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SUMMARY 

As the cost of processor hardware declines, multiprocessor architectures become increas- 
ingly cost-effective and represent an important area for future research. In order to exploit 
the full potential of multiprocessors, however, it is necessary to understand how to design 
software which can make effective use of the available parallelism. This paper considers the 
impact of multiprocessor architecture on the design of high-level programming languages 
and, in particular, evaluates the language Ada in the light of the special requirements of real- 
time multiprocessor systems. We conclude that Ada does not, as currently designed, meet the 
needs for real-time embedded systems. 

1. INTRODUCTION 

The possibility of using multiprocessor architecture as the basis for a powerful 
computing system is an attractive one for several reasons. First, a multiprocessor 
system can achieve significantly increased computational speed by allowing parallel- 
ism in its task structure. Second, multiprocessor architecture offers the potential for 
achieving system reliability through the redundancy of its processing elements. 
Third, as the cost of processing components (particularly the LSI-based micropro- 
cessor) declines, the cost of adding processors to a system becomes less significant in 
relation to the overall system cost. In the light of these advantages, interest in 
multiprocessor architectures has grown significantly over the past decade, and it is 
clear that multiprocessors are likely to become increasingly cost-effective in years to 
come. It  is also clear that the use of multiprocessor technology has an effect on 
software methodology which must be considered in the design of any programming 
language system intended for use in a real-time multiprocessor-based environment. 

In this paper, we are particularly concerned with the impact of multiprocessors on 
the programming language Ada' which was developed by Cii Honeywell Bull for the 
U.S. Department of Defense and is intended to serve as a programming standard for 
embedded computer applications (i.e. command and control, communications, avionics, 
shipboard applications, etc). As a consequence of its projected application domain, the 
language contains facilities for parallel and real-time programming in addition to the 
usual control and data structuring facilities of conventional languages such as Pascal. 
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Moreover, since Ada is designed to be used in applications which are well-suited to 
multiprocessor systems, we believe that a study of Ada from the point of view of 
multiprocessor systems is a particularly relevant area of research. 

Section 2 of this paper examines the nature of a typical multiprocessor system and 
briefly outlines various differences between applications which are well adapted to 
multiprocessors and those intended for more conventional uniprocessor architectures. 
Secion 3 outlines the parallel control facility provided by Ada and provides a 
framework for a more detailed discussion of the implications of that design. Section 4 
presents an evaluation of Ada’s parallel processing facility giving special consideration 
to the unique requirements imposed by multiprocessor systems. T o  the extent that the 
primitives provided by Ada are judged to be inadequate for use in the environment of 
a practical multiprocessor, alternative structures and extended facilities which would 
relieve the major problems are discussed. These are presented as general conclusions 
in Section 5 .  

We recognize that the Ada language is still under development and that the 
language definition reported in Reference 1 must be viewed as a preliminary 
document. In fact, there are indications that changes are being incorporated into the 
Ada design which solve some the problems addressed in this paper. We believe that it 
is important to bring some of the questions related to parallel control in Ada before a 
wider audience and that the results presented in this paper will be of use in evaluating 
the designs of tasking mechanisms in general, even if the specific critique of Ada 
becomes dated through changes in the language definition. 

2. T H E  NATURE O F  MULTIPROCESSOR APPLICATIONS 

As part of our evaluation of Ada as a language for multiprocessors, we feel that it is 
important to consider not only the characteristics of multiprocessors themselves but 
also the nature of the applications which are typically encountered in a multiprocessor 
environment. From our experience with existing multiprocessor systems, we believe 
that multiprocessor applications tend to have much more stringent requirements for 
run-time efficiency than do most applications developed for uniprocessor environ- 
ment. This increased requirement for efficiency arises, in part, from the observation 
that it is considerably more difficult to design software for a multiprocessor system 
than for a more traditional uniprocessor. T o  a large extent this increase in difficulty is 
related to the fact that multiprocessors represent a relatively new form of system 
architecture. When compared to the experience which has been assembled for single 
processor systems and sequential algorithms, very little is known about the problems 
involved in multiprocessor design and parallel programming. 

The  fundamental implication of the increased difficulty in software development is 
quite simple: multiprocessor systems will rarely be used for practical applications 
unless the use of a multiprocessor is required by the constraints of the application. 
Multiprocessors have significant advantages over conventional uniprocessors in three 
distinct areas: 

1 .  Multiprocessors are capable of increased effective throughput because they allow 
independent tasks within the application to operate in parallel. 

2. Multiprocessors can be designed to include software reliability structures which 
exploit the inherent redundancy in the hardware to dynamically alter the system 
configuration in response to hardware failures. 
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3 .  Multiprocessors can be expanded gracefully as the requirements of the appli- 
cation change. 

Of the three factors above, the need to provide efficiency through parallelism has, in 
our experience, proven to be the most important. Applications chosen for use with 
multiprocessors tend, therefore, to have (1) strict requirements for run-time efficiency 
and (2) highly parallel internal task structures which permit them to take advantage of 
the multiprocessor design. 

The need to produce highly efficient code is well understood by those who have 
experience in designing real-time applications and is reflected in the technical 
requirements for a common high order language which directed the development of 
Ada. Section 1D of the Steelman requirements’ specifies that language ‘features 
should be chosen to have a simple and efficient representation in many object 
machines’. Moreover, Steelman recognizes that the tasking facility is particularly 
subject to such efficiency considerations in its requirement (Section 9B) that the 
‘parallel processing facility shall be designed to minimize execution time and space’. 

We believe that concern for efficiency leads to the following general conclusions: 

1. The use of constructs which have no efficient representation must not be 
required by the language design. 

2. If two different constructs display a significant variation in their efficiency 
depending on the application environment, both should be supplied in order to 
provide maximum flexibility and allow the programmer to achieve the required 
level of efficiency. 

3 .  Low-level facilities must be provided to achieve higher levels of efficiency than 
are attainable with any general mechanism. 

It is important to note that the impact on overall efficiency from the use of an 
inappropriate mechanism for parallel control can be extremely high when compared 
to the efficiency cost generally associated with programming in a high-level language. 
While the techniques available for optimizing serial code are highly developed and 
quite successful in practice, relatively little is known about the problem of optimizing 
the global task structure and the internal synchronization process. Based on our 
experience with multiprocessor systems, we believe that these problems are extremely 
hard and well beyond the current state of software technology. This fact increases the 
importance of allowing greater flexibility in the task structure than might be required 
in the non-parallel aspects of a language. 

3.  AN OVERVIEW O F  PROCESS CONTROL IN ADA 

In this section, we present a brief overview of the parallel processing facilities in the 
Ada programming language to provide a background for the evaluation of those 
features presented in Section 4. For the most part, we have not attempted to cover the 
structure of the language in its entirety and have chosen to concentrate on the tasking 
facility alone. In the light of the similarity between Ada and conventional programm- 
ing languages such as Pascal, the reader should have no difficulty following the 
examples of this section in spite of the absence of a full description of the language. T o  
increase the readability of the examples, we have attempted to write code so as to 
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maximize readability and to use comments whenever the intent of the code might be 
unclear. In Ada, comments are introduced by ‘- -’ and extend to the end of the line. 

3.1. The general structure of parallel tasks 
Ada uses the term ‘task’ to refer to the basic syntactic unit for process definition. A 

task consists of two parts: a specification p a r t  which describes the external behaviour 
of the task, and a task body which describes its internal behaviour. The specification 
part consists of a header which gives the name of the task and a declarative part which 
describes those features of the task which are visible to the outside world. Included in 
the declarative part are the declarations of those constants, types, subprograms, 
exceptions, and entries which are associated with the task and must be externally 
visible. 

An example of a task specification is shown below: 

task BUFFER is 
PACKET-SIZE : constant INTEGER : = 256; 
type PACKET is array (1 . . PACKETSIZE) OF CHARACTER; 
entry READ (v : out PACKET); 
entry WRITE ( E :  in PACKET); 

end BUFFER; 

Entries are used for communication between tasks and look externally like procedures. 
The  task body consists of a declarative part which describes local data structures 

and a sequence of statements which implement the entry declarations described in the 
specification part. For the BUFFER example the task body is: 

task body BUFFER is 
BUFSIZE : constant integer : = 10; 
BUF : array (1 . . BUFSIZE) of PACKET; 
IN ,  OUT : INTEGER range 1 . . BUFSIZE : = 1; 
COUNT : INTEGER range 1 . . BUFSIZE : = 0; 

- - statements for entries READ and WRITE - - 
begin 

end BUFFER; 

The  statements implementing the buffer operations READ and WRITE are given later in 
the chapter after additonal features of Ada have been described. 

The  term ‘thread of control’ is used to describe the execution of a task. When a 
thread of control enters a scope containing task declarations, the elaboration of each 
declaration creates a new potential thread of control. The  parent of a task is the task 
whose thread of control eleaborates the task declaration. In order to cause the task 
body to be executed, the task name must be explicitly named in an initiate statement, 
e.g. 

initiate PRODUCER, CONSUMER, BUFFER; 

The  tasks named in the initiate statement are activated and run in parallel with each 
other and with the parent task. Note that the parent of a task may be different from the 
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task which initiated it, although both must have access to the task’s name. Consider: 

task body TI is 
task ~2 is 

end ~ 2 ;  
... 

task body ~2 is 
... 

end ~ 2 ;  

task ~3 is 

end ~ 3 ;  
task body T 3  is 

initiate T 2 ;  

... 

