i.
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We write β(s̄, r̄) to denote that the variables in β(s̄) refer to the
concrete variables r̄.

A. Detecting and Removing Spurious Transitions

An abstract transition from s̄ to t̄ is a spurious transition iff
there are no concrete states r̄, r̄′ such that r̄ is abstracted to s̄, r̄′

is abstracted to t̄, and there is a transition from r̄ to r̄′. Formally,
the abstract transition from s̄ to t̄ is spurious iff the following
formula is unsatisfiable:

β(s̄, r̄) ∧ R(r̄, r̄′) ∧ β(t̄, r̄′).

We use a CNF SAT solver to check the satisfiability of the
previous formula. If the formula is satisfiable, the abstract
transition can be simulated on the concrete model. Otherwise,
the abstract transition is spurious. In this case, the spurious
transition is removed from the abstract model by adding a
constraint to the abstract model.

When generating the CNF instance for the simulation of
the abstract transition s̄ to t̄, we store the mapping of each
predicate πi, π′

i to the corresponding literal li, l′i in the CNF
instance. If the abstract transition is spurious, the CNF instance
is unsatisfiable. In this case, we extract an unsatisfiable core
[41] from the given CNF instance. An unsatisfiable core of a
CNF instance is a subset of the original set of clauses, which is
also unsatisfiable. Current state-of-the-art SAT solvers are quite
effective in producing small unsatisfiable cores if they exist.

Let us denote the set of current-state predicates whose cor-
responding CNF literal li appears in the unsatisfiable core by
X . We have a similar set for the next-state predicates, which
we call Y . Intuitively, the predicates in X and Y taken together
are sufficient to prove that the abstract transition from s̄ to t̄
is spurious. All the abstract transitions, where the predicates in
X and Y have the same truth value as given by the states s̄
and t̄, respectively, are spurious. These spurious transitions are
eliminated by adding a constraint to the abstract model. Let bi

and b′i be the variables used for the predicates πi and π′
i in the

abstract model. The constraint added to the abstract model is as
follows:

¬


 ∧

πi∈X

bi ⇔ s̄i ∧
∧

π′
i
∈Y

b′i ⇔ t̄i


 .

Proposition 2: Every abstract transition from ū to v̄, such
that the predicates in X have the same value in ū and s̄ and
that the predicates in Y have the same value in ν̄ and t̄, is
spurious. The aforesaid constraint removes all of these spurious
transitions from the abstract model.
Example: Let the set of current-state predicates be

{x < 2, x = 1, y = 1, z > 1}. Consider the abstract transi-
tion from s̄ = {b1 = 1, b2 = 1, b3 = 1, b4 = 1} to t̄ = {b′1 =
0, b′2 = 0, b′3 = 0, b′4 = 0}, where b1, b2, b3, and b4 correspond
to the predicates x < 2, x = 1, y = 1, and z > 1, respectively.
Let the next-state function of y be x, i.e., y′ = x. Observe that,
in the state s̄, x = 1. This implies that y = 1 in t̄ (as y′ = x).
However, b′3 is false in t̄, and thus, the abstract transition from
s̄ to t̄ is spurious. As described in Section IV-C, the abstract

transition from s̄ to t̄ can arise when using lazy abstraction. This
spurious transition can be eliminated by adding the following
constraint to the abstract model [18]: ¬(b1 ∧ b2 ∧ b3 ∧ b4 ∧
¬b′1 ∧ ¬b′2 ∧ ¬b′3 ∧ ¬b′4).

However, the aforementioned constraint removes just one
spurious transition. By examining an unsatisfiable core, we can
make the constraint more general, thereby eliminating many
spurious transitions at the same time. In this example, the
cause of the spurious behavior is b2 = 1, and b′3 = 0. The
unsatisfiable core technique described previously is capable of
discovering this fact. This allows us to eliminate the abstract
transition from s̄ to t̄ and 63 more spurious transitions by adding
the following constraint to the abstract model: ¬(b2 ∧ ¬b′3).
It is very important to remove as many spurious transitions
as possible in order to make the CEGAR loop terminate
quickly.
Semantic Predicate Clustering: The predicates responsible

