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Owicki and Gries have developed a proof system for conditional critical regions. In their system,
logically related variables accessed by more than one process are grouped together as resources, and
processes are allowed access to a resource only in a critical region for that resource. Proofs of
synchronization properties are constructed by devising predicates called resource invariants which
describe relationships among the variables of a resource when no process is in a critical region for the
resource. In constructing proofs using the system of Owicki and Gries, the programmer is required to
supply the resource invariants,

Methods are developed in this paper for automatically synthesizing resource invariants, Specifically,
the resource invariants of a concurrent program are characterized as least fixpoints of a functional
which can be obtained from the text of the program. By the use of this fixpoint characterization and
a widening operator based on convex closure, good approximations may be obtained for the resource
invariants of many concurrent programs.
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1. INTRODUCTION

Owicki and Gries [17] have developed a proof system for conditional critical
regions. In their system, logically related variables accessed by more than one
process are grouped together as resources, and processes are allowed access to a
resource only in a critical region for that resource. Proofs of synchronization
properties are constructed by devising predicates called resource invariants.
These predicates describe relationships among the variables of a resource when
no process is in a critical region for the resource. Related methods for verifying
concurrent programs have been discussed by Lamport [16] and Pneuli [18].

In constructing proofs using the system of Owicki and Gries, the programmer
is required to supply the resource invariants. We investigate the possibility of
automatically synthesizing resource invariants for a simple concurrent program-
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Synthesis of Resource Invariants for Concurrent Programs . 339

ming language (SCL) in which processes access shared data via conditional
critical regions. We consider only invariance [18] or safety properties [16] of SCL
programs. This class of properties includes mutual exclusion and absence of
deadlock and is analogous to partial correctness for sequential programs. Cor-
rectness proofs of SCL programs are expressed in a proof system similar to that
of Owicki and Gries.

To gain insight into the synthesis of resource invariants, we restrict the SCL
language so that all processes are nonterminating loops, and the only statements
allowed in a process are P and V operations on semaphores. We call this class of
SCL programs PV programs. For PV programs there is a simple method for
generating resource invariants, i.e., the semaphore invariant method of Haber-
mann [10], which expresses the current value of a semaphore in terms of its initial
value and the number of P and V operations which have been executed. This
method, however, is not complete for proving either absence of deadlock or
mutual exclusion of PV programs. We show that there exist PV programs for
which deadlock (mutual exclusion) is impossible, but the semaphore invariant
method is insufficiently powerful to establish this fact. We also give a character-
ization of the class of PV programs for which the semaphore invariant method is
complete for proving absence of deadlock (mutual exclusion).

The semaphore invariant method is generalized to the class of linear SCL
programs in which solutions to many synchronization problems can be expressed.
Although the generalized semaphore invariant also fails to be complete, it is
sufficiently powerful to permit proofs of mutual exclusion and absence of deadlock
for a significant class of concurrent programs. When the generalized semaphore
invariant is insufficiently powerful to prove some desired property of an SCL
program, is it possible to synthesize a stronger resource invariant? We argue that
resource invariants are fixpoints, and that by viewing them as fixpoints it is
possible to generate invariants which are stronger than the semaphore invariants
previously described. We show that the resource invariants of an SCL program
C are fixpoints of a functional Fc which can be obtained from the text of program
C, and that the least fixpoint p(Fc) of Fc is the “strongest” such resource
invariant. Since the functional Fc is continuous, the least fixpoint u(Fc) may be
expressed as the limit

u(Fe) = ,91 Fio( false).

Clearly, this characterization of p(F¢) cannot be used directly to compute w(Fc)
unless C has only a finite number of different states or unless a good initial
approximation is available for u(Fc).

By using the notion of widening of Cousot [6], however, we are able to speed
up the convergence of the chain F%(false) and obtain a close approximation to
p(Fc) in a finite number of steps. The widening operator that we use represents
a set of program states by its convex closure in the state space of the program.
Although fixpoint techniques have been previously used in the study of resource
invariants [9, 14], we believe that this is the first research on methods for speeding
up the convergence of the sequence of approximations to pu(Fc). Examples are
given in the text to illustrate the power of this new technique.
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The SCL language and its semantics are discussed in Sections 2 and 3. Sections
4 and 5 contain a description of the semaphore invariant method and a discussion
of why it is incomplete. Section 6 introduces the class of linear SCL programs
and briefly describes how the semaphore invariant can be generalized to this class
of programs. The fixpoint theory of resource invariants is presented in Section 7.
Section 8 contains an account of Cousot’s widening operator and how it can be
used in approximating resource invariants. The paper concludes with a discussion
of the results and some remaining open problems.

2. A SIMPLE CONCURRENT PROGRAMMING LANGUAGE (SCL)

An SCL program consists of two parts: (1) an initialization part “x := &” in which
initial values are assigned to the synchronization variables X, and (2) a concurrent
execution part, -

resource R(X): cobegin P1//P2// --- Pn coend,

which permits the simultaneous or interleaved execution of the statements in the
processes P1, ..., Pn. All variables accessed by more than one process must
appear in the prefix R(%) of the concurrent execution part. Processes have the

form
Pi: cycle Si; Si; ... ; Sk end,

where
“Si: 8§ . ..58."

is a list of conditional critical regions. The cycle construct is a nonterminating
loop with the property that the next statement to be executed afterS i._ is the first
statement S of the loop. Although the cycle statement simplifies the generation
of loop invariants, the results of this paper also apply to terminating loops (e.g.,
while loops). The extension of SCL to allow multiple resources is straightforward
and is not treated in this paper.

