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SUMMARY

As the cost of processor hardware declines, multiprocessor architectures become increas-
ingly cost-effective and represent an important area for future research. In order to exploit
the full potential of multiprocessors, however, it is necessary to understand how to design
software which can make effective use of the available parallelism. This paper considers the
impact of multiprocessor architecture on the design of high-level programming languages
and, in particular, evaluates the language Ada in the light of the special requirements of real-
time multiprocessor systems. We conclude that Ada does not, as currently designed, meet the
needs for real-time embedded systems.

1. INTRODUCTION

The possibility of using multiprocessor architecture as the basis for a powerful
computing system is an attractive one for several reasons. First, a multiprocessor
system can achieve significantly increased computational speed by allowing parallel-
ism in its task structure. Second, multiprocessor architecture offers the potential for
achieving system reliability through the redundancy of its processing elements.
Third, as the cost of processing components (particularly the LSI-based micropro-
cessor) declines, the cost of adding processors to a system becomes less significant in
relation to the overall system cost. In the light of these advantages, interest in
multiprocessor architectures has grown significantly over the past decade, and it is
clear that multiprocessors are likely to become increasingly cost-effective in years to
come. It is also clear that the use of multiprocessor technology has an effect on
software methodology which must be considered in the design of any programming
language system intended for use in a real-time multiprocessor-based environment.

In this paper, we are particularly concerned with the impact of multiprocessors on
the programming language Ada'! which was developed by Cii Honeywell Bull for the
U.S. Department of Defense and is intended to serve as a programming standard for
embedded computer applications (i.e. command and control, communications, avionics,
shipboard applications, etc). As a consequence of its projected application domain, the
language contains facilities for parallel and real-time programming in addition to the
usual control and data structuring facilities of conventional languages such as Pascal.
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Moreover, since Ada is designed to be used in applications which are well-suited to
multiprocessor systems, we believe that a study of Ada from the point of view of
multiprocessor systems is a particularly relevant area of research.

Section 2 of this paper examines the nature of a typical multiprocessor system and
briefly outlines various differences between applications which are well adapted to
multiprocessors and those intended for more conventional uniprocessor architectures.
Secion 3 outlines the parallel control facility provided by Ada and provides a
framework for a more detailed discussion of the implications of that design. Section 4
presents an evaluation of Ada’s parallel processing facility giving special consideration
to the unique requirements imposed by multiprocessor systems. T'o the extent that the
primitives provided by Ada are judged to be inadequate for use in the environment of
a practical multiprocessor, alternative structures and extended facilities which would
relieve the major problems are discussed. These are presented as general conclusions
in Section 5.

We recognize that the Ada language is still under development and that the
language definition reported in Reference 1 must be viewed as a preliminary
document. In fact, there are indications that changes are being incorporated into the
Ada design which solve some the problems addressed in this paper. We believe that it
is important to bring some of the questions related to parallel control in Ada before a
wider audience and that the results presented in this paper will be of use in evaluating
the designs of tasking mechanisms in general, even if the specific critique of Ada
becomes dated through changes in the language definition.

2. THE NATURE OF MULTIPROCESSOR APPLICATIONS

As part of our evaluation of Ada as a language for multiprocessors, we feel that it is
important to consider not only the characteristics of multiprocessors themselves but
also the nature of the applications which are typically encountered in a multiprocessor
environment. From our experience with existing multiprocessor systems, we believe
that multiprocessor applications tend to have much more stringent requirements for
run-time efficiency than do most applications developed for uniprocessor environ-
ment. This increased requirement for efficiency arises, in part, from the observation
that it is considerably more difficult to design software for a multiprocessor system
than for a more traditional uniprocessor. To a large extent this increase in difficulty is
related to the fact that multiprocessors represent a relatively new form of system
architecture. When compared to the experience which has been assembled for single
processor systems and sequential algorithms, very little is known about the problems
involved in multiprocessor design and parallel programming.

The fundamental implication of the increased difficulty in software development is
quite simple: multiprocessor systems will rarely be used for practical applications
unless the use of a multiprocessor is required by the constraints of the application.
Multiprocessors have significant advantages over conventional uniprocessors in three
distinct areas:

1. Multiprocessors are capable of increased effective throughput because they allow
independent tasks within the application to operate in parallel.

2. Multiprocessors can be designed to include software reliability structures which
exploit the inherent redundancy in the hardware to dynamically alter the system
configuration in response to hardware fatlures.
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3. Multiprocessors can be expanded gracefully as the requirements of the appli-
cation change.

Of the three factors above, the need to provide efficiency through parallelism has, in
our experience, proven to be the most important. Applications chosen for use with
multiprocessors tend, therefore, to have (1) strict requirements for run-time efficiency
and (2) highly parallel internal task structures which permit them to take advantage of
the multiprocessor design.

The need to produce highly efficient code is well understood by those who have
experience in designing real-time applications and is reflected in the technical
requirements for a common high order language which directed the development of
Ada. Section 1D of the Steelman requirements? specifies that language ‘features
should be chosen to have a simple and efficient representation in many object
machines’. Moreover, Steelman recognizes that the tasking facility is particularly
subject to such efficiency considerations in its requirement (Section 9B) that the
‘parallel processing facility shall be designed to minimize execution time and space’.

We believe that concern for efficiency leads to the following general conclusions:

1. The use of constructs which have no efficient representation must not be
required by the language design.

2. If two different constructs display a significant variation in their efficiency
depending on the application environment, both should be supplied in order to
provide maximum flexibility and allow the programmer to achieve the required
level of efficiency.

3. Low-level facilities must be provided to achieve higher levels of efficiency than
are attainable with any general mechanism.

It is important to note that the impact on overall efficiency from the use of an
inappropriate mechanism for parallel control can be extremely high when compared
to the efficiency cost generally associated with programming in a high-level language.
While the techniques available for optimizing serial code are highly developed and
quite successful in practice, relatively little is known about the problem of optimizing
the global task structure and the internal synchronization process. Based on our
experience with multiprocessor systems, we believe that these problems are extremely
hard and well beyond the current state of software technology. This fact increases the
importance of allowing greater flexibility in the task structure than might be required
in the non-parallel aspects of a language.

3. AN OVERVIEW OF PROCESS CONTROL IN ADA

In this section, we present a brief overview of the parallel processing facilities in the
Ada programming language to provide a background for the evaluation of those
features presented in Section 4. For the most part, we have not attempted to cover the
structure of the language in its entirety and have chosen to concentrate on the tasking
facility alone. In the light of the similarity between Ada and conventional programm-
ing languages such as Pascal, the reader should have no difficulty following the
examples of this section in spite of the absence of a full description of the language. To
increase the readability of the examples, we have attempted to write code so as to
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maximize readability and to use comments whenever the intent of the code might be
unclear. In Ada, comments are introduced by ‘- -’ and extend to the end of the line.

3.1. The general structure of parallel tasks

Ada uses the term ‘task’ to refer to the basic syntactic unit for process definition. A
task consists of two parts: a specification part which describes the external behaviour
of the task, and a task body which describes its internal behaviour. The specification
part consists of a header which gives the name of the task and a declarative part which
describes those features of the task which are visible to the outside world. Included in
the declarative part are the declarations of those constants, types, subprograms,
exceptions, and entries which are associated with the task and must be externally
visible.

An example of a task specification is shown below:

task BUFFER 1is
PACKET_SIZE : constant INTEGER : = 256;
type PACKET i1s array (1 .. PACKET_SIZE) OF CHARACTER;
entry READ (V:out PACKET);
entry WRITE (E:in PACKET);
end BUFFER;

Entries are used for communication between tasks and look externally like procedures.

The task body consists of a declarative part which describes local data structures
and a sequence of statements which implement the entry declarations described in the
specification part. For the BUFFER example the task body is:

task body BUFFER 1is

BUFSIZE : constant integer : = 10;

BUF : array (1 .. BUFSIZE) of PACKET;

IN, OUT : INTEGER range 1 .. BUFSIZE : = 1;

COUNT : INTEGER range 1 .. BUFSIZE : = 0;
begin

- - statements for entries READ and WRITE - -
end BUFFER,;

The statements implementing the buffer operations READ and WRITE are given later in
the chapter after additonal features of Ada have been described.