... 

... 
end ~ 3 ;  

begin 
... 
initiate ~ 3 ;  

end ~ 1 ;  

Here, ~1 is the parent of ~ 2 ,  but ~2 was initiated by ~3 instead of T I .  
Normal termination of a task occurs when control reaches the end of the task body. 

If the terminating task is a parent, then it may have to be delayed until all of its 
offspring have terminated. Tasks may also be terminated by means of an explicit abort 
statement. For example, the statement 

abort T I ,  ~ 2 ;  
causes tasks ~1 and T2 plus any descendent tasks to be terminated unconditionally. In 
this case a TASKING-ERROR exception is raised in those tasks which were communicat- 
ing with the aborted task or its descendents. 

Facilities are also provided for determining the status of a task. The system attribute 
T’PRIORITY may be used to determine t‘he priority that has been assigned to task T by 
the scheduling algorithm which allocates available processors to tasks. The  priority of 
a task may be changed by means of a call on the procedure SET-PRIORITY to reflect a 
change in the urgency of process execution. 

Ada also provides arrays of tasks called task families to handle those situations in 
which it is necessary to construct a large number of similar tasks. A typical use for task 
families occurs when there are multiple copies of some physical device such as a 
console terminal and a distinct copy of the same task is necessary to drive each device, 
1.e. 

task TELETYPE-DRIVER ( 1  . . 100) is 
type LINE is array (1  . . 132) of CHARACTER; 
entry WRITELINE (TEXT : in LINE); 
entry READLINE (TEXT : out LINE); 

end TELETYPE-DRIVER; 
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task body TELETYPE-DRIVER is 

end TELETYPE-DRIVER; 

- - statements to implement WRITELINE and READLINE - - 

Individual copies of the task may be referred to by appending the appropriate 
subscript to the task name. Thus the statement 

initiate TELETYPE-DRIVER (3); 
will cause the third copy of task TELETYPE-DRIVER to become active. 

Storage for tasks may be allocated either when the task declaration is elaborated 
(static creation) or when the task is initiated (dynamic creation). The choice between 
static allocation and dynamic allocation is determined at compile time by the use of a 
pragma or translator command, e.g. 

pragma CREATION (STATIC); 
pragma CREATION (DYNAMIC); 

Dynamic creation is particularly important for task families where the index range 
provides an upper bound on the number of active processes and storage might be 
wasted if all tasks were allocated at the same time. 

3.2 Entry declarations and the ACCEPT statement 
Communication between tasks is provided by entry calls and accept statements. 

When one task needs to communicate with another task, it executes an entry call. 
Entry calls specify the information to be exchanged between the tasks and have exactly 
the same form as procedure calls. Thus in the bounded buffer example from the last 
section, a producer task places data in the buffer by executing the entry call 

BUFFER . WRITE (PRODUCER-DATA); 

and a consumer task executes the call 
BUFFER. READ (CONSUMER-DATA); 

to retrieve data from the buffer. 
In order for an entry call to be syntactically correct, the called task must contain an 

entry declaration with a corresponding name and formal part. Entry declarations 
resemble procedure declarations and contain information about the type and mode of 
the formal parameters of the entry.  An entry declaration can also specify an array or 
family of entries all of which have the same name and parameters. In this case, 
subscripts must be used to distinguish a particular entry in the family. Thus, in a disk 
head scheduler it may be convenient to associate a distinct entry with each track on the 
disk 

entry TRANSFER (1 . . 200) (D:  DATA) 

TRANSFER (I) (DATA-REQUEST); 
When another task wishes to write on track I ,  it issues an entry call of the form 

The  accept statement is analogous to the body of a procedure and indicates to the 
called task which statements should be executed when a particular entry call occurs. 
The formal part of the entry declaration is repeated at the beginning of the accept 
statement in order to emphasize the scope of the entry parameters. Following the 
formal part are the statements to be executed when the entry call is accepted. The 
accept statements for the entries READ and WRITE in the bounded buffer example are 
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shown below: 

accept WRITE (E : in PACKET) do 

end WRITE; 

accept READ (v : out PACKET) do 

end READ; 

BUF (INX) : = E; 

V : = BUF (OUTX); 

The variables INX and OUTX are integers which point, respectively, to the rear and the 
front of the buffer and are declared in the body of the task (the complete example is 
presented later in this section). I t  is important to note that these variables need not be 
incremented within the accept statements. Since accept statements are executed in 
mutual exclusion, it is important for them to be as short as possible and not contain 
unnecessary statements. Accept statements for entry families must be subscripted to 
distinguish different entries in the same family. Thus, accept statements for the disk 
head scheduler example will typically have the form 

accept TRANSFER (D : in DATA ) do ... end TRANSFER; 

The synchronization between the calling task and the called task in an entry call is 
similar to the rendezvous that occurs with Hoare’s CSP l a n g ~ a g e . ~  As in Hoare’s 
language there are two possibilities for a rendezvous, depending on whether the 
calling task issues the entry call before or after the corresponding accept statement is 
reached by the called task. In either case the process which reaches the rendezvous 
first is delayed until the other process has an opportunity to catch up. When the 
rendezvous is achieved, the in parameters of the entry call are passed to the called task. 
The calling task is then suspended while the called task executes the body of the accept 
statement. After execution of the accept statement, the values of out parameters are 
passed back to the calling task, and the two tasks are allowed to proceed independently 
again. A queue of waiting tasks is associated with each entry to handle those situations 
in which several different tasks simultaneously access the same entry.  Tasks are 
removed from the queues in a FIFO manner each time that a rendezvous occurs. Note 
that the naming problem which occurs in Hoare’s language is avoided by Ada since it 
is unnecessary for a called process to know the name of the calling process. 

3.3. The select statement 
Many of the disadvantages of semaphores stem from lack of control over what 

happens when a semaphore is found to be busy. Thus, it is not possible to program an 
alternative action to be executed when a semaphore is busy nor is it possible to wait for 
one of several semaphores to be free. The  select statement in Ada provides a 
mechanism for avoiding this type of problem. Syntactically, the select statement 
resembles a case statement in which each alternative is a conditional statement: 

select 
when ~ 1 -  ~ l ;  
or when 132 = A2; 

or when BN 3 AN; 
else S; 

end select; 

... 



1026 E. S. ROBERTS ET AL. 

Each when condition may contain an arbitrary boolean expression involving 
variables which are visible to the task and may be omitted if the condition is known to 
be true. The  select alternatives ~ l ,  . . ., AN are sequences of statements in which the first 
statement is always an accept statement or a delay statement. The  else clause is simply a 
sequence of statements and can also be omitted if the guarding conditions ~ l ,  ..., BN 
are mutually exhaustive. A select alternative is said to be open if there is no preceding 
when clause or if the corresponding condition is true; otherwise it is said to be closed. 

The  execution of a select statement is described by  the following five rules. 

1 .  All of the conditions are evaluated to determine which alternatives are open. 
2. An open alternative starting with an accept statement may be executed if the 

corresponding rendezvous is possible. 
3 .  An open alternative starting with a delay statement may be executed if no other 

alternative has been selected before the specified time interval has elapsed. 
4. If no alternative statement can be immediately selected and there is an else 

clause, then the else clause is executed next. If there is no else clause, the task 
waits until an open alternative can be selected by rule 2 or rule 3 .  

5. If all alternatives are closed and there is an else clause, the else part is executed. If 
there is no else clause, the exception SELECT-ERROR is raised. 

With the select statement we can now complete the task body in the bounded buffer 
example: 

task body BUFFER is 
SIZE : constant INTEGER : = 10; 
BUF : array ( 1  . . SIZE) of PACKET; 
INT,  OUTX : INTEGER range 1 . . SIZE : = 1 ;  
COUNT : INTEGER range 0 . .  SIZE:  = 0; 

begin 
loop 

select 
when COUNT < SIZE 

accept WRITE (E:  in PACKET) do 

end WRITE; 
INX : = INX mod SIZE + 1 ;  
COUNT : = COUNT + 1 ;  

accept READ (v: out PACKET) do 

end READ; 
OUTX : = OUTX mod SIZE + 1 ; 

BUF ( INX)  : = E; 

or when COUNT > 0 * 

V : = BUF (OUTX); 

COUNT : = COUNT - 1 ; 
end select; 

end loop; 
end BUFFER; 

The  buffer is represented by a circular array with the variables INX and OUTX 
indicating the portion of the array which contains data. The  guard COUNT <SIZE in the 
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first alternative of the select statement protects the buffer from overflow during the 
execution of a write operation. Similary, the guard COUNT > 0 in the second alternative 
protects the buffer from underflow during a read operation. Note that if 
0 < COUNT <SIZE and both a read call and a write call occur, the accept statement that is 
selected will be chosen in a completely random manner. The  programmer, therefore, 
must be careful that this non-determinism in the selection of alternatives does not 
affect the correctness of the program. 