Conditional critical regions have the form with B when b do A od. Only
variables listed in R can appear in the Boolean expression b and the body A of
the conditional critical region. When execution of a process reaches the condi-
tional critical region with R when b do A od, the process is delayed until no
other process is using R and the condition b is satisfied. Then the statement A is
executed as an indivisible action.

Let C be an SCL program with the format described above; a program state o
is an ordered list ( pc1, pee, . . ., pcn; 8), where

(1) pc; is the program counter for process Pi and is in the range 1 < pc; < &i.
(2) s maps the set of synchronization variables to the set Z of integers and is
called the program store.

We write b(s) to denote the value of predicate b in store s; A(s) will be the new
store resulting when the sequential statement A is executed in store s.

A computation of an SCL program C is a sequence of program states oo, 01,
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.
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.., 0j, ... . The initial state oo has the form (1, 1, ..., 1; so), where so reflects
the assignments made in the initialization part of C. Consecutive states
o= (pci,...,pch;8) and o1 = (pei{™, ..., pci""; sjn1)

are related as follows: There exists an m, 1 < m < n, such that

(1) pci** =pcl if i#m;
4l peih+1  if peh < km,
(2) pcm {1 otherwise;

(3) if statement pc’, in process m is with R when b do A od, then b(s;) = true
and Sj+1 = A(Sj).

Note that concurrency in the execution of an SCL program is modeled by
nondeterminism in the selection of successor states.

If there exists a computation ay, o4, . . ., 0;, . . . of program C, then we say that
state g; is reachable from the initial state g of C and write oo = o;. Note that the
next statement to be executed by process pi in state = (pci, . . ., pcn; 8) is always

be,- We say that program C is blocked in state o if the condition of the next
statement to be executed in each process is false in state o. A state o of Cis a
deadlock state if o is reachable from the initial state of C and C is blocked in
state 0. T'wo statements S, dand S, in different processes of C are mutually
exclusive if there does not exist a state o, reachable from the initial state of C, in
which S; and S: are next to execute in their respective processes.

Frequently it will be convenient to identify a predicate U with the set of
program states which make U true. If £ is the set of all program states, then 2*
will be the set of all possible predicates, false will correspond to the empty state
set, and true will correspond to the set £ of all program states. Also, logical
operations on predicates can be interpreted as set-theoretic operations on subsets
of X; i.e., “or” becomes “union,” “and” becomes “intersection,” “not” becomes
“complement,” and “implies” becomes “is a subset of.”

SP[A](U) denotes the strongest postcondition corresponding to the sequential
statement A and the precondition U. If the predicate U is identified with the set
of states which satisfy it, then SP[A](U) may be defined by SP[A|(U) =
{(pci, ..., pen; A(8))|(per,y ..., pen, 8) € U}

THEOREM 2.1. Let A be a sequential statement.

(a) (Monotonicity). If U, VC Z and U C V, then SP[AJ(U) C SP[A](V).
(b) (Additivity). If {U:}, i = 0, is a family of predicates, then SP[AJ(U;U;) =
U;SPIAN(L;).

Proor. See[5]. O
3. RESOURCE INVARIANT PROOFS

In this section we adapt the proof system of Owicki and Gries to SCL programs.
We use the standard notation {P}A{Q} of Hoare [12] to express the partial
correctness of the sequential statement A with respect to the precondition P and
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postcondition @. The triple {P}A{@Q) is true (F{P}A{Q)) ff =SP[A])(P) — Q.
Proof systems for partial correctness of sequential statements are not discussed
in this paper.

Let C be an SCL program, and let ST be the set of statements occurring within
the processes of C. A resource invariant system RSc for C will consist of two
parts:

(1) A predicate IR called the resource invariant. All free variables of IR must
appear in the resource prefix R(%) of the program C.
(2) Proofs of sequential correctness for each of the individual processes of C.

For our purposes these correctness proofs are represented by a set VC of
assertions called verification conditions and two functions pre, post:ST — VC
which give the precondition and postcondition for each statement C in the proof.
To ensure that the proofs of sequential correctness for the individual processes
are interference free [17], we require that the free variables in the verification
conditions for process i do not appear as free variables in the verification
conditions for any process j with 7. i. If C is an SCL program with the format
described in Section 2, then the functions pre and post for process Pi must also
satisfy the following conditions:

(a) =% =e— pre(Si) N IR;

(b) Epost(Sh,) — pre(Si);

(c) E=post(Si) — pre(Siy) forl<j<k—1;
(d) if Siis the conditional critical region

with R when b/ do A} od,
then E={ pre(S}) A bi A IR}A{ post(S;) N\ IR}.

THEOREM 3.1. Let RSc be a resource invariant system for the SCL program
C. If o is reachable in C and S} is the next statement of process Pi to execute in

state o, then o € pre(S}).
Proor. See [17]. O

Resource invariant systems may be used to prove absence of deadlock and
mutual exclusion of an SCL program C. To prove mutual exclusion of statements
S; and S; in C, it is sufficient to give a resource invariant system RSc for C such

that
M(RSc) = pre(S:) N pre(S2) A IR

is unsatisfiable. To prove that it is impossible for C to become deadlocked, it is
sufficient to exhibit a resource invariant system RSc such that the predicate

n ki i :
DRSc)= A ( V pre(S;) A "lb}) A IR

=1\ j=1

is unsatisfiable. Local deadlock, in which only a subset of the processes is blocked,
may be handled in a similar manner.
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4, THE SEMAPHORE INVARIANT METHOD

P and V operations on a semaphore a can be treated as conditional critical
regions: P(x) is equivalent to with R when x >0 do x := x — 1 od and V(x) to
with R when true do x := x + 1 od. In this section we restrict the class of SCL
programs so that the only statements allowed within processes are P and V
operations on semaphores; we call such programs PV programs.

