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Reasoning About Procedures as Parameters

in the Language L4

Steven M. German, Edmund M. Clarke, Joseph Y. Halpern

ABSTRACT. We provide a sound and relatively complete axiom
system for partial-correctness assertions in an Algol-like language with
procedures passed as parameters, but with no global variables
(traditionally known as the language L4). The axiom systems allows us to
reason syntactically about programs, and construct proofs for assertions
about complicated programs from proofs of assertions about their
components. Such an axiom system for a language with these features
had been sought by a number of researchers, but no previously published
solution has been entirely satisfactory. Our axiom system extends the
natural style of reasoning used in previous Hoare axiom systems to
programs with procedures of higher-type. The details of the proof that
our axiom system is relatively complete in the sense of Cook may be of
independent interest, because we introduce results about expressiveness for
programs with higher types that are useful beyond the immediate problem
of the language L4. We also prove a new incompleteness result that
applies to our logic and to similar Hoare logics.
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1. Introduction

In order to introduce the new results of this paper, it will be helpful to briefly
review some previous work on Hoare axiom systems. It was observed in [Cl79] that
there cannot be an axiom system for partial-correctness assertions that is sound and
relatively complete in the sense of Cook [Co78] for an Algol-like language with
procedures passed as parameters and unrestricted use of global variables. Subsequently,
much attention has been given to the problem of axiomatizing Algol without global
variables, the language called L4 in [Cl79]. For the first time in the literature, we
present an axiom system and show that it is sound ant relatively complete for L4 in the
sense of Cook.

Semantically, procedures passed as parameters in L4 are a very powerful feature
because the body of a procedure can contain free references to formal procedures.
During the execution of an L4 program, this can give rise to chains of procedure
references that can grow arbitrarily long.1 Intuitively, the difficulty in axiomatizing L4
comes from the fact that the chains of procedure references make it possible for a
program to reach an unbounded number of distinct procedure environments, or
associations between procedure names and bodies. This is known as the infinite range
problem. ‘“Conventional’”’ Hoare axiom systems are based on reasoning about either a
single procedure environment, or a known, bounded number of environments.

The main new result of this paper is the first real relative completeness proof for
L4, with a first-order oracle and the usual notion of expressiveness. Previous attempts
to axiomatize languages with higher-type procedures used higher-order assertion
languages to make assertions about an unbounded number of procedure environments
[O181/84, DJ82/83]. This led to completeness relative to higher-order theories, not
relative to the first-order theory of the interpretation. Also, it was necessary in these
approaches to assume the interpretation was expressive in a certain higher-order sense,
i.e. that the strongest postcondition of programs with free higher-order parameters
could be expressed.

1.1. Historical Background

A partial correctness assertion (pca) is a formula of the form {U} S {V}, where U
and V are first-order formulas, and S is a statement of a programming language. If H is
a pca and I is a first-order interpretation, we write I = H to denote that H is
semantically true in I. If we have an axiom system in mind, we write I' }— H to denote

1an example of this can be found in Section 5.



that H is provable from a set of formulas I', which is taken as an assumption. In many
cases, we must deal with an interpretation I whose first-order theory, written Th(I), is
not effectively axiomatizable. For this reason, Th(I) is often used as an assumption in
Hoare axiom systems.

In [Co78], Cook discussed logical properties of an axiom system for pcas. The
notion of soundness for Hoare axiom systems is straightforward: an axiom system is said
to be sound if for all I and H, Th(I) - H implies I |= H. For completeness, we cannot
simply use the converse of this condition, because of the problem of expressiveness.
That is, it may be that I = H holds, but H is not provable in the axiom system from
Th(I), because assertions needed at intermediate steps in the proof cannot be expressed
by pcas with first-order pre- and post-conditions interpreted in I. An interpretation is
said to be expressive for a programming language if for every first-order formula U and
program m, there is a first-order formula that interpreted in I expresses the strongest
postcondition of 7 with respect to U.2

Intuitively, if an interpretation is expressive, then it is possible to write all of the
pcas needed as intermediate assertions in proofs. In [Co78|, an axiom system is said to
be relatively complete if for all pcas H and expressive interpretations I, I = H implies
Th(I) — H. Using this notion of relative completeness, Cook [Co78] and Gorelick [Go75]
showed axiom systems for non-recursive and recursive procedures having simple call-by-

name parameters to be sound and relatively complete. It is intuitively clear that it
would be undesirable to use a notion of completeness weaker than Cook’s.

The early work on reasoning about procedures in Hoare's logic dealt only with
simple procedure parameters, that is, parameters whose values are individuals in the
domain of the interpretation. There are many situations in programming languages
where there are more complex parameters, such as procedures and functions. Recently,
programming languages have incorporated the notions of polymorphic (or generic) and
object-oriented programming, both of which involve treating complex objects as
parameters. Programming of modules that can be instantiated with different higher-
type parameters contributes to reusability, a major goal of software developers.
Exception handling mechanisms that allow a procedure to be passed for exceptions are
another context where complex parameters are used. Thus, the problem of treating
complex parameters is a key issue arising in many contexts.

Next, we discuss the work of Clarke [C179], who considered axiom systems for Algol
with procedures passed as parameters. In constrast to the earlier results giving sound

2The reader will find formal definitions of these familiar terms in Section 3.2.



and relatively complete axiom systems for langauges with simple parameters, it was
shown in [Cl79] that for sufficiently complex Algol-like languages there cannot be a
Hoare axiom system that is sound and relatively complete. This incompleteness result
was quite surprising at the time. The incompleteness exists whenever a programming
language contains (or can simulate) the following combination of features: (i) procedures
with procedures passed as parameters, (ii) recursion, (iii) use of non-local variables, (iv)
static scoping, and (v) local procedure declarations. The full language with these five
features was called L1 in [C179]. It is also shown in [CI79] that if any one of the
features (i), (ii), (iv), or (v) are dropped from L1 Algol, a sound and relatively complete
axiomatization can be obtained for the resulting languages (called L2, L3, L5, and L6 in
[C179]). It was conjectured that the same is true for the language L4 which results
when feature (iii), use of non-local variables, is dropped.

The languages L2, L3, L5, and L6 are relatively easy to axiomatize, since they all
have the finite range property. Informally, this property is that for each program, there
is a bound on the number of distinct procedure environments that can be reached.
Intuitively, procedures passed as parameters are a weak feature in a language with finite
range, because only a finite number of distinct procedures can occur as actual
parameters in any one program. It is possible to prove properties of programs in a
language with finite range by simply treating each of the possible procedure
environments as a separate case. Thus the presence of procedures as parameters does
not greatly complicate reasoning. The language L4, however, does not have the finite
range property. Intuition suggested that some new reasoning methods would be needed
for such a language. This intuition was supported by Olderog in [O181/83], where a
precise characterization was given for the class of Hoare axiom systems based on copy
rules, and it was shown that none of these axiom systems can deal adequately with
infinite range.

Infinite range is also important in other contexts. For example, to reason about a
generic library package that can be instantiated with an infinite number of different
procedure parameters, it is necessary to deal with infinite range.

The results of Clarke and the characterization theorem of Olderog had the effect of
focusing much research attention on the language L4, which has infinite range. In
addition, there was another line of investigation which indicated that sound and
relatively complete axioms for L4 might exist (alf,hough it did not directly show how to
find them!). Clarke’s incompleteness result for the full language was based on an
observation about the relationship between the halting problem for a programming

language in finite interpretations and the existence of a sound and relatively complete



axiom system. The halting problem referred to is: given a program and a finite
interpretation, to tell whether the program can halt in the interpretation for some
initial assignment of values to its variables. Clarke observed that if the halting problem
for a language in finite interpretations is undecidable, then it is not possible to obtain a
sound and relatively complete axiom system for partial correctness. The incompleteness
result of [C179] is established by showing that the halting problem for the full language
L1 is undecidable.

In the sequence of papers [Li77], [CGHS83], and [Gr84/86], a sort of converse to the
incompleteness result was established. It was shown that if the halting problem for an
acceptable programming language [CGH83] is decidable for finite interpretations, then
for an expressive interpretation I, the set of pcas true in I is uniformly recursively
enumerable in Th(I). Acceptability of a programming language is a mild technical
condition that is easily satisfied by ‘‘reasonable” programming languages including
Algol and the sublanguage L4. In the case of L4, additionally, it was shown by
Langmaack [La82] that the halting problem in finite interpretations is decidable.
Hence, one could conclude that for L4, the pcas true in an expressive interpretation are
uniformly r.e. in the theory of the interpretation. Note that asserting the existence of a
uniform effective procedure for enumerating pcas is quite different from asserting the
existence of or exhibiting an axiom system based on the syntax of programs in the style
of Hoare. While the results strongly suggested that there could be a sound and
relatively complete axiom system for L4, the problem of actually finding such an axiom
system and proving its completeness remained open for several years.

Partial solutions were given in [O181/84, DJ82/83]. However, these papers
established completeness relative to higher-order theories, not relative to the first-order
theory of the interpretation. This was unsatisfactory because the oracle required in
order to reason about a program in these axiom systems had to be increased to the
highest type used in a procedure in the program. In other words, in order to reason
about programs over a fixed interpretation, it is necessary to use increasingly larger,
higher-order oracles, depending on the types of procedures appearing in the programs.
Moreover, it is necessary in these approaches to assume the interpretation is expressive
in a certain higher-order sense, i.e. that the strongest postcondition of programs with
free higher-order parameters can be expressed.

In [GCHS83], we addressed these problems by introducing an axiom system for L4 in
which the assertion language is built up from ordinary first-order formulas. We showed
the soundness of the axioms, and very briefly described a proof that the axiom system is
relatively complete, in Herbrand definable interpretations, relative to the first-order




theory of the interpretation and using only the ordinary assumption of expressiveness.
A Herbrand definable interpretation is one in which every value in the domain is given
by a variable-free term. The relative completeness applies to programs with arbitrary
finite-depth procedure types, not just the Pascal case (depth-one) considered in
[O181/84].

The higher-order notion of expressiveness used in [DJ82/83| has been shown to be
equivalent to the usual notion of [Co78|, for Herbrand definable interpretations [Jo83].
More recently, another Hoare calculus that can be used to reason about procedures as
parameters has been shown to be relatively complete, relative to the first-order theory
of the interpretation and with the usual notion of expressiveness, for Herbrand definable
interpretations [Go85].  These results use a characterization [GH83, Ur83| of
expressiveness on Herbrand definable interpretations. By restricting attention to
Herbrand definable interpretations, the class of expressive interpretations is narrowed in
a way that admits certain simple arguments about encoding power. Other relative

completeness proofs for Herbrand definable interpretations have appeared in [CGHS83,
Cls4].

The assumption of Herbrand definability is natural in the sense that most of the
~ interpretations used in practical computing are Herbrand. Nevertheless, Herbrand
definability can be criticized as a hypothesis in relative completeness theorems
[Gr84/86]. A syntactic Hoare axiom system is intended to capture the meaning of a
programming language in a way that is independent of the interpretation. If an axiom
system is relatively complete for Herbrand interpretations but not otherwise, it has
more dependence on the interpretation than ‘‘conventional’’ axiom systems, such as the
familiar axiom system for while-programs.

This paper has been several years in preparation, since our original presentation
[GCH83] in 1983. A shorter version of the present paper was presented in 1986

[GCHS86a)|, describing for the first time an approach to obtaining relative completeness
without the assumption of Herbrand definability. An unabridged draft containing full

details of the proofs was also circulated to interested researchers in the summer of 1986
[GCHS86b)].

1.2. New results of this paper

The main new result is the first real relative completeness proof for L4, with a first-
order oracle and the usual notion of expressiveness. The key to otaining this result is a
method of constructing a program that simulates procedures passed as parameters,
using only ground variables. A statement is said to be a program if it has no free



procedures. For any L4 program, we construct another L4 program, without procedures
as parameters, that simulates the original program in a given interpretation. The
simulating program has a syntactic structure that is closely related to the original one,
making it possible to use it to prove properties of the original program by structural
induction.

The simulation depends on interpreter programs, which are programs that can

simulate any procedure of a fixed type. The interpreter programs use an encoding of
procedures to control which procedure is simulated. Procedures passed as parameters
are represented as closures, or elements of a set of procedure declarations generated
from the declarations in the program and having no free procedure identifiers. To
construct the simulation, we define four basic operations on closures that are sufficient
for dynamicé,lly simulating the computation of an L4 program. We then show that
closures can be represented by ordinary ground values of an interpretation. In any
interpretation having more than one domain value, there are L4 programs (with no
procedures as parameters) that can compute approximations to the basic operations we
need on closures. (In the case of interpretations with only one value in the domain,
relative completeness of the axiom system can be proved in a straightforward way
without the simulation.) These programs are used to conmstruct, for any L4 program,
the L4 program with no procedures as parameters that simulates the original one.

For a partial-correctness assertion, {U} 7 {V}, true in an interpretation I, we then
prove {U} 7 {V} in a syntactic axiom system, by the usual induction on the structure of
7. The program that simulates w is only needed to show the existence and define the
semantics of certain first-order formulas used in the proof.

The strategy of proving relative completeness of a language with higher-order
objects by simulating the language over ground variables appears to be useful beyond
the immediate problem of L4. This technique gives useful insights into the semantic
effect of various language restrictions, and can help to suggest other languages that may
also be axiomatizable. In this paper, we emphasize aspects of the completeness proof
that are applicable to other problems in the area.

Although we prove that our axiom system is relatively complete for partial-
correctness assertions (pcas), our logic allows more complicated formulas than just peas.
For example, we allow implications between pcas and quantification over ground-type
variables (i.e. variables ranging over the domain of the interpretation) in complex
formulas built up from pcas. A natural question is whether there can be a sound and
relatively complete axiom system for the full logic. . We show that this is not possible.
More precisely, we show that for any deterministic program m, it is possible to



effectively find a formula of our logic that is semantically true in [ iff 7 is totally
correct with respect to a set of first-order pre- and postconditions. It is well known that
there cannot be an axiom system based on only a first-order oracle that is sound and
relatively complete for total-correctness assertions involving, for example, while-
programs [Ap81] (see also [Gr85]). Thus there cannot be an axiom system based on only
a first-order oracle that is sound and relatively complete for all formulas of our logic.
This result appears to apply to other recently proposed Hoare logics that form formulas
for higher-order procedures by implication between arbitrary formulas and by
quantification over domain values in higher-order formulas, such as [Si85].

The organization of the rest of this paper is as follows: Section 2 gives an informal
overview of the completeness proof. Section 3 defines the syntax and semantics of the
programming language L4. Section 4 defines the syntax and semantics of formulas in
our Hoare logic and describes the axiom system. In Section 5, we illustrate the use of
the axiom system with an example. Section 6 presents an analysis of the semantics of
L4, which is the first part of the completeness proof. Section 7 gives the part of the
completeness proof that depends on the logic given in Section 4. Section 8 shows how
to express total correctness in the logic. Section 9 discusses possible extensions beyond
L4. In Section 10 we present our conclusions.



2. Overview

Our main result is the following theorem. The first half of the proof, given in
Section 6, is independent of the axiom system, which is essentially the same as in
[GCH83]. As is usual, we consider the truth of a partial correctness assertion (peca) to
be defined with respect to a first-order interpretation, and we write I = {U} 7 {V} to
denote that the assertion is semantically true in the interpretation I. We let Th(I)
denote the first-order theory of I, and Th(I) = {U} = {V} means that the assertion is
provable in our axiom system by taking Th(I) as assumptions.

Theorem. Let m be a program in L4 and I be an expressive interpretation. Then
I &= {U} m {V} implies Th(I) - {U} = {V}.

The axiom system and the relative completeness proof were developed
simultaneously. Initially, it was far from clear what axioms would be needed to give a
sound and relatively complete system for L4. Some of the axioms were discovered by
considering examples or by trying to construct the completeness proof. On a very
informal level, the main idea of the proof is to prove a lemma of the form

Th(I) - V4 (H(@@) — {P(X)} S {SP[S; P(x); H(Q)I}),

for arbitrary statements S, by structural induction. Intuitively, in L4, since a statement
S can be executed in an infinite number of different procedure environments, we must
be able to reason about the meaning of S in an infinite number of distinct procedure
environments. We have expressed this informally by introducing an assumption H(q)
about the free procedures in S, and an informal notation SP[S; P(x); H(q)] for the
strongest postcondition of S, given a precondition P(X) and assumption H(q) about free
procedures. Note that SP[S; P(%); H(g)] is a semantic concept; we have not yet said
how the components of the lemma are to be formalized in a logic.

Our reason for beginning on a deliberately vague level is to point out that there is
more than one approach that can be taken to making things precise, and that there are
several technical problems that must be overcome.

First of all, because q ranges over an infinite number of possible procedures, SP [S;
P(x); H(3)] must be a formula that ranges over an infinite number of different
relations (in some interpretations), depending on q. This seems to suggest the use of
higher-order formulas in partial-correctness assertions, an approach taken in [O181/84,
DJ82/83]. But, there are two technical problems that are encountered with this
approach.

In conventional Hoare-style axiom systems, there is a rule of consequence:
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UDUL {Ui}S{Vi}, VIDV
{U} s {Vv}
This rule is useful when there is an oracle for Th(I), because U D Ul and V1 D V are
first-order formulas. However, if partial-correctness assertions can contain higher-order

formulas, then we need a higher-order oracle or further analysis to show that the first-
order oracle is sufficient.

The second technical problem concerns expressiveness. The familiar notion of
expressivness [Co78] is that an interpretation is expressive for a language if for any
program 7 (in Algol, a statement without free procedures), and any first-order
precondition U, the strongest postcondition of m with respect to U, SP[m; Ul, is
expressed by a first-order formula. It is not immediately clear that this assumption of
expressiveness allows us to express the higher-order SP[S; P; H(q)], where S can have
free procedures and P is higher order.

It may be possible to solve these problems. For instance, the higher-order notion of
expressiveness has been shown to be equivalent to the ordinary notion, for Herbrand
definable interpretations [Jo83]. However, the proof in [Jo83] depends on the
characterization of expressiveness in Herbrand definable interpretations [GH83, Ur83|.
Some of the new techniques in our relative completeness proof may be applicable
toward removing assumptions of Herbrand definability in other axiom systems.

In contrast to the approach of allowing higher-order formulas in partial-correctness
assertions, we allow only first order formulas. This preserves rule of consequence. In
order to construct partial correctness assertions in which pre- and postconditions depend
on the procedure environment, we introduce a new kind of ground variable, called an
environment variable. Environment variables may appear in formulas in pcas, but not
in programs. :

With environment variables, the general lemma can have the form
Th(I) - Vg ¥¥ (H(g, ¥) — {U()} 8 {SPgyu(% V)}),

where Vv is a sequence of environment variables, and SPS,U,H(’_" v) is some first-order
formula. (Note: SP[S; U] denotes a set of states that may or may not be expressed by
a formula; SPS,U,H(’-" v), on the other hand, is a first-order formula that depends on S,
U, and H.) In our axiom system, the procedure vartables, q, can appear only in
programs. Semantically, a procedure variable q ranges over a set of syntactic objects,
all L4 declarations of the procedure name q. An environment variable ranges over
dom(I), and like a procedure variable, it has the same meaning everywhere in its scope,
for instance, on both sides of the arrow in the above formula. (The syntax and



11

semantics of formulas are defined formally in Section 4.1.)

The assumption H(G, V) will be used to express some relationship between the
procedure environment and ground values. Then in the pea {U(X)} S {SPgyu(X, )}
we must find a first-order formula SPS,U,H(’_" v) that expresses, for each v, the strongest
postcondition of S and U(X), provided q is a vector of procedures satisfying H(g, ¥).

In order to define the first-order formula SPg {; 4(X, V) and the formula H(q, V) that
will allow the inductive proof to go through, we analyze the computing power of L4
programs on bounded and unbounded interpretations, using some of the techniques of
[Li77, CGHS83]. An interpretation I is said to be bounded for a programming language P
iff for each program m € P there is a bound n such that for all initial valuations o,
when 7 is started in state o, it can reach less than n distinct valuations. An
interpretation that is not bounded for Pis said to be unbounded for A.

We show how to simulate an L4 program by using a certain set of declarations,
called closures, to stand for the values of formal procedures. The closures are
declarations having neither free ground variables nor free procedure identifiers.
Intuitively, a closure is an object that represents a procedure and its complete
environment of free identifiers. In L4, procedures do not have free ground variables, so
a closure needs to represent just the procedure and its procedure environment.

Our first step is to analyze the semantics of procedures in the language L4. We
define a family of relations, called simulation relations, that can be used to simulate
procedures passed as parameters using natural numbers to stand for procedures. These
relations are:

1. an encoding rélation, p, which assigns a natural number (a code number) to
a declaration;

2. a binding relation, B, which takes a code number for a main declaration d,
and code numbers for an environment E of other declarations, and gives the
code for E|d, which is the main declaration with its free procedures fixed to
the procedures in E.

3. a renaming relation, v, which takes a code number for a deg:lara.tion and a
new procedure name, and produces a code for a declaration that is
semantically equivalent except that it declares a procedure with a different
name.

4. an interpreter relation, ¢, which takes a code number for a declaration, and
gives the semantics in the interpretation I of a call on the encoded
declaration.
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We use different encodings of closures as natural numbers, depending on whether
the interpretation is bounded. In an unbounded interpretation, where programs have
essentially all the power of arithmetic, the encoding we use is simply a Godel numbering
of the declarations. In a bounded interpretation we must be more careful, and the
encoding uses only a finite initial segment of the natural numbers. To construct this
encoding, we first define the notion of semantic equivalence of declarations in an
interpretation, for two closed L4 declarations of the same type, i.e. declarations having
no free ground variables or procedure names. We define d; to be equivalent to d2 in I
iff all calls to d, and d, with the same higher-type parameters have the same semantics
in I on the ground parameters. In a bounded interpretation I, we show that the relation
of semantic equivalence in I partitions the closures generated from the declarations of an
L4 program into a finite set of equivalence classes. This is a consequence of the fact
that L4 declarations do not have global variables. Thus we can assign a unique number
to each equivalence class of closures, and we need only a finite number of natural
number codes.