The term ‘thread of control’ is used to describe the execution of a task. When a
thread of control enters a scope containing task declarations, the elaboration of each
declaration creates a new potential thread of control. The parent of a task is the task
whose thread of control eleaborates the task declaration. In order to cause the task
body to be executed, the task name must be explicitly named in an initiate statement,

e.g.
initiate PRODUCER, CONSUMER, BUFFER,;

The tasks named in the initiate statement are activated and run in parallel with each
other and with the parent task. Note that the parent of a task may be different from the
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task which initiated it, although both must have access to the task’s name. Consider:

task body 11 is
task T2 is

end T2;
task body T2 is

end T2;

task 13 is

end T3;
task body T3 is

Initiate T2;

end T3;
begin

initiate T3;
end T1;

Here, T1 is the parent of T2, but T2 was initiated by T3 instead of T1.

Normal termination of a task occurs when control reaches the end of the task body.
If the terminating task is a parent, then it may have to be delayed until all of its
offspring have terminated. Tasks may also be terminated by means of an explicit abort
statement. For example, the statement

abort T1, T2;

causes tasks T1 and T2 plus any descendent tasks to be terminated unconditionally. In
this case a TASKING_ERROR exception is raised in those tasks which were communicat-
ing with the aborted task or its descendents.

Facilities are also provided for determining the status of a task The system attribute
T'PRIORITY may be used to determine the priority that has been assigned to task T by
the scheduling algorithm which allocates available processors to tasks. The priority of
a task may be changed by means of a call on the procedure SET_PRIORITY to reflect a
change in the urgency of process execution.

Ada also provides arrays of tasks called task families to handle those situations in
which it is necessary to construct a large number of similar tasks. A typical use for task
families occurs when there are multiple copies of some physical device such as a

console terminal and a distinct copy of the same task is necessary to drive each device,
i.e.

task TELETYPE_DRIVER (1 .. 100) is
type LINE 1s array (1 .. 132) of CHARACTER;
entry WRITELINE {TEXT : in LINE);
entry READLINE (TEXT : out LINE);

end TELETYPE_DRIVER;
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task body TELETYPE_DRIVER is
- - statements to implement WRITELINE and READLINE - -
end TELETYPE_DRIVER;

Individual copies of the task may be referred to by appending the appropriate
subscript to the task name. Thus the statement

initiate TELETYPE_DRIVER (3);

will cause the third copy of task TELETYPE_DRIVER to become active.

Storage for tasks may be allocated either when the task declaration is elaborated
(static creation) or when the task is initiated (dynamic creation). The choice between
static allocation and dynamic allocation is determined at compile time by the use of a
pragma or translator command, e.g.

pragma CREATION (STATIC);
pragma CREATION (DYNAMIC);

Dynamic creation is particularly important for task families where the index range
provides an upper bound on the number of active processes and storage might be
wasted if all tasks were allocated at the same time.

3.2 Entry declarations and the ACCEPT statement

Communication between tasks is provided by entry calls and accept statements.
When one task needs to communicate with another task, it executes an entry call.
Entry calls specify the information to be exchanged between the tasks and have exactly
the same form as procedure calls. Thus in the bounded buffer example from the last
section, a producer task places data in the buffer by executing the entry call

BUFFER . WRITE (PRODUCER_DATA);
and a consumer task executes the call
BUFFER . READ (CONSUMER_DATA);

to retrieve data from the buffer.

In order for an entry call to be syntactically correct, the called task must contain an
entry declaration with a corresponding name and formal part. Entry declarations
resemble procedure declarations and contain information about the type and mode of
the formal parameters of the entry. An entry declaration can also specify an array or
family of entries all of which have the same name and parameters. In this case,
subscripts must be used to distinguish a particular entry in the family. Thus, in a disk
head scheduler it may be convenient to associate a distinct entry with each track on the
disk

entry TRANSFER (1 .. 200) (D:DATA)

When another task wishes to write on track 1, it issues an entry call of the form
TRANSFER (1) (DATA_REQUEST);

The accept statement is analogous to the body of a procedure and indicates to the
called task which statements should be executed when a particular entry call occurs.
The formal part of the entry declaration is repeated at the beginning of the accep?
statement in order to emphasize the scope of the entry parameters. Following the
formal part are the statements to be executed when the entry call is accepted. The
accept statements for the entries READ and WRITE in the bounded buffer example are
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shown below:

accept WRITE (E : in PACKET) do
BUF (INX) : = E;

end WRITE;

accept READ (V : out PACKET) do
V : = BUF (OUTX);

end READ;

The variables INX and OUTX are integers which point, respectively, to the rear and the
front of the buffer and are declared in the body of the task (the complete example is
presented later in this section). It is important to note that these variables need not be
incremented within the accept statements. Since accept statements are executed in
mutual exclusion, it is important for them to be as short as possible and not contain
unnecessary statements. Accept statements for entry families must be subscripted to
distinguish different entries in the same family. Thus, accept statements for the disk
head scheduler example will typically have the form

accept TRANSFER (D : in DATA ) do ... end TRANSFER;

The synchronization between the calling task and the called task in an entry call is
similar to the rendezvous that occurs with Hoare’s CSP language.® As in Hoare’s
language there are two possibilities for a rendezvous, depending on whether the
calling task issues the entry call before or after the corresponding accept statement is
reached by the called task. In either case the process which reaches the rendezvous
first is delayed until the other process has an opportunity to catch up. When the
rendezvous is achieved, the in parameters of the entry call are passed to the called task.
The calling task is then suspended while the called task executes the body of the accept
statement. After execution of the accept statement, the values of out parameters are
passed back to the calling task, and the two tasks are allowed to proceed independently
again. A queue of waiting tasks is associated with each entry to handle those situations
in which several different tasks simultaneously access the same entry. Tasks are
removed from the queues in a FIFO manner each time that a rendezvous occurs. Note
that the naming problem which occurs in Hoare’s language is avoided by Ada since it
is unnecessary for a called process to know the name of the calling process.

3.3. The select statement

Many of the disadvantages of semaphores stem from lack of control over what
happens when a semaphore is found to be busy. Thus, it is not possible to program an
alternative action to be executed when a semaphore is busy nor is it possible to wait for
one of several semaphores to be free. The select statement in Ada provides a
mechanism for avoiding this type of problem. Syntactically, the select statement
resembles a case statement in which each alternative is a conditional statement:

select

when B1 = aAl;
or when B2 = A2;

or when BN => AN
else s;
end select;
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Each when condition may contain an arbitrary boolean expression involving
variables which are visible to the task and may be omitted if the condition is known to
be true. The select alternatives al, ..., AN are sequences of statements in which the first
statement is always an accept statement or a delay statement. The else clause is simply a
sequence of statements and can also be omitted if the guarding conditions B1, ..., BN
are mutually exhaustive. A select alternative is said to be open if there is no preceding
when clause or if the corresponding condition is true; otherwise it is said to be closed.

The execution of a select statermnent is described by the following five rules.

. All of the conditions are evaluated to determine which alternatives are open.

. An open alternative starting with an accept statement may be executed if the

corresponding rendezvous is possible.

3. An open alternative starting with a delay statement may be executed if no other
alternative has been selected before the specified time interval has elapsed.

4. If no alternative statement can be immediately selected and there is an else
clause, then the else clause is executed next. If there is no else clause, the task
waits until an open alternative can be selected by rule 2 or rule 3.

5. If all alternatives are closed and there is an else clause, the else part is executed. If

there is no else clause, the exception SELECT_ERROR is raised.

o =—

With the select statement we can now complete the task body in the bounded buffer
example:

task body BUFFER is

SIZE : constant INTEGER : = 10;
BUF : array (1 .. s1zE) of PACKET;
INT, OUTX : INTEGER range 1 .. sizZE : = 1;
COUNT : INTEGER range 0 .. size: = (;
begin
loop
select

when COUNT <SIZE =
accept WRITE (E: in PACKET) do
BUF (INX) : = E;
end WRITE;
INX : = INX mod s1ZE+ 1;
COUNT : = COUNT+ 1;
or when couNT >0 =
accept READ (V: out PACKET) do
V : = BUF (OUTX);
end READ;
OUTX : = oUTX mod si1zE+ 1;
COUNT : = COUNT—1;
end select;
end loop;
end BUFFER;

The buffer is represented by a circular array with the variables iNx and ouTx
indicating the portion of the array which contains data. The guard COUNT <SIZE in the
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first alternative of the select statement protects the buffer from overflow during the
execution of a write operation. Similary, the guard counT >0 in the second alternative
protects the buffer from underflow during a read operation. Note that if
0 < couNT <s1ZE and both a read call and a write call occur, the accept statement that is
selected will be chosen in a completely random manner. The programmer, therefore,
must be careful that this non-determinism in the selection of alternatives does not
affect the correctness of the program.