The semaphore invariant method [11] is based on the use of auxiliary vari-
ables. Let a be a semaphore with initial value m occurring in a PV program C.
For each statement S; corresponding to a P operation we introduce an auxiliary
variable a} which is incremented each time the P operation is executed. Similarly,
for each statement S; corresponding to a V operation we introduce a variable
a?. All auxiliary variables are initialized to zero at the beginning of the program
C. The semaphore invariant states that the predicate I, = {a = m + Zaf — Za!
A a = 0} must be satisfied by C whenever C is not executing a P or V operation
on the semaphore a.

When auxiliary variables are added to C in this manner, there is a simple
method of generating appropriate pre and post functions for C. Let “Pi: cycle

; Si, end” be the ith process in the program C, and let di, .. .,d%, be the
auxxha.ry variables for this process, The pre and post functions for process Pt will
be defined inductively:

(1) pre(Si) = post(Sk) = {di =dj = --- = di}.
(2) If S; is a conditional critical region with associated auxiliary variabled;, then
post(S)) = pre(S)[(d} - 1)/d;].

We refer to the resource invariant system consisting of the conjunction of the
semaphore invariants I, and the annotation obtained by the above procedure as
the semaphore invariant system (Slc) corresponding to C.
Consider, for example, the PV program C:
a:=1
cobegin
A:cycle P(a); SA; V(a) end

//
B: cycle P(a); SB; V(a) end
coend
SA and SB represent the bodies of the critical regions established by the P and
V operations and are treated as null statements in the analysis which follows.
Annotating C as described in the previous paragraph, we obtain
{al=0Aal=0Aal=0Aai=0Aa=1)
resource R(a, al, a?, al, a?):
cobegm
i A cycle
{ ai= al}
with Rwhena>0doal:=ael+1;a:=a—1o0d;
{a} = 1=a})

SA;

[ﬂ{ -1= Q',:} @

with R when truedo ai:=al + l;a:=a + 1 od;
end

/
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B: cycle
{a} = a})
with R whena>0doai:=ai;+ 1;a:=a—1o0d;
{at—1=a})
SB;
{ai —1=a?}
with R when true do a2 :=a} + 1; 2 :=a + 1 od;
end
coend

The invariant I, for semaphore a is
L={a=1+al+a}—al—-aiANa=0}.

Since the predicate M(SI¢) = pre(SA) A pre(SB) A I, is unsatisfiable, it follows
that statements SA and SB are mutually exclusive. Similarly, we see that C is
free from deadlock, since the predicate D(Sl¢) is also unsatisfiable.

5. INCOMPLETENESS OF THE SEMAPHORE INVARIANT METHOD

The incompleteness of the semaphore invariant method is best explained by
means of progress graphs [3]. The progress graph is a graphical method for
representing the feasible states of a PV program. Consider, for example, the
program C:

a:=1b6:=1
cobegin
A:cycle P(a); P(b); V(a); V(b) end

//
B: cycle P(b); P(a); V(b); V(a) end
coend

Feasible computations of this program can be represented by a graph in which
the number of instructions executed by a process is used as a measure of the
progress of the process (see Figure 1). The dashed line represents a computation
of the program C in which process B executes P(b) and process A executes P(a).
The shaded region of the graph represents those program states which fail to
satisfy the semaphore invariants for a or &; such states are called unfeasible
states. The point labeled X in the graph is a deadlock state; the state X is
reachable from the initial state of C, but further progress for either process A or
process B would violate one of the semaphore invariants (i.e., both processes are
blocked). Those points in the graph (states of C) which are not reachable from
the origin (initial state) by a polygonal path composed of horizontal and vertical
line segments which never cross an unfeasible region (by a valid computation
sequence of C) are called unreachable points (states). All unfeasible points are
unreachable. The point labeled Y in the graph is an example of an unreachable
feasible point; if the program C were started in state Y, the semaphore invariants
would not be violated.
Next consider the PV program C:
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1880.
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a=b=c=d:=1
cobegin
A: cycle P(a); P(b); P(d); V(a); P(c); V(b); V(c); V(d) end

//
B: cycle P(a); P(b); P(c); V(b); P(d); V(a); V(c); V(d) end
coend

The progress graph for C is shown in Figure 2. Note that deadlock can never
occur during execution of program C. Let SIc be the semaphore invariant system
for the program C. Thus, if auxiliary variables are added as described in Section
4, the invariant I will be given by

I={a=1+al+ai—-al—aiNa=0
Ab=1+bi+bi-bl-biNb=0
Ac=1l+ci+ci—cl—ciNe=0
Ad=1+di+di—di—diNd=0
ANal=0Aai=0Aal=0Aai=0
AbI=0AbI=0AbI=Z0Ab:=0
Aci=0Aci=0Aci=0ACci=0
Adi=z0ANdi=0Adl=0Ad:=0).

It is not difficult to show that the condition D(SI¢) for absence of deadlock is
satisfied by the state Z in which

a=0, ai=1  a3=0  al=1  ai=1,
b=0, bi=0, b3=1  bi=1  bi=1,
c=0, ei=0 ci=0, ci =0, el =1,
d=0, di=0 di=0, di=1, di =

Thus absence of deadlock cannot be proved by means of the semaphore invariant
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.
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method. The state Z which satisfies D(SI¢) is an example of an unreachable
feasible state in which each process of C is blocked; we call such states trap states.