for making an abstract transition spurious can be treated as a
predicate cluster C, which can be used during the abstraction
step. Suppose an abstract transition from s̄ to t̄ is spurious. Let
C denote the set of current- and next-state predicates responsi-
ble for this spurious transition as identified by an unsatisfiable
core. As described earlier, the predicates appearing in C are
used to remove the spurious transition from s̄ to t̄. In semantic
predicate clustering, C is also added to the existing set of
predicate clusters and is used to compute the abstraction (5) in
the subsequent iterations. Intuitively, the predicates occurring
in C are semantically related because a particular assignment of
truth values to the predicates in C (as given by s̄, t̄) can make an
abstract transition spurious. Thus, by computing all the possible
relationships between the predicates in C (during abstraction),
we remove all the abstract transitions that are spurious due to
the predicates in C.
Example: For the spurious transition in the previous ex-

ample, we obtain C := {x = 1, y′ = 1}. The predicates in C
are used to eliminate multiple spurious transitions by adding
the constraint ¬(b2 ∧ ¬b′3). However, even after adding this
constraint, the abstract model allows another spurious transition
from a state ū where ¬(x = 1) to a state ν̄ where y = 1
(i.e., y′ = 1). In semantic predicate clustering, C is added as
a predicate cluster. The abstraction step will discover that b2 ⇔
b′3 using C. Thus, the spurious transition from ū to ν̄ cannot
arise.

B. Detecting and Removing Spurious Prefixes

An abstract counterexample s̄(0), . . . , s̄(l) of length l is a
spurious prefix iff there is no concrete execution of l transitions
such that, at each step, the concrete state is consistent with
the corresponding abstract state. More formally, let r̄0, . . . , r̄l

denote the concrete-state variables at each of the l + 1 states.
The initial state of the concrete system is denoted as I(r̄0).

The abstract counterexample s̄(0), . . . , s̄(l) is a spurious
prefix iff the following formula is unsatisfiable:

I(r̄0) ∧
l−1∧
i=0

R(r̄i, r̄i+1) ∧
l∧

i=0

β (s̄(i), r̄i) .
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The aforesaid formula is unsatisfiable iff there is no sequence
of concrete states r̄0, . . . , r̄l such that r̄0 is an initial state, there
is a transition from r̄i to r̄i+1 for 0 ≤ i < l, and the predicate
values in each concrete state r̄j exactly match the predicate
values given by the abstract state s̄(j) for 0 ≤ j ≤ l.

In [15], spurious prefixes are eliminated by adding a bit-level
predicate. This predicate is called a separating predicate and is
computed by using a SAT-based conflict dependence analysis.
In contrast, we make use of the weakest preconditions (WPs)
as done in software verification. We generate new word-level
predicates by computing the WP of the given property with
respect to the transition function given by the RTL circuit.
Weakest Preconditions: In software verification, the weakest

precondition wp(st, γ) of a predicate γ is usually defined with
respect to a statement st (e.g., an assignment). It is the weakest
formula whose truth before the execution of st entails the truth
of γ after st terminates. In the case of hardware, each state
transition can be viewed as a statement where the registers
are assigned with values according to their next-state functions
and the external inputs are assigned with new nondeterministic
values.

Recall that the set of registers is denoted by Q. The next-
state function for register ri ∈ Q is given by fi(r̄). We use f̄
to denote the vector of the next-state functions for the registers
in Q. We use the expression e[r̄/f̄ ] to denote the simultaneous
substitution of each variable ri ∈ Q by its corresponding next-
state function fi(r̄).

The WP of the property γ(r̄) with respect to one concrete
transition is defined as follows:

wp1

(
f̄ , γ(r̄)

)
:= γ(r̄) [r̄/f̄ ].

The WP with respect to i consecutive concrete transitions is
defined inductively as follows (we write γ(r̄) as γ for short):

wpi(f̄ , γ) := wp1

(
f̄ , wpi−1(f̄ , γ)

)
, i > 1.