3.4. The delay statement, interrupts and generic tasks 
In this section we describe three additional process control features provided by 

Ada. These features do not affect the expressive power of the language as significantly 
as the features discussed previously and are therefore not described in as great detail. 

The first feature is the delay statement which can be used to postpone execution of a 
task for a specified interval of time. The  delay statement has the form 

delay (simple expression) 

The expression following the delay statement represents the length of time (in units of 
the real time clock) that the process is to be delayed. A delay statement can be used in 
place of an accept statement in an alternative of a select statement. In this case if no 
rendezvous occurs during the specified time interval, the statement list following the 
delay statement will be executed. Thus, an additional alternative of the form 

or delay 1 O.O*MINUTES ; initiate SYSTEM-TEST; 

may be added to the select statement in the task body for the bounded buffer example. 
This modification will cause the diagnostic task SYSTEM-TEST to be run if a ten minute 
time interval passes in which there are no READ or WRITE entry calls. 

The second feature is the interrupt entry: in Ada, hardware interrupts are simply 
interpreted as external entry calls. An Ada representation specification is used to link the 
entry to the physical storage address which records the interrupt. The interrupt is 
processed exactly the same way that any other entry call is processed; thus, the 
queuing mechansim for entry calls can be used to handle multiple interrupts. 
Likewise, the mechanism for masking interrupts can be hidden from users by 
incorporating it in the software which connects the interrupts to the entry call. T o  
illustrate how interrupts are handled. in Ada, we show how a stop button can be added 
to the bounded buffer example. We assume the existence of a console button which 
can be pressed to cause a hardware interrupt. A representation specification of the 
form 

for STOP use at 8#7777; 

can be used to associate the entry STOP with the physical address of the interrupt. If the 
select statement in the task body is modified to include the alternative 

or accept STOP; exit; 

then loop will be terminated when the stop button is pressed. 
The  final process control feature that we discuss is the generic task.  The bounded 

buffer example described earlier in this chapter does not provide users with a general 
mechanism for declaring buffer tasks. By making the tasks generic, i.e. by changing 
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the specification part of the task to 

generic task BUFFER is 
PACKET-SIZE : constant INTEGER : = 256; 
type PACKET is array (1 . . PACKET-SIZE) of CHARACTER; 
entry READ (v : out PACKET); 
entry WRITE (E : in PACKET); 

end 

this difficulty can be overcome. When a user needs to declare a new instance of a 
bounded buffer, the construction 

task BB is new BUFFER: 

may be used. READ and WRITE calls on the new instance of the bounded buffer have the 
syntax : 

BB . WRITE (PRODUCER-DATA); 
BB . READ (CONSUMER-DATA); 

Signals and semaphores are provided by Ada as predefined generic tasks. If Ada is 
implemented on a machine on which these primitives are provided by hardware, then 
the compiler can directly translate entry calls into the corresponding hardware 
primitives. In doing so, however, it is critical that the semantics of the language 
remain entirely unchanged. As noted in sub-section 4.2.3., the FIFO semantics of the 
Ada rendezvous can make this particularly difficult to achieve. 

4. EVALUATION OF PROCESS CONTROL I N  ADA 

As discussed in Section 2, we believe that the use of multiprocessor systems tends to 
be most valuable in those applications in which run-time efficiency is a critical 
concern. For this reason, we feel that the parallel control features provided by an 
implementation language intended for use with multiprocessors must be designed to 
allow highly efficient interprocess communication and control. After reviewing the 
Ada language in detail, we are concerned that the primitives provided by Ada do not 
allow the programmer to achieve this desired level of efficiency. Furthermore, in order 
to avoid the efficiency cost associated with the Ada task structure, programmers will 
be forced to adopt an unnatural coding discipline that will make programs more 
difficult to read and understand. 

4.1. Scheduling and the rendezvous 
The most severe problem with the process control features in Ada from the point of 

view of efficiency is that the transmission of data from a sender process to a receiving 
process requires excessive scheduler interactions. Our experience is that message 
passing of this type occurs frequently in real-time applications, and that in such 
applications it is necessary to reduce the number of interactions with the schuduler to 
a minimum to meet the relevant time constraints. 

4.1 .I. A n  example of scheduling delay 
To illustrate the problem, we examine the problem of passing messages from a 

sender process to a receiving process where no response or acknowledgment is 
required. Conceptually, we imagine that there is a queue linking the sender and 
receiver which can hold some finite number of messages in transit. When the sender 
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process generates a message, it enters the associated data at the end of the queue. The 
receiver process, whenever it is free to accept a new message, simply takes the first 
message from the queue. In a parallel environment, it is desirable that the sending 
operation (i.e. entering the data on the queue) be performed without incurring any 
significant delay so that the sending process can continue its operation as quickly as 
possible. In particular, when the queue is not full, there should be no required 
scheduler interactions. 

Consider the bounded buffer example presented in sub-section 3 .1 .  This example 
has been used to demonstrate that buHered message passing with non-blocking 
senders can be implemented in Ada. If entry calls are implemented as described in the 
Ada Rationale [Reference 1 ,  page 11-40], however, the delay arising from scheduler 
actions seems extremely severe and impossible to avoid. Consider, for example, the 
scheduler interactions involved when a producer task sends a packet of data to a 
consumer task. Assume that the producer task executes the entry call 

BUFFER. WRITE (PRODUCER-DATA); 

to initiate the transfer. Given the semantics of the entry call, the producer is now 
blocked until the buffer task is scheduled and completes the rendezvous. During this 
time, the producer process is suspended and must wait to be rescheduled when the 
buffer task completes. Thus, before the producer is allowed to continue, two 
scheduling operations must occur. Furthermore, the implementation discussion in the 
Ada Rationale indicates that the buffer task should dismiss after completing the 
rendezvous in order to allow tasks of higher priority to run at that point, so that it will 
not immediately be able to perform a rendezvous with a consumer process. 

Essentially the same sequence of operations is performed when the consumer task 
executes the corresponding entry call 

BUFFER. READ (CONSUMER-DATA); 

to receive a message. This implies that a total of four scheduling interactions is 
required to transmit a single message. Since each scheduler interaction may involve a 
complete context swap, this implementation of message passing would be pro- 
hibitively expensive for many applications. 

Note that this problem does not arise if the message passing mechanism is 
implemented through the use of a message queue or directly by the harware of the 
target machine. The  queue operations themselves must be protected against concurr- 
ent updates through some mutual exclusion mechanism, but in this case it is 
reasonable to use interlocks or some similar mechanism based on busy waiting without 
incurring the overhead of a scheduler interaction. From the statistics on lock 
contention given in Reference 4, we see that neither the producer task nor the 
consumer task will be delayed for an inordinate period of time. 

From our experience with real-time communications systems, it is evident that the 
scheduling delay above presents a serious problem that must be solved for Ada to be 
recognized as an acceptable implementation language for multiprocessor systems. In 
the search for a solution, one has two potential choices: 

1 .  Without changing the Ada language, develop some mechanism which would 
permit the translator to produce more efficient code in those cases where it can be 
determined that the rendezvous is not necessary. 

2. Add new features to Ada to support a more efficient mechanism for message 
passing without sender delays. 
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4.1.2. The HabermannlNassi implementation of rendezvous 
In this section, we describe a solution to the problem of scheduling delay which was 

developed by Habermann and Nassi and described briefly by Habermann in his 
commentary on the RED and GREEN candidates for the Ada l a n g ~ a g e . ~  The  
Habermann/Nassi solution consists of replacing the entrylaccept interface with an 
alternative implementation resembling a procedure call. The  interesting feature of 
this change in implementation is that the statements in the range of the accept 
statement are evaluated, not by the called task, but by the caller. If this is done 
correctly, the calling task need never dismiss its processor and therefore is not forced 
to wait for the scheduler. 

In his evaluation of the Ada tasking facility, Habermann observes that many of the 
tasks that arise in practical applications are of the ‘server’ type and consist of one or 
more select statements enclosed in a loop (the BUFFER task above is of this type). 
Habermann argues that tasks of this type often permit the compiler to eliminate the 
rendezvous by replacing the accept statement linkage with a subroutine which 
implements the required mutual exclusion and synchronization with some internal 
primitive such as a semaphore. He briefly outlines a scheme for performing this 
transformation by analysing a variety of cases. In the paragraphs below, we have 
attempted to reconstruct this argument in a simpler form and then apply it to the 
BUFFER example. 

In the course of this discussion, we will need to introduce internal semaphore 
objects to control the program flow. Although semaphores may be implemented in 
Ada using task entities, we feel that it is clearer to think of these semaphores as data 
objects of type SEMAPHORE which have two values (LOCKED and UNLOCKED) and two 
primitive operations (P and v). We will therefore write semaphore operations in the 
more conventional functional notation (i.e. P(SEM~)  instead of S E M ~  . P). 

Later in this section, we will also make use of a special P operation, which we will 
call JOINTP, which takes two semaphores and waits until both semaphores are in an 
UNLOCKED state. Note that this is not the same as a wait for one semaphore, followed 
by a wait for the other, since neither semaphore is actually locked until both are 
available. 