3.4. The delay statement, interrupts and generic tasks
In this section we describe three additional process control features provided by
Ada. These features do not affect the expressive power of the language as significantly
as the features discussed previously and are therefore not described in as great detail.
T'he first feature is the delay statement which can be used to postpone execution of a
task for a specified interval of time. The delay statement has the form

delay {simple expression)

The expression following the delay statement represents the length of time (in units of
the real time clock) that the process is to be delayed. A delay statement can be used in
place of an accept statement in an alternative of a select statement. In this case if no
rendezvous occurs during the specified time interval, the statement list following the
delay statement will be executed. Thus, an additional alternative of the form

or delay 10.0¥*MINUTES ; initiate SYSTEM_TEST;

may be added to the select statement in the task body for the bounded buffer example.
This modification will cause the diagnostic task SYSTEM_TEST to be run if a ten minute
time interval passes in which there are no READ or WRITE entry calls.

The second feature is the interrupt entry: in Ada, hardware interrupts are simply
interpreted as external entry calls. An Ada representation specification is used to link the
entry to the physical storage address which records the interrupt. The interrupt is
processed exactly the same way that any other entry call is processed; thus, the
queuing mechansim for entry calls can be used to handle multiple interrupts.
Likewise, the mechanism for masking interrupts can be hidden from users by
incorporating it in the software which connects the interrupts to the entry call. To
iltustrate how interrupts are handled in Ada, we show how a stop button can be added
to the bounded buffer example. We assume the existence of a console button which
can be pressed to cause a hardware interrupt. A representation specification of the
form

for sTOP use at 8%7777;

can be used to associate the entry sTop with the physical address of the interrupt. If the
select statement in the task body is modified to include the alternative

or accept STOP; exit;

then loop will be terminated when the stop button is pressed.

The final process control feature that we discuss is the generic task. The bounded
buffer example described earlier in this chapter does not provide users with a general
mechanism for declaring buffer tasks. By making the tasks generic, i.e. by changing
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the specification part of the task to

generic task BUFFER is
PACKET_SIZE : constant INTEGER : = 256;
type PACKET is array (1 .. PACKET..SIZE) of CHARACTER;
entry READ (V : out PACKET);
entry WRITE (E : in PACKET);
end

this difficulty can be overcome. When a user needs to declare a new instance of a
bounded buffer, the construction

task BB 1s new BUFFER:

may be used. READ and WRITE calls on the new instance of the bounded buffer have the
syntax:

BB . WRITE (PRODUCER_DATA);
BB . READ (CONSUMER_DATA);

Signals and semaphores are provided by Ada as predefined generic tasks. If Ada is
implemented on a machine on which these primitives are provided by hardware, then
the compiler can directly translate emiry calls into the corresponding hardware
primitives. In doing so, however, it is critical that the semantics of the language
remain entirely unchanged. As noted in sub-section 4.2.3., the FIFO semantics of the
Ada rendezvous can make this particularly difficult to achieve.

4. EVALUATION OF PROCESS CONTROL IN ADA

As discussed in Section 2, we believe that the use of multiprocessor systems tends to
be most valuable in those applications in which run-time efficiency is a critical
concern. For this reason, we feel that the parallel control features provided by an
implementation language intended for use with multiprocessors must be designed to
allow highly efficient interprocess communication and control. After reviewing the
Ada language in detail, we are concerned that the primitives provided by Ada do not
allow the programmer to achieve this desired level of efficiency. Furthermore, in order
to avoid the efficiency cost associated with the Ada task structure, programmers will
be forced to adopt an unnatural coding discipline that will make programs more
difficult to read and understand.

4.1. Scheduling and the rendezvous

The most severe problem with the process control features in Ada from the point of
view of efficiency is that the transmission of data from a sender process to a receiving
process requires excessive scheduler interactions. Qur experience is that message
passing of this type occurs frequently in real-time applications, and that in such
applications it is necessary to reduce the number of interactions with the schuduler to
a minimum to meet the relevant time constraints,

4.1.1. An example of scheduling delay

To illustrate the problem, we examine the problem of passing messages from a
sender process to a receiving process where no response or acknowledgment is
required. Conceptually, we imagine that there is a queue linking the sender and
receiver which can hold some finite number of messages in transit. When the sender
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process generates a message, it enters the associated data at the end of the queue. The
receiver process, whenever it is free to accept a new message, simply takes the first
message from the queue. In a parallel environment, it is desirable that the sending
operation (i.e. entering the data on the queue) be performed without incurring any
significant delay so that the sending process can continue its operation as quickly as
possible. In particular, when the queue is not full, there should be no required
scheduler interactions.

Consider the bounded buffer example presented in sub-section 3.1. This example
has been used to demonstrate that bufffered message passing with non-blocking
senders can be implemented in Ada. If entry calls are implemented as described in the
Ada Rationale [Reference 1, page 11-40], however, the delay arising from scheduler
actions seems extremely severe and impossible to avoid. Consider, for example, the
scheduler interactions involved when a producer task sends a packet of data to a
consumer task. Assume that the producer task executes the entry call

BUFFER . WRITE (PRODUCER_DATA);

to initiate the transfer. Given the semantics of the entry call, the producer is now
blocked until the buffer task is scheduled and completes the rendezvous. During this
time, the producer process is suspended and must wait to be rescheduled when the
buffer task completes. Thus, before the producer is allowed to continue, two
scheduling operations must occur. Furthermore, the implementation discussion in the
Ada Rationale indicates that the buffer task should dismiss after completing the
rendezvous in order to allow tasks of higher priority to run at that point, so that it will
not immediately be able to perform a rendezvous with a consumer process.
Essentially the same sequence of operations is performed when the consumer task
executes the corresponding entry call
BUFFER . READ (CONSUMER_DATA);

to receive a message. This implies that a total of four scheduling interactions is
required to transmit a single message. Since each scheduler interaction may involve a
complete context swap, this implementation of message passing would be pro-
hibitively expensive for many applications.

Note that this problem does not arise if the message passing mechanism is
implemented through the use of a message queue or directly by the harware of the
target machine. The queue operations themselves must be protected against concurr-
ent updates through some mutual exclusion mechanism, but in this case it is
reasonable to use interlocks or some similar mechanism based on busy waiting without
incurring the overhead of a scheduler interaction. From the statistics on lock
contention given in Reference 4, we see that neither the producer task nor the
consumer task will be delayed for an inordinate period of time.

From our experience with real-time communications systems, it is evident that the
scheduling delay above presents a serious problem that must be solved for Ada to be
recognized as an acceptable implementation language for multiprocessor systems. In
the search for a solution, one has two potential choices:

1. Without changing the Ada language, develop some mechanism which would
permit the translator to produce more efficient code in those cases where it can be
determined that the rendezvous is not necessary.

2. Add new features to Ada to support a more efficient mechanism for message
passing without sender delays.
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4.1.2. The Habermann|/Nassi implementation of rendezvous

In this section, we describe a solution to the problem of scheduling delay which was
developed by Habermann and Nassi and described briefly by Habermann in his
commentary on the RED and GREEN candidates for the Ada language.’ The
Habermann/Nassi solution consists of replacing the entry/accept interface with an
alternative implementation resembling a procedure call. The interesting feature of
this change in implementation is that the statements in the range of the accept
statement are evaluated, not by the called task, but by the caller. If this is done
correctly, the calling task need never dismiss its processor and therefore is not forced
to wait for the scheduler.

In his evaluation of the Ada tasking facility, Habermann observes that many of the
tasks that arise in practical applications are of the ‘server’ type and consist of one or
more select statements enclosed in a loop (the BUFFER task above is of this type).
Habermann argues that tasks of this type often permit the compiler to eliminate the
rendezvous by replacing the accept statement linkage with a subroutine which
implements the required mutual exclusion and synchronization with some internal
primitive such as a semaphore. He briefly outlines a scheme for performing this
transformation by analysing a variety of cases. In the paragraphs below, we have
attempted to reconstruct this argument in a simpler form and then apply it to the
BUFFER example.

In the course of this discussion, we will need to introduce internal semaphore
objects to control the program flow. Although semaphores may be implemented in
Ada using task entities, we feel that it is clearer to think of these semaphores as data
objects of type SEMAPHORE which have two values (LOCKED and UNLOCKED) and two
primitive operations (P and v). We will therefore write semaphore operations in the
more conventtonal functional notation (i.e. P(SEM1) instead of sem1 . p).