By using the encodings and using the power of programs to simulate arithmetic in
bounded and unbounded interpretations, we can show that in any interpretation I,
|I|>1, there are L4 programs that simulate the operations on closures in a sense that is
defined precisely in Part 1 of the proof.

From these programs we can construct, for any statement S of a given L4 program,
a statement S* without any procedures as parameters, having the following properties:
(1) The free ground variables of S* are the free ground variables of S, together with
some new ground variables that represent encodings of the environment; (2) S* has no
global variables in procedures, so that it is in L4; (3) When S* is started in an initial
state such that its code variables are set to an encoding of an environment E, it
transforms the values of the original ground variables in essentially the same way that S
does when run in environment E.

This technique allows us to solve the problem of expressiveness in the main lemma
of the relative completeness proof. The ordinary notion of expressiveness would not
guarantee that SP [S; PJ could be expressed by a first-order formula when S has free
procedures. But SP [S*; P] can always be so expressed, because S* is an L4 program.

In the second part of the proof we use the operations on closures and the S*
construction-to define the formulas mentioned earlier in the main lemma, H(g, ¥) and
SPg 1y (X, ¥), and to prove the main lemma by structural induction.

Note that the encodings used in this proof of completeness are not part of the
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axiom system in any sense. They are used here because we need a uniform way of
constructing certain first-order formulas. We believe that if one is trying to prove a pca
involving a well-understood program and the interpretation is not “badly-behaved,” it
should be possible to find ways of expressing the necessary intermdeiate assertions
without resorting to encodings. In fact, we have used the axiom system to prove partial
correctness of some nontrivial L4 programs in a very natural way, without using an
encoding at all. In Section 5, we give an example that shows that our logic is a very
natural one to use for specifying and reasoning about higher-order procedures.
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3. The Syntax and Semantics of L4
3.1. Syntax of L4
We will now describe the programming language L4.

To define the set of programs and the formulas used in our axiom system, we begin
by fixing a first-order type ¥ which determines the finite set of constant, predicate, and
function symbols that can appear in programs and first-order formulas.

Ground variables are variables ranging over the domain of the interpretation.

A procedure type is a type for a procedure name. Procedure types are syntactic

sequences of the form 7 = (rl,...,rn, var,...,var), n > 0, that specify the types of the
formal parameters of procedures. Specifically, the set of procedure types is defined
inductively as follows: A procedure type is either the empty sequence, (), or a sequence
of zero or more procedure types followed by zero or more occurrences of the symbol var.
In the procedure type 7 above, 7; is a procedure type for the i*h formal parameter. The
var elements are for ground parameters of procedures.

There are two kinds of procedure names (also called procedure identifiers), declared
procedure names, and formal procedure names. We take p to be a typical declared
procedure name, and r to be a typical formal procedure name. In the programs that we
reason about, declared procedure identifiers are assigned fixed statements (bodies), while
formal procedure identifiers are bound variables that take on different meanings at-

different points in the execution of a program. (Cf. the discussion of declarations
below.) '

An arbitrary procedure name is an identifier that indicates an occurrence of a
procedure name that is either declared or formal; that is, it is a meta-syntactic symbol
standing for a procedure name. Arbitrary procedure names are not part of the
language, but are simply a notation we use for talking about the language. We take q
to be a typical arbitrary procedure name.

Each procedure name has a fixed procedure type.
A statement S has one of the forms:

x :=e | S1; S2 | If b Then S1 Else S2 | S1 Or S2 |
Begin var x; S End | Begin E; S End | p(q, X) | r(q, X).

In the statements x :=e and Begin Var x; S End, x is a ground variable. The statement
S1 Or S2 makes a nondeterministic choice and executes one of the statements. In
Begin E; S End, E is a set of procedure declarations. We often write E|S as an
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abbreviation for Begin E; S End. In the statements p(g, X) and r(q, X), p is a declared
procedure name, r is a formal procedure name, q is a list of arbitrary (either declared or
formal) procedure names, and X is a list of ground variables. The leftmost procedure
name in a procedure call (p and r in the above calls) is referred to as the main
procedure name of the call. The parameters in a call must match the type of the main

procedure name. That is, if the main procedure name has type (rl,...,rm, var®), then

there must be m procedure name parameters, the jth procedure name must have type 7,
and there must be n ground parameters in the call.

A declaration of procedure q has the form g(f, X) « statement.

A set of procedure declarations, also called an environment, has the form

q,(Ty X,) + statement;; ... q,(F s X ) < statement ;

and introduces mutually recursive declarations of Qyseesd In the list Qqyeesdpp, 0O

o
identifier may appear more than once. The Fi are lists of formal procedure names, and
the 'ii are lists of ground variables. The list Fi, ii, is called the formal list of q; The
identifiers in the formal list are called the formal parameters of the declaration. The
formal list of a procedure may not contain a procedure name or a ground variable
appearing more than once. Note that all of the formal procedure identifiers must
precede the formal ground variables in a formal list. The main procedure identifier of a
declaration is the identifier to the left of the formal list. We will sometimes write q:d to
stand for a declaration d with main procedure identifier q. The type of a declaration is
simply the type of the main procedure identifier.

The main procedure identifier in a declaration can be either a declared or a formal
procedure identifier. Declarations having a formal procedure identifier as the main
procedure identifier are only used for technical purposes in the completeness proof, and
they never appear in the programs we reason about in the axiom system. In statements
appearing in pcas, all declarations must have declared procedure identifiers for their
main procedure identifiers.

An occurrence of an identifier in a statement may be either free or bound in the

usual sense (the language is lexically scoped). Note that we allow free procedure
identifiers to appear in statements. A program is a statement with no free procedure
indentifiers.

A declaration is said to be closed iff it has no free procedure identifiers; i.e. any
procedure identifiers free in the body are either formal parameters or the main
procedure identifier. A declaration is said to be open iff it is not closed.
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A declaration p(f, X) «— B is said to have no global variables if all the free ground

variables of B are in X. An environment (statement, program) has no global variables if
all its declarations have no global variables. Note that such an environment (statement)

may have free procedures.

We are primarily concerned with programs that have no global variables. For
historical reasons [Cl79], this language is often called L4. In L4, the onmly ground
variables that can be accessed or changed by a procedure call are the actual ground
variable parameters in the call. This property helps us to get a sound and relatively
complete axiom system for L4.

3.2. Semantics of L4

In this section, we review a standard treatment of the semantics of programs as
transformations from valuations to wvaluations, using copy rules. Let I be an
interpretation of the type X.

A valuation is a mapping from ground variables to values of the domain of the
interpretation. If o is a valuation then o(x) denotes the value of the ground variable x
in the valuation 0. We extend this definition to terms in the usual way: if e is a term
in the type ¥ then o(e) .denotes the value of e in valuation o. If o is a valuation and u
is a domain value then ofx « u] is a valuation that-is the same as o except that the
value of x in ofx+u| is u. If I is an interpretation then val; denotes the set of

valuations mapping ground variables into values in dom(I), the domain of the
interpretation.

If o is a valuation and Q is a first order formula then I,c = Q means Q is satisfied
in interpretation I by the valuation 0. We will write 0 = Q to mean I,o = Q, when
the interpretation is clear from the context.

The semantics of a program =7 in the interpretation I is .MI(7r) - valI X valy.
Intuitively, if (o, o') € M(n), then when the program = is started in valuation o, it can
halt in valuation ¢’. Similarly, if E is an environment and S is a statement then MI,E(S)
is the transformation from valuations to valuations of S in environment E. We take the
semantics to be formally defined by copy rules.

We define 'MI,E first for statements without procedure calls or procedure
declarations by induction on the structure of the statement. For statements without
procedures, the definition of MI,E is independent of the environment E. The
environment E only affects the semantics of statements with free procedures, which we
will define later. In this definition, we make use of a new basic statement ‘‘error,”

which diverges in all valuations.
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M glerror) =

Migx:=¢) = {(@olx — ofe)}) | o'is a valuation}

M g(S1; 82) = {(60") | 3 ((0,0') € Mg(S1) and (o,0") € M;g(S2))}
Myg(S1OrS2) = M;5(S1) U M;g(S2)

MI,E(If b Then S1 Else S2) =
{(0) € Myg(S1) | Tok= b} U {(0") € Myg(S2) | Lok=-b)

.MLE(Begin var x; S End) =
{(o,0) | 3(5,8) € MI,E(S)’ §=ofx « a], o = ¥&x ~ ox)]}

(where a is a fixed value in dom(T))

We give meaning to statements with procedure declarations and procedure calls by
first converting them to statements without procedure declarations and calls by using
an auxiliary function Approx]l;.. Informally, Approxg gives the kth approximation to the
fixed-point meaning of a recursively defined procedure in the procedure environment

E. We define ApproxlE‘: by induction on k and the structure of statements.

Substitutions. If x and y are variables, then [x/y] is a substitution of x for y.

[X3R2)

Substitutions separated by ‘‘,”” are simultaneous. For instance, [x1 /yl, x2/y2] is a
simultaneous substitution of Xy1Xq for ¥¥or Similarly, if X, ¥ are lists (of the same size)

of variables, all distinct, then [X/¥] is a substition that replaces each variable in the list
y with the corresponding variable in X.

1. Approxg(error) = error

2. Approxlé(x i=e)=x:1=c¢

3. Approxg(SI; S2) = ApproxlE‘;(Sl); Approxlé(Sz)

4. ApproxlE(;(Sl Or 82) = ApproxE(Sl) Or Approxlé(S2)

5. ApproxlE(;(If b Then S1 Else S2) = If b Then ApproxE(Sl) Else Approxlrf:(S2)

8. Approxllf:(Begin var x; S End) = Begin var x; Approxlé(S) End
renaming the bound variable x if it appears free in E (see below)

7. Approx]lf:(Begin E’; S End) = Approxlé u e(S)
renaming bound variables in E if necessary (see below)
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8. Approx%z(qO(ﬁ, X)) = (see explanation below)

error if k=0 and qO is declared in E

Approx, ™ 1(B[3/T, £/%1)
if k > 0 and the declaration q0(¢/, ¥) — B € E

otherwise E, [q0(q, }'c)[pl’k/p1 y very pn,k/pn], where E, is defined below.

In clause 6 if the bound variable x appears free in E, then we have to rename the x
to some fresh variable x’ to avoid capturing the free variable in E. Thus we would get

Begin var x'; Approxlé(S[x’ /x]) End.

Similarly, in clause 7, if some procedure identifier declared in E’ already appears in
E, we have to rename the identifiers in E' (and all their bound occurrences in S) to
avoid naming conflicts. '

Clause 8, defining Approxlé for a procedure call, requires some explanation. The
clause has three cases. The first case applies if the call is to a procedure declared in E,
but k=0. In this case, we do not expand the procedure call, and leave an error
statement, which diverges. In the second case, where k > 0 and the call is to a
. procedure declared in E, we expand the body of the procedure. The third case is that
qO0 is not declared in E and k > 0. The first two cases are sufficient, without the third
case, to define the semantics of statements; we define ‘MI,E(S) below in terms of the
approximations of a program, even if S has free procedures. Thus in expanding the
definition of MI,E(S)’ we never reach an expansion of ApproxPl‘:(qO(ﬁ, X)) where qO is not
defined in E; i.e. the details of the third case have no effect on our semantics.

The third case of clause 8 is included only for technical reasons; in the proof of the
soundness of the axiom system we will use Approx in a more general way such that the
third case can occur. Intuitively, in this case, Approxi%(qO(ﬁ, X)) is defined to leave the
main procedure q0 unexpanded, giving a call of the form qO(q/, X), where each procedure
in q’ is the kth approximation of the corresponding procedure in q.

To handle the third case, we define, for each environment E, a sequence of
environments Eg, E,, E2, ..., which give successive approximations to the environment
E. For notational convenience, we introduce a sequence of procedure names to
correspond to the successive approximations of each procedure. Thus, for each
procedure name P, in E, we let Pio be the undefined procedure, Pi1 be the next

approximation, ete. If E consists of the declarations pi(Fi, ii) — Bi’ i=1,...,n, then Ek



19

is defined inductively as follows:

E, = {pi,o(’-'i’ X,) « error | i=1,...,n}

Byt = {Piyrs(p %) — Bilpyp/Py s oo Py p/ppl} U By
These definitions will only be used in the soundness proof of Section 4.2.5.

Note that if S is a program then Approxlé(S) = Approxlé(S) (i.e. Approxé(S) is
independent of E), and Approxlé(S) does not contain any procedure declarations or

procedure calls.

Given a procedure environment E and a statement S, let ES = E U {p(F, ) <
error | p appears free in E|S}. Note ES|S is a program, since it has no free procedure
identifiers. To complete our semantics, we define, for any statement S,

Mig(S) = Uy MI’Q(Approx%(ES|S)).

Finally, for a program 7, we define M{(r) to be M; 4(m).

For a program = and a first-order formula Q, the strongest postcondition of 7 with
respect to Q (in the interpretation I), SP[r; QI, is defined to be {¢' | ¢’ is a valuation
and for some valuation o we have o = Q and (0, o/) € M(m)}.

An interpretation I of a signature ¥ is said to be expressive for a programming
language P iff for each program = € P and first order formula Q of type L, there is a
first order formula SP such that ¢ = SP iff ¢ € SP[m; QJ]. In an expressive
interpretation, we will write SP [m; Q] to stand for a first order formula that expresses
the strongest postcondition of 7 with respect to Q.

An interpretation I is said to be bounded for a programming language P iff for each
program m € P there is a bound n such that for all initial valuations o, when 7 is
started in state o, it can reach less than n distinct valuations. An interpretation that is
not bounded for Pis said to be unbounded for A.

It is shown in [GH83, Ur83] that in programming languages with recursive
procedures (as in L4), there are programs that generate all of the domain elements that
are reachable from the initial valuation of the variables.2 It follows that if an
interpretation I is bounded for L4, then Vk 3n such that given k values, b SPR in
dom(I), less than n values of dom(I) can be generated from x,,...,x, using the constant

3Reca.ll that we assume throughout that interpretations give meaning to only a finite number of
symbols.
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and function symbols. We will use this property of bounded interpretations in the
completeness proof.

3.3. Properties of Strongest Postconditions

In this section, we list some general properties of strongest postconditions that will
be needed in the proof of the Completeness Theorem. The properties that we use could
be formally derived from the operational semantics of programs given in section 3.2.
However, since we only take strongest postconditions of programs, the reader should be
able to verify that these properties hold for any semantics that assigns the ‘‘standard”
meaning to programs as relations on valuations. Many similar properties of strongest

postconditions of programs have been used in previous relative completeness proofs, for
example [Co78, CI79].

In the following, m, w1, and 72 are arbitrary programs. We will say that a program
does not change a variable if the semantics of the program does not contain a pair of
valuations that assign different values to the variable. Some of the properties of
strongest postconditions are true only for programs that do not change certain
variables.

The following properties may be read in two ways. In an expressive interpretation,
then each property can be read as asserting that two first-order formulas are equivalent
in the interpretation. The left and right formulas in each property can also be read
semantically, as relations on valuations. In this case, the logical symbols should be read
as operations on relations, in the obvious way (for example, f1 A f2 is the intersection of
the relations given by f; and f,.)

SP 0. SP[7rl; Q] = SP[72; Q]
provided My(m1) = M(72).

SP1. SP[m Q1] AQ2 = SP[m Q1 A Q2]
provided no variables free in Q2 are changed by .

SP 2. SPI[m Qllx/y] = SPlx[x/y]; Q[x/v]]
provided x is not free in 7 or Q.

SP 3. 3xSP[m Q] = SP[m Ix Q]
provided x is not free in .

401‘ course, one cannot effectively tell in general whether a program changes a variable, but in the
proof we will only use properties of strongest postconditions in situations where it is clear that the
necessary assumptions are satisfied.
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SP 4. SP[(n1; n2); Q1 = SPI[#2; SP([nl; QI

= 3Ix SP[m QI

SP 5. SP[(Begin var x; m End); Q]
provided x is not free in Q.

= (SP([rl; Q] v SP[72; Ql)

SP 6. SP[(m1 Or 72); QI
(SP[71l; b A Q] vSP[n2; —b AQ])

SP 7. SP[(If b Then 1 Else 72); QI
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4. The Logic
4.1. Syntax and Semantics of Formulas

Recall that in Section 3.1, we fixed a first-order type ¥ which determines the finite
set of constant, predicate, and function symbols that can appear in programs and first-
order formulas.

We permit three distinct kinds of variables in the logic. There are two kinds of
variables ranging over individuals in the domain of the interpretation: ordinary
variables and environment variables. The syntactic distinction between ordinary and

environment variables is that ordinary variables, like the variables in most Hoare axiom
systems, may appear in both programming language statements and first-order
formulas; environment variables are a new class of variables which may appear only in
first-order formulas. All of the ground variables of a programming language statement
are considered ordinary variables of the logic when the statement appears in a pca in
the logic.

Finally, there are procedure variables, which may appear in pcas only in the
statement part, and can be universally quantified in formulas. All of the procedure
identifiers of a statement are considered procedure variables of the logic when the
statement appears in a pca in the logic. '

Subject to these restrictions on the use of variables, a formula has the form
<formula> == U | {U} S {V} |(HLAH2)|(H1 — H2)|VWH|VqH

where U and V are first-order, S is any statement, H, H1, and H2 are formulas, v is an
environment variable, and q is a procedure variable.

Arbitrary nesting of (H1 A H2), (Hl — H2), Vv H, and Vq H, is permitted. As
usual, we view H1 < H2 as an abbreviation for (H1 — H2) A (H2 — Hl1), and -H as
an abbreviation for H — False.

The semantics of a formula is the set of assignments to the environment and
procedure variables that satisfy the formula. This is defined formally below. In terms
of the semantics, formulas never have free ordinary variables. If a first-order formula
appears alone as a formula of the logic, the semantics is that any free ordinary variables
are implicitly universally quantified. Similarly, in a pca, all of the ordinary variables
are implicitly universally quantified.

The formulas of our logic form a many-sorted first-order language built up from the
pure first-order formulas of type ¥ and pcas. The formula H1 A H2 is semantically the
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conjunction of H1 ,and H2; H1 — H2 is semantically a first-order implication; and
quantification in Vv H and Vq H has the usual first-order semantics.

In order to give meaning to formulas we need an interpretation I, which gives
meaning to the symbols in ¥ in the usual way, an environment valuation & which
assigns an element of dom(I) to each environment variable, a state o which assigns an
element of dom(I) to each ordinary variable, and a procedure environment E.

LE,£ = U iff for all o, we have L§o =TU

(where this is defined in the usual way).

LE,¢ = {U} S {V} iff
for all o, o’ we have (I,§,0 = "U and (0,0') € M;(S)) implies Lo = V.

LE,f = H1 A H2 iff LE,§ = Hij, i=1,2.

LE,f k= H1 — H2 iff LE,& = HI1 implies LE,§ = H2.

LE,§ = Vv H iff for all d € dom(I) we have LE,{[v « d] = H.

LE, = VqH iff for all L4 procedure declarations ¢/(t, X) < B we have
L EU {d(f, x) « B}, £ = H[d/q],

where q' is a fresh variable which does not appear in E and has the same type as q.
[ =H iff for all L4 environments E and for all £ we have LE,§ = H.

The place where our logic differs from standard first-order semantics is in the
semantics of pcas. Ordinary variables in pcas have a special meaning and are ‘“bound”
variables in the sense that the semantics of a pca involves universal quantification over
valuations. *

Note that the meaning of a free environment variable in a formula is the same
wherever it appears. In contrast, the meaning of an ordinary variable is “local” to each
partial correctness assertion in which it appears, since it is effectively universally
quantifiedv. For example, consider the following two formulas

(1) {True} y: =y {x =3} — {True}y: =y {False}
(2) {True} y: =y {v=13} — {True} y:=y {False}

where x and y are ordinary variables and v is an environment variable. Formula 1 is
valid, because the antecedent {True} y : = y {x = 3} is false: it is not the case that



24

for all initial values of x and y, y : = y sets x to 3. Formula 2 is not valid (in all
interpretations with more than one domain element), because v is quantified over the
whole formula. For the value v = 3, the antecedent is true but the consequent is false,
giving a counterexample to (2).

4.2. Axiom System

As we discussed, the formulas H1 A H2, HI — H2, Vv H, and Vq H have first-order
semantics (in which the ordinary variables in pcas are regarded as bound variables). To
reason about these formulas, the axiom system contains a standard deductive system for
many-sorted first-order logic [En72], for formulas built up from environment and
procedure variables, conjunction H1 A H2, implication H1 — H2, negation, and
universal quantification Vv H, Vq H. This deductive system regards the pcas as atomic
formulas with procedure and free environment variables (only). Ordinary variables are
always ‘““bound’’ for the purposes of this deductive system. Since we are using standard
first-order reasoning, the same deductions will follow from any complete deductive
system for the first-order predicate calculus.

To make this precise, we will now define the notion of when a formula H is valid
under first-order semantics. We will take all such formulas as axioms in the axiom
system. First, we will define a new first-order language which will have, in addition to

the symbols of ¥, a new predicate symbol for each partial correctness assertion. For
each pca H = {U} S {V}, we introduce a new predicate symbol Py(¥, @), which we will
call a pca predicate symbol. The pca predicate symbol PH has one parameter of ground
type for each environment variable free in H, and one parameter of a procedure type for
each procedure name free in H.

1. Let a primary formula be either a first-order formula or a pca predicate PH(E , @)
2. Let a wff (well formed formula) have the form

<wff> 1= <primary formula> | wifl A wff2 | wffl — wff2 | Vv wif | Vq wff.