As a simple case, consider a task whose body consists entirely of a sequence of accept 
statements in a loop such as 

task body  EXAMPLE^ is 
begin 

loop 
accept EN TRY^ do 

end EN TRY^; 
- - (body of EN TRY^) - - 

accept ENTRY2 do 
- - (body of ENTRY2) - - 

end ENTRY2; 
- - more accept statements - - 
accept ENTRYn do 

- - (body of ENTRYn) - - 
end ENTRYYI; 

end loop; 
end  EXAMPLE^ ; 
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To translate this example into its procedural equivalent, we associate each of the 
entries E EN TRY^) with an internal semaphore ( S E M ~ )  and translate each accept statement 
into a procedure declaration which begins by performing a P operation on its 
associated semaphore and ends by performing a v operation on the semaphore 
associated with its successor entry. The ‘entry procedures’ then have the form 

procedure EN TRY^ is 
begin 

P(SEM 1 ); 
- - (body of EN TRY^) - - 
V(SEM2); 

end ENTRY 1 ; 

and so on up to 

procedure ENTRYn is 
begin 

P( S E M ~ ) ;  
- - (body of ENTRYn) - - 
V(SEM 1 ); 

end ENTRYn; 

In this case, since no code exists in  EXAMPLE^ that is not enclosed in accept 
statements, no actual thread of control need exist for  EXAMPLE^ and the initiation of 
EXAMPLEI consists simply of declaring the semaphores SEMI to SEMn, with SEMI 
initialized to UNLOCKED and the remaining ones in the LOCKED state. After considering 
the actions of the semaphores in the example above, it should be clear that the control 
semantics of the procedural version is identical to that of the rendezvous provided that 
semaphores are implemented so as to ensure the first in/first-out discipline. Initially, 
the ‘task’ will only accept entry calls to EN TRY^, since any other call will block on the P 
operation at entry. The  first call to EN TRY^, on the other hand, will succeed, and the v 
operation at the end of the procedure body will allow the system to accept a call on 
ENTRY2 or to process an existing call pending on the associated semaphore. 

A simple version of the select statement may be handled through the use of 
semaphores in a similar fashion. Consider, for example, the task specification below: 

task body  EXAMPLE^ is 
begin 

loop 
select 

accept  CASE^ do 

end  CASE^ ; 
- - (body O f  CASE1) - - 

or 
accept CASE2 do 

end CASE2; 
- - (body Of CASE2) - - 

end select; 
end loop; 

end EXAMPLE2; 
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In this example, we will need to declare a semaphore with the select statement 
(SELECT-SEM) to ensure mutual exclusion of the independent entries. This task may be 
coded in procedure form as follows: 

procedure  CASE^ is 
begin 

P(SELECT-SEM); 
- - (body of  CASE^) - - 
~(SELECT-SEM); 

end  CASE^; 

procedure CASE2 is 
begin 

P(SELECT-SEM); 

~(SELECT-SEM); 
- - (body O f  CASE2) - - 

end CASE2; 

Initiation of the task EXAMPLE2 corresponds to setting the state of SELECT-SEM to 
UNLOCKED thus allowing the first entry call to succeed. In this example, the first call on 
either of the entries  CASE^ or  CASE^ will succeed and will perform the actions in the 
body of the associated accept statement in mutual exclusion because of the protection 
provided by  the semaphore. Upon completion of the entry body, the semaphore will 
once again become free and the system may service any further calls on either of the 
entries. It is interesting to note that this program transformation provides for 
‘random’ ordering in the select statement by implicitly implementing the ‘order of 
arrival’ method discussed in the A d a  Rationale. 

The  examples presented above, however, are overly simplified in that they do not 
provide for code within the body of the task which is not enclosed in an accept 
statement. This case requires a slightly more complex treatment that forces the server 
task to maintain an independent thread of control. T o  illustrate the basic notion 
involved in this generalization, consider the simple task skeleton below: 

task body  EXAMPLE^ is 
begin 

loop 
- -  (statement body 1 )  - -  
accept E N T R Y ~  do 

end ENTRY 1 ; 
- -  (statement body 2) - -  

- - (body of EN TRY^) - - 

accept E N T R Y 2  do 

end E N T R Y 2 ;  
- - (body of EN TRY^) - - 

end loop; 
end EXAMPLE3;  
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With the exception of the intervening (statement body) code, this task is identical in 
form to that given in task EXAMPLEI, and we would like to identify some similar 
procedural form for the bodies of the entry calls. This can be done by associating each 
of the (statement body i) segments with a semaphore (STATEMENT-SEMI') in much the 
same way as the entry semaphore association (here EN TRY^ is associated with the 
semaphore ENTRY-SEMZ'). Originally, only STATEMENT-SEM 1 is UNLOCKED; the remain- 
ing semaphores are initialized to the LOCKED state. The  task is then divided into a 
component which represents the 'real' task (i.e. the code outside of the accept 
statements) and the entry procedures, giving rise to the code segments below: 

task body TRANSFORMED-EXAMPLE3 is 
begin 

loop 
 STATEMENT-SEM~); 
- - (statement body 1) - - 
 ENTR TRY-SEM~); 

- - (statement body 2) - - 
P(STATEMENT-SEM2); 

V(ENTRY-SEM2); 
end loop; 

end TRANSFORMED-EXAMPLE3 ; 

procedure EN TRY^ is 
begin 

~(ENTRY-SEM 1 ); 
- - (body O f  ENTRY1) - - 
V( STATEMENT-SEM2); 

end EN TRY^; 

and 

procedure EN TRY^ is 
begin 

P(ENTRY-SEM2); 

 STATEMENT-SEM~ ); 
- - (body of ENTRY2)- - 

end ENTRY2; 

In this example, each of the statement sequences enables the succeeding entry and vice 
versa, which insures the correct semantics with respect to synchronization and mutual 
exclusion. 

Finally, we need a mechanism for managing the effect of when clauses appearing in 
the select statement body. In effect, the when clauses, taken together, can be viewed as 
a single code body outside of the select statement which evaluates each of the 
predicates and determines which of the entries should even be considered. Since the 
evaluation of these predicates takes place outside the range of accept statements, the 
use of when clauses implies that the server task must have a separate thread of control 
to execute the predicate-evaluation code. For example, suppose that we were to 
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modify the code for  EXAMPLE^ to include when clauses as in the following example: 

task body  EXAMPLE^ is 
begin 

loop 
select 

when P R E D F N ~  ( . . . )- 
accept C A S E ~  do 

end C A S E ~ ;  
- -  (body of  CASE^) - -  

or 
when PREDFN2( .  . . ) 

accept  CASE^ do 

end  CASE^; 
- - (body O f  CASE2) - - 

end select; 
end loop; 

end EXAMPLE4; 

where P R E D F N ~  and P R E D F N ~  are some form of predicate (either a function call, as here, 
or a logical expression) that is used to control which of the select clauses should be 
accepted. As in the previous case, we wish to transform the task body of EXAMPLE4 so 
that the code required to compute the predicates lies in the body of the ‘real’ task. We 
will make use of four semaphores in this example: one for each when clause  WHEN^ 
and  WHEN^), one to ensure mutual exclusion for the select alternatives (SELECT-SEM), 
and one to control sequencing (STATEMENT-SEM). Of these, STATEMENT-SEM and 
SELECT-SEM are initialized to UNLOCKED and the two WHEN semaphores are set to a 
LOCKED state. The  code for computing the predicate expressions is given below: 

task body TRANSFORMED-EXAMPLE4 is 
P I ,  P2 : BOOLEAN; 

begin 
loop 

P( STATEMENT-SEM); 
~1 : = P R E D F N ~ ( .  . .); 
P2 : = PREDFN2(. . . ); 
if not ( ~ 1  or ~ 2 )  then 

raise SELECT-ERROR; 

end if; 
if ~1 then V ( W H E N ~ )  end if; 
if ~2 then V ( W H E N ~ )  end if; 

end loop; 
end TRANSFORMED-EXAMPLE4; 
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The code for the two CASE entries, however, is somewhat tricky. We are tempted to 
write procedure-type entries of the form: 

procedure  CASE^ is 
begin 

P ( W H E N ~ ) ;  

P(SELECT-SEM); 
- - (body of  CASE^ ) - 
~(SELECT-SEM); 
 STATEMENT-SEM) 

end  CASE^ ; 

Unfortunately, this approach is overly simplified and does not correctly ensure that 
only one of the select alternatives is evaluated. We must take two additional 
precautions to ensure the correct semantics of the select mechanism. First of all, 
whenever a particular entry is evaluated, we must make it impossible for the system to 
accept other entry calls by locking the corresponding semaphores controlling the 
remaining select alternatives. This can be accomplished by including a statement of 
the form 

WHENX : = LOCKED; 

for each of the remaining alternatives for this select statement. Unfortunately, even 
this does not fully insure sematically correct evaluation because of the ordering 
constraint on the semaphore operations. Since we test the WHEN semaphores prior to 
testing SELECT-SEM, it is possible for both  CASE^ and  CASE^ to have passed the first P 

operation, even though one will be prohibited from continuing until the other has 
completed the interior region. When this process completes the body of code and 
performs the ~(SELECT-SEM) operation, there is nothing to prohibit the other branch 
from executing as well, since the effect of the 

WHENX : = LOCKED; 

has been negated by the fact that the other thread of control has already passed the 
point at which this test is relevant. Changing the order of the P operations will not 
work, since this leaves the system susceptible to deadlock states. Moreover, it is 
insufficient to introduce internal flags to mark the operation, because it will be 
impossible to tell, in general, whether any other processes have passed the first P 
operation unless some other action is performed indivisibly with that cal.1 to P. 