THEOREM 5.1. The semaphore invariant method is complete for proving
deadlock freedom for those PV programs whose progress graphs do not contain
any trap states.

Proor. Let C be a PV program whose progress graph does not contain any
trap states. Thus any state of C in which all processes are blocked must be
reachable from C’s initial state. Let SI¢ be the semaphore invariant system for C.
We show that the condition D(SI¢) is unsatisfiable if and only if deadlock is
impossible for the program C. Clearly, if D(SI¢) is unsatisfiable, then deadlock is
impossible. Thus assume that D(SIc) is satisfied by some state ¢. By construction
of the predicate D all processes are blocked in state o. Since ¢ is reachable from
the initial state of C, it is a deadlock state. [

A similar characterization may be given for mutual exclusion. How can the
semaphore invariant method be strengthened to handle trap states? One possi-
bility is to cover the “holes” in the unfeasible region of a progress graph by means
of additional linear constraints. A technique for generating the new constraints is
discussed in Section 8.

Although the semaphore invariant method is not complete for proving absence
of deadlock or mutual exclusion of PV programs, it is a powerful tool for proving
correctness of PV programs which occur in practice, as the examples of [10]
demonstrate. Additional evidence for the power of the semaphore invariant
method may be obtained by comparing it to other methods which have been
proposed for proving deadlock freedom of PV programs. We prove in [5] that the
semaphore invariant method is as powerful as the reduction method of Lipton
[156]: If a PV program has a reduction proof of deadlock freedom, then it also has
a proof using the semaphore invariant method.

6. GENERALIZATION OF THE SEMAPHORE INVARIANT METHOD

Since a large class of synchronization techniques can be modeled by counting
operations on shared variables, the class of linear SCL programs is of particular
interest. The conditional critical regions of a linear SCL program have the form

with R when B(x), x3, ..., xn) do A(xy, x2, ..., x,) od,
where
(1) the variables x1, x3, ..., x, belong to resource R;
(2) the condition B(x), xz, ..., x») is a truth functional combination of atomic
formulas of the form a.x; + asxz + +++ + @pXp + AGrs1 = 0;
(3) the body A(xy, x3 ..., x,) is a series of assignment statements which
increment the shared variables xj, . . ., x.; e.g.,
x =x1+ by,
X, 1= x2 + by,
Xn:=2xn + bn
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Note that semaphores are special cases of linear SCL programs. Many other
standard synchronization problems, including the dining philosophers problem,
the readers and writers problem, and the cigarette smokers problem, can all be
expressed as linear SCL programs. Arguments are given in [14] and [20] that
linear SCL programs are universal in their power to express synchronization
constraints for concurrent programs. It is also possible to prove that mutual
exclusion and deadlock freedom are undecidable for this class of programs.

We briefly outline how the semaphore invariant can be generalized to linear
SCL programs. Let C be an SCL program. For each conditional critical region S;
in C we introduce a new auxiliary variable dS; which counts the number of times
S: has been executed. Thus the algorithm of Section 4 may be used to generate
pre and post functions for C; the resulting annotation of C will be called the
canonical annotation.

Let Hi{%) = aix, + abxs + -+ +akx, + aka be a linear form occurring in the
condition of some critical region of C. We use the notation aH/aS; to denote the
change in value of H; caused by the execution of statement S;; note that aH,/aS;

is given by

aH; B i
—_— :_b-;.
BSJ rgl “

Let dH; = H(X) — H(%), where %, gives the initial values of the synchronization
variables. Then the relationship
oH;
dH; =Y —dS;
; 85

7

must hold if no process is executing a critical region for R.

Although the generalized semaphore invariant is sufficiently powerful to permit
proofs of mutual exclusion and absence of deadlock for a significant class of linear
SCL programs, it fails to be complete for exactly the same reason as the original
semaphore invariant.

7. A FIXPOINT THEORY OF RESOURCE INVARIANTS

In this section we show that the resource invariants of an SCL program C are
fixpoints of a function Fc which can be obtained from the text of C. Before
describing the functional F¢, we must introduce some additional terminology; as
in Section 2 we identify predicates with subsets of the set Z of all program states.
Let F be a functional which maps the predicates into predicates; i.e., F': 9%, 9%
If U C = and F(U) = U, then U is a fixpoint for the functional F. If U is a
fixpoint of F and U C V for all other fixpoints V of F, then U is the least fixpoint
of F. F is continuous if for every ascending chain Uy C U1 C -+- C U, C +++ of
subsets of Z,

F(G U,-) - U FU).
J=0

J=0
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If F is continuous, then F has a least fixpoint u(F) which is given by
u(F) = _U0 Fi(false),
oz

where F°(U) = U and F/*' = F(F/(U)).

Let C be an SCL program having the form described in Section 2, where a
single resource R(%) is shared by n processes P, ..., P,. We further assume that
C contains K critical regions Sy, ..., Sk, that the ith critical region has the form
with R when b; do A; od, and that pre and post functions for S; are computed
using the algorithm of Sections 4 and 6. The fixpoint functional F¢ : 2% — 2% is

defined by
K
Fo(d) = Jo v J v V SP[A](pre(Si) N bi N ),
i=1

where the predicate Jy = {X = €} describes the initial state of C.
THEOREM 7.1

(@) The functional F¢ is a continuous mapping on 2*. Thus Fc has a least
fixpoint u(Fc) which is given by

p(Fo) = U Fis (false).
J=0

(b) All resource invariants IR of C are fixpoints of Fe.