Intuitively, a wff is like a formula of our logic, except that instead of partial correctness
assertions, there are atomic formulas whose free variables are the free variables that can
appear in pcas.

Then we say that a wif w is valid if w/, the result of replacing all occurrences of —
in w by D, is a valid first-order formula (i.e. true in all interpretations). Let us define
the expansion of a wff w to be the formula of our logic obtained from w by replacing
every primary formula of the form Py(t’, @) by the pea ({U} S {V})[t'/¥, @'/q], where
H is the pea {U} S {V}, v is the list of free environment variables in U and V, and q is
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the list of free procedure names in S. The lists ¥ and q are given in the order of the first
free appearance of each variable in the text {U} S {V}. Finally, we say that a formula
H is valid under first-order semantics if it is the expansion of a valid wff. We take all
formulas that are valid under first-order semantics as axioms.

The axiom system also contains standard Hoare axioms for constructs such as
assignment and conditional and for conventional reasoning about pcas. The
unconventional element of the axiom system is the Recursion Rule R4, which is used for
reasoning about higher-order procedures.

We formulate the axiom system to be independent of the particular interpretation.
To prove that a formula holds in an interpretation I, one would prove the formula by

using the first-order theory of I as an assumption.
4.2.1. Axiom Schemes

Notation. We adopt the following notational convention: If E is an environment
and H is a formula, then E[H is the result of replacing every pca {U} S {V} in H by
{U} E|S {V}, subject to the usual conditions about renaming variables bound by
universal quantifiers, to avoid capture of free variables in E.

Ax 0. H, provided H is valid under first-order semantics.

Ax 1. {True} S {True}

Ax 2. {Ufe/x]} x == e {U}

Ax 3. ( ({U} S1{V}) A ({V} S2 {W}) ) — {U} SL; S2 {W}

Ax 4. (({U A b} S1 {V}) A ({U A =b} S2 {V})) — {U} If b Then S1 Else S2 {V}
Ax 5. (({U} S {V}) A ({U} S2 {V})) — {U} S1 Or S2 {V}

Ax 6. {U} S[x'/x] {V} — {U} Begin var x; S End {V},
where x’' does not appear in U, V, or S.

Ax 7. (VZ(U1 D U)A ({U} S{V}) AWX(V D V1)) — {U1} S {V1},
where X is the list of ordinary variables free in U, Ul, V, and V1.

Ax 8. {U} S {V} — {3x U} S {3x V}, if x is an ordinary variable not free in S.

Ax 9. {U} S {V} — {UA Q} S {V A Q}, if no variable free in Q is also free in S.
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Ax 10. E|H — H, provided none of the procedures bound in E are free in H.

Ax 11. {U} S {V} — {U6} S8 {V8}, where 6 is an injective function mapping
ordinary variables to ordinary variables.?

Ax 12. {U} S {V} « {U} §' {V}, where §' is the result of renaming bound
variables (declared procedure names, names in the formal lists of procedures,
and local variable names) in S. As usual, such a renaming must not
introduce a conflict by making distinct names the same.

4.2.2. Rules of Inference

RO H1l, H1 — H2
) H2

H

R1. vv H, Vq H

where v is an environment variable and q is a procedure name.

H — Hl

R2. ——
H — E|H1

provided no procedure declared in E is free in H.

H - {U} S {V}

e e

provided v is not free in H.

3See section 4.3 for a discussion of aliasing in procedure calls.
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R4. Recursion Rule. Our Recursion rule is a version of computation induction.
Suppose E is an environment {pi(Fi, X) <« S | i=1,...,n}. Also suppose for i=1,...,n
and for some statement S that A [S] is a formula of the form

(N VE W (B — (U} S (V1)
j=1

where T, is the list of procedure names in the formal list of P and V. is a list of

environment variables. H and H, j are formulas in which p,,...,p, do not appear free.
Under these assumptions, the Recurs10n Rule is as follows:

H o=~ (A A R = (A &5]))

H o~ (A ARl 7))

4.2.3. Proofs

A formula H is said to be provable, written }— H, if it is an axiom or it can be
derived from the axioms by applying rules of inference. More generally, we say that a
formula H is provable from a set of assumptions I', written I' — H, if H can be derived
using the added assumptions I' As was mentioned earlier, the axiom system is
independent of the particular interpretation. To prove that a formula is true in a
particular interpretation, one would prove it using the first-order theory of the
interpretation as an assumption.

4.2.4. A Derived Axiom Scheme

In this section we introduce a useful set of formulas that can be derived from the
axioms, and show that the formulas are derivable. We will refer to the fact that these
formulas are provable in the example and the completeness proof. If C is a first-order
formula whose only free variables are environment variables and H is any formula, then

we define C ~> H to be an abbreviation for a formula by induction on the structure of
H:
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d
1. C~>H -—e-f C — H, if H is a first-order formula.

2. C~» (U}S (V) = tunC)S{VAC)

d
3. C ~> (H1 A H2) =ef (C ~> H1) A (C ~> H2).

d
4. C ~> (H1 — H2) d (C ~>» H1) — (C ~> H2).

5. C~o> (WH) 2w (C o~ HV]),

where v/ is not free in H or C.

def
6. C ~> (VqH) = Vq (C ~> H).

It is straightforward to show by induction on the structure of H that C ~> H is
semantically equivalent to C — H. We will use the formula C ~> H to syntactically
distribute the formula C to all the first-order parts of H. This will be useful in the
course of the completeness proof. Since the formula H — (C — H) is semantically
true, it follows that the equivalent formula, H — (C ~»> H), is true. We now show
that this formula is provable in the axiom system.

Lemma. — H — (C ~»> H).
Proof.® We will first show that the followiﬂg two formulas

(a) -C — (C ~> H)
(b) C - (H « (C ~> H))

are provable. We will use induction on the structure of H, proving (a) and (b)
simultaneously. All cases are completely straightforward and require only first-order
reasoning, except when H is of the form {U} S {V}.

For part (a) in this case, first note that {False} S {False} is provable for all S,
by Ax 1 and 9.

Next, note that by Ax O,
= -C — VX((U A C) D False),

— vx(False D (V A C)),
where X is the list of ordinary variables free in U, V.

6The proof of this lemma may be omitted on the first reading.
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These formulas are provable by Ax 0 because they are valid wifs.
Here, we have explicitly quantified over X in order to form
formulas that match the hypotheses of Ax 7.
From Ax 7 and first-order reasoning, we have
— (-C — VX((U A C) D False) A Vx(False D (V A C)) A {False} S {False})
— (°C - {UAC}S{VAC}.
Thus we can conclude - -C — {U A C} S {V A C}, as required.

For part (b), note that
C — ¥%(U D (U A C)),

—C — VX((VAC)D V)
Thus, — C — ({UA C}S{V AC} — {U}S{V}), by Ax 7.
From Ax 9, we get — {U} S {V} - {UAC}S{VAC}L
Thus — C — ({U} S {V} « {UA C} S {V A C}), completing this case of (b).
Now we can show that H — (C ~»> H) is provable.
From formula (a), we get — H /\ -C — (C ~»> H).
From (b) we get — HA C — (C ~> H).

By propositional reasoning, it follows that — H — (C ~> H). O

In the completeness proof, we will refer to the formula proved in this lemma as
derived Axiom 13:

Ax 13. H — (C ~»> H), provided C is a first-order formula whose only free
variables are environment variables.
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4.2.5. Soundness of the Axiom System

.

In this section we show that the axiom schemes and rules of inference presented in
the previous section are sound; i.e. if Th(I) — H then I = H, for any interpretation I
and formula H. We will concentrate on proving the soundness of the recursion rule R4

here, because it is the main new element of the axiom system.

The axioms system can be considered in several parts. There are a number of
axioms that do not depend on the details of procedure calls and that are familiar from-
other Hoare axiom systems. The axiom for assignment statement is one such axiom.
The soundness of these axioms has been previously established in the literature with
respect to operational definitions of the langauge that are the same as ours except
perhaps for handling of procedures. There are axiom schemes such as Axiom 9, which
apply to an arbitrary statement. The only property of procedure calls that is needed
for these axioms to remain sound is that a procedure call p(r, X) in L4 can only change
the values of the variables that appear as actual parameters in X. It is clear that our
semantics has this property. Finally, our axiom system permits first-order reasoning
about formulas. It is clear that such reasoning is sound for our semantics of formulas.

We will now prove the soundness of the recursion rule R4. We must show that
whenever the antecedent of R4 is true then the conclusion is also true. So suppose that
E is an environment {p,(T,, X;) < B, i=1,...,n}, and suppose H and H are formulas in
which p,,...,p, do not appear free. Then assume that the hypothe51s of the recursion
rule is valid in I, i.e.

O IE=H — ( . pr ‘—'i( Hi,j - {Ui,j} Pi(i:p ii) {Vi,j} )

| > 5 ﬁ >p
s

iI>8T>8
—

—

VELV(H ;= {U;} B {V;;}))-

o
—
—

We want to show that for all environments F and environment valuations £ that

(1) LFéE=H — 1£ ﬁ vr,, v H {Ui,j} E | Pi(l-'ia ii) {Vi,j} )-

=
So suppose

(2) LF,§ =H

(otherwise the result is immediate). Thus we must show

( Y LF,€ F= /\1 /\ VP Vi( Hi,j - {Ul,]} E I pi(i:i’ il) {Vi,j} )
i=1 j=1
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We can suppose without loss of generality that PyseePp do not appear in F
(otherwise we could just rename these variables, which are bound in E). LetF_=F U

E , where E_ is the environment defined in section 3.2, that gives the mth

approximation of the environment E. We will show by induction on m that for all m,

n m. .
L o
(4) LF ,€ b= N j_ﬁ_l Vi B H ;= U oy T %) Vi)

By a straightforward argument, which is carried out below, we can show that no
matter how the procedures Fi are declared in F, we have

(5) MI,F(EIPi(Fia ’-(1)) = Unp MI,Fm(pi,m(Fi’ }-{1))

From this, it can easily be seen that the truth of (4) for all m implies that (3) is
true. For suppose that (3) is false. Then there must be some choice of i, j, T;, and ¥,

such that in I and F, H, ; is true and {Uij} p,(Ty %) {V; j} is false. Thus there must be
some (0,0') € M;p(E|p;(F;, ¥,)) for which the pca is false. But by (5), there must be
some value of m such that (o,0') € ‘MI,Fm(pi,m(Fi’ X;)), and hence (4) must be false for

this value of m. This shows that (4) is sufficient to prove (3).

Proving (4) for m = 0 is trivial, since in F,'we have p.(f;, X,) + error. Assume (4)
holds for m = N —1. We now show it holds for m = N. It clearly suffices to show for
all choices of F and £ that

n m.
B)LFyE = A A VT F(H; = (U} o %) {Vy5)).

1==1 j=

Without loss of generality, we can assume

n m.
(M ILFpéE= A A H.

i=1 j=1

Under this assumption, we must show
(8) LFyé = {Ui’j} Pi,N(‘_'p x;) {Vi,j}-

Now, we use the inductive hypothesis (4) for m = N —1. Previously, we have
assumed that the hypothesis of the recursion rule is valid (0), and that H is true in F,&
(2). Since py,...,p, are not free in H, the formula to the right of H in line (0) is true for
all p,...,p,. Since (4) is true for m = N — 1, we get
o

O LFy_pé= A A

vr., i'r.( H. —
=1 j=1 vobon

(Ui Bipy e /0y o e /B] V351
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From (7) and the fact that p,...,p_ are not free in Hij’ we get

n m
(10) LFy_pé b= A A H
1=

J=

Using (9) and (10), we can conclude
(11) LFy _ 1€ = {U; ;3 Bilpy N—1/Py » - Py v —1/Py) (Vi)
We will show
(12) Myp _ Bilpi N 1/Prs e Py /Pal) = Myp (Pin(T3 %))
Line (8) follows immediately from (11) and (12), so the proof of (12) will complete
the inductive step of our proof.

To complete the details of this proof, we first prove the equivalence (5), and then
prove (12).

The proof that (5) M;p(Elp,(T;, %)) = U Mip g (P u(T; %)) follows from two
b y m b
easy lemmas.

First, for any two statements Al and A2, we will write Al < A2 if M;g(Al) C
M;g(A2) for all interpretations I and procedure environments E. Let us say that

?UEHI A is a variant of FUE|A if all occurrences of p; in F and A have been replaced
by P; i for some k < n. Note that we do not necessarily use the same value of k in

p; . to replace different occurrences of p; in FUE|A. We say that the level of ?UED| A

is k if k is the least subscript s of a P, in either F or A.

The following lemma is a consequence of the fact that En defines Py to be a
procedure that is less defined than p; is in environment E.

Lemma 1. Vk VA VF Vn Approx%(FUE|A) > Approxg( FUEHI A) if FUE|A is a
progam and ?UEDI A is a variant of FUE|A.

Proof. By induction on k and a subinduction on the structure of A. All cases are
easy. O

We now give a second lemma which says that if a variant has level k, so that all
second subscripts s in procedure names D; . in the variant are at least k, then the kth

approximation of the variant is at least as defined as the kth approximation of the

original statement. The intuitive reason for this is that each of the procedures p; is at
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least the k't approximation of p;-

Lemma 2. Vk VA VF Vn if level( fUEDIK) > k and FUEnIK is a variant of
FUEJA and FUE|A is a program, then Approxg( T“JUEDI A) > Approxlac(FUEIA).
Proof. Another easy induction on structure. O

Note that if S is a statement with no free procedures, then M;p(S) is independent
of E. In the remainder of the proof, we will write M(S) instead of M;y(S) to denote
that the meaning does not depend on an environment E.

Now, MI,F(E|pi(Fi’ X))
= U, M/(Approx§(FUE|p,(F; %))
< Uy MI(Approx%(FUEk|pi’k(Fi, %,))) (by Lemma 2, since this has level k)
S U Mypg, (PP X;))- |
But, ‘MI,FUEk(pi,k(Fi’ X))
= U (M{ADProx(FUE, o,  F,, %)
< Up M{Approxg(FUE|p,(F;, X;))) (by Lemma 1)
= MLF(EIPi(Fir il))

Therefore, MI,F(E|pi(i"i, X)) = Uy MI,FUEk(pi,k(Fi’ X))
thus completing the proof of (5).

We now prove line (12), to complete the soundness proof.
My pue, (PN %) = Uy My(Approxg(FUENIp; n(F;, %))
k-
= U, M,(Approx; I(FUENIBi[pl,N— /Py s e PaN-— /P

k-1
= Uk M[(Approxﬂ (FUEN_ 1|Bi[p1’N__ l/pl PARLRL) pn,N— l/pn]))
(since p, s --» P, 2re Dot free in either F or B))

= MI,FUEN_I(Bi[pI,N—l/pl y s PaN—1/Pp)) O
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4.3. Aliasing in Procedure Calls

We will say that a procedure call has aliasing if there is a ground variable that
appears more than once in the call. It is well known that aliasing is a potential source
of difficulty in formal reasoning. For example, Axiom 11 would be unsound without the
requirement that the variable mapping 6 be injective. The restriction gives a sound
axiom system but leaves incompleteness in the special case of programs that have
aliasing. We describe below a simple method for removing aliasing by transforming any
program into an equivalent one with a similar structure, but without aliasing. Our
reasons for taking this approach are that aliasing introduces additional complexity in
reasoning, but in practice it is an unusual and exceptional case. The difficulties
introduced by aliasing are separate from the main focus of this paper, which is
reasoning about programs with higher type procedures.

Aliasing has been dealt with previously, for example in [O181/84]. There, the
approach taken is to introduce axioms for reasoning separately about each case of
aliasing of a procedure. Calls on a given procedure q may be divided into equivalence
classes based on the partitioning of the ground parameters. For instance, if q has two
parameter positions for ground variables, then there are two equivalence classes of calls:
calls with two different actual ground parameters, and calls with the same actual
appearing twice. Thus procedure calls can be divided into equivalence classes such that
all calls in an equivalence class are identical up to injective renaming of variables.
Intuitively, the method of reasoning about aliasing in [Ol81/84] is to prove one assertion
for each equivalence class of calls, and then to use injective renaming to reason about
other calls in the equivalence class. We feel that such a method could be incorporated
in our axiom system in a straightforward way. However, for the purposes of our
presentation, it is more convenient to assume that aliasing is analyzed beforehand, and

to only work in the axiom system with programs having no aliasing.

In Appendix 1, we briefly sketch a method for removing aliasing. The basic idea is
to replace each procedure declaration with a set of new declarations, where there is one
new declaration corresponding to each case of aliasing. All procedure calls are modified
to use one of the new procedures. The resulting procedure calls have no aliasing.

In view of this result, and our feeling that aliasing is an unusual situation, we will
assume in the remainder of the paper that programs are presented in a form that is free
from aliasing.
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5. An Example

In this section, we demonstrate the use of the axiom system with a simple example.
We feel that examples such as the one presented here and others that we have studied,
show that the axiom system gives a way of reasoning that is very natural for actual use.

The reader may find it helpful to study the proof of the example carefully before
proceeding to the completeness proof. In particular, we discuss the problem of how to
specialize general assertions about procedures in order to reason about particular calls.
In the completeness proof, the process of specializing general assertions involves some
technical steps that are discussed here in a simpler form.

Let 7 be the following program:

Begin
inc(w) « w:=w+l;
p(r, x) -
Begin
twice(y) < Begin r(y); r(y) End;
If x = 0 Then r(x) Else Begin x := x — 1; p(twice, x) End;
End;

p(inc, z)
End.

The program is interpreted over the natural numbers with the standard arithmetic
operations (for subtraction, note 0 — 1 = 0).

We will show that |— {z = z,} 7 {z = 2%}. Intuitively, if z; is the initial value of

z, then 7 sets z to 2% (providing 2y 2> 0), by calling the procedure p recursively z;+1
times. The procedure p decrements z by 1 and calls itself recursively on each of the

first 2, calls; on the z0+1St invokation of p, the formal procedure r is called.

On the first call of p, the actual procedure parameter is inc, a procedure that
increments its argument by 1. When p calls itself recursively, the actual procedure
parameter is twice, a procedure that has r free in its body; the procedure twice(y) calls
r(y) two times. Thus if r(y) is a procedure that increments y by some constant value v,
twice(y) will increment y by 2.v. It follows that on the i*h recursive call of p, the
procedure parameter r(y) increments y by 21=1 On the z0-+-1St call of p, the procedure
r(x) is called, and has the effect of setting z to 2%.

Now let us see how to formalize this argument in the axiom system. We begin by
defining assertions for each of the procedures in m. We define P, R, and Twice to be

formulas for the procedures p, r, and twice, respectively.
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R i—if {w= WO} r(w) {(w = w0+v}

def
Twice = {y = y,} twice(y) {y = y,+2-v}

P d=ef Vr ¥ ({w = wy} r(w) {w = wy+v} —

{x = xp} p(r, x) {x = v-2%0})

Throughout the example, the variables v and v/ will be environment variables; all
other ground variables will be ordinary. Intuitively, the formula R, which has free
occurrences of r and v, says that r(w) increments w by some constant amount v. The
environment variable v is used to define a relationship between the procedures. For
instance, Twice asserts that the procedure twice(y), which calls r(y) two times,
increments its argument by 2-v. The formula P uses universal quantification over r and
v to make an assertion about the call p(r, x) for an infinite range of procedures.
Intuitively, P asserts that if r(w) is a procedure that increments w by v (so that r
satisfies the formula R on the left of the arrow), then p(r, x) sets x to v-2%, In this
way, we use a relationship between r and v to express the effect of the call p(r, x) for
different procedures.

The main idea of the proof is to use the recursion rule to show that the formula P
holds for the declaration of the procedure p. After this we instantiate the universal
variables in P with the substitution [inc/r, 1/v]. On the left side of this instantiated
formula is the pca {w = w} inc(w) {w = w,+1}. Since the declaration of inc satisfies
this pca, we can discharge it and deduce that {x = x,} p(inc, x) {x = 2%} holds in the

environment with p and inc. Then we simply rename x and Xy to z and z;, to complete
the proof.

As just described, there is a simple way to specialize a general assertion about a
procedure in order to reason about a particular call. The formula P specifies the
behavior of p(r, x), where r is any procedure that increments its argument by a
constant. In order to specialize the assertion P to work for a call p(q, x), where gq(w)
increments its argument by a constant, say ¢, we simply instantiate P with the
substitution [q/r, ¢/v] and then discharge the pca on the left side of the arrow. In the
completeness proof, we must also specialize general assertions to particular calls, but we
must use a different method. The problem is that, in general, there is no term that can
play the role of the constant ¢. In the general case, we cannot find a term to substitute
for v, but we can find a first-order formula that defines the possible values of v. So, we
use a slightly different sequence of steps. In order to explain this aspect of the
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completeness proof, we have shown how part of the example would be done in both

ways.

We now define abbreviations for the procedure environments that we will need to

refer to in the proof. If procs is a subset of {inc, p, twice}, let Epl_ocs be the

environment containing the named procedures of .

The main part of the proof is reasoning about the body of p in order to apply the
recursion rule. In order to apply the recursion rule, we will show

= PAR — {x=xy} _

E{twice} | If x = 0 Then r(x) Else Begin x := x — 1; p(twice, x) End

{x = v-2%0}.
Observe that if initially x = x; = 0, then the body of p simply calls r(x). This case of
the If statement can be proven directly from the assumption R by standard methods,
because the postcondition in R is x = xy+v, and in this case, x; = 0. Thus it is
straightforward to show
= R — {x= x5 A x5 = 0} r(x) {x = v-2%0}.
The other branch of the If statement involves the call p(twice, x); to reason about this

call, we have to specialize the general formula P.