Later in this section, we will also make use of a special p operation, which we will
call JoinTP, which takes two semaphores and waits until both semaphores are in an
UNLOCKED state. Note that this is not the same as a wait for one semaphore, followed
by a wait for the other, since neither semaphore is actually locked until both are
available.

As a simple case, consider a task whose body consists entirely of a sequence of accept
statements in a loop such as

task body ExaAMPLE1 is
begin
loop
accept ENTRY1 do
- - {body of ENTRY1) --
end ENTRY1;
accept ENTRY2 do
- - {(body of ENTRY2) - -
end ENTRYZ;
- - more accept statements - -

accept ENTRY7 do
- - {(body of ENTRYZ) - -
end ENTRY#;
end loop;
end EXAMPLE];
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To translate this example into its procedural equivalent, we associate each of the
entries (ENTRY?) with an internal semaphore (sEM?) and translate each accept statement
into a procedure declaration which begins by performing a P operation on its
associated semaphore and ends by performing a v operation on the semaphore
associated with its successor entry. The ‘entry procedures’ then have the form

procedure ENTRY1 is
begin
pP(sem1);
- - {(body of ENTRY1) - -
v(SEM2};
end ENTRY1;

and so on up to

procedure ENTRY?7 is
begin
P(SEMn);
- - (body of ENTRYZ) - -
v(sem1);
end ENTRY#;

In this case, since no code exists in EXAMPLEl that is not enclosed in accept
statements, no actual thread of control need exist for EXAMPLE] and the initiation of
EXAMPLE] consists simply of declaring the semaphores sem! to semn, with seml
initialized to UNLOCKED and the remaining ones in the LOCKED state. After considering
the actions of the semaphores in the example above, it should be clear that the control
semantics of the procedural version is identical to that of the rendezvous provided that
semaphores are implemented so as to ensure the first in/first-out discipline. Initially,
the ‘task’ will only accept entry calls to ENTRY1, since any other call will block on the p
operation at entry. The first call to ENTRY1, on the other hand, will succeed, and the v
operation at the end of the procedure body will allow the system to accept a call on
ENTRY2 or to process an existing call pending on the associated semaphore.

A simple version of the select statement may be handled through the use of
semaphores in a similar fashion. Consider, for example, the task specification below:

task body EXAMPLE2 is
begin
loop
select
accept casel do
- - {body of casgl) --
end caskl;
or
accept case2 do
- - (body of cAsSE2) --
end CASE2;
end select;
end loop;
end EXAMPLE2;
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In this example, we will need to declare a semaphore with the select statement
(SELECT_SEM) to ensure mutual exclusion of the independent entries. This task may be
coded in procedure form as follows:

procedure casel is
begin
P(SELECT _SEM);
- - {body of casel) --
V(SELECT_SEM);
end casgl;

procedure CASE2 is
begin
P(SELECT_SEM);
-- {(body of casg2) --
V(SELECT_SEM);
end CASE2;

Initiation of the task EXAMPLE2 corresponds to setting the state of SELECT._SEM to
UNLOCKED thus allowing the first entry call to succeed. In this example, the first call on
either of the entries casel or casg2 will succeed and will perform the actions in the
body of the associated accept statement in mutual exclusion because of the protection
provided by the semaphore. Upon completion of the entry body, the semaphore will
once again become free and the system may service any further calls on either of the
entries. It is interesting to note that this program transformation provides for
‘random’ ordering in the select statement by implicitly implementing the ‘order of
arrival’ method discussed in the Ada Rationale.

The examples presented above, however, are overly simplified in that they do not
provide for code within the body of the task which is not enclosed in an accept
statement. This case requires a slightly more complex treatment that forces the server
task to maintain an independent thread of control. To illustrate the basic notion
involved in this generalization, consider the simple task skeleton below:

task body EXAMPLE3 is
begin
loop
- - {statement body 1) --
accept ENTRY1 do
- - {body of ENTRY1) - -
end ENTRY];
- - {statement body 2) --
accept ENTRY2 do
- - (body of ENTRY2) - -
end ENTRYZ2;
end loop;
end EXAMPLE3;
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With the exception of the intervening {statement body) code, this task is identical in
form to that given in task ExAMPLE1l, and we would like to identify some similar
procedural form for the bodies of the entry calls. This can be done by associating each
of the {statement body i) segments with a semaphore (STATEMENT_SEM?) in much the
same way as the entry semaphore association (here ENTRY? is associated with the
semaphore ENTRY_SEM?). Originally, only STATEMENT_SEM] is UNLOCKED; the remain-
ing semaphores are initialized to the LOCKED state. The task is then divided into a
component which represents the ‘real’ task (i.e. the code outside of the accept
statements) and the entry procedures, giving rise to the code segments below:

task body TRANSFORMED_EXAMPLE3 is
begin
loop
P(STATEMENT_SEM1);
- - (statement body 1) - -
V(ENTRY_SEM1);
P(STATEMENT_SEM2);
- - {statement body 2) - -
V(ENTRY_SEM2);
end loop;
end TRANSFORMED_EXAMPLE3;

procedure ENTRY1 is
begin

P(ENTRY_SEM1);

- - {body of ENTRY1) --

V(STATEMENT_SEM2);
end ENTRY1;

and

procedure ENTRY2 is
begin

P(ENTRY._SEM2);

-- {body of ENTRY2)- -

V(STATEMENT_SEM1);
end ENTRY2;

In this example, each of the statement sequences enables the succeeding entry and vice
versa, which insures the correct semantics with respect to synchronization and mutual
exclusion.

Finally, we need a mechanism for managing the effect of when clauses appearing in
the select statement body. In effect, the when clauses, taken together, can be viewed as
a single code body outside of the select statement which evaluates each of the
predicates and determines which of the entries should even be considered. Since the
evaluation of these predicates takes place outside the range of accept statements, the
use of when clauses implies that the server task must have a separate thread of control
to execute the predicate-evaluation code. For example, suppose that we were to



1034 E. S. ROBERTS ET AL.

modify the code for ExXAMPLE2 to include when clauses as in the following example:

task body EXAMPLE4 is

begin
loop
select
when PREDFN1 (...)=
accept casel do
- - (body of casgl} - -
end casgl;
or
when PREDFN2(...)=
accept CASE2 do
- - {body of casg2}--
end CASE2;
end select;
end loop;

end EXAMPLE4;

where PREDFN1 and PREDFN2 are some form of predicate (either a function call, as here,
or a logical expression) that is used to control which of the select clauses should be
accepted. As in the previous case, we wish to transform the task body of EXAMPLE4 so
that the code required to compute the predicates lies in the body of the ‘real’ task. We
will make use of four semaphores in this example: one for each when clause (WHENI
and WHEN2), one to ensure mutual exclusion for the select alternatives (SELECT_SEM),
and one to control sequencing (STATEMENT_SEM). Of these, STATEMENT_SEM and
SELECT_SEM are initialized to UNLOCKED and the two WHEN semaphores are set to a
LOCKED state. The code for computing the predicate expressions is given below:

task body TRANSFORMED_EXAMPLE#4 is
prl, P2 : BOOLEAN;

begin
loop
P(STATEMENT_SEM);
pl : = PREDFNI1(...);
P2 : = PREDFN2(...);

if not (P1 or P2) then
raise SELECT_ERROR,;
end if;
if p1 then v(wHEN1) end if;
if P2 then v(WHEN2) end if;
end loop;
end TRANSFORMED_EXAMPLE4;
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The code for the two cask entries, however, is somewhat tricky. We are tempted to
write procedure-type entries of the form:

procedure casgl is
begin
P(WHEN1);
P(SELECT_SEM);
- - (body of casel) --
V(SELECT_SEM);
V(STATEMENT_SEM)
end casgl;

Unfortunately, this approach is overly simplified and does not correctly ensure that
only one of the select alternatives is evaluated. We must take two additional
precautions to ensure the correct semantics of the select mechanism. First of all,
whenever a particular entry is evaluated, we must make it impossible for the system to
accept other entry calls by locking the corresponding semaphores controlling the
remaining select alternatives. This can be accomplished by including a statement of
the form

WHENX . = LOCKED;

for each of the remaining alternatives for this select statement. Unfortunately, even
this does not fully insure sematically correct evaluation because of the ordering
constraint on the semaphore operations. Since we test the WHEN semaphores prior to
testing SELECT..SEM, it is possible for both casel and casg2 to have passed the first p
operation, even though one will be prohibited from continuing until the other has
completed the interior region. When this process completes the body of code and
performs the V(SELECT_SEM) operation, there is nothing to prohibit the other branch
from executing as well, since the effect of the

WHENX . = LOCKED;

has been negated by the fact that the other thread of control has already passed the
point at which this test is relevant. Changing the order of the P operations will not
work, since this leaves the system susceptible to deadlock states. Moreover, it is
insufficient to introduce internal flags to mark the operation, because it will be
impossible to tell, in general, whether any other processes have passed the first p
operation unless some other action is performed indivisibly with that call to p.