In order to refine a spurious prefix of length l > 0, we
compute wpi(f̄ , τ) for each 1 ≤ i ≤ l, where τ is the safety
property we are interested in checking. Intuitively, τ holds after
i transitions iff wpi(f̄ , τ) holds before i transitions. Refinement
corresponds to adding the Boolean expressions occurring in
each wpi(f̄ , τ) to the existing set of predicates.

In the case of circuits, the WP is always computed with
respect to the same transition function vector f̄ , and thus, we
may omit it as an argument in wpi(f̄ , γ).

Example: Let the property be x < 200. Let the next-state
functions for the registers x and y be ((x < 100)?(x + y) : x)
and x, respectively. Suppose we obtain a spurious prefix of
length one. The WP is computed as follows:

wp1(x < 200) := (((x < 100)?(x + y) : x) < 200) .

We add the Boolean conditions occurring in wp1 to our set of
predicates. Thus, we add x < 100 and (((x < 100)?(x + y) :
x) < 200) as the new predicates.
Simplifying the Weakest Preconditions: When the spurious

counterexample is long, the WP computation becomes expen-
sive, and the predicates generated can become very complex

Fig. 6. Simplification of a formula using an abstract state.

(see the previous wp1). This adversely affects the abstraction-
refinement loop. In software verification, this problem is solved
by computing the WP with respect to the statements appearing
in the spurious trace only. This is not directly applicable to
a synchronous circuit because the statements occurring in the
spurious trace correspond to the next-state functions. The next-
state functions usually contain many conditional statements.
Thus, simply substituting the next-state functions as done pre-
viously leads to a blowup in the size of the WPs.

Instead, we apply a syntactic simplification to the WPs at
each step. The simplification uses data from the abstract error
trace. We exploit the fact that many of the control flow guards in
the Verilog code are also present in the current set of predicates.
The abstract trace assigns truth values to these predicates in
each abstract state. In order to simplify the WPs, we substitute
the guards in the WPs with their truth values. Furthermore, we
only add the atomic predicates occurring in the WPs as new
predicates.

In order to formalize the simplification of the WPs, we
define a simplify procedure in Fig. 6. Let the current set of
predicates be {π1, . . . , πk}. The simplify procedure takes as
input a formula g(r̄) (written as g for short) and an abstract
state t̄. It replaces all occurrences of predicates {π1, . . . , πk} in
g by their truth values in t̄.

Example: Suppose our current set of predicates is {x <
2, x < 1}. Let t̄ be an abstract state in which x < 2 is true and
x < 1 is true. Let g(x, y) be the formula (((x < 1)?(x + y) :
x) < 2). After calling simplify with g and t̄ as arguments, g
becomes

((1?(x + y) : x) < 2) = x + y < 2.

Let h(x, y) be the formula ((x = y)?y : x) = y. After calling
simplify with h and t̄ as arguments, h remains unchanged.

Definition of Simplified Weakest Precondition (SWP): Let
the spurious prefix be t̄(0), . . . , t̄(l) with l ≥ 1 and the property
be γ. The weakest precondition WPi(γ) is a formula that
should hold before i concrete transitions for γ to hold after
i transitions.

As motivated earlier, we want to simplify wpi using the pred-
icate values from the spurious prefix. We denote the simplified
weakest precondition (SWP) for i steps by swpi. The abstract
state t̄(l − i) provides the truth values of the predicates just
before the i transitions leading to the end of spurious prefix.
Thus, swpi(γ) is simplified using the predicate values from
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Fig. 7. Computation of SWP.

the abstract state t̄(l − i). Fig. 7 shows the correspondence
between the abstract states and swpi. Formally, swpi is defined
as follows (wp1 was defined earlier, and l is the length of
spurious prefix):

swp1(γ) := simplify (wp1(γ), t̄(l−1))

swpi(γ) := simplify
(
wp1

(
swpi−1(γ)

)
, t̄(l−i)

)
, 1<i≤ l.

The new set of predicates for refinement is obtained from
swp1, . . . , swpl. This is done by taking only the atomic predi-
cates occurring in the SWPs. After the addition of new predi-
cates, we recompute the predicate clusters.
Example: We continue our example in Fig. 2. We want to

prove that x < 200 is an invariant. In Fig. 4, an abstraction
of this program using the three predicates x < 200, x < 100,
and x + y < 200 is presented. The property G(x < 200) is
proved by means of this abstraction. We now describe how
these predicates are discovered automatically.