(¢) The least fixpoint u(Fc) is a resource invariant for C and can be character-
ized as the set of states which occur in valid computations of C starting
from initial state o, i.e.,

u(Fe) = (o] 00> o).
(d) The resource invariant system RSc consisting of p(Fc¢) and the canonical

annotation is relatively complete for proving absence of deadlock and

mutual exclusion of SCL programs.
(e) If L is a predicate such that L C p(F¢), then

w(Fo) = Q)FJ'(L).

The proof is given in the appendix.

Part (d) of Theorem 7.1 shows that u(F¢) is the “‘strongest” resource invariant
for program C; part (e) is important because it gives a method for improving
approximations to p(Fc). To illustrate Theorem 7.1, we consider the following
solution to the mutual exclusion problem.

a:=0;b:=0
resource R(a, b):
cobegin
A: cycle Al: with R when b=0do a:=a + 1 od;
SA;
A2: with R when truedoa:=a— 1 od
end
1/
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B: cycle Bl: with R when a =0do b:= b+ 1lod;

SB;
B2: with R when truedo b:= b—1o0d

end
coend

Adding auxiliary variables and using the algorithm of Section 6 to generate pre
and post functions, we obtain:

(a=0/\b=0/\a.=O/\a2=0/\b1=0/\b2=0}
resource (a, b, a1, az by, ba):
cobegin
A: cycle {a; = a3}
Al: with R when b=0doa:=a + 1;a;:= a, + 1 od;

[01 -1= aa)

SA;

{ﬂl - 1= ag}
A2: with R when truedo a:=a — 1;a;:=a; + 1 od
end

//
B: cycle {5, = b3}
Bl: with R whena =0do b:=b+ 1; b, := b + 1 od;

(b — 1 = &)
SB;
{by — 1 = b}
B2: with R when true do b:=b — 1; by := b, + 1 od
end
coend

In this case the function F¢ is

Fo)=a=0Ab=0Aa1=0Aa=0Ab=0Ab=0
v
VSPlai=a+La:=a+1J(b=0Aa1=a/J)
vSPla:=a-la:=a+ 1j(trueNay —1=az A dJ)
vSP[b:=b+1;b1:=b1+1](a=0/\b1=bz/\J)‘

v SP[b := b — 1; b2 := by + 1](true A bi—1=bANJd).

Since a(b) is incremented in statement A1 (B1) and decremented in statement
A2 (B2), an obvious guess for a resource invariant is

IR={a='£h—(M/\b=bI—bz/\a].ZO/\azZO/\b]EO/\szO}.

1t is easily checked that Fc(IR) = IR so that IR is a fixpoint of Fc. Since D =
(pre(A1) A b =0 A pre(Bl) Aa=0AIR}is unsatisfiable, the invariant IR may
be used to prove absence of deadlock for C. The invariant IR is not strong enough,
however, to prove mutual exclusion of statements SA and SB, since the predicate
M = {pre(SA) A pre(SB) A IR} is satisfiable. By using Theorem 7.1(e) we may
compute the strongest resource invariant u(Fe). Let L = {(IRA a1 =a: A b=
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b.}; then L C u(F¢). Since
F¢(L)=Ft(L)=...={IRAa=1-b=0Ab=1-a=0)},
we see that
WFo) = U Fi(L) = FYL)
{a=a1—aAb=b—bAa=1—-b=0
Nb=1—2a=0Na:=20ANa=0Ab=0A b, =0).

]

By using the resource invariant u(F¢) it is easy to show that the predicate M’ =
{pre(SA) A pre(SB) A p(Fc))} is unsatisfiable; thus the statements SA and SB are
mutually exclusive,

Note that Theorem 7.1(e) can only be used to obtain u(Fc) if program C has
a finite number of different possible states or unless a good approximation
is already available to u(Fc). In the next section we examine more powerful
techniques for obtaining strong resource invariants.

8. SPEEDING UP THE CONVERGENCE OF FIXPOINT TECHNIQUES FOR
APPROXIMATING RESOURCE INVARIANTS

For linear SCL programs the notion of widening of Cousot [6] may be used to
speed up convergence to u(Fc). The widening operator » is characterized by the
following two properties: '

(a) For all admissible predicates Uand V, UC U « Vand V< U« V.,

(b) For any ascending chain of admissible predicates Up C Uy C Uz C +-- , the
ascending chain defined by V= Up, Vigy = Vi » Uiy is eventually stable; i.e.,
there exists a 2 = 0 such that for i = &, V; = V..

In this paper the admissible predicates are the polygonal convex sets of Q"
where @ is the set of rational numbers and m is the number of resource variables
belonging to R. The widening operator * that we use is a modification of the one
used by Cousot [7]. Let U and V be polygonal convex sets. Then U and V can be
represented as conjunctions

h

U= R Y; and V= A 5};,
J=1 k=1
where each conjunct is a linear inequality of the form a;x; + -+ + AmXm + Qm+1
= 0. We further assume that the representation of U and V is minimal; i.e., no
conjunct can be dropped without changing U or V. We say that two linear
inequalities y; and & are equivalent if they determine the same half space of Q"
U * Vis the conjunction of all those y; in the representation of U for which there
is an equivalent &y in the representation of V. Thus the widening operator “throws
out” all those constraints in the representation of U which do not occur in the
representation of V,

We now describe the strategy for approximating u(F¢). Since the predicates
F%(false) in the chain F2(false) C Fi(false) C - .- may not be polygonal convex
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sets, let G: = CV[Fi(false)] where CV is the convex hull operator. The sequence
Go C G; C -+~ is a chain of polygonal convex sets. The sequence I * will be used
in obtaining a good approximation to the strongest resource invariant for R and
is defined by

I'= U Hj,

J=0

where Hé = Gt and H}+1 =H} * G¢+j.¢.1 .