The simplest correction conceptually is to replace the individual P operations with a 
JOINTP operation which waits for the two semaphores to become UNLOCKED together. 
In this case, the code for the entry  procedures becomes: 

procedure  CASE^ is 
begin 

JOINTP(WHEN~,  SELECT-SEM); 
- - (body of  CASE^) - - 
W H E N 2  : = LOCKED; 
~(SELECT-SEM); 
 STATEMENT-SEM) 

end  CASE^; 
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and 

procedure  CASE^ is 
begin 

JOINTP(WHEN2, SELECT-SEM); 
- - (body Of CASE2) - - 
 WHEN^ : = LOCKED; 
~(SELECT-SEM); 
 STATEMENT-SEM); 

end CASE2; 

This technique is adequate to solve the problem, but illustrates some of the 
complexity that arises in more complicated applications of the Habermann/Nassi 
technique. 

TO illustrate the power of the complete mechanism, consider the following 
transformation of the BUFFER task which combines the individual techniques described 
above. For simplicity, all statements within the range of a select alternative have been 
moved inside the corresponding accept statement, although the technique used in 
EXAMPLE3 illustrates the general method for restoring the potential concurrency. 

package NEWBUFFER is 
PACKET-SIZE : constant INTEGER : = 256; 
type PACKET is array (1 . . PACKET-SIZE) of CHARACTER; 
task NEWBUF; 
procedure READ (W : out PACKET); 
procedure WRITE (E : in PACKET); 

end NEWBUFFER; 

package body NEWBUFFER is 
SIZE 
BUF 
INX,  O U T X  
COUNT 

: constant INTEGER : = 10; 
: array (1 . . SIZE) of PACKET; 
: INTEGER range 1 . . SIZE : = 1; 
: INTEGER range 0 . . SIZE : = 0; 

STATEMENT-SEM : SEMAPHORE : = UNLOCKED; 
SELECT-SEM : SEMAPHORE : = UNLOCKED; 
WHENI,  WHEN2 : SEMAPHORE : = LOCKED; 

task body NEWBUF is 
begin 

loop 
 STATEMENT-SEM); 
- - given the range of COUNT at least - - 
- - one of the following is true so no - - 
- - SELECT-ERROR exception can occur. - - 
if COUNT < SIZE then V ( W H E N ~ )  end if; 
if COUNT > 0 then v(wHE~2) end if; 

end loop; 
end NEWBUF; 
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procedure WRITE (E: in PACKET) is 
begin 

J O I N T P ( W H E N ~ ,  SELECT-SEM); 

BUF (INX) : = E; 
INX : = INX mod SIZE + 1 ;  
COUNT : = COUNT + 1 ; 
W H E N 2  : = LOCKED; 

~(SELECT-SEM); 
 STATEMENT-SEM); 

end WRITE; 

procedure READ (w: out PACKET) is 
begin 

JOINT(WHEN2,  SELECT-SEM); 

W :  = BUF (OUTX); 
OUTX : = OUTX mod SIZE + 1 ; 

 WHEN^ : = LOCKED; 
~(SELECT-SEM); 
 STATEMENT-SEM); 

COUNT : = COUNT - 1 ; 

end READ; 
end NEWBUFFER; 

From the point of view of efficiency, it is evident that the above implementation 
strategy is preferable to the cooperating process model of rendezvous suggested in the 
A d a  Rationale, but there are some costs associated with this approach, largely in terms 
of the complexity this structure imposes on an otherwise simple model. In particular, 
the Ada semantics cannot be maintained if the body of the accept statement is viewed 
as a subroutine of the caller which communicates with the called task solely through 
the internal semaphore structure. The  generated code must take account of the fact 
that two separate tasks are involved. 

The complexity arises because of the ‘identity crisis’ which occurs for the task 
executing the statements within an accept body. In many ways, it is convenient to 
think of the calling and called tasks as completely distinct entities. This view is made 
explicit in the A d a  Rationale (page 11-40) which emphasizes that ‘the caller executes a 
procedure himself whereas an accept statement is executed by the callee on the caller’s 
behalf‘. Under the Habermann/Nassi implementation, this distinction is no longer 
clear since the savings in efficiency result from allowing the calling task to execute the 
accept body as a procedure call. 

In some cases, the identity of the task executing the code may be of some 
importance. For example, to allow metering of an application program, it is important 
that the runtime consumed during the accept body be charged to the CLOCK attribute 
of the called task rather than its caller. I t  is also important to remember that exception 
conditions which occur during the execution of the accept statement must be raised in 
both the caller and called task. Considerations such as these indicate that some form of 
context switching to identify the called task must be performed as part of the 
entrylaccept linkage. 

We also gave several examples earlier that show that the order in which semaphores 
are locked is extremely important and that there are cases in which the only convenient 
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solution is to use a joint P operation which is capable of waiting for two semaphores to 
become UNLOCKED simultaneously. There are other issues that complicate this 
structure, such as the use of the same entry name in two or more when clauses. These 
problems are not unsolvable by a compiler; our principal assertion is that they are 
conceptually more difficult to implement than the basic queuing model of task 
communication, which is at least as efficient in its implementation. Thus we argue that 
while the Habermann/Nassi solution is not hopelessly complex, it is at least 
unnecessarily complex. 

4.1.3. Automatic data queuing 
An alternative approach to the problem would be to devise a queue implementation 

which retains the linguistic structure of the entrylaccept linkage. Presumably, this sort 
of structure is meaningful only in those cases in which the flow of information is 
unidirectional and where the synchronization provided by the rendezvous is known to 
be irrelevant. When these conditions apply, it is possible to achieve a significant 
increase in message passing efficiency by building a data queue into the task 
communication structure and allowing the sender to proceed. 

I t  is immediately evident that this type of approach changes the nature of the 
implementation strategy. In the implementation of the rendezvous proposed in the 
A d a  Rationale or the Habermann/Nassi alternative described above, no form of data 
queuing is ever supported by the implementation. The  only entities which are entered 
in queues are tasks, and each task, because of the structure of the rendezvous, may be 
entered on at most one queue. This is extremely convenient since it allows arbitrary 
queuing of tasks without encountering a memory allocation problem; it is sufficient to 
reserve a queue pointer cell in the activation record of each task. Data queuing, on the 
other hand, requires that space be available to hold each of the data items on the 
queue. Assuming that dynamic allocation of this queue space is unmanageable, one is 
required to impose an upper bound on the queue size which is fixed at translation 
time. 

In order to illustrate the general mechanism, consider the task specification below 
which performs the inverse of the LINE-TO-CHAR function illustrated in the A d a  
Rationale (page 11- 6) .  

task CHAR-TO-LINE is 
type LINE is array ( 1  . . 80) of CHARACTER; 
entry PUT-CHAR < 80 > (c : in CHARACTER); 
entry GET-LINE ( E  : in LINE); 

end CHARTOLINE; 

task body CHAR-TO-LINE is 

begin 
BUFFER : LINE; 

loop 
for I in 1 . . 80 loop 

BUFFER ( I ) :  = C; 
accept PUT-CHAR (c : in CHARACTER) do 

end PUT-CHAR; 
end loop; 
accept GET-LINE ( L  : out LINE) do 
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L : = BUFFER; 
end GET-LINE; 

end CHAR-TO-LINE; 
end loop; 

Note that the syntax of the entry declaration has been extended to allow a queue size 
indicator as in 

entry PUT-CHAR <80> (c : in CHARACTER); 

The < 80 > parameter specifies a queue size for communication between the callers of 
PUT-CHAR and the CHAR-TO-LINE task itself. In this case, the first eighty calls to 
PUT-CHAR will simply copy their data into the character queue established by the entry 
declaration and proceed, even if the CHAR-TO-LINE task is unable to complete the 
rendezvous for the PUT-CHAR entry (presumably because it is waiting for a call to 
GET-LINE). Thereafter, additional calls to PUT-CHAR will block and be suspended until 
characters are taken from the queue by the CHAR-TO-LINE task. 

For the most part, the implementation of this extension to the rendezvous 
mechanism is completely straightforward. For the case of an entry which has only in 
parameters, the calling task performs one of two actions when making an entry call. If 
the queue is not full, the input parameters are copied into the pre-allocated data area 
and added to the end of the queue; if the queue is full, the task activation record is 
queued for that entry in exactly the same manner as that used in the complete 
rendezvous approach. The  server task, upon reaching an accept statement, looks to see 
if the queue is empty. If so, the server task is dismissed and waits for an entry call; if 
there are entries in the queue, the data items from the first entry are copied into the 
server task. As part of the same operation, the parameters from the first task (if any) in 
the associated queue of sending tasks must be appended to the end of the data queue, 
at which point the sending task is free to proceed. 

A similar mechanism can be used to handle the case of entries which operate in the 
opposite direction and have only out parameters. In  this case, receiving tasks are 
suspended when the data queue is empty and the server must wait when the data 
queue is full. 