In order to reason about the call p(twice, x), we instantiate the universally
quantified variables in P with the substitution [twice/r, 2-v/v] to get

= P — ({w=wy} twice(w) {w = wy+2-v} —
{x = x,} p(twice, x) {x = 2.v-2%0}).
Applying Ax 11 to the formula Twice, and using first-order reasoning, we have
(1) =P A Twice — {x = x,} p(twice, x) {x = v.g¥ot1},
It is now straightforward to show

= P ARA Twice — {x = x,}
If x = 0 Then r(x) Else Begin x := x — 1; p(twice, x) End
{x = v-2¥o},

Using rule R2 with the environment E we get

{twice}’
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2)—PARA E{twice}|Twice —

{x= xo}
E{twice} | If x = 0 Then r(x) Else Begin x := x —1; p(twice, x) End
{X —_ 2X0+1}.

The next step is to discharge the assumption E {t.wice}lTwice. We show that if r
satisfies R, then twice satisfies Twice, i.e. R — E {twice}]Twice.

It is straightforvw}ard to show
R — {y = y,} Begin r(y); r(y) End {y = y,+2-v}.
Thus by first-order reasoning,
R — (Twice — {y = y,} Begin r(y); r(y) End {y = y,+2-v}).
Applying R4, we can infer
R — E{twice}lTWice,
which allows us to discharge the assumption Twice.

Now, using first-order reasoning and rearranging the formula (2), we have

P - (R —
{x = x,}
E{twice} | If x = 0 Then r(x) Else Begin x := x — 1; p(twice, x) End
{x — 2xo+1}).

By rule R1, we can universally quantify over r and v in this formula. Since neither r
nor v is free in P, we can move the quantifiers in to get

P - VrYw(R —

{x = xo}
E{twice} | If x = 0 Then r(x) Else Begin x := x — 1; p(twice, x) End
fx = 2%0*1}),

This is in the form of the hypothesis of the recursion rule. Applying the recursion rule,
we deduce

(3) = Vr Vv ({w = wy} r(w) {w = wy+v} — {x = x4} E{p}lp(r, x) {x = v-2%0}).
This is the general result we need for the procedure p.

For the procedure inc, it is straightforward to show

= {w = w,} E{inc}linc(w) {w = w,+1}.
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Finally, we specialize the formula of line (3) for the call p(inc, z). This proceeds as
before, and we can show

— : — Ol
- {z = 2y} E{inc, p}lp(mc, z) {z = 2%},
as required to complete the example.
5.1. Specializing General Assertions

As we discussed at the beginning of the example, the completeness proof uses a
different sequence of steps to specialize general assertions for reasoning about particular
calls. In order to illustrate these steps, we will now re-derive line (1) from the example.
Recall that line (1) is the result of specializing the general formula P in order to reason
about the call p(twice, x).

The first step is to instantiate the universally quantified variables in P with the
subsitution [twice/r, v//v], where V' is a new environment variable, to get

= P — ({w=w,} twice(w) {w = wytv'} —

{x = x,} p(twice, x) {x = v'-2%0}).

Using Axiom 13 (see 4.2.4) with the first-order formula v/ = 2-v for C gives
(4 P — ({w=wy AV = 2] twice(w) {w = wy+v A v/ = 2.v} —
{x = x5 A v/ = 2-v} p(twice, x) {x = vi.2%0 A v = 2.v}).

Our next step is to derive the pca involving twice(w) from the formula Twice,
- Twice — {w = wy A v/ = 2-v} twice(w) {w = wy+2v A v/ = 2V},
by Ax 11 and Ax 9. Next, we use Ax7 to get
— Twice — {w = w, A v/ = 2.v} twice(w) {w = wy+v' A v = 2.v}.
By first-order reasoning, we can use the assumption Twice in place of the pca for
twice(w) in line (4),
=P A Twice — {x = x, A V' = 2-v} p(twice, x) {x = vi.2¥0 A v = 2.v}.

Now, we use rule R3 to existentially quantify over v/ on both sides of the rightmost
pca,

P A Twice — {3V (x =x, A V' = 2v)}
p(twice, x)

(I (x = V250 A v = 2v)}.

Using Ax 7 to simplify the first-order formulas, we get
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=P A Twice — {x = x,} p(twice, x) {x = v.2Xotl}

which is the formula from line (1) of the example.
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8. Part 1: An Analysis of the Semantics of L4

Our goal in this section is to show that corresponding to any L4 program , there
exists an L4 program m* without procedure parameters, that approximates 7 in an

appropriate sense. In order to do this, we must first carefully analyze the semantics of
L4.

6.1. Notation

This section defines some notation for sequences and substitutions that will be used
in the remainder of the paper.

If 7 = (7eeesTysVaT,...;var) is a procedure type, then |7| is the number of elements of
the sequence that are procedure types and ||7i| is the number of elements of the sequence
that are ground types.

Sequence notation. For any kind of identifier, superscripts are used to denote finite
sequences of identifiers of that kind. For instance, for declared procedure identifiers, if
§ is an ordered sequence of positive integers, 01,...,9n, then f)o stands for the sequence of

declared procedure identifiers py ,...,py . As a special case p®, where n is a positive
1 n ‘

integer, stands for the sequence py,...,p, and 130 stands for an empty sequence.
Sequences of other kinds of identifiers are defined similarly.

For ease of notation, after a superscripted sequence identifier has been introduced in
a context, we may use just the identifier to refer to the sequence, provided it is clear
from the context what the identifier refers to. For example, if X* is used to stand for a
sequence of n program variables, we may later write X to stand for the same sequence
when the reference is clear.

When we have introduced a sequence such as X" = X,,...,x , we will often want to
introduce other related names. As mentioned above we will write X to stand for the
sequence X where the reference is clear from the context. Sometimes we need another
single variable that is similar to the elements of the sequence X; we may write X, in this
case to indicate a new variable that is not part of the sequence x,,....x .

If a symbol, say x, has been introduced, then we sometimes append a digit or a
prime, as in x0, X/, to denote a new symbol related to x. For instance, if X is a sequence,
then X0 or ¥ may be used to indicate another sequence of the same type and length.

Substitutions. If x and y are variables, [y/x] is a substitution of y for x.

YRR}

Substitutions separated by ,” are simultaneous. For instance, [yl/xl, y,_,/x2] is a

simultaneous substitution of y,, ¥, for x,, X,. If X and ¥ are sequences both of the same
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length, say n, then [¥/X] is the simultaneous substitution [y, /x,,....,y /X ]. Substitutions

‘6 !7

separated by are sequential. For example, Ply/x; z/y] = P[z/x], provided P is a

formula in whlch y does not appear free.
8.2. Semantic Equivalence of Declarations

Our analysis of the semantics of L4 programs will focus on properties of

declarations having no free procedure names.

Definition. A closed declaration of L4, i.e. a declaration having neither free
ground variables nor free procedure identifiers, will be called a closure.

We now introduce a notion of semantic equivalence of declarations that will play an
important role in the first two lemmas. The following definition applies to closures.

Definition. If r = ('l"1 varlHI) is a procedure type then two closed L4 declarations
qp:d, and qg: d’ of type 7 and having the same main procedure identifier qq, are
emantlcallx gulvalen in an interpretation I iff for ail length |7| sequences of closed L4

declarations, qy: dl’ Qg ‘ A having types Ty Tl and having distinct main procedure
identifiers,

My {dgpdypeendiHag(@, 1) ) = My( {dfd;perd Hlag(@, %) )-

Note that semantic equivalence of declarations is an equivalence relation.

We write d =3 d’ to denote d is semantically equivalent to d’ in I. Where the
interpretation is clear from the context, we writed =~ d’. O

We now introduce the syntactic operations on declarations that will be used in
simulating the execution of programs. For any statement S and environment E, E|S
denotes the statement Begin E; S End, which is the statement S in the environment
E. We now define E|d, where d is a declaration.

If d = qformal-list) < body is a declaration and E = {d,,..,d } is an
environment, then E|d is the declaration g(formal-list) « E|body, where procedure
names in formal-list are renamed to prevent them from clashing with any of the
procedure names in dl""’dn‘ We call the operation that takes d and E and produces
E|d the environment binding operation. For convenience, we require that the renaming

be done in a unique way, so that for any d and E, E|d is uniquely defined. O

There is one more operation on declarations, called the renaming operation. This
operation is takes a declaration d and returns an equivalent declaration with a different
main procedure identifier. It is used to simulate binding of procedure declarations to
formal procedure identifiers.
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Renaming operation. If d = q(formal-list) « body is a closed declaration and r is
a formal procedure identifier having the same type as q, then we define r «— d to be
the declaration, r(formal-list) « {d}|q(formal-list). With this declaration, r is a
procedure that simply calls the procedure g. (Note that because q has a higher type
than any of the formal parameters, neither q nor r can appear in the formal-list.) O

A procedure call statement in L4 may pass either declared or formal procedures as
parameters. In order to simulate the case of passing a declared procedure, we form a -
closure from the declaration of the procedure and the declarations of all procedures in
its environment. To simulate a procedure call that passes a formal procedure identifier
as an actual parameter, the simulation passes the closure for the formal parameter.
This closure must have been formed from declared procedures at an earlier step of
execution of the program. Thus, at any point in the simulation, if there are formal
procedure identifiers visible, the simulation will have a closure representing the value of
each one.

Definition. Let Closures be the set of all closures over the fixed signature ¥. For
each procedure type 7, let Closures(r) be the set of closures of type r. If T is a set of
procedure types, then Closures(T) is U re TClosures(r).

Lemma 1. Let I be an interpretation of a finite signature £, and assume that I is
bounded for L4. Then for each type 7, the relation == partitions Closures(r) into a
finite number of equivalence classes.

Proof. Recall that the declarations in Closures(r) are closed, and no declaration
has free ground variables. A procedure call in L4 can only change the state by changing
the values of its ground parameters. Intuitively, the role of the higher type parameters
in a procedure call in L4 is to select between different possible relations that the
procedure call uses to modify the values of the ground parameters. A procedure type
has a fixed number of ground parameters. So, the proof will proceed by showing that
for any n, there are a finite number of distinct semantics of programs with the n free
variables ¥®. Then it is straightforward to show by induction on the depth of procedure
types that = partitions the declarations of each type in Closures into a finite number
of equivalence classes.

For any finite signature £, and natural number n, there is a program of L4 that on
input 3® € dom(I)®, enumerates all of the elements of dom(I) that can be generated
from a® [GHS83, Ur83]. (In fact, this construction requires only recursive procedures
with ground parameters and no globals.) This implies that if an interpretation Iis
bounded for L4, then I is uniformly locally finite, meaning that for each natural number
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n, there is a number b such that for all 3" € dom(I)%, less than b elements of dom(I)
can be generated from a" using the constants and functions of I.

By a computable semantics on dom(I)", we mean a subset of val; X val; that can be

the semantics of a program over I with the n free variables X®. We want to show that if
I is bounded, then over the finite signature T, for each n, there are a finite number of
computable semantics on dom(I)".

For 3" € dom(I)?, let I(a") be the substructure of I generated by a" and the
constants and functions. Let < ¢+« 2" I(a") > denote the structure I(3") expanded
by adding n new constants, CpymeesCps for the values ByyernrBy respectively. On input a, a
program can be regarded as computing on the structure < ¢ « a, I(a) >, because it can
refer to the values of its input variables. Let us say for a", b € dom(I)" that
< ¢+3a, [(8) > and < ¢+ b, I(b) > are indistinguishable iff they are isomorphic
without renaming the symbols of £ or the new constant symbols c.

Define an equivalence relation, 38® = b%, iff < ¢+ 3, I(3a) > is indistinguishable
from < ¢ « b, I(b) >. Since I is uniformly locally finite, there is a fixed set of variable-
free Herbrand terms containing the constants and function symbols of I and ¢, say, T,
such that for all 3" € dom(I)?, all of the values of dom(< ¢ + a, I(2) >) are given by
the values of the terms T in < ¢ +2, I(2) >. Since L has only a finite number of
relation symbols, one can write a finite set of ground atomic formulas, such that the
truth values of the formulas in a structure < ¢ « 3, I(a) >, completely determines it
up to isomorphism. Hence the relation = divides dom(T)" into a finite number of
equivalence classes.

Since a program of type L has exactly the same executions on all indistinguishable
inputs, its semantics on inputs in an equivalence class of = can be represented by a
finite set of terms. Let m be a program with the free variables X%, and A C dom(I)" be
a set of indistinguishable inputs. Then there is a finite set of n-tuples of terms, H

A ==
{t1%(z),...,tk"(X)}, for some k, such that

vVa® € A, Vb € dom(I)?,
( o[ — 3], o[X™ « b]

) € My(m) iff
b=%t13a)V..Vb

= tk(a).

For example, if 7 is a deterministic program with free variables X®, then for each set
A C dom(I)* of indistinguishable inputs, one of the following holds: Either 7 halts on
inputs in A and there is a single n-tuple of terms t"(X), such that the final values of the
variables on input 3" is £(2), or 7 diverges on inputs in A.
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Since I is bounded, there is a uniform depth bound d, such that for all A, all of the
terms in H, can be written with depth less than d. This means that there is a uniform
bound on the number of n-tuples in H,, for all equivalence classes. Therefore, there are

a finite number of distinct semantics of programs with n free variables x".

It is now simple to show by induction on the structure of types that the relation =
partitions the set of closed L4 declarations of each type 7 into a finite number of
equivalence classes.

The base case is when 7 contains only ground elements. Since there are only a finite
number of semantics of programs with free ground variables i”’”, ~ divides the closed
L4 declarations of type r into a finite number of equivalence classes.

Induction step: Assume 7 contains the procedure elements TyreeesTiap and ||r]| ground
elements. By hypothesis, =~ divides the closed L4 declarations of types Ty into a
finite number of equivalence classes. Suppose, however, that there were an infinite
number of semantically distinct closed L4 declarations of type 7. By definition, pO:do
and pi):db of type 7 are distinct iff there exists a sequence of declarations

p1:d1,...,pl ﬂ:dl A with the correct types and distinct main identifiers, such that
My {dgydyyeensdy Hog(®, T ) 72 My( {dydyennnd)HEG(B: B) ).

Observe that M( {dO’dl’""d] 11}|p0(f>, X)) is not changed if we replace gl by a sequence
of semantically equivalent declarations with the same types. Since there are only a
finite number of equivalence classes of the relation =~ for each of these types, there can
only be an infinite number of semantically distinct declarations of type 7 if there is some
choice of pI:dl,...,pM:dH, such that M {do,dl,...,dlrl}|p0(ﬁ, %) ) takes on an infinite
number of values, for different declarations d;. But this is not possible, because in each

case, these values are the semantics of programs having the same free variables gl O
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6.3. Encodings of Declarations

Much of the relative completeness proof is concerned with arithmetic encodings of
declarations and of operations on declarations. We will be concerned with encoding sets
of declarations of the form Closures(r), for some fixed types 7. In a bounded
interpretation, members of the infinite set Closures(r) can be represented with a finite
set of codes, because we only need to encode the equivalence class of closed declarations.
This comment motivates the following definition:

Definition. If D is a set of closures and I is an interpretation, then a function p: D
— N (N denotes the natural numbers) is called an encoding function for D in

interpretation I iff p satisfies the following conditions:

1. If I is bounded, two declarations are mapped to the same number by p iff
they are semantically equivalent in I,

Vd, d, € closed(D) (p(d,) = p(dy) iff d; ==d,).

2. If I is unbounded, p assigns each declaration in D a distinect number.
Furthermore, p(d) is computable, in the usual sense, as a function of the
sequence of charactersin d. O

We now use encoding functions to define other semantic and syntactic relations on
the code numbers of declarations. Intuitively, these relations will have the following

semantics: v_ is the renaming relation for the formal procedure name r, which when
given a code for a closed declaration p( g(formals) <« body ), produces a code for a
declaration with main procedure identifier r and having the same semantics as the
original declaration. For each open declaration d with free procedures qys--»q, Of types
TyseensTys there is a binding relation A 4 When £ 4 is given n codes for closed declarations
of Qqs--d;, 1t produces a code for the declaration {ql,...,qn}|d. The relation t, is the
interpreter relation that simulates procedure calls of type 7. Given a code for a closed
declaration of type 7 and codes for |7| closed procedure parameters and ||7| initial values
of ground parameters, it determines the possible final values of the ground parameters.

Lemma 2. Let I be an interpretation of ¥ and p be an encoding function for
Closures in I. Then for each formal procedure name r, 2.1 defines a unique partial
function v N — N; for each declaration d with n free procedure names, 2.2 defines a

unique partial function B N? — N; and for each procedure type 7, 2.3 defines a
unique relation ¢ C NI+ 5 dom(I)”"” X dom(I)”’ﬂ.

Recall that |7| is the number of procedure elements in the type 7, and ||7]| is the
number of ground elements in the type 7.
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2.1. v (i) = p(r(formal-list) « {d}|q(formal-list)), if there is a declaration d =
q(formal-list) — body in Closures such that p(d) = i and r is a formal procedure
identifier having the same type as q; otherwise v (i) is undefined.

2.2. ﬂdo(il,...,in) = p({dl,...,dn}|d0) if djis a declaration with n free procedures of

EYPES Ty peeesTys and i, = p(dk) for k = 1,...,n, where d, is a closure of type 7, ; otherwise
By (il,...,in) is undefined.
0

23. If qozdo is a closure of type 7 and qlzdl,...,qH:dH is a sequence of closures such
that the type of g is the same as the type of the jth procedure type in 7, then for all a,
b € dom(D)lil,

v {p(dy), p(dl),...,p(dH), a, b)
iff (o[ —a], ok —b]) € My( {dgdypnrdyg} | ag(@, &),

For values ¢, and &/ that are not encodings of declarations satisfying the conditions

above, ¢ (cg, €, 3, b) is false for all &, b.

In essence, the pair of valuations ( o[% — i}, oX — b] ) is in the relational semantics
of a call iff the interpreter relation ¢_ holds for the encodings of the procedures in the

call and the values 32 and b. The intuitive idea behind the interpreter relation as
specified by 2.3 is that for each L4 program m, we will construct an L4 program called
7* without procedures passed as parameters, which simulates 7 by passing code values
for closures. Where 7 has a call on a formal procedure, say r(q, x), the simulation 7*
will have a statement of the form INTERP(r*, q*, x), where INTERP is a program that
computes the interpreter relation ¢ using a representation of arithmetic in dom(I). The
variables r* and q* are new ground variables that at any point in an execution of ¥
will be set to the codes for closed declarations equivalent to the procedures r and q at
the same point in a corresponding execution of 7. Property 2.3 says that the semantics
of a procedure call in the language involving certain procedure declarations holds for a
pair of valuations iff the relation ¢ holds for codes of the declarations and the values of
the free ground variables. The simulation is defined precisely later in the proof.

Proof. The lemma asserts that v, By and ¢_ are uniquely defined , given any
encoding function function p for Closures in I. In the unbounded case, this is clear from
examination of 2.1 to 2.3, because p assigns a unique number to each declaration.

In the bounded case, p maps closures in each equivalence class of the relation =,
into a distinet number. Consider property 2.2. We want to show that S 4 is
0
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consistently defined as a function by defining the values of 3 do(p(dl),...,,r)(dn)). Suppose

that the codes of two distinct closed declarations appear in the ith argument position of
ﬂdo-
equivalent in I. But then, for any choice of the other declarations

{dl’""di-—l’di+1""’dn}’ the two declarations {dl’""di""’dn}ldo and {dl,...,d{,...,dn}|d0

must be semantically equivalent. Thus these two declarations must be assigned the

If d, and df are two declarations with p(d.) = p(d}), then d; and d are semantically

same code by p. This shows that 34, and similarly v, are uniquely defined for each
encoding function p.

The relation ¢_is well defined for each encoding function p for the same reason.
Whenever the codes of two semantically equivalent declarations appear in one of the
argument positions of ¢ ” then the semantics of the statement on the right side of 2.3 is
the same in both cases. O

From now on, p will be an encoding function and v, B, and ¢, will refer to
relations satisfying the conditions in Lemma 2.

We now discuss how the relations of Lemma 2 can be computed by a restricted class
of L4 programs having no procedures as parameters. We will proceed in two steps.
First, we will consider a special class of programs having two kinds of ground variables
and no procedures as parameters. The first kind of ground variable ranges over dom(I),
and the operations on these variables are the functions and predicates of I. The second
kind of variable ranges over enough of the natural numbers to be able to encode the
closures needed for our simulation.

In the second step of the discussion, we will replace the natural numbers by
“elements of dom(I). If I is unbounded, this causes no difficulty, because we can simulate
arithmetic in dom(I). But if 1 is bounded, only a finite number of values can be
represented. Recall that our ultimate goal is to find a way to simulate a given L4
program with another program having no procedures as parameters. Since any given
program that we would like to simulate can contain only a finite number of procedure
types, it is sufficient to be able to encode Closures(T), where T is a finite set of
procedure types. Recall that if I is bounded, an encoding function assigns a natural
number to each equivalence class of closures. We have seen in Lemma 1 that for each
procedure type there are only a finite number of equivalence classes. Therefore, for any
finite set of procedure types T, Closures(T) can be encoded with a finite number of code
values when I is bounded.

Let us define Codes(T), where T is a set of procedure types, to be the image of p on
Closures(T). Without loss of generality, we can assume that Codes(T) is N when I is
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unbounded, and [l .. m], for some m, when I is bounded. In the unbounded case,
program expressions of the code type are written over the similarity type {0, 1, +, —,
X, <, =}. In the bounded case, program expressions for the code type are written
over a similarity type containing only the constants 1,...,m, and equality.

Henceforth, we will call programs with the operations just described programs over

I with Codes.

Lemma 3. Let I be an interpretation of £, T be a finite set of procedure types,
and p be an encoding function for Closures(T) in I. Then there are programs over I with
Codes that compute the relations of Lemma 2 for the types in T, as described in 3.1 to
3.3 below. In the following, x, y are variables over Codes(T), and u, v are variables
over dom(I).