The simplest correction conceptually is to replace the individual p operations with a
JOINTP operation which waits for the two semaphores to become UNLOCKED together.
In this case, the code for the entry procedures becomes:

procedure cAsEl is

begin
JOINTP(WHEN1, SELECT_SEM);
- - {(body of casgl) - -
WHEN2 : = LOCKED;
V(SELECT_SEM);
V(STATEMENT_SEM)

end casEel;



1036 E. S. ROBERTS ET AL.

and

procedure CASE2 is

begin
JOINTP(WHEN2, SELECT_SEM);
- - {body of casg2) - -
WHEN1 : = LOCKED;
V(SELECT._SEM);
V(STATEMENT_SEM);

end CASEZ2;

This technique is adequate to solve the problem, but illustrates some of the
complexity that arises in more complicated applications of the Habermann/Nassi
technique.

To illustrate the power of the complete mechanism, consider the following
transformation of the BUFFER task which combines the individual techniques described
above. For simplicity, all statements within the range of a select alternative have been
moved inside the corresponding accept statement, although the technique used in
EXAMPLE3 illustrates the general method for restoring the potential concurrency.

package NEWBUFFER is
PACKET_SIZE : constant INTEGER : = 256;
type PACKET is array (1 ..PACKET_SIZE) of CHARACTER,;
task NEWBUF;
procedure READ (W : out PACKET);
procedure WRITE (E : in PACKET);
end NEWBUFFER,;

package body NEWBUFFER is

SIZE : constant INTEGER : = 10;

BUF : array (1 .. SIZE) of PACKET;
INX, OUTX : INTEGER range 1 ..8IZE : = 1;
COUNT : INTEGER range 0 .. sI1ZE : = 0;
STATEMENT..SEM : SEMAPHORE : = UNLOCKED);
SELECT_SEM : SEMAPHORE : = UNLOCKED;
WHEN1, WHEN2 : SEMAPHORE : = LOCKED;

task body NEWBUF is
begin
loop :
P(STATEMENT._SEM);
- - given the range of COUNT at least - -
- - one of the following is true so no - -
- - SELECT..ERROR exception can occur. - -
if COUNT < sizE then v(wHEN1) end if;
if coUNT > 0  then v(WHEN2) end if;
end loop;
end NEWBUF;
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procedure WRITE (E: iIn PACKET) 18
begin
JOINTP(WHEN1, SELECT._SEM);
BUF (INX) : = E;
INX : = INX mod SIZE+1;
COUNT : = COUNT + 1;
WHEN2 ;. = LOCKED;
V(SELECT_SEM);
V(STATEMENT_SEM);
end WRITE;

procedure READ (W: out PACKET) is
begin

JOINT(WHEN2, SELECT._SEM);

W : = BUF (OUTX);

OUTX : = oUTX mod SI1ZE+1;
COUNT : = COUNT —1;
WHEN] : = LOCKED;

V(SELECT_SEM);
V(STATEMENT_SEM);
end READ;
end NEWBUFFER,;

From the point of view of efficiency, it is evident that the above implementation
strategy is preferable to the cooperating process model of rendezvous suggested in the
Ada Rationale, but there are some costs associated with this approach, largely in terms
of the complexity this structure imposes on an otherwise simple model. In particular,
the Ada semantics cannot be maintained if the body of the accept statement 1s viewed
as a subroutine of the caller which communicates with the called task solely through
the internal semaphore structure. The generated code must take account of the fact
that two separate tasks are involved.

The complexity arises because of the ‘identity crisis’ which occurs for the task
executing the statements within an accept body. In many ways, it is convenient to
think of the calling and called tasks as completely distinct entities. This view is made
explicit in the Ada Rationale (page 11-40) which emphasizes that ‘the caller executes a
procedure himself whereas an accept statement is executed by the callee on the caller’s
behalf’. Under the Habermann/Nassi implementation, this distinction is no longer
clear since the savings in efficiency result from allowing the calling task to execute the
accept body as a procedure call.

In some cases, the identity of the task executing the code may be of some
importance. For example, to allow metering of an application program, it is important
that the runtime consumed during the accept body be charged to the cLock attribute
of the called task rather than its caller. It is also important to remember that exception
conditions which occur during the execution of the accept statement must be raised in
both the caller and called task. Considerations such as these indicate that some form of
context switching to identify the called task must be performed as part of the
entrylaccept linkage.

We also gave several examples earlier that show that the order in which semaphores
are locked is extremely important and that there are cases in which the only convenient



1038 E. S. ROBERTS ET AL.

solution is to use a joint P operation which is capable of waiting for two semaphores to
become UNLOCKED simultaneously. There are other issues that complicate this
structure, such as the use of the same entry name in two or more when clauses. These
problems are not unsolvable by a compiler; our principal assertion is that they are
conceptually more difficult to implement than the basic queuing model of task
communication, which is at least as efficient in its implementation. Thus we argue that
while the Habermann/Nassi solution is not hopelessly complex, it is at least
unnecessarily complex.

4.1.3. Automatic data queuing

An alternative approach to the problem would be to devise a queue implementation
which retains the linguistic structure of the entry/accept linkage. Presumably, this sort
of structure is meaningful only in those cases in which the flow of information is
unidirectional and where the synchronization provided by the rendezvous is known to
be irrelevant. When these conditions apply, it is possible to achieve a significant
increase in message passing efficiency by building a data queue into the task
communication structure and allowing the sender to proceed.

1t is immediately evident that this type of approach changes the nature of the
implementation strategy. In the implementation of the rendezvous proposed in the
Ada Rationale or the Habermann/Nassi alternative described above, no form of data
queuing is ever supported by the implementation. The only entities which are entered
in queues are tasks, and each task, because of the structure of the rendezvous, may be
entered on at most one queue. This is extremely convenient since it allows arbitrary
queuing of tasks without encountering a memory allocation problem; it is sufficient to
reserve a queue pointer cell in the activation record of each task. Data queuing, on the
other hand, requires that space be available to hold each of the data items on the
queue. Assuming that dynamic allocation of this queue space is unmanageable, one is
required to impose an upper bound on the queue size which is fixed at translation
time.

In order to illustrate the general mechanism, consider the task specification below
which performs the inverse of the LINE_TO_CHAR function illustrated in the Ada
Rationale (page 11-6).

task CHAR_TO_LINE is
type LINE is array (1 .. 80) of CHARACTER;
entry PUT_CHAR <80> (C : in CHARACTER);
entry GET_LINE (E : in LINE);

end CHAR_TO_LINE,;

task body CHAR_TO_LINE is
BUFFER : LINE;
begin
loop
fortin 1 .. 80 loop
accept PUT_CHAR (C : in CHARACTER) do
BUFFER (1): = C;
end PUT_CHAR,;
end loop;
accept GET_LINE (L : out LINE) do
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L : = BUFFER;
end GET_LINE;
end loop;
end CHAR_TO_LINE;

Note that the syntax of the entry declaration has been extended to allow a queue size
indicator as in

entry PUT_CHAR < 80> (C : in CHARACTER);

The < 80> parameter specifies a queue size for communication between the callers of
PUT_CHAR and the CHAR_TO_LINE task itself. In this case, the first eighty calls to
PUT_CHAR will simply copy their data into the character queue established by the entry
declaration and proceed, even if the CHAR_TO_LINE task is unable to complete the
rendezvous for the PUT_CHAR entry (presumably because it is waiting for a call to
GET_LINE). Thereafter, additional calls to PUT_cHAR will block and be suspended until
characters are taken from the queue by the CHAR_TO_LINE task.