We take the set of predicates occurring in the property itself
as the initial set of predicates. Thus, our initial abstraction is
created with respect to the predicate x < 200. Model check-
ing the abstract model produces a counterexample with one
transition from a state in which x < 200 to a state in which
¬(x < 200). This counterexample is a spurious prefix (not a
spurious transition). The simplified weakest precondition swp1

of x < 200 is

swp1(x < 200) := (((x < 100)?(x + y) : x) < 200) .

The only new predicate obtained from swp1(x < 200) is x <
100. Note that we do not take the entire swp1 as a new predicate
as it is not atomic. The new set of predicates is {x < 200, x <
100}. Once again, the abstraction and MC steps are performed.
This time, we obtain another spurious prefix t̄(0), t̄(1) of length
one. We also obtain the truth value of the predicate x < 100 in
the abstract states t̄(0) and t̄(1). Since x is equal to one in the
initial state of the system, it turns out that the predicate x < 100
is true in t̄(0). The SWP is given as follows:

swp1(x < 200) := ((1?(x + y) : x) < 200)

= x + y < 200.

Thus, swp1(x < 200) yields a new predicate x + y < 200.
Using the new set of predicates {x < 200, x < 100, x + y <
200}, we obtain the abstraction shown earlier in Fig. 4. The
abstract property holds on this abstraction, and thus, G(x <
200) holds on the concrete program in Fig. 2.

The predicates in the simplified weakest precondition of
the given property are not always sufficient to ensure that the
spurious prefix is eliminated from the abstract model. We

TABLE I
EXPERIMENTAL RESULTS: ALL RUNTIMES ARE IN SECONDS (ROUNDED

TO THE NEAREST INTEGER). A DASH “ − ” INDICATES A TIMEOUT OF

2 HOURS. A STAR “ ∗ ” INDICATES THAT THE MODEL CHECKER

TERMINATED AND REPORTED A TOO LARGE

NUMBER OF BDD VARIABLES

identify a subset of the existing predicates such that computing
the weakest precondition of these predicates is likely to remove
the spurious prefix. As in [25], this is done by using the unsat-
isfiable core of the SAT instance used for simulating the prefix.
This approach identifies a subset of the existing predicates that
is responsible for the spurious behavior. If a copy of predicate
p in cycle k appears in the unsatisfiable core, we compute the
(simplified) weakest precondition of p for k steps (k ≤ l).

VI. EXPERIMENTAL RESULTS

The experiments are performed on a 1.86-GHz Intel Xeon
(R) machine with 4 GB of memory running Linux. The tech-
niques described in this paper have been implemented in a tool
called VCEGAR [37]. Our implementation is available for experi-
mentation by other researchers. We use the MiniSat SAT solver
[31] as our decision procedure. The abstractions are model-
checked using a publicly available version of the Cadence SMV
model checker [17]. We perform two sets of experiments.

1) We compare the performance of VCEGAR with the perfor-
mance of localization-reduction technique implemented
in Cadence SMV. The Cadence SMV tool is a netlist-
based model checker. It implements localization reduc-
tion using BDDs and SAT checkers. The results are
reported in Section VI-A.

2) We compare three different predicate clustering algo-
rithms: syntactic cone clustering, clustering for lazy ab-
straction described in Section IV, and semantic predicate
clustering (Section V-A). These results are reported in
Section VI-B.

In all our experiments, we compute the initial abstraction using
the atomic predicates appearing in the property. The remaining
predicates are discovered automatically using refinement.