3.1. For each closure d, there is a program Codes-BIND ,(X", y) that halts and sets y
d
to B d(}’(“), if this value is defined; otherwise the program diverges.

3.2. For each formal procedure name r, there is a program C.odes-RENAMEr(x, y)
that halts and sets y to ur(x) if this value is defined; otherwise the program diverges.

3.3. For each 7 € T, there is a program Codes-lNTERP,(xo, iH, 1'1”’”, \7'”"”), that
does the following possibly nondeterministic computation: it does not change the inputs
X X, or U, but it sets Vv to any possible value such that ¢ 7,(xo, X, ﬁ, v) holds, if there is
such a value. More precisely:

For all valuations o and values a € dom(I)”"", there is a computation of
Codes-INTERPT(xo, X, 4, V) starting in valuation o, that halts and sets v to a iff the

relation ¢ (o(x,), (%), o(u), ) holds.

Note: The following is a consequence of 3.3. If there is no value a € dom(I)”"II such
that ¢ 1_(a(xo), o(x), o(u), a) holds, then Codes-INTERPT(xo, X, U, v) always diverges when
started in valuation o.

Proof.

3.1. In the unbounded case, Codes-BIND, is a simple arithmetic program on code

numbers. In the bounded case, there is a program that looks up the values of X" in a
finite list of cases, and sets y to the corresponding value. We do not give a way to find
this program effectively, but it is sufficient for our purposes to know that it exists.

3.2. The program for Codes-RENAME _ is similar to Codes-BIND ;.

3.3. In the unbounded case, the program Codes-INTERP, is an interpreter that
takes as inputs arithmetic values encoding the character strings for some declarations
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and initial values of ground variables over dom(I), and simulates execution of the
program in I. Given the set of declarations D, there is a constructive definition of
Codes-INTERP, as an L4 program. However, the construction is somewhat complicated
and there is a simpler way to see that the program Codes-INTERP, exists, using the
concept of an acceptable programming language from [CGH83]. One of the properties
of an acceptable programming language is that there is an effective algorithm, which,
when given an effective encoding of a program in the language and a initial valuation of
the ground variables, simulates the program one step at a time. For each program in
an acceptable language, there is a finite set of variables that it may may examine and
assign values to. Let us consider an acceptable language with ground variables w, w,,

Consider simulation of a program =« such that all of the variables examined or

assigned by 7 are among w,,...,W,. The simulation begins with an initial valuation o

that maps # to some set of values aX. At step i of the simulation, the algorithm

constructs a finite set of k-tuples terms of type ¥. Suppose this set at step i is
{flk(i),...,f nk(}'()}, for some n. Then the possible values of Lf for j = 1,...,k, are given

by {tlj(ék),...,tnj(ik)}, where 3 € dom(I)* is the vector of initial values of the
variables. At each step of the simulation, the algorithm must evaluate a finite set of
atomic formulas in the interpretation I. The free variables of these atomic formulas are
evaluated in the initial valuation, Ty Then the algorithm determines effectively if the
compuation can halt at that step and what the finite set of next steps is. For further
details refer to [CGH83].

In order to carry out this simulation using an L4 program over I with Codes, the
declarations and sets of terms will be encoded in arithmetic. For any finite signature,
there is a recursive program over I with arithmetic, H(X, ﬁk, v), that evaluates terms.
When given an input % that is a code for a term (%) and input & € dom(I)¥, H sets v
to t(ﬁk). Using H, one can write a program that evaluates atomic formulas. Other
details of the simulation are straightforward.

It is interesting to note that at no point in this simulation do we need to apply
operations to values of dom(I) other than the operations in I. In particular, we do not
need to assume the existence of a pairing operation on dom(I). For example, intuitively,
the definition of an acceptable programming language implies that it is possible to
simulate value stacks in a programming language by using coded sequences of terms.

In the bounded case, we have to see that there is a way to simulate procedure calls
when declarations are encoded using the finite encoding. We observed in the proof of
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Lemma 1 that in a bounded interpretation, for each n, there are a finite number of
semantically distinct programs with n free variables. Using this observation we can
construct the program Codes-INTERP_ by induction on the depth of 7.

For the base case, let 7 be a procedure type containing ||7{| ground elements and no
procedure elements. Assume that the semantically distinct declarations of type 7 have
codes 1,...,m, for some m. Let d™ be a sequence of declarations of type 7 such that p(di)

= i, for i = 1,...,m. Also let ™ be the sequence of main procedure identifiers in d.
Now we define m, to be a program with free variables 7l that invokes the declaration

di with actual parameters gill,
T = {di}|qi({’)-

Finally, Codes-INTERP (X, ﬁ”’“, i'r”"”) is the program,

Begin
V=T
if Xg =1 then T
if Xy = m then m_
else diverge;

End.

One can easily see that this program has the required properties.

Induction step. If 7 contains procedure elements, the construction of
Codes-INTERP,_(xo, iH, 1'1”"", w'r“"") is much like the base case except that the conditional
statements also test the values of the X, the codes for the procedure elements. As in the
proof of Lemma 1, we use the fact that the semantics of calls on a procedure with a
parameter of a procedure type 7 does not change when the actual parameter ranges
over semantically equivalent closed procedures of type 7.

As in the base case, Codes-INTERP, first copies the values of u to V. Then it has a
series of conditional statements. There are a finite number of combinations of the code
parameters X, and X. For each combination, Codes-INTERP, simply branches to a
different program with free variables v. Note that this construction is not effective, but
it shows that for higher types a program Codes-INTERP, exists with the required
properties. O

The next step is to take the programs from Lemma 3 and replace the variables and
operations over Codes(T) with variables and operations over dom(I). Again, this is done
by splitting into the bounded and unbounded cases. One small complication is
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introduced when we change from arithmetic operations to operations on dom(I). We
cannot assume that the interpretation I has constants and functions that can generate
enough of the domain to simulate the required amount of arithmetic. Instead, we use
an idea of simulating bounded arithmetic from [Li77, CGH83]. Each of the programs
for simulating arithmetic in I will have a special input variable, b, in addition to the
variables for the arithmetic operands and result. The program will use the initial value
of b to try to generate enough of the domain to simulate the necessary amount of
arithmetic. There will always be some initial value of b for which the simulation can
work. If the program gets an initial value of b for which it cannot simulate enough
arithmetic, it will diverge. Thus programs constructed by this simulation have the
following property: for every halting computation of the program interpreted over I
with arithmetic, there is a value of b such that the program interpreted purely over I
halts (and whenever the programs purely over I halt, they produce the correct result).
Whenever the program over I with arithmetic diverges, so does the program purely over

L.

Lemma 4. Let I be an interpretation of & with |I|>1, let T be a finite set of
procedure types, and p be an encoding function for Closures(T) in I. Then for some
k>0, there is a set NUM C dom(I)* and a surjection ¢: NUM — Codes(T) such that
there are programs interpreted over I with properties 4.1 - 4.3. In the following, B¥ is a
sequence of k ground parameters. The programs do not change the values of any of the
variables except for the output variable, y.

4.1. For each d in Closures(T) there is a (deterministic) program BIND d(B, gk gk
such that

Bﬁb ( (O'[B — ﬁb’ X — ﬁx, 3—7*— ﬁy]’
olb— T, X — 1, ) € MY BIND(b, %, 7) ) )
iff
i € NUM® A @ € NUM A $(T) = B(6(u )r-mrblu, o))

4.2. For each formal procedure name r appearing in D, there is a (deterministic)
program RENAMEr(B, K, }—,k) such that
Fuy, ( (o[b — U, X— U, ¥ ﬁy],
ob—T,X+1,¥§+ ﬁ;]) € M, RENAME (b, %, §) ) )

iff
ﬁ'ye NUM A 4 € NUM A q&(ﬁ’y ) = v (6(3))

43. For each 7 € T, there is a (deterministic for deterministic L4,
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nondeterministic for L4 with Or statements) program INTERP,(B, VJ‘, il"i'k, )7”"”, 'z'”"”),
such that the following condition holds

><|
::1

o Y
S} -,z+—u]) € MI(INTERPf(B,‘_Nyi7}—’7§)))

Fu, ( (a[l-)«—ﬁb, We U, U, y 20,

ofb — T, W1, X
iff
i, € NUM A G € NUMIT A 0 (8(T,), 8(u, )y 1) Ty T).

;::l

Proof. We need to substitute programs that simulate arithmetic over I in place of
the operations on natural numbers used in the programs of Lemma 3. In the bounded
case, we will assume that the domain contains at least two elements, so that code
numbers O,...,m can be encoded by k-tuples of domain values, for some k. This
encoding cannot depend on the program being able to refer to the k-tuples as constants
or values generated from constants because we do not assume that the domain is
Herbrand. An example of an encoding that can work is, let a k+2 tuple of domain
values encode a k-bit binary number. The first two values of the tuple are the values
for 0-bit and 1-bit. If these values are the same, or if the k+2 tuple contains values
other that these two values, then say the k+2 tuple encodes the number 0. Otherwise,
the k+2 tuple encodes the binary number given by the last k values. For any fixed k, it
is simple to write programs that use this encoding of arithmetic.

In the unbounded case, we make use of the fact that for some k there is a program
with k input variables that can set its variables to an unbounded number of valuations.
Then, as in [Li77, CGHS83|, pairs of k-tuples can be used to encode integers using the
unbounded program, where (ﬁk, ‘-,k) encodes the number n iff the program goes from the
values u to v in n steps.

In both cases, the program will check whether certain inputs are in the set NUM,
and will diverge for inputs not in the set. This is straightforward for the bounded case.
In the unbounded case, there is a program in [CGH83| that halts if a k-tuple of domain
elements represents a natural number and diverges otherwise. O

The programs of Lemma 4 are used in the proof in two ways. First, they show that
if the interpretation I is expressive, then the interpreter relations are expressed by first-
order formulas. This result plays an important role in Part 2. Also, we will use the
programs to construct a simulation of procedures passed as parameters, using domain
values to encode closures.

We need another simple expressibility result concerning the encoding function p and
the representation of natural numbers by k-tuples of domain elements with ¢ and
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NUM. For each procedure type 7, we show that there is a first-order formula Wr()"ck)
that expresses membership in the set of domain values that represent codes of

declarations in Closures(7).

Lemma 5. Let I be an expressive interpretation, T be a finite set of procedure
types, and p be an encoding function for Closures(T) in I. Let ¢ and NUM C dom(I)k
satisfy the conditions of Lemma 4, and for each procedure type 7 in T, let WELL, C

dom(I)k be the set of all X € NUM such that there is a declaration d in Closures(r) for
which p(d) = ¢(x). Then there is a first-order formula Wr(ik) that expresses
membership in WELL, i.e.

[ = W/(x) iff x € WELL .

Proof. Again, the proof splits into cases. In a bounded interpretation, Codes(7) is
a finite set. For each natural number n, there is a program that halts on input zk iff
#(X) = n. Thus, in an expressive interpretation, we can express membership in the
subset of dom(I)k representing Codes(7). In an unbounded interpretation, there is an
infinite set of natural numbers in Codes(7) for declarations of each type, but because the
encoding function p must be a computable function of the text of a declaration, it is
clear that for each type 7 there is a program that on input %X halts iff #(X) is a code for
a declaration Closures(r). O '



55

6.4. Simulating Procedures Passed as Parameters

We will present a set of program transformations that start with a program 7 and
the programs from Lemma 4, and produce a new program called 7* that has no
procedures as parameters, but is still in L4. Let X be the sequence of free variables in .
Then 7* has semantics in I that approximates that of 7 in the following sense: 7* has a
new free variable b not free in 7 such that

(ofx + ], ofx — W]) € My(m)
iff
3z ((ofb — 2, X 1], o[b — 3z, X «— T]) € M7*)).

The program 7* never changes the value of b, it just uses it as an input generate a
certain amount of arithmetic.

If o is a valuation, and Q is a first order formula that does not have a free
occurrence of b, then I,o = SP[n; QJ iff 3z (Lo|b — z] = SP[7*; Ql). Thusin an
expressive interpretation,

I = SPIm Q1 = 3bSPlr*; QI.

The statements within 7#* have additional semantic relations to 7= that we will discuss
later. ‘

In the remainder of the paper, we-assume without loss of generality that programs
satisfy the following conditions:

1. All declarations in 7 have distinct main procedure identifiers.

2. No formal procedure identifier appears more than once in any formal part in

m. In other words, a formal procedure identifier cannot be bound in more
than one place in 7.

3. All names of formal ground variables are distinct from local variables.

Any program can be easily put in this form by renaming, if necessary. Clearly, I &=
{U} m {V} « {U} «' {V}, where 7’ is the result of renaming bound variables (declared
procedure names, names in the formal lists of procedures, and local variable names) in
m. This renaming can be formally applied in the axiom system by using Ax 12 once at
the beginning of a proof.

We now define n* by induction on the structure of programs. The first five cases
are simple:
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. (x:=¢)* = x:=e,

2. (If b Then S1 Else S2)* = If b Then S1* Else S2*,
3. (S10OrS2)* = S1* Or S2*%,

4. (S1;S2)* = S1%; S2*%,

5. (Begin var x; S End)* = Begin var x; S* End.

The definitions of S* when S is a procedure call or a block with a procedure
declaration do most of the work of the simulations and are more complicated. Unlike
the first five cases above, the translations of these statements are given relative to the
entire program. In order to understand the transformation of procedure calls and
declarations, it will be helpful to keep in mind that the transformation accomplishes
two different things. First, it replaces procedures passed as parameters by ordinary
ground variables passed as parameters. This is the most complicated aspect of the
transformation, because it requires the addition of programs to dynamically compute
the code values and other programs to interpret the values. The other aspect of the
transformation is the removal of references to globals. In L4, a procedure declaration
can have free occurrences of formal procedure names, but of course, no free occurrences
of ground variables. The completeness proof will use the fact that the transformed
program has no free occurrences of ground variables in its procedure declarations. In
order to translate global references to formal procedures, we will expand the list of
ground parameters in declarations in the transformed program. These declarations will
have new ground parameters to pass along the codes for the formal procedures that
were global in the original program.

We will need the familiar notion of the scope of a procedure name: If p is declared
in the environment E in Begin E; S End, then the scope of p is the entire statement
Begin E; S End. If ry is formal procedure name in the list T in a declaration p(r, X) —
stmt, then the scope of r, is the statement stmt.

We say that a declared procedure name p is in the scope of another declared
procedure name p’ in 7 iff the declaration of p is in the scope of p’; p is in the scope of
a formal procedure name r in 7 iff the declaration of p is contained within the
declaration that has r in its formal list. Intuitively, the formal procedure names that
have meanings in the body of procedure p are the ones in the formal list of p and the
ones that have p in their scope. We will translate a procedure p into a new procedure
p*, with code parameters for these two sets of formal procedures.
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Let r,..
1’
number of distinct formal procedure identifiers in 7. For each of the formal procedure

oy be the formal procedure identifiers appearing in m, where X\ is the

parameters r;, i=1,...,\, the translation introduces a new ground variable, ri“. The
purpose of ri* is to hold a ground value that is a code of a closure corresponding to the
procedure r;. Roughly speaking, the idea is that r;" will be set dynamically during the
computation of 7* to a value that represents the meaning of r; ab the corresponding
step in a computation of .

In order to represent the natural numbers for the codes as domain values in I, it is
necessary to use a sequence of domain values of a fixed length that depends on I. Thus
the variables r;“ are actually sequences of k ground variables, for some k. Since we
never need to refer to the individual variables in such a sequence, we will refer to the
entire sequence by a single variable name, such as ri*. Assignment statements that
assign to code variables, and code variables used as formal and actual parameters in
programs, have the obvious meanings.

Notation. We now define certain sequences of the r and r* variables that will be

used for the rest of the proof. Intuitively, ri" is a code variable for the formal procedure

r.. If p is a declared procedure name in m, then Ff P

1
names in the formal list of p, and F*f P

is the list of formal procedure
is the list of r;“ such that r, is in the formal list

of p. We define 77 P to be the list of formal procedure names that have p in their
scope, and similarly, r *9P 5 be the list of ri“ such that I has p in its scope. Finally, we

~all ~yall . A — R
define " P (resp. F**" P) to be the list of all r; (resp. =*) in #/ P orin 797 (resp. in /P

or in 7*P),

In many places where we use these variable sequences, it is possible to determine

which procedure p is involved from the context. In such situations, we drop explicit

F*f xS P.

mention of p and write, for example, as an abbreviation for r
At various places in the proof, we will have occasion to refer to individual variables

in one of these sequences. We adopt the following notation: rfi stands for the iR

f

element of r’. Elements of other sequences are defined similarly.

Example. In order to help explain the construction of 7*, we will refer to the
following example throughout the text. Let Mo be the following program:
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Begin
Pl(rly Xl) -
Begin
Py(Xy) «— Begin r,(x,); r(x,) End;
If x, = 0 Then r/(x,) Else Begin x; := x| —1; p,(py, X,) End
End;
Py(Xs) — X3 i =3%Xg+1;
pl(pg’ X4)
End.

This program is in a form that satisfies the naming assumptions: all declarations have
distinct main identifiers, and no formal procedure name appears in more than one
formal part in the program. Let us consider some examples of the sequence notation for
formal parameters. The procedure p; has a formal procedure parameter r, so Ff P1is
the sequence [rl]. The declaration of P, is not in the scope of any formal procedure, so

79 P1 is the empty sequence. Thus, el 1o [r;]- The declaration of p,, on the other

hand, has no formal procedures but it is in the scope of r, so 7/ P2 i empty, and 7 P2

and 7 P2 are the sequence [r ]. (End of Example.)

Notation. In the follounng presentation, we omit the parameter b, which s
assumed to appear as the first ground parameter in all procedure calls of the
trans formed program.

6. In the following, r is the sequence of formal procedure identifiers appearing in
the formal part of a declaration with main procedure identifier Do The sequence X is
the sequence of ground variables in the formal part of the declaration of Py

(Begin py(T, X) < body; S End)* = Begin pg(F*a", X) +— body*; S* End,
where pg is a new declared procedure identifier. .

7. Translation of calls on declared procedures. Suppose p, is a declared procedure

of type 7, q is a list of declared and formal procedure identifiers, and ¥ is a list of
ground variables. The translation introduces a set of new local code variables, r’l,...,x”l _
to hold the codes for the |7| procedure parameters in the call.

The definition of the translation depends on the correspondence of the names for

kth

the actual and formal procedures in the call on p, In this case, the actual

kth

parameter is qy - The k' formal parameter of Po is the procedure identifier in the
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formal-list in the declaration of po. Using our notation, this is rfk, and its code

Jx

parameter is r*’,

(Po(@ ¥))* =

Begin
var r’l,...,r'H; {declare |7| local code variables}
i’ = eg(T*); {assign a code value to the r’ variables}
pa‘(l_'*alle, 5’)
End,
where 6 is the substitition [r’l/r*f L., r’l A / r*fl"l].
The statement '/ := es(x"*) is a shorthand for a program that assigns a code value

to each of the variables in r/, using the r* as inputs. This program depends on the
statement S, i.e. the particular call po(ﬁ, ¥). We will explain the details of the program
/

below. In the call on pj, note that the substitution § simply replaces the variables r*
(the codes for the formal procedure parameters of po) by the variables 7.

Notation. In the rest of the paper we will use a simplified notation for the

S 1/ . . . . . .
statement pa‘(r*a g, ¥) in the simulation. For ease of understanding, we will write this

statement as pg(t’, 7*% §). Thus the call on py will have the form pj(<code variables
for formal parameters>, <code variables for global parameters>; <original ground
parameters> ).

Example (cont.) Before describing the details of the calculation of codes, we will
give an example of the general form of the translaticn. Consider the call S1 = pl(P2’
xl), which appears in the body of p,inm,. The translation will be a statement of the
form

Begin
var r’l;
ry = eg,(r]);
py(r}, x,)
End.

Since pl(p2, xl) is a call on the declared procedure Py the translation will call the new
procedure pf. The procedure pr is defined to have one code parameter in place of a
formal procedure parameter. The translation defines a local variable r’1 to hold the code
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for py. The variable r| is assigned a value by the assignment statement r} := eg,(r}):
Intuitively, one can see that since the procedure Py has ry free in it, the calculation of a
code for a closed declaration equivalent to P, can be done if we are given the code for

r,. That is the reason that the code variable r¥ is needed in the calculation. (End of

1’ 1
Example.)

We will now present the formal details of the calculation of code values. Each of
the local code variables, r{, i = 1,..,|7|, is assigned a value according to one of the

following cases:

7a. If the i*! actual procedure parameter in the call, g, is the formal procedure T
then we set r} to the code for r

Since we want the translation to be an L4 program, we need to make sure that the
translation does not introduce global references to any of the ground variables. Let us
say that an identifier is bound by a procedure declaration if the identifier is in the
formal list of the declaration; we will say an identifier is bound in an instance of a
statement if the innermost procedure that contains the statement binds the identifier.
Thus to make sure that the statement r: = r}“ does not introduce any global references
to variables, we must check that rJi" is bound where this statement occurs.

Note that if T is bound in the original call in 7, then rji" is bound in the translation

of the call in 7* for the following reason: Suppose the innermost procedure containing

{ !
the call is p’. Then if r; appears in the call, T must be in either Ff Por?? , because r.

must be either a parameter of p’ or a parameter of some procedure that encloses p. In

iy

either case, r}" will be in 7**' P, and so will be bound in the translation.

An example will help to explain this point. In the program T the formal

procedure r is bound by procedure P,y SO it can be used throughout the body of p,- In

the translation, the variable rf will be bound by p’f, because r, is in F'f P1,

consider the procedure Pgs which is nested within p;- The formal r, appears free in the

Now,

body of p,. In the translation, rf is bound by pj because r, is in 77 P2, Thus rf is

bound in the translation where it is needed.