For the most part, the implementation of this extension to the rendezvous
mechanism is completely straightforward. For the case of an entry which has only in
parameters, the calling task performs one of two actions when making an entry call. If
the queue is not full, the input parameters are copied into the pre-allocated data area
and added to the end of the queue; if the queue is full, the task activation record is
queued for that emtry in exactly the same manner as that used in the complete
rendezvous approach. The server task, upon reaching an accept statement, looks to see
if the queue is empty. If so, the server task is dismissed and waits for an entry call; if
there are entries in the queue, the data items from the first entry are copied into the
server task. As part of the same operation, the parameters from the first task (if any) in
the associated queue of sending tasks must be appended to the end of the data queue,
at which point the sending task is free to proceed.

A similar mechanism can be used to handle the case of entries which operate in the
opposite direction and have only out parameters. In this case, receiving tasks are
suspended when the data queue is empty and the server must wait when the data
queue is full.

This approach makes considerable sense if one argues that many applications
require efficient message passing structures and that those structures should be
incorporated into the language in a manner consistent with the existing mechanism for
synchronization. One important observation about this approach is that the queue size
information may be interpreted in the same fashion as a pragma statement which the
translator is free to ignore. If some translator chooses to implement all entry calls
using the complete rendezvous scheme, this will only affect the efficiency of the
resultant program rather than the semantics.

4.1.4. Communication through low-level facilities

One further alternative to be considered is to provide low-level facilities for mutual
exclusion which would allow programmers to implement other message passing
disciplines. While we do not feel that low-level facilities are required for an efficient
solution to interprocess communication, we believe that there are other independent
reasons which argue for the introduction of such facilities. If these are provided, it
may be unnecessary for the language to supply any additional mechanisms for
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communication since it will be possible for the users to create additional structures to
achieve the necessary level of efficiency.

4.2. Low-level synchronization facilities in Ada

A related problem which limits the potential efficiency of Ada arises from the lack of
low-level facilities for protecting shared data against concurrent access. In Ada, the
only mechanism available for providing mutual exclusion is the entry call. Although it
is certainly true that this model is appropriate to a variety of task structures which
arise in practical applications, there are limitations in the structure which will make it
difficult to use Ada in those environments in which efficiency is of considerable
importance. ’

4.2.1. Synchronization and efficiency

As noted in the previous section, the rendezvous mechanism requires two schedul-
ing events for each execution of a critical region. While this cost may be reduced
considerably through the use of alternative implementation strategies, even in the best
of circumstances, there will be some overhead cost involved in context switching
between the two tasks.

The actual impact of the rendezvous overhead depends on the frequency of access
to shared data and on the size of the critical regions. If access to shared data structures
is relatively infrequent, the scheduling overhead required to make these accesses will
have a minor overall effect. Similarly, if the size of the critical regions is large (in terms
of the amount of computation required) in comparison to the rendezvous cost, overall
system performance is relatively insensitive to this delay.

On the other hand, consider the extreme case of an application in which access to
shared data is frequent (such as of the order of 10 per cent of the instructions executed
not counting those required for parallel control) and the size of a typical critical region
is very short (perhaps as little as one or two instructions). In this case, system
throughput is largely determined by the efficiency of the mutual exclusion mechan-
ism. On most systems, it is possible to design interlock mechanisms based on busy
waiting (often referred to as ‘spin locks’) which require very few instructions to
implement. If such a mechanism is used, it is reasonable to expect that a typical cycle
from one critical region to the next might require no more than twenty or thirty
instructions, assuming that lock contention does not have a significant effect. If
scheduling interactions are required to ensure mutual exclusion, the path through a
critical region would be significantly more costly and would typically require more
than 200 instructions, thereby reducing the overall efficiency by an order of
magnitude.

While the severity of the problem is exaggerated by the example above, the ratio of
synchronization time to time spent in critical regions is an important factor in many
applications. Furthermore, the choice between spin locks and scheduler-based
synchronization mechanisms does have a significant impact on synchronization time.
In the Hydra system, for example, spin locks are two orders of magnitude faster than
the fastest synchronization primitive involving the scheduler (Reference 4). Since spin
locks can be implemented using between three and ten instructions on most machines,
this factor of 100 is likely to be representative of the relative cost for a wide range of
systems.
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The effect of this differential in the efficiency of the various synchronization
primitives 1s that different applications may require different mechanisms according
to the size of the critical regions involved. After studying the performance of a parallel
root-finding application on C.mmp, Oleinick and Fuller* conclude that each of the
scheduling mechanisms supported by C.mmp or the Hydra operating system has an
associated operating range. If the time between synchronization events is relatively
short (in this case, less than about 15 millisceonds), spin locks are the only
syncronization mechanism available which incurs a synchronization cost of less than
50 per cent. If the interval between synchronization events is longer, the more
powerful primitives provided by the scheduler become less costly.

The existence of different operating ranges suggests that some flexibility must be
available in the choice of scheduling primitives in order to allow the system to meet the
requirements of a particular application. The lack of this flexibility in Ada implies that
the language may not be appropriate to applications in which the expected time
between synchronization events is small. In our experience, this is frequently the case
in real-time applications and we feel strongly that the introduction of low-level
synchronization primitives into the Ada languague is necessary to handle such
applications with the required level of efficiency.

4.2.2. Control-based vs. data-based synchronization

In addition to the efficiency concerns discussed in the previous section, the
rendezvous mechanism in Ada differs from many conventional primitives for
synchronization in that mutual exclusion is a function solely of the task (or control
structure) and is independent of the data structures in the application program. This
property appears to have an effect on memory utilization if conventional program
structuring is used.

Consider an application in which some relatively large number of entities may be
manipulated by some moderately large number of actions (for concreteness in this
example, assume that there are 100 entities and 10 actions) in such a way that mutual
exclusion is required to prevent two actions from occurring simultaneously for the
same entity. This type of situation occurs, for example, in the case of a terminal
concentrator whose function is to connect some large number of terminals to a
network of host computers. In designing software for such a system, it is convenient to
represent each terminal as a distinct entity and to define a set of commands which
trigger control functions when entered on that terminal.

In Ada, this situation would ordinarily be modelled through the use of a task family
whose members corresponded to the individual terminal entities. The user commands
correspond to entries in the body of the task, which would give rise to the following
general structure:

task ENTITY (1 .. 100) is
entry ACTIONT;
entry ACTION2;
- - entry declarations for remaining actions - -
entry ACTiION10;
end ENTITY;
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task body ENTITY is
begin
loop
select
accept AcTION1 do
-- body of action 1 - -
end ACTIONT;
or accept ACTION2 do
- - body of action 2 - -
end ACTION2;
- - accept statements for remaining actions - -
or accept AcTION10 do
- - body of action 10 - -
end AcTION10;
end select;
end loop;
end ENTITY;

In a more conventional approach in which low-level primitives are available for
locking within data structures, the same structure would be implemented by including
an interlock with each entity to prevent concurrent access to that entity by more than
one action. The individual actions would be coded as procedures, for example:

- - INTERLOCK operations defined in Section 3 - -

type ENTITY is access
record
ACCESS_LOCK : INTERLOCK : = UNLOCKED;
- - local state fields - -
end record;

procedure ACTION] (ENT : in ENTITY)
begin

LOCK (ENT . ACCESS_LOCK);

- - body of action 1 --

UNLOCK (ENT . ACCESS_LOCK);
end ACTIONI;

- - ACTION2 through acTioN10 are similarly defined - -

The flavour of the two models above is very similar, particularly from the external
point of view. In order to perform AcTION3 on some entity k in the task-based Ada
approach, one issues the call

ENTITY(K) . ACTION3;
while in the interlock model, one performs
ACTION3 (pointer to entity k);

The semantic properties are also similar since each call is protected against the
concurrent execution of other actions for that entity and independent entities may be
acted upon in parallel.
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In the implementation of the two mechanisms, however, there is a considerable
disparity in the storage requirements which arises from the fact that the interlock
model views the entities (data) and the actions (procedures) as distinct units. In the
task model, each entity in the task family has, as part of its structure, each of the
associated entries, which has a multiplicative effect on the storage requirements for
each entity. For example, in the interlock model, there are 100 data locks used to
manage concurrency; in the task model, this function is managed by 1000 (i.e.
100 x 10) entries. Since each entry must included at least a queue pointer, this
approach is clearly inefficient in terms of storage.