A. Comparison With Localization Reduction

The results are summarized in Table I. The column “Latches”
contains the total number of latches in the design. The columns
marked with “Predicate Abstraction” contain the results of
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Fig. 8. State machine for the DMA in the USB 2.0 Function Core.

applying the techniques discussed in this paper. The “Time,”
“Abs,” “MC,” and “Ref” columns contain the total time, fol-
lowed by the time taken by abstraction, MC, and refinement
including simulation. The time spent before the start of the
CEGAR loop is given by Time-(Abs+MC+Ref). We use lazy
abstraction and rely on refinement to do most of the work in
these benchmarks. The “P” column contains the final number
of predicates. The “I” column gives two numbers separated by
a slash: 1) the number of refinement steps in which spurious
transitions are removed and 2) the number of refinement steps
in which new predicates are added. The sum of these two
numbers is the total number of refinement iterations. The results
of running Cadence SMV are given in the “CSMV” column. We
report the total time taken by the Cadence SMV when running
with the counterexample-based abstraction-refinement option
−absref3.
Benchmarks: The USB benchmark was used for experimen-

tal evaluation of the EverLost tool [19]. It is derived from a USB
2.0 Function Core [35] and contains approximately 4000 lines
of RTL Verilog. We checked three properties. The first property
USB1 checks that the implementation of the internal DMA
module simulates the state-transition diagram shown in Fig. 8.
The property holds, and all the predicates required for the proof
are present in the property itself. The second property USB2
encodes the following: If the abort signal is true in any state of
Fig. 8, then the next state will be IDLE. This property does not
hold because the transition from the MEM_WR2 state to the IDLE
state is not guaranteed by the abort signal. The third property
USB3 excludes the state MEM_WR2 from the USB2 property.
This property holds on the design. The properties USB2 and
USB3 contain three and four atomic predicates, respectively.
The remaining predicates are discovered through refinement.

The ETH benchmark was also used in [19]. It is the design of
a 10/100 Mb/s Ethernet MAC [35] and contains approximately
5000 lines of RTL Verilog. The transmit module of the design
contains a state machine with ten states (see Fig. 9). The
property ETH0 checks that the implementation obeys the state-
machine description given in Fig. 9. All the predicates required
in proving the property are present in the property itself. The
property ETH1 checks the outgoing transitions from the state
BackOff. The property ETH2 checks the outgoing transitions
from the state Jam. Both ETH1 and ETH2 hold on the design.
When checking ETH1 and ETH2, most of the predicates are
discovered through refinement.

Fig. 9. State machine for the transmit module in the Ethernet MAC.

The ICRAM benchmark is taken from the Instruction Cache
RAM unit of the Sun picoJava II microprocessor [36]. It main-
tains a RAM of size 16 kB (organized as 2048 entries of 64 bits
each). If the writing signal wen0 is enabled, the value of the
data input (din) is written to the lower 32 bits of the location
addressed by the input address (addr). Otherwise, if the writing
signal wen1 is enabled, the value din is written to the higher
32 bits of the location addressed by addr. This functionality of
the ICRAM is encoded in the form of eight safety properties
using the current and next states of the variables. We use P.x to
denote the value of a register or input x in the previous state.
Each property compares 8 bits in P.din and corresponding bits
in ICRAM. A sample property is given next

P.wen0 → (ram[{P.addr, 3′b001}] = P.din[23 : 16]).

The aforementioned property depends on the contents of the
RAM. Thus, even after applying the techniques such as the
localization reduction, the system has 16-kB (16 × 1024 × 8)
latches. We verified the previous property by varying the size
of RAM from 2 to 16 kB. These benchmarks start with a prefix
“M” in Table I. We also combined all the eight properties for the
ICRAM benchmark into a single property. These benchmarks
start with a prefix “N” in Table I. For both “M” and “N”
benchmarks, the property is proved using only the predicates
occurring in the property. No new predicates are discovered.

The benchmarks with names starting with “AR” perform
arithmetic operations on two registers x and y, as shown in
Fig. 2. We verify the invariant x < 200. In the ARi benchmark,
the size of x, y is i, and the total number of latches is 2 × i. As
described in the previous section, this property is proved using
the predicates x < 200, x < 100, and x + y < 200. The predi-
cate x < 200 is obtained from the property, and the predicates
x < 100 and x + y < 200 are discovered using refinement.
Summary: VCEGAR has a better performance on all but one

benchmark reported in Table I. Cadence SMV times out on
the ETH0, ETH1, AR3000, and AR4000 benchmarks, whereas
the predicate-abstraction method is able to complete these
benchmarks with better runtimes. Some of the inferences drawn
from Table I are as follows.