This approach makes considerable sense if one argues that many applications 
require efficient message passing structures and that those structures should be 
incorporated into the language in a manner consistent with the existing mechanism for 
synchronization. One important observation about this approach is that the queue size 
information may be interpreted in the same fashion as a pragma statement which the 
translator is free to ignore. If some translator chooses to implement all entry calls 
using the complete rendezvous scheme, this will only affect the efficiency of the 
resultant program rather than the semantics. 

4.1.4. Communication through low-level facilities 
One further alternative to be considered is to provide low-level facilities for mutual 

exclusion which would allow programmers to implement other message passing 
disciplines. While we do not feel that low-level facilities are required for an efficient 
solution to interprocess communication, we believe that there are other independent 
reasons which argue for the introduction of such facilities. If these are provided, it 
may be unnecessary for the language to supply any additional mechanisms for 
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communication since it will be possible for the users to create additional structures to 
achieve the necessary level of efficiency. 

4.2. Low-level synchronization facilities in Ada 
A related problem which limits the potential efficiency of Ada arises from the lack of 

low-level facilities for protecting shared data against concurrent access. In Ada, the 
only mechanism available for providing mutual exclusion is the entry call. Although it 
is certainly true that this model is appropriate to a variety of task structures which 
arise in practical applications, there are limitations in the structure which will make it 
difficult to use Ada in those environments in which efficiency is of considerable 
importance. 

4.2.1. Synchronization and eficiency 
As noted in the previous section, the rendezvous mechanism requires two schedul- 

ing events for each execution of a critical region. While this cost may be reduced 
considerably through the use of alternative implementation strategies, even in the best 
of circumstances, there will be some overhead cost involved in context switching 
between the two tasks. 

The  actual impact of the rendezvous overhead depends on the frequency of access 
to shared data and on the size of the critical regions. If access to shared data structures 
is relatively infrequent, the scheduling overhead required to make these accesses will 
have a minor overall effect. Similarly, if the size of the critical regions is large (in terms 
of the amount of computation required) in comparison to the rendezvous cost, overall 
system performance is relatively insensitive to this delay. 

On the other hand, consider the extreme case of an application in which access to 
shared data is frequent (such as of the order of 10 per cent of the instructions executed 
not counting those required for parallel control) and the size of a typical critical region 
is very short (perhaps as little as one or two instructions). In this case, system 
throughput is largely determined by the efficiency of the mutual exclusion mechan- 
ism. On most systems, it is possible to design interlock mechanisms based on busy 
waiting (often referred to as ‘spin locks’) which require very few instructions to 
implement. I f  such a mechanism is used, it is reasonable to expect that a typical cycle 
from one critical region to the next might require no more than twenty or thirty 
instructions, assuming that lock contention does not have a significant effect. If 
scheduling interactions are required to ensure mutual exclusion, the path through a 
critical region would be significantly more costly and would typically require more 
than 200 instructions, thereby reducing the overall efficiency by an order of 
magnitude. 

While the severity of the problem is exaggerated by the example above, the ratio of 
synchronization time to time spent in critical regions is an important factor in many 
applications. Furthermore, the choice between spin locks and scheduler-based 
synchronization mechanisms does have a significant impact on synchronization time. 
In the Hydra system, for example, spin locks are two orders of magnitude faster than 
the fastest synchronization primitive involving the scheduler (Reference 4). Since spin 
locks can be implemented using between three and ten instructions on most machines, 
this factor of 100 is likely to be representative of the relative cost for a wide range of 
systems. 
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The effect of this differential in the efficiency of the various synchronization 
primitives is that different applications may require different mechanisms according 
to the size of the critical regions involved. After studying the performance of a parallel 
root-finding application on C.mmp, Oleinick and Fuller4 conclude that each of the 
scheduling mechanisms supported by  C.mmp or the Hydra operating system has an 
associated operating range. If the time between synchronization events is relatively 
short (in this case, less than about 15 millisceonds), spin locks are the only 
syncronization mechanism available which incurs a synchronization cost of less than 
50 per cent. If the interval between synchronization events is longer, the more 
powerful primitives provided by the scheduler become less costly. 

The existence of different operating ranges suggests that some flexibility must be 
available in the choice of scheduling primitives in order to allow the system to meet the 
requirements of a particular application. The  lack of this flexibility in Ada implies that 
the language may not be appropriate to applications in which the expected time 
between synchronization events is small. In our experience, this is frequently the case 
in real-time applications and we feel strongly that the introduction of low-level 
synchronization primitives into the Ada languague is necessary to handle such 
applications with the required level of efficiency. 

4.2.2. Control-based vs. data-based synchronization 
In addition to the efficiency concerns discussed in the previous section, the 

rendezvous mechanism in Ada differs from many conventional primitives for 
synchronization in that mutual exclusion is a function solely of the task (or control 
structure) and is independent of the data structures in the application program. This 
property appears to have an effect on memory utilization if conventional program 
structuring is used. 

Consider an application in which some relatively large number of entities may be 
manipulated by some moderately large number of actions (for concreteness in this 
example, assume that there are 100 entities and 10 actions) in such a way that mutual 
exclusion is required to prevent two actions from occurring simultaneously for the 
same entity. This type of situation occurs, for example, in the case of a terminal 
concentrator whose function is to connect some large number of terminals to a 
network of host computers. In designing software for such a system, it is convenient to 
represent each terminal as a distinct entity and to define a set of commands which 
trigger control functions when entered on that terminal. 

In Ada, this situation would ordinarily be modelled through the use of a taskfamily  
whose members corresponded to the individual terminal entities. The user commands 
correspond to entries in the body of the task, which would give rise to the following 
general structure: 

task ENTITY (1 . . 100) is 
entry  ACTION^; 
entry  ACTION^; 
- - entry declarations for remaining actions - - 
entry  ACTION^ 0; 

end ENTITY; 
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task body ENTITY is 
begin 

loop 
select 

accept  ACTION^ do 

end  ACTION^; 
- - body of action 1 - - 

or accept A C T I O N 2  do 
- -  body of action 2 - -  

end A C T I O N 2 ;  
- - accept statements for remaining actions - - 
or accept A C T I O N ~ O  do 

- - body of action 10 - - 
end  ACTION^ 0; 

end select; 
end loop; 

end ENTITY; 

In a more conventional approach in which low-level primitives are available for 
locking within data structures, the same structure would be implemented by including 
an interlock with each entity to prevent concurrent access to that entity by more than 
one action. The  individual actions would be coded as procedures, for example: 

- - INTERLOCK operations defined in Section 3 - - 
type ENTITY is access 

record 
ACCESS-LOCK : INTERLOCK : = UNLOCKED; 
- - local state fields - - 

end record; 

procedure  ACTION^ (ENT : in ENTITY) 
begin 

LOCK (ENT . ACCESS-LOCK); 
- - body of action 1 - - 
UNLOCK (ENT . ACCESS-LOCK); 

end  ACTION^ ; 

- -  ACTION^ through  ACTION^ 0 are similarly defined - - 
The flavour of the two models above is very similar, particularly from the external 

point of view. In order to perform  ACTION^ on some entity k in the task-based Ada 
approach, one issues the call 

ENTITY(k)  . A C T I O N 3 ;  

while in the interlock model, one performs 

 ACTION^ (pointer to entity k); 

The  semantic properties are also similar since each call is protected against the 
concurrent execution of other actions for that entity and independent entities may be 
acted upon in parallel. 
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In the implementation of the two mechanisms, however, there is a considerable 
disparity in the storage requirements which arises from the fact that the interlock 
model views the entities (data) and the actions (procedures) as distinct units. In the 
task model, each entity in the task family has, as part of its structure, each of the 
associated entries, which has a multiplicative effect on the storage requirements for 
each entity. For example, in the interlock model, there are 100 data locks used to 
manage concurrency; in the task model, this function is managed by 1000 (i.e. 
100 x 10) entries. Since each entry must included at least a queue pointer, this 
approach is clearly inefficient in terms of storage. 

It is possible to design the task structure for a particular application so that this cost 
is eliminated. For example, in the code sequence below there are only 100 entries to 
perform the necessary actions. 

type ACTION iS (ACTIONI,  ACTION2,  . . ., ACTION10);  

task ENTITY ( 1  . . 100) is 

end ENTITY; 

task body ENTITY is 
begin 

entry PERFORM-ACTION (ACT : in ACTION); 

loop 
accept PERFORM-ACTION (ACT : in ACTION) do 

case ACT of 
when  ACTION^ * 

begin 

end; 

begin 

end; 

- -  body of action 1 - -  

when ACTION2 * 

- - body of action 2 - - 

- - when clauses for remaining actions - - 
when A C T I O N ~ O  * 

begin 

end; 
end case; 

- - body of action 10 - - 

end PERFORM-ACTION; 
end loop; 

end ENTITY; 

While the above solution has the desired effect of reducing the storage require- 
ments, the overall structure has been sacrificed and the resultant program is 
considerably less natural than the earlier one. It may be possible for the translator to 
perform optimizations of this kind, but this seems like an exceptionally complex 
problem. 