It is possible to design the task structure for a particular application so that this cost
is eliminated. For example, in the code sequence below there are only 100 entries to
perform the necessary actions.

type ACTION is (ACTION1, ACTION2, ..., ACTION10);

task ENTITY (1 .. 100) is
entry PERFORM_ACTION (ACT : in ACTION);
end ENTITY;

task body ENTITY is
begin
loop
accept PERFORM_ACTION (ACT : in ACTION) do
case ACT of
when actionl =
begin
- - body of action 1 --
end;
when AcTION2 =
begin
- - body of action 2 - -
end;
- - when clauses for remaining actions - -
when acTion10 =
begin
- - body of action 10 - -
end;
end case;
end PERFORM_ACTION;
end loop;
end ENTITY;

While the above solution has the desired effect of reducing the storage require-
ments, the overall structure has been sacrificed and the resultant program is
considerably less natural than the earlier one. It may be possible for the translator to
perform optimizations of this kind, but this seems like an exceptionally complex
problem.

4.2.3. Implementation of interlocks in Ada

Although the rendezvous can provide the same functionality as programmer-
accessible interlocks within the data structure, we feel that such interlocks are



1044 E. S. ROBERTS ET AL.

necessary in order to allow multiprocessor systems to be implemented with the
required level of efficiency. The two preceding sections demonstrate that the interlock
model is more efficient than a straightforward implementation of the rendezvous
scheme. Because efficiency is of critical importance in most multiprocessor environ-
ments, we are concerned that the failure of Ada to provide adequate facilities for low-
level interlocks will considerably reduce the overall applicability of the language.

We also believe that low-level facilities for managing interlocks can be added to the
language without any significant change in the underlying structure of Ada. One
possibility is stmply to incorporate the data type INTERLOCK and the procedures LOCK
and UNLOCK as part of the Ada language. This solution is sufficiently general to satisfy
the efficiency considerations and does so with a very minimal impact on the Ada
language. A second alternative would be to define a new statement form, such as the
region statement from Brinch Hansen,® which has the effect of ensuring mutual
exclusion on a particular interlock throughout a sequence of statements. This
alternative offers greater protection against improper use of interlocks at the cost of
introducing new syntactic forms into the Ada language.

It is important to note that the implementation of semaphore operations through
the use of a generic task (as suggested in the Ada Reference Manual) is not a sufficient
solution to the mutual exclusion problem, even if these primitives are implemented
using special hardware support. There are two problems associated with the p and v
operations as defined in Ada. First, tasks (including these generic tasks) are not part of
the data environment. One of the principal uses of an interlock in conventional
systems is to protect some structure from concurrent access. In Ada, there is no
convenient way to associate a semaphore with a specific data object. The best
achievable solution is to use integer indices within the object to select the appropriate
member of a semaphore family in a relatively cumbersome and obscure way.

The second problem stems from the FIFO semantics of the rendezvous mechanism
in Ada. Although the Ada Reference Manual (page 9-11) notes that the fact that
semaphores are ‘predefined authorizes an implementation to recognize them and
implement them making optimal use of the facilities provided by the machine or the
underlying system’, it is still impossible to achieve the efficiency of spin locks in this
way without violating the FIFO semantics of the Ada rendezvous.

4.3. Entries and the name problem '

Another major problem in Ada stems from the manner in which processes are
named. In Ada, tasks which perform some particular set of operations for separate
internal data structures or devices are grouped together to form array-structured task
families. In order to refer to a specific incarnation of a task, we must specify both the
name of the task and the index of the specific process. Furthermore, since tasks in Ada
are not data objects, we must supply the name field explicitly in the source code. This
treatment of processes has several deficiencies when compared to other structures
which allow a more flexible naming scheme.

4.3.1. Limitations of array functionality

One concern that arises from the naming convention is that the array structure
imposes a relatively arbitrary task structure which may not fit the nature of the
application. Array structured task families are appropriate only when the process
structure which they represent has a topology which behaves like an array. Other
structures (particularly those which involve linked lists or other pointer-based
structures) are cumbersome to implement in terms of a pre-supplied array structure.
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This problem is similar to the problem of defining linked structures in Fortran or a
similar language in which arrays are the primary compound structure.

As an example, let us again consider the case of the terminal concentrator example
presented above. In this application, there are a large number of terminals of which
only a relatively small fraction are likely to be connected at any given time. The
activity for each terminal is monitored by a member of a task family which is assigned
to that terminal as long as it is connected to the system. We assume that the total
number of terminal tasks is constant (which allows them to be statically allocated) and
that the association of terminals and tasks will change as terminals are connected and
disconnected from the system. Ordinarily, there will be more terminal tasks than
connected terminals at any particular time; these tasks remain idle until they are
associated with a newly connected terminal.

The natural structure in which to store the idle terminal tasks is a linked free list,
When a terminal is connected to the system, it is assigned to the first free task which is
currently at the head of the list. When a terminal is disconnected, its associated
process becomes idle and is linked onto the free list. These operations are natural in a
structure which permits pointer operations; when faced with an array structure, one is
taced with the choice of (1) searching for free entries, (2) dynamically compactifying
the task table so that the active tasks are contiguous or (3) simulating the free list
mechanism through the use of auxiliary arrays. These alternatives represent possible
implementation strategies, but it is our contention that Ada prevents the most natural
solution.

4.3.2. The return address problem

A potentially more serious problem posed by the naming convention is the ‘return
address problem’ which is briefly considered in the Ada Rationale (page 11-40). The
concern here is that a server task has no way to reply to the calling task which requests
service unless the identity of the calling task is known at translation time. The
problem is not one of authenticating a particular caller but rather one of identifying
the calling task in some subsequent entry call.

Consider the case of a task whose function is to encrypt a message supplied by a
caller and to return the encrypted message. In Ada, the canonical description for this
type of server is illustrated below:

task ENCRYPTION_SERVER is
PACKET_SIZE : constant INTEGER : = 256;
type PACKET is array (1 .. PACKET_SIZE) of CHARACTER,;
entry SEND.NORMAL_MESSAGE (MSG : in PACKET);
entry GET_ENCRYPTED_MESSAGE (MSG : out PACKET);
end ENCRYPTION_SERVER,;

task body ENCRYPTION_SERVER is
BUF : PACKET;
begin
loop
accept SEND_.NORMAL_MESSAGE (MSG : in PACKET) do
BUF : = MSG;
end SEND_NORMAL_MESSAGE;

- - code to encrypt data in BUF - -
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accept GET_.ENCRYPTED_MESSAGE (MSG : out PACKET) do
MSG : = BUF;
end GET_ENCRYPTED_MESSAGE;
end loop;
end ENCRYPTION_SERVER,;

While the code above performs the encryption function in a straightforward way
and allows arbitrary tasks to call the two entries, it is not optimal in all cases. One
potential problem arises in entry definitions which make use of a select statement to
allow the server task to wait for a number of possible events. Because the select
statement can appear only within the body of the called task, there is an inherent
asymmetry in the tasking structure., Suppose that the programmer using
ENCRYPTION_SERVER wanted a task within the following logical structure:

task body CALLING_TASK is

- - code which generates PLAINTEXT for encryption - -

SEND._NORMAL_MESSAGE (PLAINTEXT);
loop
exit when ENCRYPTION_DONE;
- - do some other work - -
end loop;
GET_ENCRYPTED_MESSAGE (CODED._MESSAGE);

- - code to make use of CODED_MESSAGE - -

end CALLING_TASK;

While it is not possible to code the calling task in this way directly (because there is
no way to transmit the ENCRYPTION_DONE), this type of operation can be achieved if
the roles of entry call and accept statement are reversed for the
GET_ENCRYPTED_MESSAGE entry.

task ENCRYPTION_SERVER is
PACKET_SIZE : constant INTEGER : = 256;
type PACKET is array (1 .. PACKET_SIZE) of CHARACTER,;
entry SEND_NORMAL_MESSAGE (MSG : In PACKET);

end ENCRYPTION_SERVER,;

task body ENCRYPTION_SERVER 1is
BUF : PACKET;
begin
loop
accept SEND_NORMAL_MESSAGE (MSG : in PACKET) do
BUF : = MSG;
end SEND_NORMAL_MESSAGE;

- - code to encrypt data in BUF - -
GOT_ENCRYPTED_MESSAGE (BUF);

end loop;
end ENCRYPTION._SERVER;
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task body CALLING_TASK is
- - code which generates PLAINTEXT for encryption - -

SEND_NORMAL_MESSAGE (PLAINTEXT);
loop
select
accept GOT_ENCRYPTED_MESSAGE (MSG : in PACKET) do
CODED_MESSAGE : = MSG;
end GOT_ENCRYPTED_MESSAGE;
else
- - do some other work - -
end select;
end loop;

- - code to make use of CODED_MESSAGE - -

end CALLING_TASK;

Unfortunately, this organization is only effective if there is a single calling task or a
single family of callers. In the case that the calling task is a member of a task family,
the caller can pass the index of a member as an additional argument to
SEND_NORMAL_MESSAGE and then use this index in the subsequent
GOT_ENCRYPTED_MESSAGE call, as in

CALLING_TASK(TASK. INDEX).GOT_ENCRYPTED_MESSAGE (BUF);

It is impossible to write ENCRYPTION_SERVER as a general utility package which is
available for use with any task that calls SEND_NORMAL..MESSAGE and defines an entry
GOT_ENCRYPTED_MESSAGE for the reply. Because it is impossible to pass the identity of
the calling task to ENCRYPTION_SERVER, there is no way for the server task to return the
message to the appropriate caller. This restriction seems to preclude the development
of task libraries comparable to subroutine libraries in a well-organized environment
for software development.