7b. If the i*! actual procedure parameter in the call, Q5 is a declared procedure, say
p, the simulation sets ri to a code for a closed declaration equivalent to p in the
“current environment.” Intuitively, we can construct this closed declaration in two
steps. First, we take the declarations of all the declared procedures that are reachable

from the body of p. This collection of declarations can have free formal procedure
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names. The second step is to add a closed declaration for each of these free formal
procedure names. These declarations are determined by the code variables ri“. In
effect, we add the declarations encoded by the code variables. Roughly speaking, from
all of these declarations we can then form a closed declaration equivalent to p in the
‘“‘current’’ procedure environment.

We will now describe precisely how the closed declaration is formed. It is important
to recall that we assumed that = has been put into a form such that all declarations
have distinct main identifiers, and formal procedure names appear in the formal list of
no more than one declaration. Because there can be no clashes of procedure names, all
of the declarations in force at the place where a procedure is declared are also in force
anywhere in the scope of the procedure.

Now, let us see which of the declarations of 7 are needed in order to form a closed
declaration equivalent to p. If p is a declared procedure name and q is any procedure
name, let us say that g is reachable from p by following free procedures for O steps if q
_is free in the body of p, and say that g is reachable from p by following free procedures
for k+1 steps if there is some declared procedure p’ that appears free in the body of p,
and q is reachable from p’ by following free procedures for k steps. Then we will say
that g is reachable from p by following free procedures if q is reachable from p by
following free procedures for k steps, for some natural number k. Furthermore, if S is a
statement of w, then let us say that q is reachable from S by following free procedures

iff q is free in S or q is reachable by following free procedures from some procedure free
in S.

For example, in T oot the procedure r, is reachable by following free procedures from
Py, because r, is free in the body of p,. Now, consider the call P, (P xl), which appears
in the body of the procedure p,. The procedures reachable from this statement by
following free procedures are Py» Pgs and ry. The first two are reachable by following
free procedures because they are free in the statement. The procedure r, is reachable
by following free procedures because the declared procedure p, is reachable, and
because r, appears free in the body of Po-

Now, let us fix a declared procedure p and define some environments related to p in
m. Let Edeclared
of all declared procedures reachable from p by following free procedures. Since all

be the environment consisting of the declaration of p and declarations

procedures declared in 7 have distinct names, there are no ambiguities in relating the
declared procedure names reachable from p to their bodies. Clearly, the only

procedures that can be free in E 4 are formal procedure names. To form a closed

declare
declaration for p, we need to have closed declarations for all of the formal procedure
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names free in E declared" Then we could define p with a closed declaration of the form
p(T, X) — (Edeclared U Eformal) | o(F, %),

where Eforma.l has closed declarations for each of the, formal procedure names free in

E & and T is a list of procedure names distinct from the the names in Eform al’

declare

In the simulation, the environment Efmm al will be formed from the code variables.
In order to do this, we will use a 1-sided inverse of the encoding function p. First, let T
be the set of all procedure types mentioned in m, and p be an encoding function for
Closures(T) in I. From now on, let pl: N — Closures(T) be a function such that
p(p}(n)) = n, for all n in the image of Closures(T) under p. In other words, p! is
defined for all codes of closed declarations of types mentioned in 7. Given a code for a
closed declaration d, p! yields a declaration that is semantically equivalent to d.

The environment E, . is essentially {p'l(ri*) | r, is free in E 4} However, for

technical reasons, the fz.;:act description of E¢ rmal iBVOlves redxigg;ng. During the
simulation, r;" is set to codes for various declarations; because of the way we define the
simulation, the main procedure identifier of these declarations is not r;. In general, the
code variables are set to codes for declarations with other procedure identifiers in 7. In
order to define Eform al in terms of the values of the code variables, we need to use the

renaming operator v_(d), which takes a declaration d and renames the main procedure
1

. . o L. . -1 . . )
identifier to r;. The exact description of B is {Uri(p (rf)) | r;isfreeinEg ;. .}

This completes the syntactic definition of the declaration that must be constructed.
Next, let us see how the simulation program can compute a code for the declaration
p(T, X) — (Eyeciared Y Etormal)[P(Ts X). We will use the program BIND 4, where d is the
declaration p(r, X) < Ej 4..4/P(f; X). This BIND program takes codes for the
procedure names free in d, and produces a code for a closure. The procedure names

free in d are the formal procedure names in E The simulation can compute codes

formal”
for the declarations in Eform al from the code variables r*. The simulation must use

RENAME programs to rename the declaration in ri“ to have main procedure identifier r.

Example (cont.) Returning to the example, let us again consider the translation of
the call S1 = p,(py, X,) in m . The translation had the form
Begin ‘
var ri;
7y i= g, (r})
GTRSY
End,
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where the assignment statement r| := eg,(r]) is an abbreviation for a program that sets
r’1 to a code for the procedure p, in the current environment. Let us see what this
program does. In this case, E declared contains just the declaration of Py because no
other declared procedures are reachable from p,. The environment Eform al will have a
declaration for r, because r, is free in E¢ rmal’ Thus, we will use the BIND, program,
where d is the declaration p,(x,) + Begin r/(x,); r;(x,) End. Then the translation uses
a renaming program to make a declaration with main procedure identifier r, from the
value of r{. Then the BIND program makes a closed declaration for Py Finally, r’1 is
set to the result of the BIND program.

This example illustrates the technical problem of renaming main procedure
identifiers. The result of the BIND program is a code for a declaration with main
procedure identifier p,. In the call p}(r}, x;) in the body of p}, the variable r} thus
takes on the value of a code with main procedure identifier p,. The renaming is thus

needed somewhere; we found it simplest to apply renaming just before the values are
used. (End of Example.)

This completes the description of how the simulation computes a code for a closed
declaration for p. However, in order to show that the program for computing the code
is well formed, we need to make sure that all of the code variables needed to compute
E

formal 3T€ bound where their values are used.

Recall that a code variable is only bound in certain procedures in 7*. Previously,
we discussed the assignment of code values in the case of a formal procedure appearing
as an actual in a call (section 7a). There, we considered simulating a procedure call
contained in the body of a procedure, say p’. It was a simple matter to see that if a
code variable was used in simulating the procedure call, then, by the definition of m*,
the code variable was bound in the translation of the procedure p’. Now we must make
a similar argument for the code variables that are used when a declared procedure
appears as the actual in a call.

Suppose the procedure p is an actual parameter in a procedure call and the call is
contained in the body of some procedure p’. We will now show that all of the necessary
code variables are bound in p’*, the procedure that simulates p’. This can be shown by
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considering relationships between the scopes of the procedures of m78 We begin by
observing that scopes have a transitive property.

Lemma 8.1. If a procedure p (resp. a statement S) is in the scope of a procedure
p’, and p’ is in the scope of a procedure q, then p (resp. S) is in the scope of q.

Next, we use the transitive property to show a simple relation between reachability
and scopes:

Lemma 6.2. If a procedure q is reachable from p by following free procedures,
then p is in the scope of q.

Proof. The proof is by induction on the number of steps needed to reach from p
to q. The base case is when q is reachable from p by following free procedures for 0
steps. By definition, this means q is free in the declaration of p; then clearly p is in the
scope of q. For the induction step, assume that for all p and q, if q is reachable from p
by following free procedures for k steps, then p is in the scope of q. Now suppose q is
reachable from p by following free procedures for k+1 steps. Then there is some p’ free
in p such that q is reachable from p’ in k steps. Clearly, p must be in the scope of p'.
By the inductive hypothesis, p’ is in the scope of q. By the transitive property of
Lemma 6.1 we can conclude that p is in the scope of q. [

Next, recall that the environment E declareq consists of the declaration of a procedure
p and all of the declared procedures reachable from p by following free procedures. A
formal procedure r is free in Edeclared iff it is reachable from p by following free

procedures. This gives us the following corollary.

Corol. 6.3. Let p be a declared procedure and E declared be the environment
defined for p. If r is a formal procedure name free in E declareq» tR€D P is in the scope of

7The remainder of this argument may be omitted on the first reading by skipping to the end of Lemma
6.4.

8An alternative way of constructing n* would be to include all of the ©* code variables as parameters
to each procedure in the simulation. On first examination, it may appear that this would simplify the
proof, because we would not have to be concerned with which variables are bound at which places.
However, when the full proof is considered, the alternate construction of #* would simplify this part of
the proof at the expense of adding a greater amount of complication in the part of the proof that uses the
axioms. That part of the proof depends on the fact that the semantics of a simulation procedure p* is

i
affected only by variables in f*a and not by the other code variables. So we purposely restricted the

. . . _gall .
declaration of p* to use only the variables in T* in order tc reduce the complexity of Part 2 of the
proof. With the alternate construction, an argument similar to Lemmas 6.1 — 6.4 would still be needed,
and the result would be much less convenient to apply in Part 2.
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r. Equivalently, if r is free in Edeclared’ then r is in 77 ©.

We can now complete our discussion of the code variables needed for the simulation
of a procedure call in which p appears as an actual parameter. Let p’ be the innermost
procedure containing this (instance of) the call. That is, p’ contains the call and every
other procedure of m that contains the (instance of) the call also contains the declaration
of p’. We have seen that the simulation requires all the code variables ri“ such that r, is
free in the declaration of p or reachable from p by following free procedures. We can
now show that all of these code variables are bound by p’*.

Lemma 68.4. If r is a formal procedure name free in E declared’ then r* is bound by

pl*.

Proof. We must consider two cases. If p is free in the declaration of p’, then p’ is
in the scope of p. By Lemma 6.3 and the transitive property, p’ is in the scope of r.
But then, by definition, r is in F° pl, and so r* is bound by p’*. Now, suppose on the
other hand, that p is not free in the declaration of p’. In this case, p must be declared
within p’. Furthermore, since p’ is the innermost procedure containing the procedure
call with p as an actual parameter, p’ must also be the innermost procedure containing
the declaration of p. Similarly, one can see that if p” is any declared procedure
reachable from p by following free procedures, then either the declaration of p” is
within p’, and p’ is the innermost procedure containing this declaration, or p’ is in the
scope of p”. It follows from this that if r is a formal procedure reachable from p by
following free procedures, then either r is bound by p’ or p’ is in the scope of r. If r is
bound by p/, then r* is bound by p'*, and as before, if p’ is in the scope of r, then r* is
also bound by p’*. O

We will now summarize the results of the construction of 7b. Sections 7a and 7b
describe the construction of a program that sets the local code variables r'. We
abbreviated this entire program by the statement /' := eS(F*). In section 7b, we have

been describing the program that assigns a value to r{ in the case that the i*M actual

parameter in a procedure call is a declared procedure. We can abbreviate this program
by the statement ri == ei(x"*). Actually, the only =* variables that are used in the
statement are those that correspond to formal proced-res that are free in E We
showed in Lemma 6.3 that all of these procedures are in 7P so the corresponding code
*x9P

declared’

variables are all in T

Note that the program r! := e(r*) is guaranteed to terminate (for some value of b
-- not shown), setting ri to a code for a closed declaration of the same type as p,
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whenever each variable ri“ in 7*9 P

is initially set to a domain value such that ¢(rf‘) is
defined and is a natural number code for a closed declaration of the same type as Iy

We will refer back to this fact about definedness in Part 2.
This completes the translation of calls on declared procedures.

The translation of calls on formal procedures is similar to the case of calls on
declared procedures. The main difference is that instead of calling a procedure p*, the
translation calls an interpreter program. The translation for S = ri(ﬁ, y) is as follows:

8. (@ y)* =

Begin
var r,l”"’rllrl;

' = eg(T*); {assign a code value to each of the '}
<F>(<r'>, §)

End,

where 7 is the type of r, ’Jl’""r’fi are new code variables, and <r¥>(<r’>, ¥) is a
simulation program which uses programs from Lemma 4 (explained below).

The essential difference between the calls pi(d, ¥) and r,(q, ¥) is that in the first call,
the main procedure p; has a fixed, known body in the context of w, while in the second

one, r; ranges over a possibly infinite set of procedures. In the translation of p;(q, ¥), we
introduced a fixed procedure pi“, which could simulate calls to p; with different possible
actual parameters. We did this by defining pi“ to have a body that was structurally
similar to the body of p; but which used code variables instead of procedures. In order
to translate calls to r;, we use an interpreter program to handle the possible infinite
range of the main procedure.

We define <ri*>(<F’>, ¥) to be a program with free code variables ri“, r/, and
additional free ground wvariables y. Intuitively, <ri*> can be thought of as ‘‘the
procedure encoded by r;",” and <ri*>(<r"'>, y) can be thought of as a call of the
procedure encoded by ri“, with the actual procedure parameters encoded by r’, and the
actual ground parameters y. Recall that Lemma 4 showed the existence of a program
INTERP_, defined purely over dom(I), that computes the interpreter relation ¢, in the
sense that when it is started with domain values encoding a main procedure, a list of
codes for procedure parameters to the main procedure, and a list of ground parameters
to the main procedure, it sets the list of ground parameters to the same values that the

unencoded procedure call would.
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As defined in Lemma 4, the program INTERP, requires all of its code parameters to
be codes for procedures with distinct main procedure names. In constructing 7*, it is
necessary to use the v programs at some point to rename the main procedure identifiers
in declarations. For example, the environment binding operation is defined to form a
declaration that has the same main procedure identifier as the original declaration.
Consider a procedure call such as ri(rj, rk), where r; and Iy have the same type. A
program can reach an environment where T and ry correspond to one declaration p:d in .
two different environments, E|p:d and E'|p:d. In the simulation, it is necessary to use
renaming in the interpreter program to prevent these two declarations from clashing.
For convenience, we will use a version of the interpreter program that always renames it
code parameters to be declarations with distinct main procedure names. This is simply
a convenience to make it unnecessary to maintain distinct names at all times.

For the rest of the proof, we will take the program <u>(<¥>, ¥) to be a program
that first renames its code arguments u and ¥, to have distinct names, sets the result of
the renaming into u’ and ¥, and then invokes INTERP (u/, ¥, ¥). In each context where
we use this notation, the code u will be associated with some intended type 7, and the
interpreter program actually used will be the one for that type. For instance, in the
above translation of calls to Iy 7 is the type of I

The first code variable in <r}>(<i'>, ) is the code for r;, The other code variables
i’ specify closures for the |7| formal parameters to r;. Since all of the closures are closed
declarations, this information is sufficient to interpret the call with the ground variables

y.

In defining (p(q, ¥))* it was necessary to carry along codes for global formal
procedures because of the possibility that free procedures could be referenced by one of
the declared procedures. This is not needed in this case, because instead of calling one
of the procedures pi“, the translation calls INTERP_ with closures for all the formal
procedures.

The setting of the code variables ' is the same as the previous case. There are two
cases to consider: an actual parameter can be either a formal procedure or a declared
procedure. The values are assigned in the same way.

This completes the definition of S*, for each staiement S. Note that if 7 is an L4
program, then the declarations in 7* have no free occurrences of program variables and
no free occurrences of procedure identifiers except for the procedures p*. There are no
free references to formal procedures. This means that the declarations in 7* can be
moved from inner scopes to the outermost scope without changing their meaning.
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Example. (cont.) The complete translation of the example program Moy is:

Begin
ity %) =
Begin
p3(r}, X;) «— Begin <rf>(x,); <rf>(x,) End;
If x; = 0 Then <rj>(x,)
Else Begin
X; =X — 1;
Begin
var r'l;
ry += egy(r});
pH(,, x,)
End
End
End;
p;(xs) — Xg = Xg+1;
Begin “
var r’l;
= e
pr(rlp X4)
End -
End.

6.5. Semantic properties of the simulation

In this section we develop some results about the semantics of the simulation
program. These results will be used in the completeness proof.

We summarize the results of the construction of 7* in the following lemma, which

states that the semantics of a statement S in the environment Eform al UE declared is

essentially the same as the semantics of (E S)*, provided the code variables r* are
declared

initially set to an encoding of the formal procedures B¢ imal

Lemma 7.1. Let S be a statement of 7, and E declared be the environment of all
declared procedures reachable from S by following free procedures. Let r be the
declared’ Let Eformal =
{rlzdl,... rn:dn} be an environment that assigns closed declarations of the correct types
to each name in r. We will use the function ¢:NUM — Codes(T) from Lemma 4, that
maps elements of NUM (i.e. k-tuples of domain elements) into the natural numbers that
the domain elements represent. Let v® be a sequence of n k-tuples of domain elements
such that v, represents the code for r;:d;, that is ¢(v;) = p(r;:d;), for i=1,...,n. Finally,

sequence of formal procedure names free in either S or E
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let T* be the sequence of code variables corresponding to the sequence of procedure
names .

Under these assumptions,

(of% =T, ofx u]) € ’MI((Eformal U Edecla.red)ls)
iff
32 (ofk « G, bz, T* 7], ok = T, b — 2, 7* = 7]) € M{(EyoeiaredlS)))-

For the full program m, which has no free procedures, Lemma 7.1 has a simpler
form. We need only this special case of the lemma for the completeness proof. In order
to state the simpler form of the lemma, we will define what it means to existentally
quantify over a variable on a relation on val; X val.. If R is a subset of val; X val; and
x is variable, then 3xR is the relation defined by (o, ¢/) € 3xR iff Ju((o[x « u],
olx—u]) € R).

Lemma 7.2. The semantics of 7 is essentially the same as the semantics of 7*,
that is, My(m) = IbM(7*).

Proof. This is simply a restatement of 7.1 in the case that there are no free
procedure names. [

Notation. In the remainder of the proof, we will frequently need to express
strongest postconditions of statements in #*. Since 7* has no procedures passed as
parameters, the only procedure names that can appear free in a statement are the
procedures declared in 7*, the pi*. For a statement S* of 7*, we will write SP[S*; Q]
to denote the strongest postcondition of S* with respect to Q in the procedure
environment of 7*. To state this precisely, let Dn* be the set of all declarations
occurring in 7*. Then SP[S*; Q] is an abbreviation for SP [D#n*|S*; QJ.

In the proof of the completeness theorem, we will need a special property of the
simulation program, having to do with the input parameter b and the simulation of
arithmetic. In bounded interpretations, the role of b is to supply a pair of domain
values that can be used to simulate a fixed, finite amount of arithmetic using an
encoding such as the one discussed in Part 1. In unbounded interpretations, b supplies
starting values that are used to generate other reachable domain values in order to
simulate arithmetic. @©'We now show that the semantics of the statements in the
simulation have a certain special property involving the variable b.
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For R, and R, subsets of val; X val, let R, o R, denote the composition of
the relations R,, R,, that is, (o, o)) € R, o R, iff for some 0", (0, ") € R,
and (0", o) € R,

For any two programs in the language 71 and 72, we have MI(n'l; m2) = MI(ﬂ'l) o
MI(1r2). A consequence is property SP 4 of strongest postconditions: SP [(71; 72); QI
= SP([#2; SP[wnl; QJ]]. We now show that the statements that appear in the
simulation program enjoy a special, additional property with respect to the variable b.
If S1 and S2 are statements in the simulation, then 3bM; ~(51;82) = BbMLDﬂ_*(Sl) o
EbMLDﬂ,,(S2). This says that the following are equivalent: (1) there is an assignment of
a domain value u to the variable b such that the computation of S1;S2 can start in a
valuation o[b «+ u] and stop in the valuation o”[b «— u]; (2) there are domain values ul
and u2 of b such that S1 can start in a valuation o[b « ul] and reach a valuation
o'[b «— ul], and S2 can start in ¢’[b — u2] and stop in valuation o”[b «— u2]. Note that
the semantics of the statements S1,S2 is in the environment Dn*, which consists of all
the procedure declarations in 7*.

Lemma 8. If S1 and S2 are statements in the simulation, then 3bM;  .(S1;S2) =
EbMI’Dw,(Sl) o EbMI,Dﬂ_.(S2).

Proof. Intuitively, if a statement in the simulation, when started in an initial
valuation o with b set to a certain value u, can halt in a final valuation ¢/, then for all
u’ that are “‘at least as large as”” u, when the statement is started in valuation o[b — u]
it can halt in valuation o’[b «— u/]. What is meant by u’ being at least as large as u is
that u’ represents a larger natural number than u does, that is, ¢(u’) > ¢(u).

For any values ul and u2 of b such that the statement S1 starts in valuation
o[b < ul] and stops in valuation o’[b — ul], and S2 starts in o’[b < u2] and stops in
o”[b + u2], there is a value of u of b such that S1;S2 starts in valuation o[b « u] and
halts in ¢”[b « u]. In essence, #(u) is max(¢(ul),d(u2)).

Thus IbM; p,_+(S1) © IbM;p_4(S2) C IbM; [, «(S1;52).

In the other direction, it is clear that any pair of valuations in IbM; ) .(S1;S2)
must also be in IbM; ) «(S1) o IbM; . «(S2), because both S1 and S2 terminate for the
same value of b in EbMI D”*(SI;S2). O

In the completeness proof, we will use this lemma in reasoning about strongest
postconditions of the statements in the simulation. The following corollary gives the
form of the lemma needed for the proof.

Cor. 3b SP[(S1; S2); Q1 = 3b SP([S2; 3b SP[S1; Q11 (provided b does not
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appear free in Q).,
Proof. From Lemma 8 and the definition of strongest postcondition. O

Finally, we conclude this section by mentioning some facts about the program
r/ := e(r*) that will be used in the completeness proof.

Lemma 9. Consider a procedure call S = qo(ii, E), on an arbitrary (either declared
or formal) procedure g, of type 7. Assume = eS(F*) is the program that computes
the codes r’ in (qy(q, 2))*, and C is a first-order formula that expresses
3b SP [’ := eg(f*); W(r*)]. Further, assume that the only free variables of C are r*
and r’. Then C has properties 9.1 - 9.4. The intuition behind these properties is given
in the proof of the lemma.