THEOREM 8.1

(@) Each I* can be computed in a finite number of steps.

(b) wFe) CI fort=1.

(c) The sequence I' is a decreasing chain in ; i.e, I' D T 25 1% e,

(d) Suppose that u(F.) = AL, where L is a finite set of linear inequalities. Then
there exists an r = 0 such that I'= AL fort =r.

The proof is given in the appendix.

In practice, when computing I we stop generating the predicates H. o Hi,...a8
soon as a predicate H} is found such that Hf = Hf.,. If the limitUi-o H of the
truncated chain fails to be a resource invariant for C, then additional predicates
in the sequence H! may have to be computed. Thus the construction of I provides
a procedure which may be used to obtain successively better approximations to
the strongest resource invariant u(Fc).

Part (d) of Theorem 8.1 shows that the sequence of approximations produced
by our method will converge exactly to the strongest resource invariant in a finite
number of steps when the strongest invariant is the conjunction of a finite set L
of inequalities. Since the inequalities in L may be arbitrarily complicated, this
result proves that our method is strictly more powerful than methods like the
semaphore invariant method in which all inequalities must have a particular
form. However, since each I‘ will be a conjunction of linear inequalities, it is
possible to construct example SCL programs for which the sequence in Theorem
8.1(c) fails to converge. Thus, in general, there will still be programs for which
the resource invariants provided by our method are insufficiently powerful to
prove mutual exclusion and absence of deadlock. Nevertheless, our method is
quite powerful in practice, because most real synchronization problems are
counting problems with relatively simple resource invariants.

We demonstrate this method of synthesizing resource invariants by considering
the program C,

a:=1
cobegin
A: cycle P(a); SA; V(a) end

/7
B: eycle P(a); SB; V(a) end
coend
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discussed in Section 4. The function F in this case is given by
Fol)=ai=0Aai=0Aal=Aa}=0Aa=0
v
VSPlal:=al+ La:=a—-1l(al=aiAa>0AJ)
Vv SPlat:=al+ La:=a+1)(al~1=alAd)
VSPlai:=ai+La:=a-1lai=aiAa>0AJ)
v SPlai:=ai+ La:=a+1)(al - 1=aZAJ).

While C is quite simple and can be handled by the methods of Section 4, there
are potentially an infinite number of states, and the chain F&( false) C F( false)
C F&(false) C - ... does not converge. By computing the sequence of approxi-
mations I* however, we obtain

I'={al=0Aa}=0),
P={ai=0Aal=0),
P={alz0Aa=0Aa+al—al=1Aal=aiAa
—ai-ai+al+al=1)},
I'={aiz0Aa}=0ANa=0Aa+a}—al=1Aa}
zaiANa—-ai-a}+al+al=1)
Il Sm....

Note that I is a resource invariant for C and that I* implies the semaphore
invariant I, used in the proof of absence of deadlock and mutual exclusion in
Section 4.

For the PV program used in Section 5 to illustrate the incompleteness of the
semaphore invariant method, ' is strong enough to permit a proof of deadlock
freedom. The trap state z no longer causes a problem, since I*® contains the
restraint (b — di) + (d3 — b3) = 1 which is not satisfied by the unreachable
feasible points in the progress graph of the program.

As a final example we consider the standard solution to the readers and writers
problem with writer priority [2], where there are two reader processes and one

writer process; e.g.,

rr:=0rw:=0 aw:=0
a:=0;b:=0;a::=0; b :==0;
c:=0d:=0¢e:=0
resource (rr, rw, aw, ai, b, as, by, ¢, d, e):
cobegin

reader__1

7

reader__2

i

writer
coend
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Each reader process has the form:

reader._i cycle
A with Rwhenaw=0doa;:=a;+ L;rri=rr+1 od;
read;
B;: with R when true do b; := b; + 1, rr:=rr — 1 od;
end

The writer process is

writer: cycle

C: with R when true do ¢ :=c + 1; aw := aw + 1 od;

D with Rwhenrr=0Arw=<0dod:=d+ Lrw=rw+ 1 od;

E: with R when true do e :=e + 1; aw := aw — I; rw = rw — 1 od;

end

Note that auxiliary variables ai, b1, az, bz, ¢, d, and e have been added to the
program to count the number of times critical regions Ay, By, A2, By, C, D, and E
are executed. The predicate I° generated by our approximation procedure is

IP={aw—c+e=0
Arw—d+e=0
Arr—ai+b—ax+b2=0
Aam—b+d—e=1
Nag—by+d—e=1
Ace—e=1
ANayzb=0
ANaz=b=0
ANec=d=ze=0)}.

This predicate is a resource invariant for the program and is sufficiently strong
to prove absence of deadlock and mutual exclusion of read and write statements.

9. OPEN PROBLEMS

If a concurrent program contains a large number of critical regions, then the
combinatorial explosion in the number of possible states which must be consid-
ered by the approximation procedure of Section 8 may prevent convergence to a
suitable resource invariant. We are currently investigating techniques for mini-
mizing this combinatorial explosion. Two techniques which seem promising are

(1) Preprocessing the program to obtain information about which states can
follow a given state during a computation of the program. For example, in the
readers and writers problem, assume that reader__1 is waiting for entry into
critical region Al and that aw > 0. If reader__2 executes critical region B2, it is
unnecessary to check whether reader__1 is enabled to enter Al since execution
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of B2 does not affect the value of aw. A similar analysis is currently used in
obtaining efficient implementations of conditional critical regions [20].