4.3.3. Tasks as data objects

The obvious solution to both the array topology problem and the return address
problem is to consider individual activations of tasks to be data objects which can be
incorporated into arbitrary structures or passed as parameters to server tasks. This
issue is briefly discussed in the Ada Rationale (page 11-39) and the notion of
anonymous activation variables from the language Tartan is introduced. Such a
mechanism could be incorporated into Ada if it were possible to overcome the
additional problems associated with task variables. For example, assume that all
activations of tasks are data objects of the type ACTIVATION_NAME and that each task
implicitly defines the variable MY_NAME to be an identification of that activation.

The discussion of activation variables in the Ada Rationale correctly observes that
the introduction of untyped task variables raises questions of strong typing similar to



1048 E. S. ROBERTS ET AL.

those found with procedure parameters in languages such as ALGOL-60. For
example, even though the task definition

task body GENERAL_SERVER is

DATA ! PACKET,;
RETURN_ADDRESS : ACTIVATION_NAME;
begin

accept SERVER_REQUEST (T : in ACTIVATION_NAME,
INPUT : in PACKET) do
DATA : = INPUT;
RETURN_ADDRESS : = T;
end SERVER_REQUEST;

- - perform appropriate manipulation on DATA - -

RETURN_ADDRESS REPLY(DATA);
end GENERAL_SERVER,;

solves the return address problem, the use of an untyped process variable T is
dangerous because there is no guarantee that the process referred to by T has a REPLY
entry or that its parameter structure is compatible.

This problem, however, may be solved by eliminating the untyped activation
variables in favour of a strongly typed system of specific entry variables. For example,
assume that the reserved word entry is usable as a type generating function in a similar
fashion as array. It is then possible to declare a return address with no type ambiguity
as illustrated below:

task body GENERAL_SERVER is

DATA : PACKET,
RETURN_ADDRESS : entry (in PACKET);
begin

accept SERVER_REQUEST (T : in entry (in PACKET),
INPUT : in PACKET) do
DATA : = INPUT;
RETURN_ADDRESS : = T;
end SERVER_REQUEST;

- - perform appropriate manipulation on DATA - -
RETURN_ADDRESS(DATA);
end GENERAL_SERVER,;
In this case, the caller would issue the entry call
SERVER_REQUEST (MY_NAME REPLY, INPUT_DATA);

thereby giving the complete (and unambiguous) address of the return entry.

There are other possible approaches to this problem; we have suggested the above
scheme in order to demonstrate that strong typing considerations alone are not a
sufficient justification for disallowing references to process activations within the data
structure. We believe that the ability to code a general server with the ability to
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correctly address a reply is of major importance to the design of a rationally structured
parallel control facility and that some mechanism for performing this function should
be determined and incorporated into the Ada language.

4.4. Flexibility in the scheduling discipline

One additional area of concern that has developed during our study of Ada is the
question of whether the scheduling discipline provided by the language is sufficiently
general to support applications with important timing constraints. In particular, we
are concerned that Ada does not provide adequate control over the scheduling strategy
and that the scheduling algorithm is likely to encounter a number of problems
associated with ‘cooperative scheduling’.

To illustrate this problem, imagine that Ada is chosen as the implementation
language for the design and development of a timesharing system for a multipro-
cessor. It is convenient in such a system to represent the individual user processes as
independent tasks in the timesharing structure. In order to achieve fairness, timeshar-
ing systems typically limit the run-time allowed to a process to some maximum unit of
time. If this time period (or quantum) is exceeded, the process is forcibly descheduled
to allow other processes to run. The performance of the typical timesharing system is
quite sensitive to the size and dynamic behaviour of this quantum limit and it is
important to be able to adjust this mechanism to conform to the loading demands.

In Ada, there is no apparent way to specify a run-time limit for a task nor is it
possible for one task to control the scheduling or descheduling of another. Without
this flexibility, it appears that there are only two possible schemes to provide fairness
in a timesharing scheduler:

1. Depend on the Ada scheduling discipline for all scheduling and descheduling
operations and ensure that the built-in mechanism provides all of the desired
flexibility, presumably expressed in the form of pargma declarations to the
compiler.

2. Design a scheduler which operates ‘cooperatively’ in the sense that the tasks
themselves participate in the scheduling decisions. In this case, each task would
be required to periodically check its accumulated run-time and dismiss itself
through the use of a delay statement.

Obviously, each of the approaches outlined above is totally unacceptable for a
timesharing application. The first either requires the system designer to change the
structure of the implementation language or forces the system to make use of a built-in
scheduling discipline which may be hopelessly inadequate to perform the more
complex scheduling operations required of a timesharing system.

The second approach is equally unworkable in that it requires the compiler to
perform complex path analysis and assemble code to poll the scheduler at acceptably
frequent intervals. The problems that arise in this type of scheduling are so severe that
this alternative tends to be rejected out of hand. In his assessment of the process
scheduling facility in Ada,’ Paul Hilfinger writes:

It seems that the tasks being scheduled must be written to be aware of the fact
that they are being scheduled, and to do appropriate sends or procedure calls at
intervals. This is a violation of abstraction; no reasonable operating system in
existence requires that its processes cooperate to be scheduled.
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There are several potential approaches to this problem which affect the structure of
the language to varying degrees. Perhaps the most straightforward mechanism is to
allow one task to forcibly deschedule another task. This would provide a monitoring
task with at least some primitive ability to control the scheduling discipline. This
could be implemented through the addition of a new primitive such as

deschedule T;

or as an extension of the priority mechanism. If one task were allowed to alter the
priority of another and changes in priority were implemented so as to force a scheduler
transition, one might begin to have an acceptable facility for scheduling control.

5. CONCLUSIONS

In this paper, we have argued that multiprocessor systems are frequently used for
real-time applications in which run-time efficiency requirements are of critical
importance. For this reason, we believe that the design of a high-level language system
which is intended for use in real-time, multiprocessor-based applications must be
sensitive to these requirements and must allow the programmer to write code which
satisfies the efficiency constraints imposed by the application.

We believe that the Ada language, as currently designed, does not meet these needs
for several reasons:

1. The use of a complete rendezvous system results in unnecessary scheduling
delays. This problem is particularly severe in the relatively important case of
message passing in that Ada requires the sender of a message to wait for the
scheduler before it is allowed to proceed. This structure is considerably less
efficient than message passing systems implemented with queues and imposes a
relatively high cost on the use of an important communication discipline.

2. Ada does not provide sufficent flexibility in its process control structure to allow
the programmer to choose the mechanism most closely suited to the require-
ments of the application. In particular, the fact that the mutual exclusion
mechanism is associated with the control structure rather than the data structure
leads to convoluted program structures or serious inefficiencies in the use of
space.

3. The naming conventions used to indicate specific processes in Ada are not
sufficiently general to allow the programmer to represent process structures
which accurately reflect the underlying structure of the algorithm. Moreover, the
fact that no general mechanism exists to allow one process to communicate its
identity to other processes in the system severely limits the modularity of the task
structure.

4. The language does not provide the user with sufficient control over the
scheduling discipline.

We contend that the parallel processing facilities currently provided by Ada do not
satisfy the requirements of real-time systems such as those typically chosen for
implementation on a multiprocessor. On the other hand, we feel that good solutions
do exist for most of the problems that we have identified here and that those solutions
can be incorporated into Ada with relatively little change to the overall structure of the
code. Based on our experience with multiprocessors and real-time systems, we feel
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that the efficiency cost implied by the current Ada design severely limits the extent to
which Ada is acceptable for real-time applications. We strongly urge that modifica-
tions such as those suggested in this paper be incorporated into Ada to increase its
utility in this important area of application.
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