1) The runtime of localization reduction grows exponen-
tially with each newly added latch. This trend is evi-
dent in the AR benchmark series. On these benchmarks,
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Fig. 10. Runtime of the CEGAR loop with respect to the number of latches. (a) N∗ benchmarks. (b) AR∗ benchmarks.

TABLE II
BENCHMARK CHARACTERISTICS

localization reduction is not able to reduce the number of
latches in the abstract model created.

2) When using predicate abstraction, the size of the ab-
stract model remains constant even when the num-
ber of latches is increased. For many properties, the
number of word-level predicates needed for the proof
does not grow as the width of the registers is in-
creased. This trend is visible in the M∗, N∗, and AR∗

benchmarks. Thus, the MC time is similar across these
benchmarks.

A plot of the total time needed by predicate abstraction
compared to the number of latches is given in Fig. 10(a) and (b)
for the N∗ and the AR∗ benchmarks, respectively. These graphs
show that the predicate-abstraction technique scales well with
the increase in the number of latches.

B. Comparing Predicate Clustering Techniques

We report the performance of the CEGAR loop using
three different predicate clustering techniques described in
Sections IV and V-A. The benchmark characteristics are given
in Table II. We report the number of lines of code, the total
number of latches, the total number of Verilog combinational
elements and inputs (“CE+I” column), and the total number of
properties checked for each benchmark. The benchmarks USB
2.0 and Ethernet MAC were described in the previous section.
Other benchmarks are taken from the Texas97 and VIS [38]
benchmark suites.

The results are summarized in Table III. The columns la-
beled with “Cone” contain the results of using syntactic cone

clustering in the CEGAR loop. The performance of the CEGAR
loop when using clustering for lazy abstraction is summarized
in the columns labeled with “Lazy”. The “Semantic” column
presents the results of using semantic predicate clustering
(Section V-A).

For each predicate clustering technique, the “Total,” “Abs,”
“MC,” and “Ref” columns contain the total verification time,
followed by the time taken by abstraction, MC, and refinement
including simulation. The “Preds” column contains two num-
bers separated by a slash: 1) the total number of predicates in
the last iteration of the CEGAR loop (this includes only the
current-state predicates) and 2) the maximum number of predi-
cates present in any predicate cluster generated by the predicate
clustering technique. The number of refinement iterations is
reported in the “I” column. The “Res” column contains T(true)
if the property holds [else, it contains F(false)], followed
by the length of the counterexample. In these benchmarks
(expect USB1 and ETH0), most of the predicates are discovered
automatically during the refinement phase. Next, we compare
the three instantiations of the CEGAR loop, which are the
“Cone,” “Lazy,” and “Semantic”.

“Cone” versus “Lazy”: The “Lazy” technique is able to
handle all benchmarks within the timeout, and thus, it is more
robust than the “Cone” technique (which timeouts on five
problems). When using the “Cone” technique, the SAT-based
abstraction becomes the bottleneck. MC of abstract models
also becomes expensive (see Miim row). This happens because
the abstract models created in the “Cone” technique are more
detailed and thus harder. However, the properties can usually
be checked using coarse (less precise) abstractions created by
the “Lazy” technique.

“Semantic” versus “Lazy”: In the “Semantic” technique
(Section V-A), new predicate clusters are generated as follows.
When a spurious transition is found, we identify a set of
predicates responsible for spurious behavior. These predicates
are treated as a new predicate cluster. In our experiments, this
cluster is used during abstraction computation only if it has less
than or equal to six predicates. In addition, we use the same
predicate clusters as for the “Lazy” technique.

The “Semantic” technique consistently requires fewer re-
finement iterations than the “Lazy” technique. This shows that
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TABLE III
COMPARING THREE CEGAR LOOPS, EACH EMPLOYING A DIFFERENT PREDICATE CLUSTERING METHOD. ALL TIMES ARE REPORTED IN

SECONDS (ROUNDED TO THE NEAREST INTEGER). A DASH “ − ” INDICATES A TIMEOUT OF 2 HOURS

computing all possible abstract transitions for the predicates re-
sponsible for a spurious transition also rules out other spurious
transitions. The runtime of both techniques is comparable.