(2) Constructing the program and its correctness proof simultaneously. Al-
though the programmer may not precisely know the resource invariant for the
program he is writing, he may be able to deduce a first approximation to the
invariant from the problem specification. In this case the technique of Sections
7 and 8 may be used to strengthen the approximation. Techniques for deriving
correct concurrent programs have been investigated by van Lansweerde and
Sintzoff [14].

A number of additional questions arise regarding the power of the generalized
semaphore invariant of Section 6 and the fixpoint methods for generating resource
invariants in Sections 7 and 8. It would be interesting to compare these proof
techniques with other techniques which do not use resource invariants, e.g., the
Church-Rosser approach of Rosen [19] and the reachability tree construction of
Keller [13]. Also, it is not clear how the techniques of this paper generalize to
synchronization methods, such as path expressions [11] for which linear restraints
are not explicitly given, and to other properties of concurrent programs, such as
absence of starvation for which more complicated proof techniques are required.

Currently the author is building an automatic verification system for concurrent
programs based on the ideas in this paper. This system will extract the “synchro-
nization skeleton” of a concurrent program and use the techniques of Sections 6
and 8 to generate the appropriate resource invariants, The examples of Section
8 were all obtained with the aid of this system.

APPENDIX
ProoFr oF THEOREM 7.1

(a) The continuity of F¢ follows directly from the additivity of SP.

(b) Let IR be a resource invariant for C. Clearly IR C Fc(IR). We must show
that Fc(IR) C IR. By condition (a) in the definition of a resource invariant
system, {x = &} C IR. By condition (e) we see that for 1 < i < K,

F {pre(Si) N b A IR}A{post(S;) A IR}.
It follows that for 1 =i < K,
SP[A:](pre(S:) N b; A IR) C post(S;) A IR.

Hence
: :'61 SP[A](pre(S) A b: A IR) C IR.
So
Fe(IR) = Jo v IR v/ 5—61 SP[A:](pre(S) A b A IR) C IR.

Thus every resource invariant IR is a fixpoint of Fe.
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(c) Since u(F¢) is a fixpoint of Fc, we have
W(Fe) = o/ w(Fe) v ¥ SPLA(pre(S) A bi A p(Fo).

Thus Jo C w(Fc), and for 1 =i =< K,
SP[A:](pre(S:) A bi A\ p(Fe)) C p(Fe).
By construction of the pre and post functions, we also have
SP[A:](pre(S:) C post(S:).

By monotonicity,

SP[A:](pre(Si) A b; A u(Fe)) C post(Si).
It follows that for 1 =i < K,

SP[Ai](pre(S) A bi A p(Fe)) C post(S) A u(Fe),
or, equivalently, that
 E(pre(S) A bi A p(F)}Ai post(S) A p(Fo)).

Thus u(Fc) is a resource invariant corresponding to the canonical annotation

given in Section 6. c
Next let IR = {0|ao— o). We show that IR is a fixpoint of Fc and that IR C

w(Fc). Since p(Fc) is the least fixpoint of F, it follows that u(Fc) = 1R.
(i) Fc(IR) = IR. Clearly IR C Fc(IR). Let

0 € Fo(IR) = Jo VIR v V SP[A](pre(S) A bi A TR).

Then either o € J, C IR or ¢ € IR or there exists i, such that
o € SP[A;)(pre(Si) A bi, A IR).
Only the third case is interesting. I#
o € SP[A,)(pre(S,) N by, AIR),

then there is a state o’ € pre(S,,) A b;, /\ IR such thatA;(¢’) = o. Since ¢’ € IR,

there is a computation ao, 0y, . . ., o, of C with o, = o’. Because o’ € pre(S;) A b;,
and o = A, (0"), 0o, . . ., 0, 0 is also a computation of C and ¢ € IR.
(ii) IR C p(F¢). Let o € IR. Then there exists a computation go, 0y, . . ., O inl

which o, = 0. We prove by induction on r that o, € F¢' Y(false). Since Ft(false)
= J,, the basis case gy € Ft(false) is true. Assume that for all computations oo,
oy, ..., 61 of C that o, € Fe(false). Let oo, 03, . . ., 01, Or be a computation of
length r. Then there exists an i such that o, € pre(S;) A b,and o; = A, (or-1).
Thus

o, € SP[A,l(pre(Si) A bi, A Filfalse)) C F&'(false).
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1t follows that
IR C q Fi(false) = p(Fc).

(d) We prove that for the resource invariant systems RSg, the condition D(RS()
is unsatisfiable iff deadlock is impossible. Clearly, if D(RSc¢) is unsatisfiable, then
deadlock is impossible. We must show that if D(RS¢) is satisfiable, then there
exists a state oq which is reachable from the initial state of C in which every
process of C is blocked. Let o, be a program state which satisfies D(RS¢). Since
o4 satisfies D(RS), it follows that oy € u(F¢) and also that each process of C is
blocked in state oa. Since oq € p(F¢), oq4 is reachable from the initial state oo of
C. Thus o4 is a deadlock state for the program C. The proof of completeness for
mutual exclusion is similar and will be left to the reader.