4 . 2 . 3 .  Implementation of interlocks in A d a  
Although the rendezvous can provide the same functionality as programmer- 

accessible interlocks within the data structure, we feel that such interlocks are 
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necessary in order to allow multiprocessor systems to be implemented with the 
required level of efficiency. T h e  two preceding sections demonstrate that the interlock 
model is more efficient than a straightforward implementation of the rendezvous 
scheme. Because efficiency is of critical importance in most multiprocessor environ- 
ments, we are concerned that the failure of Ada to provide adequate facilities for low- 
level interlocks will considerably reduce the overall applicability of the language. 

We also believe that low-level facilities for managing interlocks can be added to the 
language without any significant change in the underlying structure of Ada. One 
possibility is simply to incorporate the data type INTERLOCK and the procedures LOCK 
and UNLOCK as part of the Ada language. This solution is sufficiently general to satisfy 
the efficiency considerations and does so with a very minimal impact on the Ada 
language. A second alternative would be to define a new statement form, such as the 
region statement from Brinch Hansen,6 which has the effect of ensuring mutual 
exclusion on a particular interlock throughout a sequence of statements. This 
alternative offers greater protection against improper use of interlocks at the cost of 
introducing new syntactic forms into the Ada language. 

It is important to note that the implementation of semaphore operations through 
the use of a generic task (as suggested in the A d a  Reference Manual) is not a sufficient 
solution to the mutual exclusion problem, even if these primitives are implemented 
using special hardware support. There are two problems associated with the P and v 
operations as defined in Ada. First, tasks (including these generic tasks) are not part of 
the data environment. One of the principal uses of an interlock in conventional 
systems is to protect some structure from concurrent access. In Ada, there is no 
convenient way to associate a semaphore with a specific data object. The best 
achievable solution is to use integer indices within the object to select the appropriate 
member of a semaphore family in a relatively cumbersome and obscure way. 

The  second problem stems from the FIFO semantics of the rendezvous mechanism 
in Ada. Although the Ada Reference Manual (page 9-11) notes that the fact that 
semaphores are ‘predefined authorizes an implementation to recognize them and 
implement them making optimal use of the facilities provided by the machine or the 
underlying system’, it is still impossible to achieve the efficiency of spin locks in this 
way without violating the FIFO semantics of the Ada rendezvous. 
4.3. Entries and the name problem 

Another major problem in Ada stems from the manner in which processes are 
named. In Ada, tasks which perform some particular set of operations for separate 
internal data structures or devices are grouped together to form array-structured task 
families. In order to refer to a specific incarnation of a task, we must specify both the 
name of the task and the index of the specific process. Furthermore, since tasks in Ada 
are not data objects, we must supply the name field explicitly in the source code. This 
treatment of processes has several deficiencies when compared to other structures 
which allow a more flexible naming scheme. 
4.3.1. Limitations of array functionality 

One concern that arises from the naming convention is that the array structure 
imposes a relatively arbitrary task structure which may not fit the nature of the 
application. Array structured task families are appropriate only when the process 
structure which they represent has a topology which behaves like an array. Other 
structures (particularly those which involve linked lists or other pointer-based 
structures) are cumbersome to implement in terms of a pre-supplied array structure. 
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This problem is similar to the problem of defining linked structures in Fortran or a 
similar language in which arrays are the primary compound structure. 

As an example, let us again consider the case of the terminal concentrator example 
presented above. In this application, there are a large number of terminals of which 
only a relatively small fraction are likely to be connected at any given time. The  
activity for each terminal is monitored by a member of a task family which is assigned 
to that terminal as long as it is connected to the system. We assume that the total 
number of terminal tasks is constant (which allows them to be statically allocated) and 
that the association of terminals and tasks will change as terminals are connected and 
disconnected from the system. Ordinarily, there will be more terminal tasks than 
connected terminals at any particular time; these tasks remain idle until they are 
associated with a newly connected terminal. 

The natural structure in which to store the idle terminal tasks is a linked free list. 
When a terminal is connected to the system, it is assigned to the first free task which is 
currently at the head of the list. When a terminal is disconnected, its associated 
process becomes idle and is linked onto the free list. These operations are natural in a 
structure which permits pointer operations; when faced with an array structure, one is 
faced with the choice of (1) searching for free entries, (2) dynamically compactifying 
the task table so that the active tasks are contiguous or (3)  simulating the free list 
mechanism through the use of auxiliary arrays. These alternatives represent possible 
implementation strategies, but it is our contention that Ada prevents the most natural 
solution. 

4.3.2. The return address problem 
A potentially more serious problem posed by the naming convention is the ‘return 

address problem’ which is briefly considered in the Ada  Rationale (page 11-40). The 
concern here is that a server task has no way to reply to the calling task which requests 
service unless the identity of the calling task is known at translation time. The 
problem is not one of authenticating a particular caller but rather one of identifying 
the calling task in some subsequent entry call. 

Consider the case of a task whose function is to encrypt a message supplied by a 
caller and to return the encrypted message. In Ada, the canonical description for this 
type of server is illustrated below: 

task ENCRYPTION-SERVER is 
PACKET-SIZE : constant INTEGER : = 256; 
type PACKET is array (1 . . PACKET-SIZE) of CHARACTER; 
entry SEND-NORMAL-MESSAGE (MSG : in PACKET); 
entry GET-ENCRYPTED-MESSAGE (MSG : out PACKET); 

end ENCRYPTION-SERVER; 

task body ENCRYPTION-SERVER is 

begin 
BUF : PACKET; 

loop 
accept SEND-NORMAL-MESSAGE (MSG : in PACKET) do 

end SEND-NORMAL-MESSAGE; 

- - code to encrypt data in BUF - - 

BUF : = MSG; 
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accept GET-ENCRYPTED-MESSAGE (MSG : out PACKET) do 

end GET-ENCRYPTED-MESSAGE; 
MSG : = BUF; 

end loop; 
end ENCRYPTION-SERVER; 

While the code above performs the encryption function in a straightforward way 
and allows arbitrary tasks to call the two entries, it is not optimal in all cases. One 
potential problem arises in entry definitions which make use of a select statement to 
allow the server task to wait for a number of possible events. Because the select 
statement can appear only within the body of the called task, there is an inherent 
asymmetry in the tasking structure. Suppose that the programmer using 
ENCRYPTION-SERVER wanted a task within the following logical structure: 

task body CALLING-TASK is 

- - code which generates PLAINTEXT for encryption - - 
SEND-NORMAL-MESSAGE (PLAINTEXT); 
loop 

exit when ENCRYPTION-DONE; 
- -  do some other work - -  

end loop; 
GET-ENCRYPTED-MESSAGE (CODED-MESSAGE); 

- - code to make use of CODED-MESSAGE - - 

end CALLING-TASK; 

While it is not possible to code the calling task in this way directly (because there is 
no way to transmit the ENCRYPTION-DONE), this type of operation can be achieved if 
the roles of entry call and accept statement are reversed for the 
GET-ENCRY PTED-MESSAGE ent?'y. 

task ENCRYPTION-SERVER is 
PACKET-SIZE : constant INTEGER : = 256; 
type PACKET is array (1 . . PACKET-SIZE) of CHARACTER; 
entry SEND-NORMAL-MESSAGE (MSG : in PACKET); 

end ENCRYPTION-SERVER; 

task body ENCRYPTION-SERVER is 

begin 
BUF : PACKET; 

loop 
accept SEND-NORMAL-MESSAGE (MSG : in PACKET) do 

end SEND-NORMAL-MESSAGE; 

- - code to encrypt data in BUF - - 

GOT-ENCRYPTED-MESSAGE (BUF); 

BUF : = MSG; 

end loop; 
end ENCRYPTION-SERVER; 
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task body CALLING-TASK is 
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- - code which generates PLAINTEXT for encryption - - 

SEND-NORMAL-MESSAGE (PLAINTEXT); 
loop 

select 
accept GOT-ENCRYPTED-MESSAGE (MSG : in PACKET) do 

end GOT-ENCRYPTED-MESSAGE; 
else 

- - do some other work - - 

CODED-MESSAGE : = MSG; 

end select; 
end loop; 

- - code to make use of CODED-MESSAGE - - 

end CALLING-TASK; 

Unfortunately, this organization is only effective if there is a single calling task or a 
single family of callers. In  the case that the calling task is a member of a task family, 
the caller can pass the index of a member as an additional argument to 
SEND-NORMAL-MESSAGE and then use this index in the subsequent 
GOT-ENCRYPTED-MESSAGE call, as in 

CALLING,TASK(TASK,INDEX).GOT_ENCRYPTED_MESSAGE (BUF); 

I t  is impossible to write ENCRYPTION-SERVER as a general utility package which is 
available for use with any task that calls SEND-NORMAL-MESSAGE and defines an entry 
GOT-ENCRYPTED-MESSAGE for the reply. Because it is impossible to pass the identity of 
the calling task to ENCRYPTION-SERVER, there is no way for the server task to return the 
message to the appropriate caller. This restriction seems to preclude the development 
of task libraries comparable to subroutine libraries in a well-organized environment 
for software development. 