9.1. I = C D W(r') A W(r*).
9.2. IE=(3r'C) = W(r*).
9.3. If q, 1 <k < |7, is a formal procedure r;, then I =CD r, = rp.

94a. If q,1<k< 7|, is a declared procedure Py, and o, o' are valuations such
that [,oc = C A W(u), then

(0, 0) € EbMI’Dﬂ*(<Hk>(<ﬁ>, X))
iff
(0, 0) € IbMyp(ph(T, 79 %))

Proof. For 9.1, observe that none of the variables in ©* is changed by the program
in C. Thus from the fact that b is not free in W(r*) aad from SP 1, we have
[ = C A W(E*)
= Ib(SP [/ := eg(t*); W(F*)]) A W(r*)
Ib(SP [t/ := es(f'*); W(r*)1 A W(T*))
3b SP [’ 1= eg(t*); W(r*)]
C.

i

Hence, [ = C D W(r*). By the construction of ' := eg(r*), for each valuation o
satisfying W(r*), there is a value v of b such that the program 7/ := eS(F*), when it is

started in the valuation o[b « v], halts setting ' to values that satisfy W(r’). This
shows that 9.1 holds.

For 9.2, we use the fact that the only free variables of C are t* and /. By 9.1, =
3r' C D W(r*). Asin 9.1, we use the fact that for each valuation o satisfying W(r*),



72

there is a value v of b such that the program ' := eS(F*) always halts when it is
started in the valuation o[b «— v]. From this it follows that I = W(r*) D 3r' C.

The remaining two properties of C relate to the particular codes assigned by the
program, as described in steps 7a and 7b of the definition of S*. If q is a formal
procedure Ty then r’k is assigned the value ri';. This gives 9.3

If q isa declared procedure p,, then r’k is set to a code for the procedure p, in the

environment of free formal procedures encoded by t*9.  Thus when started in a

valuation satisfying C A W(1), the interpreter program <r,>(<u>, X) has essentially the
same semantics (the same semantics except for b) as the call pf(u, 7*% %) which

simulates p, on formal procedures encoded by u and global procedures encoded by 7,

In the completeness proof, we will use the following statement of this fact in terms of
strongest postconditions:

9.4b. If q, 1 < k <7}, is a declared procedure p,, then
[l=C D (3bSPn>(<d>, x); Xx=3X0AW(Q)] =
3b SP [p(T, 7*% X); % = X0 A W(@)1).
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7. Provability in the Axiom System

Notation. We implicitly associate a procedure type with each code variable. If r
has type 7, in then we associate the type 7. with ri“. Similarly, each code variable in a
formula will correspond to some procedure variable and hence to some type. In Lemma
5, we showed that the relation WELL, which is true for X € dom(I)k provided X
represents a code for a declaration in closures(D) of type 7, is expressible by a first-order
formula, W (X). For ease of notation, we now adopt the following convention: If ri“ is a
code variable, then W(r¥) is an abbreviation for the first-order formula W (r}), where 7

is the type implicitly associated with r;". For a vector of code variables, such as r*?,

W(r*") is an abbreviation for W(ry) A ... A W(r¥). These abbreviations will be used
throughout Part 2.

7.1. The Main Lemma

We are now ready to formulate the inductive hypothesis for the proof of the
Completeness Theorem. Much of the work of Part 1 has been to permit us to define
this inductive hypothesis. It will have approximately the form

Th(I) — Hg — {x=%0} S {3b SP[S*; x=x01},

where S is an arbitrary statement of m, and HS is a formula that expresses assumptions
about the free procedures of S. We will prove the hypothesis by the usual induction on
the structure of S. The assumption HS will depend on the procedure environment of
S. In particular, for the full program x, we will define H_to be the formula True. After
we have proved the inductive hypothesis, we will use the fact that H_ = True to deduce

Th(I) I {x=x0} » {3b SP[7r*; x=%0]}.

But since 3b SP [7*; X=X%0] = SP [n; i%iO] , we will have shown
Th(I) — {x=%x0} = {SP[m; %=%01},

from which the Completeness Theorem directly follows.

Let us now return to the inductive hypothesis and attempt to gain an intuitive
understanding. We will make use of the relation ‘less defined than,” between two
interpreted programs or procedures. For two programs To and T let us say that U is
less defined than m iff My(m)) C© Mm ). Because of possible nondeterminism, this
amounts to saying that for every computation of T starting in a valuation o and

halting with a valuation ¢/, there is a halting computation of T with the same initial

and final valuations. We extend this definition to procedures with only ground

parameters in the obvious way: If E is an environment that gives meaning to two
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procedures ro and r, of the same type with only ground parameters, then we will say To

is less defined than r; in E and I iff E|ry(X) is less defined than E|r,(X) in I. The
generalization to higher types will be given when we return to the formal presentation.

Observe that if m, is less defined than |, then =, satisfies any pca that m does.
That is, for any first-order formulas U and V, I = {U} m, {V} implies I = {U} =,
{V}.

Let us now explain the hypothesis Hg in more detail. In order to carry out the
structural induction argument in the proof of the main lemma, we will define HS to be
an assertion about all of the procedures that have S in their scope. Since the formula
depends on scopes, Hg is actually defined for each instance of the statement S in 7. For
any instance of a statement S, the following inclusions hold: {procedures free in S} C
{procedures reachable from S by following free procedure names} C {procedures that
have S in their scope}. We define Hs to be an assumption about the last of these sets
in order to have the strongest possible assumption about free procedures throughout the
structural induction.?

The formula Hg expresses a relationship between the procedure identifiers and the
code variables r*. The form of HS is a conjunction of assertions, one conjunct for each
of the procedure identifiers that have S in their scope. For the moment, let us restrict
attention to the case that all procedures have ground parameters only; we will give the
general case of procedures with higher types when we return to the formal presentation.
For a formal procedure r; that has s in its scope, HS will have a conjunct H(ri, ri“),
which will say that r(X) is less defined than (r,(X))*. Recall that in the simulation,
(r;(X))* is defined to be a call <r¥>(X) on the procedure encoded by the variable r¥.
Formally, LE,¢ = H(r;, rf) iff E|r,(X) is less defined than <¢(r*)>(X), where the latter
expression denotes a program that calls the procedure encoded by r¥. Intuitively, one
may think of the conjunct in this case as expressing the relation “r; is less defined than
<ri“>.”

In case a declared procedure p has S in its scope, then HS will have a conjunct that
expresses the relation that p(X) is less defined than (p(x))*. Since the simulation

program (p(X))* depends on the code variables 7*7, Hg formally expresses a relation

between the procedure variable p and the environment variables F*7.

9The completeness proof could also be formulated using a weaker hypothesis HS involving only the

procedures reachable from S by following free procedures. The approach taken here of using the strongest
possible assumption gives a slightly simpler proof.
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We can summarize the last two paragraphs by saying that if q is list of arbitrary
procedure identifiers that have S in their scope, then Hg expresses the relation that q,(x)
is less defined than (q;(X))*, for all q; in the list.

Recall that the inductive hypothesis has the form
Th(I) Hy - {x=x0} S {3b SP[S*; x=%0]}.

We now explain the intuition behind the pca on the right of the arrow. First, let m,
and m, be any two programs, and consider the pca {x=%0} m, {SP [,;; X=X%0]}, where
X includes of all the ground variables free in either program, and X0 is a list of new
variables not free in either program. It is apparent from the definitions of truth of a
pca and strongest postcondition that this pca is true iff Ty is less defined than ;. Thus
LE,§ = {x=%0} S {3b SP[S*; x=x01} if E|S is less defined than S*. Intuitively,
since Hg will be defined to mean “q(y) is less defined than (q(¥))*,” we may read the
inductive hypothesis in this case as saying, ‘“‘It 7s provable in the aziom system that
whenever q(¥) is less defined than (q(¥))*, then S is less defined than S*.”

We now return to the formal presentation.

Definition. For each procedure type 7, we now define a formula with a single free
procedure name q of type 7 and a single free environment variable v. Intuitively, this
formula will assert that if v is a code for a closed procedure of type 7, then q is less
defined than <v> (the procedure encoded by v). For notational convenience, we will
introduce an infix notation and write q <, v as an abbreviation for the formula. Since
the type 7 in the formula q <_v is the type of q, we will drop the subsecript and simply
write q < v when the type of q can be determined from the context.

If 7 does not contain any other procedure types, i.e. || = 0, then q < v is the peca

g v d=ef {Xx =%0 A W(v)} q(x) {3b SP<v>(x); x =30 A W(v)1}, (if |7 = 0).

This formula is satisfied by a procedure q and domain value v, under the following two
conditions: (1) v is a code (for a declaration of type 7) and any valuation reachable by
starting with X = X0 and executing q(X) must satisfy the strongest postcondition of the
simulated call <v>(X), or (2) v is not a code. Intuitively, in case 1, the procedure q is
less defined than the procedure encoded by v.

We proceed by induction on types. If 7is (Tl,...,TI A var”""), then q € v is



def
T = "
vglm valr ( (A g<y) —
1==1
(% = X0 A W(T) A W(¥)}
q(g, X)

{3b SP [<v>(<D>, X); X = X0 A W(1) (\ W(v)1} )
(if || # 0)

where g is a sequence of procedure variables with g having type T and u is a sequence
of environment variables. Intuitively, this formula says that a higher-typed procedure q
is less defined than <v> iff for all procedures g having the right types and codes 1,
whenever all of the g; are less defined than <u,>, then q(g, X) is less defined than
<v>(<w>, X).

We now use the formula <« to define the conjunct of the assumption Hy. Ifrisa
formal procedure identifier of type 7, in m, then we define R, to be < with appropriate
free variables substituted; i.e.

N def N
Ri(ri, ri) = r, <rf.

Thus R, simply asserts that the formal procedure r; is less defined than <ri*>. As a
convenience for the reader, when we first define formulas that will appear later in the
proof, we will list the formula’s free variables in parenthesis.

If p; is a declared procedure identifier of type 7. in m, then we define P, to be a
formula with the following free variables: the procedure identifier p; appears free, and

-x9 P

of the full set of environment variables r*, only those in ©*® *i appear free.

—xg iy 9ef
Py(p;, T*7 1) =

I
VEH vl ( ( k/llgk < uk) —
{x = %0 A W(@) A W(F*9)}
Pi(g, X)
{3b SP [p¥(@ % X); X = X0 A W(@) A W(F*9)1} )

where g is a list of procedure variables and u is a list of environment variables. (Re-
call that SP [pi“(..); Q] is an abbreviation for the strongest postcondition of a program,
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SP [Dm*|p¥(..); QI, as defined before Lemma 8.)

If H}, Hy, ..., is a sequence of formulas and (i) is a condition that is true for a
finite number of values of i, then we define (A H, | ®(i)) to be the conjunction of the

1
H; s.t. ®(i) is true. If &(i) is never true, then (A H; | ®(i)) is defined to be the formula
1

True.

We can now define the assumption HS‘ If S is a statement of m, then HS is PS A
RS, where

Sz =xy %J — ¢
P°(p, r*) = (/1\ P, | S is in the scope of p,),

S= =xy %f .
R(r, t*) = (/1\ R, | S is in the scope of r,).
Observe that because the full program =n has no free procedures, it is not in the
scope of any procedure. Hence, P™ = R™ = True.

The Completeness Theorem follows as a consequence of standard techniques from
the following lemma:

Main Lemma. If 7 is a program in L4, I is an expressive interpretation, S is an
instance of a statement of m, and x is the sequence of program variables free in S, then

Th(I) — PSARS — {Z=3%0AW(F*)} S {3bSP[S* % =30 A WF*)]}.

Proof of Main Lemma. The proof proceeds by induction on the structure of
S. The Recursion Rule is used to discharge the assumptions PS and RS. The most
important cases in the proof are the base cases for procedure call statements. Pi is a
“most general formula” for calls on the declared procedure p; -- it describes the
semantics of a call on P, for any set of parameters. Similarly, Ri is a most general
formula for calls on the formal procedure r,. When reasoning about a particular call,
we instantiate the universally quantified variables in the most general formula and then
apply derived axiom 13 to logically weaken the general formula. In Section 4.2.4, we
defined C ~»> H, where C is a first-order formula whose only free variables are
environment variables and H is an arbitrary formula, to be a certain formula that is
semantically equivalent to C — H. The meaning of such a formula is “If the
environment valuation satisfies C, then H holds.” Note that H — (C ~> H) is
semantically valid because of the equivalence of C ~> H and C — H. We showed that

}-—H—-» (CN)H),
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and we use this formula as derived axiom 13. In the completeness proof, this axiom is
used to weaken the most general formula for reasoning about a particular call. For
example, when reasoning about a call on p;, we would deduce

Th(I) — P, — (C ~>P)),

where Pg is an instantiation of Pi' Roughly speaking, the first-order formula C is

*f P;

chosen to assert that the environment variables r are set to codes for the actual

parameters of the particular call. With such a choice of C, the formula for the Main
Lemma can then be deduced using other conventional reasoning. Reasoning about calls
on a formal procedure r, is similar and involves specializing the formula R, by
instantiating it and using the derived axiom.

Notation. In the remainder of the proof we will be discussing provability with
respect to Th(I). To avoid repeating this, we adopt the convention for the remainder of
the proof that H1 |— H2 means Th(I), H1 I H2, except if we specifically mention that
this convention is not to be applied.

7.2. Proof of the Main Lemma for a call on a declared procedure

Consider a statement S = pi(?q', z), where p; is a declared procedure of type 7, 7 =

(rl,...,rl A var”’”). Each of the g is either a declared or formal procedure identifier of 7
with type T and Z is a sequence of ground variables.

First we will give a brief overview of the proof and then the details. By
assumption, Pi’ the most general formula for calls on p;, is a conjunct of PS in the
hypothesis. By definition, Pi has the form

et (o :
Vg Yu ( ( k{\_zlgk < uk) - pC[ pi(g7 X) ] )1

where pc is a pca involving the call p,(g, X). In order to use this formula to reason
about the call p,(q, z), we will first instantiate the bound variables g and 4. We will
instantiate the procedure variables g to the actual procedures q. For the environment
variables 1, we will instantiate u to a new environment variable r’k, where r’k is
constrained to be a code for the procedure Q- The result of these substitutions will be

|1
( (k/;lqk <r) — pe[pfax)])

where pc is now a pca involving the call pi(ﬁ, X) with the actual procedures q.

Roughly speaking, we would like to show that the formula on the left of the arrow
is provable from the hypothesis pS A RS, i.e.
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S S |
(1) — P°PAR> — (k/llqk<<r’k).

From line (1) we would be able to deduce

— PSARS — pe| Pi((-l’ x) ],
which would then lead to the proof of the main lemma in this case. By assumption, all
the q) are either declared or formal procedure names whose most general formulas are

included in PS A RS. But, observe that (1) is not semantically true in I because the
values of the free environment variables r’ are not constrained by PS5 A RS.

The most general formulas in PS5 A RS relate the procedures in q to the free
environment variables r*. For instance, Rk is re < r;, so if r, appears in q, it is
sufficient to constrain the corresponding variable in T’ to be equal to rf(‘. This will
satisfy the conjunct of § <« r’ involving r,. For a declared procedure Py which appears
in q, we have the hypothesis P, which relates p, to the code variables r*. If p, has
only ground parameters, then P, asserts that p,(X) is less defined than (p,(X))*, where
(py(X))* depends on *. If Py has a higher type, P, is a generalization of this assertion.
So, if P, appears in g, we need to constrain the corresponding variable in I’ to be a code
for Py given the values of r*. In section 7b of the simulation we described how to
compute a code for py from the code variables r*. We can find a first-order formula
that expresses the relationship between ' and r* by taking strongest postconditions of

the computation described in 7a (for formal procedures) and 7b (for declared
procedures).

We will define a first-order formula C(t’, *) which constrains the value of ¥’ in the
necessary way to satisfy formula (1). Then, by Axiom 13, we will be able to deduce

- P AR~ (o (R a<r) = nln@a) ) )

By the definition of C ~»> H, this is equivalent to

I
- PSARS o ((k/;l(c~>qk<<r§()) — (C~>P0[pi(§,i)]))-

But, with the constraint expressed by C, it will be possible to show

— PSARS — ( I/1\1(C~> <))
- AR Qe K/

which is weaker than (1). Then, we will be able to deduce

- P°AR® = (C~>pe[p(3®)])
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Finally, we will complete this case of the proof of the main lemma by proving in the
axiom system that C ~> pe[ p(q, X) | implies that p,(g, X) is less defined than
(pi(q, X))*. This is essentially what we need to prove in this case of the main lemma.

We now provide the formal details of this argument. The first step is to use Axiom
11 to instantiate the bound variables in P,, with the substitutions [r’l/ul,...,r’lﬂ/um] and

[a/g]. This gives us

: |
@ FP — (A g <r) — )
where rhs’ is the pca on the right side in the definition of P, with substitutions for u and
g. Applying the substitutions gives

d
(3) rh¢ -——c-f

{% = %0 A W(F) A W(E*)} py(, %)
{3b SP [p*(F, 7% X); X = X0 A W(F) A W(F*)1}.
When we defined the simulation of procedure calls, we introduced the new local
variables 7/, which hold the codes for the actual parameters of the call. We defined a

program that assigns values ©’/, using the values of the variables r* as inputs. This
program is called 1’ := eg(T*).

Let C(r’, r*) be a first-order formula that expresses 3b SP [{’ := eg(r*); W(r*)I.
All of the free variables in C are environment variables. This allows C to be used as
the first order formula in Axiom 13. We will use the properties of C from Lemma 9.

|T‘The next step is to apply Axiom 13 with the first-order formula C and the formula

(( A q <) — rhs'). Since — PS5 — P., we can infer from (2
k—1 k k 1
|
— PSARS = (C~>( A g <) = rhs))
=]

If p, has procedure parameters, so that || 7 0, then by the definition of C ~> H, the
above formula is equivalent to

|

- PSARS — ((k/\ C~>q <1})) — (C~>rhs')).
=1

The next step is to show — PS A RS — (C ~» q < 1), for k = 1,...]7.

Afterwards, we will be able to deduce

PSARS — (C~> rhs!).
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Lemma 10. Let S == qu(q, z) be an arbitrary procedure of type 7 = (Tl,...,TH,

var”"“). Let C be a first-order formula that expresses 3b SP[r’ := e(r*); W(r*)]l,

!

where 1/ 1= es(x"*) is the program that computes the codes r’ in the simulation (qy(g,

Z))*. Then = PS AR — (C ~»> q < 1}), for k = L,...|7].

Proof. The lemma is vacuously true if || = 0. Otherwise, we must consider two
cases depending on whether q is a formal or a declared procedure.

Case 1. Suppose g is a formal, Ty for some h. Since this means ry is free in the
call S = qo(c'l, z), the formula R, is a conjunct of RS. Since qq has type 7 = (Tl""’rlfi’
var”"“), r, must have type T Thus by definition, Rh is T <<,.k ri‘;.

We would like to show |— Rh — (C ~> q < r’k). In this case, since Qe is actually
ry, the formula to be proven is

Fr,<rp — (C~>r <)
By Axiom 13,
Fr<rp = (C~>r <)

Notation. For readability, we let quantifiers range over the smallest formula
following them. For instance, 3x P A Q should be read as (3x P) A Q.

We will now show that |— (C ~> r, <rf) = (C~>r <)
The right side of (C ~> r; <« ry) is the pea,
{x = %0 A W(u) A W(r}) A C} 1y (8, %)
{3b SP [<rf>(<u>, X); X = X0 A W(@) A W(r})] A C}.
On the right side of (C ~> r; < r}) is the pea,
{Xx = X0 A W(@) A W(r}) A C} r,(, X)
{3b SP [<r>(<w>, X); X = X0 A W(T) A W(r[)] A C},
which is the same, except for occurrences of rl"; and r’k.

We will now consider the first-order formulas in these pcas, in order to use rule of
consequence. We will use the fact from Lemma 9.3, I = C D rl = r{. On the left
sides of the pcas, this implies that

[= (% =%0 A W@ A W(r}) A C) = (& = %0 A W(@) A W(r}) A C).

On the right sides, since C implies rf = r}, it is obvious that
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[=C D (3b SP[<rf>(<u>, x); X = X0 A W(1) A W(r{)l =
3b SP [<r >(<t>, X); X = X0 A W(1) A W(r)]).

Rearranging the logical connectives gives

I = (3b SP [<rf>(<W>, X); X = 0 A W(@) A W(r)] A C) =
(3b SP [<rl>(<®>, X); & = X0 A W(@) A W(r})] A C).

By the rule of consequence for pcas, Axiom 7, we can infer that the following
formula is provable:
(4)
{X = %0 A W(T) A W(r}) A C} (8, X)
{3b SP [<rf>(<u>, X); X = X0 A W(u) A W(rf)l A C}
{Xx = %0 A W(T) A W(r}) A C} r (&, X)
{3b SP [<r’k>(<ﬁ>, X); X =X0 A W(u) A W(r’k)] A C}.

Using first-order reasoning, one can easily show that
(D) (A — B) implies | (Vg Va(H — A)) — (Vg Va(H — B)),

where A, B, and H are arbitrary formulas, g is a list of procedure variables and 1 is a
list of environment variables. We will call this derived rule (D).

We will now use rule (D) to show that |- (C ~> r, < 1) — (C ~> r, < r}).
Formula A in the rule will be the lhs of formula (4). Note that this is also the pca on
the rhs of (C ~> r, < ry). Formula B in the rule will be the rhs of formula (4); this is
the rhs of (C ~> r, < 1} ). Thus, we have already shown — A — B.

For the formula H in the rule, we will use the formula on the left side of the main
arrow in (C ~> r; < ryf). Notice that by the definition of ¢ < v, if q0 and ql are
procedure identifiers of the same type, then the two formulas (g0 < v0) and (ql < v1)
have the same formula on the left side of the main arrow. This formula contains only

variables that are universally quantified in the formula. We will use this formula as H
in rule (D).