The abstraction computation or abstraction MC can become
a bottleneck when using the “Cone” technique, whereas a large
number of refinement iterations can hurt the performance when
using the “Lazy” technique. The “Semantic” technique tries to
balance the bottlenecks of both “Cone” and “Lazy” techniques
and thus seems to be the most scalable.

VII. CONCLUSION AND FUTURE WORK

We apply the idea of predicate abstraction from software
verification to verify hardware designs at a higher level of
abstraction. We show how to reduce the abstraction compu-
tation overhead in presence of a large number of predicates.
This is done by dividing the set of predicates into clusters of
related predicates, and the abstraction is computed separately
for each cluster. In lazy abstraction, the expensive task of
program abstraction is deferred until a spurious counterexample
is found. We show the benefit of lazy abstraction in the context
of hardware verification.

We use unsatisfiable cores in order to eliminate multiple
spurious transitions. The spurious trace may also be caused by
insufficient predicates. In the software domain, tools typically
use the weakest preconditions or the strongest postconditions
to compute new predicates that eliminate the spurious behavior.
This technique has previously not been applied to hardware in
spite of the fact that high-level RTL models closely resemble
programs written in languages like ANSI-C. Our experimental
results show that this technique is effective in discovering new
word-level predicates for refinement.

Future research will focus on the use of interpolants [23]
for deriving new predicates. Memory-abstraction techniques
[20], [28] can be combined with our technique to handle large
memories efficiently. We would also like to experiment with
new decision procedures for bit-vector arithmetic [5], [28].

APPENDIX

Proof of Proposition 1: Let the set of predicates be Pr.
Q̂ denotes the abstraction with respect to Pr. From (5), R̂ =

∧l
j=1 R̂j , where R̂j denotes the abstraction with respect to a

cluster Cj , and Cj ⊆ Pr. The proposition is proved by showing
that for all 1 ≤ j ≤ l, Q̂ ⇒ R̂j or Q̂ ⊆ R̂j using set notation.
We will treat Q̂ and R̂j as sets of abstract transitions and show
that Q̂ ⊆ R̂j . We rewrite the definitions of Q̂ and R̂j as follows:

Q̂ :=
{
(b̄, b̄′) | ∃r̄, r̄′ : δ(r̄, r̄′, b̄, b̄′, P r)

}

R̂j :=
{
(b̄, b̄′) | ∃r̄, r̄′ : δ(r̄, r̄′, b̄, b̄′, Cj)

}

where δ(r̄, r̄′, b̄, b̄′, Z) relates concrete states r̄, r̄′ and abstract
states b̄, b̄′ with respect to a set of predicates Z

δ(r̄, r̄′, b̄, b̄′, Z) :=
∧

πi∈Z

bi = πi(r̄) ∧ R(r̄, r̄′) ∧
∧

π′
i
∈Z

b′i = πi(r̄′).

If Z2 ⊆ Z1, then δ(r̄, r̄′, b̄, b̄′, Z1) is equivalent to δ(r̄, r̄′,
b̄, b̄′, Z2) ∧ δ(r̄, r̄′, b̄, b̄′, Z1\Z2). Thus, if δ(r̄, r̄′, b̄, b̄′, Z1), then
δ(r̄, r̄′, b̄, b̄′, Z2) holds. If an abstract transition (ā, ā′) ∈ Q̂,
then there exist two concrete states x̄ and x̄′ such that
δ(x̄, x̄′, ā, ā′, P r) holds. Since Cj ⊆ Pr, it follows from the
previous reasoning that δ(x̄, x̄′, ā, ā′, Cj) holds. Thus, ∃r̄, r̄′ :
δ(r̄, r̄′, ā, ā′, Cj) holds, and (ā, ā′) ∈ R̂j . This shows that Q̂ ⊆
R̂j . As Q̂ ⊆ R̂j for all 1 ≤ j ≤ l and R̂ =

⋂
j R̂j , it follows

that Q̂ ⊆ R̂. �
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