4.3.3.  Tasks as data objects 
The obvious solution to both the array topology problem and the return address 

problem is to consider individual activations of tasks to be data objects which can be 
incorporated into arbitrary structures or passed as parameters to server tasks. This 
issue is briefly discussed in the A d a  Rationale (page 11-39) and the notion of 
anonymous activation variables from the language Tartan is introduced. Such a 
mechanism could be incorporated into Ada if it were possible to overcome the 
additional problems associated with task variables. For example, assume that all 
activations of tasks are data objects of the type ACTIVATION-NAME and that each task 
implicitly defines the variable MY-NAME to be an identification of that activation. 

The  discussion of activation variables in the A d a  Rationale correctly observes that 
the introduction of untyped task variables raises questions of strong typing similar to 
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those found with procedure parameters in languages such as ALGOL-60. For 
example, even though the task definition 

task body GENERAL-SERVER is 
DATA : PACKET; 
RETURN-ADDRESS : ACTIVATION-NAME; 

begin 
accept SERVER-REQUEST (T : in ACTIVATION-NAME, 

INPUT : in PACKET) do 
DATA : = I N P U T ;  
RETURN-ADDRESS : = T;  

end SERVER-REQUEST; 

- - perform appropriate manipulation on DATA - - 

RETURN,ADDRESS’REPLY(DATA); 
end GENERAL-SERVER; 

solves the return address problem, the use of an untyped process variable T is 
dangerous because there is no guarantee that the process referred to by T has a REPLY 
entry or that its parameter structure is compatible. 

This problem, however, may be solved by eliminating the untyped activation 
variables in favour of a strongly typed system of specific entry variables. For example, 
assume that the reserved word entry is usable as a type generating function in a similar 
fashion as array. It is then possible to declare a return address with no type ambiguity 
as illustrated below: 

task body GENERAL-SERVER is 
DATA : PACKET; 
RETURN-ADDRESS : entry (in PACKET); 

accept SERVER-REQUEST (T : in entry (in PACKET), 
begin 

INPUT : in PACKET) do 
DATA : = I N P U T ;  
RETURN-ADDRESS : = T; 

end SERVER-REQUEST; 

- - perform appropriate manipulation on DATA - - 

RETURN,ADDRESS(DATA); 
end GENERAL-SERVER; 

In this case, the caller would issue the entry call 

SERVER-REQUEST (MY-NAME’REPLY, INPUT-DATA); 

thereby giving the complete (and unambiguous) address of the return entry. 
There are other possible approaches to this problem; we have suggested the above 

scheme in order to demonstrate that strong typing considerations alone are not a 
sufficient justification for disallowing references to process activations within the data 
structure. We believe that the ability to code a general server with the ability to 
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correctly address a reply is of major importance to the design of a rationally structured 
parallel control facility and that some mechanism for performing this function should 
be determined and incorporated into the Ada language. 

4.4. Flexibility in the scheduling discipline 
One additional area of concern that has developed during our study of Ada is the 

question of whether the scheduling discipline provided by the language is sufficiently 
general to support applications with important timing constraints. In particular, we 
are concerned that Ada does not provide adequate control over the scheduling strategy 
and that the scheduling algorithm is likely to encounter a number of problems 
associated with ‘cooperative scheduling’. 

T o  illustrate this problem, imagine that Ada is chosen as the implementation 
language for the design and development of a timesharing system for a multipro- 
cessor. I t  is convenient in such a system to represent the individual user processes as 
independent tasks in the timesharing structure. In order to achieve fairness, timeshar- 
ing systems typically limit the run-time allowed to a process to some maximum unit of 
time. If this time period (or quantum) is exceeded, the process is forcibly descheduled 
to allow other processes to run. The  performance of the typical timesharing system is 
quite sensitive to the size and dynamic behaviour of this quantum limit and it is 
important to be able to adjust this mechanism to conform to the loading demands. 

In Ada, there is no apparent way to specify a run-time limit for a task nor is it 
possible for one task to control the scheduling or descheduling of another. Without 
this flexibility, it appears that there are only two possible schemes to provide fairness 
in a timesharing scheduler: 

1 .  Depend on the Ada scheduling discipline for all scheduling and descheduling 
operations and ensure that the built-in mechanism provides all of the desired 
flexibility, presumably expressed in the form of pargma declarations to the 
compiler. 

2. Design a scheduler which operates ‘cooperatively’ in the sense that the tasks 
themselves participate in the scheduling decisions. In this case, each task would 
be required to periodically check its accumulated run-time and dismiss itself 
through the use of a delay statement. 

Obviously, each of the approaches outlined above is totally unacceptable for a 
timesharing application. The  first either requires the system designer to change the 
structure of the implementation language or forces the system to make use of a built-in 
scheduling discipline which may be hopelessly inadequate to perform the more 
complex scheduling operations required of a timesharing system. 

The second approach is equally unworkable in that it requires the compiler to 
perform complex path analysis and assemble code to poll the scheduler at acceptably 
frequent intervals. The  problems that arise in this type of scheduling are so severe that 
this alternative tends to be rejected out of hand. In his assessment of the process 
scheduling facility in Ada,5 Paul Hilfinger writes: 

I t  seems that the tasks being scheduled must be written to be aware of the fact 
that they are being scheduled, and to do appropriate sends or procedure calls at 
intervals. This is a violation of abstraction; no reasonable operating system in 
existence requires that its processes cooperate to be scheduled. 
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There are several potential approaches to this problem which affect the structure of 
the language to varying degrees. Perhaps the most straightforward mechanism is to 
allow one task to forcibly deschedule another task. This would provide a monitoring 
task with at least some primitive ability to control the scheduling discipline. This 
could be implemented through the addition of a new primitive such as 

deschedule T; 

or as an extension of the priority mechanism. If one task were allowed to alter the 
priority of another and changes in priority were implemented so as to force a scheduler 
transition, one might begin to have an acceptable facility for scheduling control. 

5.  CONCLUSIONS 

In this paper, we have argued that multiprocessor systems are frequently used for 
real-time applications in which run-time efficiency requirements are of critical 
importance. For this reason, we believe that the design of a high-level language system 
which is intended for use in real-time, multiprocessor-based applications must be 
sensitive to these requirements and must allow the programmer to write code which 
satisfies the efficiency constraints imposed by the application. 

We believe that the Ada language, as currently designed, does not meet these needs 
for several reasons: 

1. The  use of a complete rendezvous system results in unnecessary scheduling 
delays. This problem is particularly severe in the relatively important case of 
message passing in that Ada requires the sender of a message to wait for the 
scheduler before it is allowed to proceed. This structure is considerably less 
efficient than message passing systems implemented with queues and imposes a 
relatively high cost on the use of an important communication discipline. 

2. Ada does not provide sufficent flexibility in its process control structure to allow 
the programmer to choose the mechanism most closely suited to the require- 
ments of the application. In  particular, the fact that the mutual exclusion 
mechanism is associated with the control structure rather than the data structure 
leads to convoluted program structures or serious inefficiencies in the use of 
space. 

3 .  The naming conventions used to indicate specific processes in Ada are not 
sufficiently general to allow the programmer to represent process structures 
which accurately reflect the underlying structure of the algorithm. Moreover, the 
fact that no general mechanism exists to allow one process to communicate its 
identity to other processes in the system severely limits the modularity of the task 
structure. 

4. The language does not provide the user with sufficient control over the 
scheduling discipline. 

We contend that the parallel processing facilities currently provided by Ada do not 
satisfy the requirements of real-time systems such as those typically chosen for 
implementation on a multiprocessor. On the other hand, we feel that good solutions 
do exist for most of the problems that we have identified here and that those solutions 
can be incorporated into Ada with relatively little change to the overall structure of the 
code. Based on our experience with multiprocessors and real-time systems, we feel 
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that the efficiency cost implied by the current Ada design severely limits the extent to 
which Ada is acceptable for real-time applications. We strongly urge that modifica- 
tions such as those suggested in this paper be incorporated into Ada to increase its 
utility in this important area of application. 

ACKNOWLEDGEMENTS 

The research reported in this document was sponsored in part b y  the Defense 
Communications Engineering Center under Contract No. DCAl OO-78-C-0028 and 
by the National Science Foundation under Grant No. MCS-7908365. 

REFERENCES 

1. J. D. Ichbiah et al. ‘Rationale for the design of the Ada programming language, S I G P L A N  Notices, 

2. U.S. Department of Defense, STEELMAN-Requirements for High Order Computer Programming 

3. C. A. R. Hoare, ‘Communicating sequential processes’, Communications of A C M ,  21, 666-677 

14 (6), Part B, entire issue (1979). 

Languages, Defense Advanced Research Projects Agency, Arlington, Va., June 1978. 

(1978). 
4. P. N. Oleinick and S. H. Fuller, ‘The implementation and evaluation of a parallel algorithm on 

C.mmp’, Computer Science Department Report C M U - C S -  78-125, Carnegie-Mellon University, June 
1978. 

5. D. A. Lamb (ed), Commentary on the R E D  and G R E E N  Candidates for  the A d a  Language, 
Computer Science Department, Carnegie-Mellon University, April 1979. 

6. P. Brinch-Hansen, Operating System Principles, Prentice-Hall, Englewood Cliffs, N. J.,  1973. 