(e) It is easy to show that for all j = 0,

F(false) C FY(L) C Fl(u(Fe)).
Thus
p(Fe) =,.':1 F/(false) C CJO FU(L) C C'Jo F(u(Fe)) = u(Fo).
- ~ o

ProOOF OF THEOREM 8.1

(a) By condition 2 in the definition of a widening operator, the sequence H},
i, H%, ... must eventually stabilize. Thus there exists a k& such that

r=14m
J=0
(b) u(Fo) = O Fi(faise) C O CV[F'(false)] C U G C O Gy U HiCI
=0 =0 J=0 J=0 J=0

(c) Let U and V be polygonal convex sets. We write U = V if for every conjunct
8 in V there is an equivalent conjunct in U, We prove by induction on % that
Hi'c Hi,,.
(1) Basis step
H§M = Gt+1 = H(‘) * Gy = Hi-

(2) Induction step. Assume that H:' = H %+1; then
Hitll = Hf!“ * Gt+k+2 c H£+1 * G¢+k+2 - H;r+2-
Note that Hy"' © H},, implies H{*' C HY,,. Thus

I = G Hi'C G Hi,, = Il,
k=0 k=0

and the sequence I° D I' D JI*D ... is a decreasing chain in X.

(d) Assume that u(F¢) = AL. Since program states are m-tuples of integers and
every point of u(¥¢) is reachable by some computation of C, there must exist a
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set of linear inequalities M and two index values r, s (0 = r < s) which satisfy the
following three conditions:

(1) Gr= (AL) A\ (AM);

(2) G:= AL for t = r; and
(3) no inequality of M is equivalent to any conjunct of G..

Next, consider I" = UZ,H7. By induction on j and conditions (1) and (2) above,
we see that (AL) A (AM) = Hf and Hf = AL for j = 0. Since H;—, = H;_r1 *
Go—rir = H_._1 » G, and no inequality y of M is equivalent to any conjunct of Gs,
it follows that Hi., = AL. Since H7 C AL for j = 0, we see that

I"'=0 H!=AL.
J=0

-~

Fort=rwehave ALCI'andalso I'CI"C L. Thus I'= AL fort =r. O

REFERENCES
(Note. References [8, 12] are not cited in the text.)

;

2.
3.

AGERWALA, T. A complete model for representing the coordination of asynchronous processes.
Computer Research Report 32, Johns Hopkins University, Baltimore, Md., 1974.

BrincH HANSEN, P.  Operating System Principles. Prentice-Hall, Englewood Cliffs, N.J., 1973.
CorrMaNn, E.G. Jr., ELpHICH, M.J,, AND SHosHANI, A, Systems deadlock. Comput. Surv. 3, 2

(June 1971), 67-78.

. CLARKE, EM. Program invariants as fixed points. 18th Ann. IEEE Symp. on Foundations of

4
Computer Science, Providence, R.I, Nov. 1977, pp. 18-28.
5. CLARKE, E.M. Synthesis of Resource Invariants for Concurrent Programs. Proc. 6th ACM
Symp. on Principles of Programming Languages, San Antonio, Texas, Jan. 1979, pp. 211-221.
6. Cousor, P., AND CousoT, R, Static determination of dynamic properties of programs. Proc. 2nd
Int. Symp. on Programming, B. Robinet, Ed., Dunod, Paris, April 1976.
7. Cousor, P., AND HaLBwacHS, N, Automatic discovery of linear restraints among variables of
a program. Proc. 5th ACM Symp. on Principles of Programming Languages, Tucson, Ariz., 1978,
pp. 84-96.
8. DirsTRA, E.W. Cooperating sequential processes. In Programming Languages, G. Genuys,
Ed., Academic Press, N.Y., 1968, pp. 43-112.
9. FLoNn, L., AND Suzukl, N. Nondeterminism and the correctness of parallel programs. Tech.
Rep., Dep. of Computer Science, Carnegie-Mellon Univ., May 1977.
10. HABERMANN, A.N. Synchronization of communicating processes. Commun. ACM 15, 3 (March
1972), 171-176.
11. HABERMANN, A.N. Path expressions. Tech. Rep., Dep. of Computer Science, Carnegie-Mellon
Univ., June 1975.
12. HoARE, C.A.R. Towards a theory of parallel programming. In Operating Systems Techniques,
C.A.R. Hoare and R.H. Perrot, Eds., Academic Press, N.Y., 1972, pp. 61-71.
13. KeLLER, RM. Generalized petri nets as models for system verification. Tech. Rep., Computer
Science Dep., Univ. of Utah, 1977.
14. VAN LAMSVEERDE, A., AND SINTZOFF, M. Formal derivation of strongly correct parallel pro-
grams. MBLE Research Rep., Brussels, Belgium, 1976.
15. Lirron, R.J. Reduction: A new method of proving properties of systems of processes. Proc. 2nd
ACM Symp. on Principles of Programming Languages, Palo Alto, Calif., 1975, pp. 78-86.
16. LAMPORT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. 3, 2
(1977), 125-143.
17. OwIckl, S., aND Gries, D. Verifying properties of parallel programs: An Axiomatic approach.

Commun. ACM 19, 5 (1976) 279-284.
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980.



358 . Edmund Melson Clarke, Jr.

18. PNEULL A. The temporal logic of programs. 18th Ann. IEEE Symp. on Foundations of Computer
Science, Providence, R.I., Nov. 1977, pp. 46-57.

19. Rosen, B.K. Correctness of parallel programs: The Church-Rosser approach. Theor. Comput.
Sci. 2 (1976), 183-207.

20. Scumip, HA. On the efficient implementation of conditional critical regions and the construction
of monitors. Acta Inf. 6, 3 (1976), 227-249.

Received March 1979; revised January 1980; accepted April 1980

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3, July 1980,