Using rule (D) and the provability of (4), we obtain
(€~ <rf) = (C~r <)
Since - r, € rf — (C ~>r, < r}), we can conclude
=R, — (C ~ r, < r’k),

as required in this case. This completes the case that q isa formal procedure.
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Case 2. Now we have to make a similar argument for the case that q is a

declared procedure, say Py, for some h. Since py, is free in the call S = qo(ﬁ, z), P isa
conjunct of PS. Since we assumed that 9 has type 7, p;, must have type Tier

We must show — P, — (C ~> p; < ).

The first-order formula C will be used again. As before, we start by using Axiom
13 to get

= Ph - (C ~>> Ph)'

As before, we will use rule (D). Since p, has type 7, by the definition of Py, the
lhs of (C ~> P, ) is the same as the lhs of (C ~> p, <« r}).

In order to use the rule we must show

- rhs (C ~> P}) — rhs (C ~> p, < 1))

It will then follow from rule (D) that =P, — (C ~> p, < ).
By definition, rhs (C ~> p, < 1) is the pca

{x =0 A W(@) A W(r}) A C}
Ph(gy X)
{3b SP [<r >(<w>, X); X = X0 A W(T) A W(r})]l A C}.

On the other hand, rhs (C ~> P, ) is the pca

{X = %0 A W(@) A WE*) A C)
ph(gy i)
{3b SP[p}(@, % X); X = %0 A W(@) A W(FE*))] A C).

As before, since both pcas have the same statement in the middle, we will use rule
of consequence. First, consider the formulas on the left sides of the two pcas. Here, we
will make use of the fact that I = C D W(r*) A W(i'), proved in Lemma 9.1. From
this, it follows that the first-order formulas on the left sides of the two pcas are
equivalent.

Now we will show that the first-order formulas on the right sides of the pcas are
also equivalent, using Lemma 9.4. By the definition of the first-order formula C, C in
interpretation I implies that r’k is a code for the declaration of p, in an environment
containing the other declared procedures reachable by following free procedures and
containing declarations of the formal procedures encoded by the variables r*J Ph,

Intuitively, since the procedure pl’: is defined to simulate calls on Py and since C implies
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W(t’) and W(T*), one can see that
IE=C DO (3bSPIr>(<w>, X); X =X0 A W(@) A W(r )] =
3b SP [p(G, r*7 %); & = %0 A W(@) A W(F*9)])
(from Lemma 9.4.).
As in the previous case, rearranging C gives
[ = (3b SP[<rp>(<w>, X); X =%0 A W) A W(r )1 AC) =
(3b SP [pf(E, % %); % = X0 A W(@) A W(F*)] A C).
Now by rule of consequence for pcas, we can deduce }— rhs (C ~> p, < r,) — rhs
(C ~ p, < 1)
Finally, using rule (D), we can deduce — (C ~> P;) — (C ~> p, < r}), as
required in this case. This completes the case that Q is a declared procedure. O
We have now completed the proof that — PS A RS — (C ~> q < r’k), for k =

1,...,|7]. As we outlined in the beginning, this allows us to deduce that — PS ARS —
(C ~> rhs’). Recall that rhs’ is the pca on line (3). Expanding the definition of (C ~»>
rhs’), we have shown that

—PSARS —
{x=%0 A W) A WFE*) A C}
pi(aa i)
{3b SP [p(¥, r*%; %); X=%0 A W(¥') A W(F*%)1 A C}.
Next, we use rule of consequence to simplify the pre- and postconditions in the pca
in the above formula. From Lemma 9.1, we get

I = (X=%0 A W) A WF*) A C) = (z=%0 A C).

To simplify the postcondition, observe that the following equivalences hold:
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I = 3b SP[pX(¥, i*% X); X=%0 A W(i") A WE*))1 A C

= 3b (SP[pX(F, 7% X); ¥=%0 A W(F") A WE*)] A C)
(because b is not free in C)

= 3b SP[p*(¥, % %); £=%0 A W(i") A W(F*%) A C]
(by property SP 1 of strongest postconditions)

= 3b SP[pX({, r*% %); ¥=%0 A C1.
(by Lemma 9.1)

Thus, by the rule of consequence,

—PSARS — {x=%0 A C} p,(q, %) {3b SP[p}(¥, *%; X); ®=%0 A C1}.

Now, in order to introduce the actual ground variables of the call pi(ﬁ, z), we apply
the substitution [Z/X, 20/X0] in the above formula by Ax 12. Since the variables X and
X0 do not appear free in C, C is left unchanged by the substitution. The result is

—PSARS — {z=%0 A C} p(g, 7) {3b SP [p(’, 7*’ ); =20 A C1}.

The next step is to use Rule R3 to existentially quantify over the environment
variables ! on both sides of the pca. This gives us

—P5 AR — {3 (z=20 A C)} p,(§, Z) {3F' (3b SP [p*(F', 7*%; Z); Z=20 A C1)}
For the precondition, we have
[ = 3r' (z=20 A C)
= z=2z0A J'C

= z=z0 A W(T*).

(by Lemma 9.2)
So by rule of consequence,
(5) mPSARS —

{z=20 A W(r*)} p,(d, Z) {37’ (3b SP [pX(¥', 7*%; 2); =70 A C1)}.
The Main Lemma to be proven is

(6) =PSARS — {7=20 A W(*)} p,(, 2) {3b SP[(p,(d, 2))*; Z=20 A W(F*)1}.
The remaining step in getting from the pca in (5) to the pea in (6) is to relate the
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postconditions of the two peas. Observe that the postcondition in (6) involves the
strongest postcondition of the simulation (p.(g, z))*, while the postcondition in (5)
involves a call on the procedure pi*, which is part of the simulation. The formula C
expresses the strongest postcondition of the program that computes the code values r’ in
the simulation. We will now prove a technical lemma which states that the two

postconditions are actually equivalent.

Lemma 11. (i) Consider a procedure call S = pi(ﬁ, z). Let C = 3b SP[f' :=
eg(t*); WI(r*)], where ©’ := eg(r*) is the program that computes the codes of the
procedures passed as parameters in the simulation (p,(q, z))*. Then
I = 3b SP[(p,(q, z))*; z2=20 A W(*)] = 3r'(3bSP [p}(F, o9 7); 7=20 A CI).
(ii) For a call on a formal procedure, ri(ﬁ, z), the analogous property holds,

[=3b SP(r,3 7)) 2=20 A W(F*)] = 37 (3b SPI<}>(<i>, 7); 7=10 A C1).

Proof. We will consider the case (i) of a call on a declared procedure; the other
case follows by exactly the same argument.

First observe that the following equivalences hold:
(7) IE= 3b SP[p¥(, ©*% Z); =20 A C]

= 3bSPIp}(, i 7); =20 A 3b SP [ := eg(F*); W(F*)1]
(definition of C)

3b SP [p*(¥, 7*’; Z); 3b SP LI := eg(f*); 7=20 A W(F*)1]
(by property SP 1 of strongest postconditions)

(8)

3b SP [(F' := eg(T*); pX(F', T*%; 7)); =20 A W(F*)].
(by Lemma 8)

Now we will use property SP 5 of strongest postconditions, which states that
SP [(Begin var x; S End); P] = 3x(SP[S; P1), provided the variable x is not free in
the formula P. From the deduction that line (7) = line (8) and from the definition of
(p,(a, ))*, it follows that
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1= 3 (3b SPIpX(, *%; z); z=20 A CI)
(this is 3’ (7))

= 3" (3b SP (' := eg(f*); p}(, 7*%; 1))y Z=30 A W(F*)])
(this is 31’ (8))

= 3b SP [(Begin var '; t’ := eg(r*); pi'(F’, 7*% Z) End); Z=70 A W(F*)]
(by property SP 5)

= 3bSP [(pi(ﬁ, z))*; x=x0 A W(r*)].
(definition of (p,(q, 2))*)
This completes the proof of Lemma 11. O

Using the first-order equivalence from the lemma with the rule of consequence, we
can infer

- PS ARS — {7=70 A W(F*)} p,(q, Z) {3b SP[(p,(g, 7))*; Z=20 A W(F*)1}.

This completes the proof of the Main Lemma for the case of a call on a declared
procedure.
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7.3. Proof of the Main Lemma for a call on a formal procedure

Let S = r,(q, z), where r, is a formal procedure of type 7, 7 = (Tl’""T]T|’ var”"”).
This case is similar to a call on a declared procedure.

By assumption, the formula R; is a conjunct of RS. As before, we begin by using
first-order reasoning to instantiate the bound variables in a general formula to the
specifics of this call. Recall that Ri is r, < r{". We instantiate the bound variables in Ri

with the substitutions [r’l/ul,...,f’lri/ulr‘], and [QH/EH], giving
— R'i -
(( |/T\i <)
r -_
AN S
{x=%0 A W(F") A W(r¥)} r,(g, X)
{3b SP[ <ri*>(<i'>, X); ¥=%0 A W(T') A W(r})1}).
Let C be a first-order formula that expresses 3b SP [/ := eg(r*); W(r*)] for the

program T’ := eg(T*) in the simulation (r,(q, z))*. Now, using the derived ~> axiom
with the first-order formula C gives us

FR, — (AjA A AH) — B), where A, is C ~> (q < 1p), for k=1,...,|7|, and B is
{x=%0 A W(") A W(r¥) A C} (g, %)
{3b SP [ <rf>(<’>, X); x=%0 A W(T') A W(r})] A C}.

Note that the formulas C and the A, are the same as in the case of a call on a declared
procedure. The formula B is different since it contains the strongest postcondition of
<ri“>(<r"’>, X), a simulated call using an interpreter program, while in the case of a call
on a declared procedure, we had a pca with the strongest postcondition of a call on pi“.
This reflects the difference in the simulation of the two kinds of calls.

As before, the next step is to use Lemma 10 to deduce
—PSARS - (Ap A e A AL,
Therefore we have
—PSARS — B.

Next we use Rule R3 to existentially quantify over r’ on both sides of B. The result
is
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—PSARS —
{3 (x=%0 A W(F") A W(r}) A C)}

ri(a: i)
{31’ (3b SP [ <rf>(<r’>, X); X=%0 A W(') A W(rf)I A C)}.

On the left side of the pca, observe that
[=3r" (x=%0 A WF') AW([f)AC) = x=%0A W(r*),
by Lemma 9.1 and 9.2.

For the right side, first observe that

I = 31’ (3b SP L[ <r¥>(<r">, X); X=%0 A W(r') A W(r{)] A C)
= 3r' (3b SP[ <r¥>(<f’>, X); X=%0 A C]),

because we can move C inside the 3b and the strongest postcondition.

We showed in Lemma 11 that

I =37 (3b SP[<e>(<i/>, R); £=%0 A C1) = 3b SP(r(G, ¥))*; X=%0 A W(F*)].

By rule of consequence, we can now deduce

—PSARS — {#=%0 A W(F*)} r,(q, %) {3b SP[(r,(q, X))*; X=%0 A W(F*)1}.

Finally, Axiom 11 can be used with the substitution [Z/X] to rename the ground

variables.

This completes the proof of the Main Lemma in the case of a call on a formal

procedure. [J
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7.4. Proof of the Main Lemma for procedure declarations

Suppose S = E|S1, where E is an environment and S1 is a statement. Assume that
E has the form {pl(formal-listl) — body,, ..., pn(formal-listn) — bodyn}.

By definition,

S1 __ pS
PSL=PSA (P, A .. AP)),

RSI — RS
P i = PS A (P, A .. AP), for i=1,....0,
RP°¥i — RS A R/ i for i=1,...,n,

(where R/Pi = (A R, | r; is in formal-list of p,) ).
J
By the inductive hypothesis, we can assume

—PSA(P,A..AP)ARSAR/Pi
{x=%0 A W(r*)} body; {3b SP [body; Xx=x0 A W(r*)1}, for i=1,...,n, and

~PSA(P,A..AP)ARS -
{X=F%0 A W(F*)} S1 {3b SP[S1*; ¥=%0 A W(F*)1}.

The main idea in this case is to use the Recursion Rule R3 to prove that the
formulas Pl,...,Pn hold in the environment E. Then it is straightforward to show

—PSARS — {&=%0 A W(F*)} S {3b SP[S*; x=%0 A W(F*)1}.

First of all, by the definition of p¥, SP [body¥; Q] = SP [pi"(f-*a" Py X); QI, for
any first order-formula Q. Using this fact, we can rewrite the inductive hypotheses for
the bodyi to

.

9) ~PSA (P, A..AP)ARSAR'P o
{R=%0 A W(F*)} body, {3b SP [p*(F**" Pi, £); T=%0 A W(F*)1}, for i=1,....n.
The next step is to existentially quantify over r* variables that are not used by p¥.

We define 7" Pi (for complement p,) to be the sequence of variables in r* that are

i P;

not in 7** Pi. We will apply rule R2 to line (9). In order to do this, we must check

““MP Pi are free in the formula to the left of the arrow.
First consider the free environment variables of PS A (P, A ... AP_). By definition, the

formula Pi has free occurrences of the variables ©*? Pi. The formula P° contains

assertions about the declared procedures that have S in their scope. Clearly, any

that none of the variables in *
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gp

variable in t*? for one of these procedures must also be in r*” *i, and so it is not in the

complement. Similarly, none of the environment variables free in (P1 A e A Pn) can be

in the complement. It remains to consider RS A Rf P, By definition, R; is a formula

whose only free environment variable is ri“. The formula RS contains assertions for all
of the procedures r; that have S in their scope. Clearly, all of the environment variables

-x%x9 P

free in RS must be in T i and not in the complement. Finally, the environment.

-xf P

variables free in Rf Pi are exactly T 1 and are not in the complement. Thus we can

apply rule R2 to deduce
|—PS/\(P1/\.../\Pn)/\RS/\R“’i —
(3> Pi(x=%0 A W(F*))} body,

{3F+""P Pi(3b SP [p}(F**" 7L, B); %=R0 A WFHD)},
for i=1,...,n.

Now, observe that because 3X W(X) is true in I
I = 37*°"" Pi(z=%0 A W(T*))

= <P Pig=%0 A W(E** Pi) A W(E*"P Pi))

F=%0 A W(F* Pi) A Fr*O™P Piow(*°°™P Piy)

7=%0 A WE*'Pi), and
= 3™ Pi3b SP [pX(F**" P, %) £=%0 A W(F*)])

= 3b SPIp*E** Pi, %); 37+ Pi(R=%0 A W(F*))]
(by property SP 3 of strongest postconditions)

3b SP[pX(F** B, )5 x=%0 A W(F* Pi)1.

So by the rule of consequence,

I——PS/\(PI/\.../\Pn)/\RS/\pri —

(Z=%0 A W(E*** Pi)} body, {3b SP [p*[F**' Pi, ®); £=%0 A W(F**" Pi)]},
for i=1,...,n.

By first-order reasoning, this can be rearranged to get
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—PSARY - (P, A..AP) —

n fp. - — —yall p.
(A R — {Z=%0AW(r i}
i=1
bodyi
{3b SP [px(F** i, )3 x=%0 A W(F** Pi)1})).

For the next step, we want to use first-order reasoning to universally quantify over

-fp -xf P

r’ i and r* "1 to infer

(10) ~PSARS - (P, A..AP) —
A vl Pive PRI
( (

1=1

{z=%0 A W(F** Pi)} body,
{3b SP [p*(** P, %); £=%0 A W(E** Pi)1}).

This will put the formula close to the form of the hypothesis of the recursion rule. By
first-order reasoning, = H1 — H2 implies — H1 — Vr H2, provided r is not free in
H1l. So, we must show that none of the variables in 7/ Pi and 7*/ Pi are free in PS A P,

A AP)A RS. None of the 7/ Py appear free in these formulas; for RS, the reason is
that we assumed that no formal procedure name appears in more than one formal-list in

7, so none of the procedure names in Ff Pi can be global to S = E|S1, and so none of
the Ff Pi can appear in RS, Also, no formal procedure names appear free in any of the
+f Pi none can appear in RS for the same reason

that the formal procedure names cannot appear. None of the r +/P

Pi' For the environment variables T

1 can appear in PS A
(P, A ... AP_) because for each P, the only free environment variables are the 7*7 Pi,
and none of the formals of p,...,p, can be global to p,....p  or declared procedures

global to S. Thus, the above formula (10) is provable by first-order reasoning.

The next step is to rename the bound variables so that the same universal variables
are used in both P1 A oo A PIl and in the conjunction of the n formulas for bodyl, veny
body . This renaming puts the formula into the exact form of the hypothesis of the
recursion rule.

Now we use the recursion rule. The conclusion of the recursion rule is

=PSARS —
Y f
(A W PivgR P~

1=1

z=70 A WE*N} Elp,(F, %) (3b 5P [p*(**, %5 x=%0 A WFE1})).
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Renaming bound variables, this gives
(11) —PSARS — (E[P, A .. AEPP,).
From the inductive hypothesis, we had
—PSA(P,A..AP)ARS —
{x=%0 A W(r*)} S1 {3b SP[S1*; x=%X0 A W(r*)1}.
Using Rule‘R2, we can infer

(12) —E|PSA (P, A..AP)ARS) —
{x=%0 A W(F*)} E|S1 {3b SP[S1*; %=%0 A W(F*)1}.

Similarly, from R2 we can deduce PS — EIPS, b— RS - E[RS, because no
procedure name bound in E is free in PS, RS.

Finally, combining these results with lines (11) and (12), we can deduce
PS5 ARS — {3=%0 A W(f*)} E[S1 {3b SP[S1*; £=%0 A W(F*)1}.

This completes the proof of the Main Lemma in the case of a block with a
procedure declaration. O
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7.5. Proof of the Main Lemma in the case (S1; S2)

For statements other than procedure calls and declarations, the proof of the Lemma
is comparatively straightforward and closely parallels the relative completeness proofs
that have been given for conventional Hoare axiom systems. As an example, we will
prove the Main Lemma for the case S = (S1; S2).

By hypothesis,

—PSL ARSL — {%=%0 A W(F*)} S1 {3b SP[S1*; X=%0 A W(r*)1},
P52 A RS2 — {3=%0 A W(F*)} S2 {3b SP[S2*; x=%0 A W(F*)1}.

By definition,
PS = pSI AP, RS = RSIAR®E
We proceed by putting the hypothesis for S2 into a form so that we can use the rule

of concatenation. Let X’ be a vector of fresh variables of the same length as X and XO.
By Axiom 11, we can apply the substitution [X'/X0] in the hypothesis for S2, giving

P52 ARS?2 .  (R=%' A W(F*)} S2 {3b SP[S2*; x=% A W(F*)1}.

Now let G = 3b SP[S1*; x=%0 A W(r*)1[¥'/x]. Since G is a first-order formula
that has no free variables that are free in the statement S2, we can use Axiom 9 to add
G to both sides of the last pca to get

P52 AR — {g=%' A W(F*) A G} S2 {3b SP[S2*; =% A W(F*)] A G}.

Next, we use Axiom 8 to existentially quantify over the variables X/, which are not
free in S2,

— P52 A RS2 —
(3% (R=% A W(F*) A Q)} S2 {3&' (3b SP[S2*; &=%' A W(F*)] A G)}.

In the above, by the definition of G,
(13) I = 3 (x=%X' A W([r*) A G)

= 3% (x=%' A 3b SP[S1*; x=%0 A W(r*)][X'/x])
(by property SP 1 of strongest postconditions)

Ib SP[S1*; X=%0 A W(F*)1.

Using Lemma 8, about the monotonic property cf the simulation in b, one can see
that the following equivalences hold in I:
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I = 3% (3b SP[$2%; X=%' A W(F*)] A G)

= 3%’ (Ib SP[S2*; x=%' A W(r*) A G1)
(by property SP 1 of strongest postconditions)

3b SP[S2*; I’ (X=X A W(r*) A G)]
y property SP 3 of strongest postconditions)

—_
o

= 3Jb SP[S2*; 3b SP[S1*; x=%0 A W(r*)1]
by line (13))

~—

= 3b SP[(S1*; 52*); x=%X0 A W(r*)]
(by the corollary to Lemma 8)

3b SP [(S1; S2)*; x=%0 A W(r*)].
(by definition of (S1; S2)*)

Thus by the rule of consequence,

— PSZ ARS?
{3b SP[S1*; %=%0 A W(F*)1} S2 {3b SP [(S1; S2)*; ¥==%0 A W(F*)1}.

Finally, using the rule of concatenation with the above formula and the inductive
hypothesis for S1, we can show

P52 ARS2 — {3=%0 A W(r*)} S1;52 {3b SP[(S1; S2)*; X=%0 A W(F*)1}.

This completes the proof of the Main Lemma in the case S = (S1; S2). O



96

7.8. Proof of the Completeness Theorem.

We can now complete the proof of the Theorem. From the Main Lemma, we have
PTAR™ — {X=%0 A W(r*)} = {3b SP[7*; X=%X0 A W(T*)]}.

Recall that P*™ = R™ = True. Thus by arrow rules,
- {X=%0 A W(*)} 7 {3b SP [7*; X=%0 A W(r*)1}.

Now, we existentially quantify over r* on both sides, using rule R3. On the left, we
have the equivalence

[ = 3r* (x=%0 A W(r*)) = x=XO0.
On the right, observe that

I = 3r* (3b SP[7*; X=%0 A W(F*)])

= 3b SPr*; IF*E=%0 A W(F*))]
(by SP 3, because ©* is not free in m*)

Jb SP [7*; X=X0]

= SP[m X=%0].
(by Lemma 7)

By the rule of consequence, we show
 {x=x0} = {SP[7; x=%01}.

Standard techniques [Go75,C179] can now be used to show |— {U} = {V} for any
- first-order formulas U, V, such that I = {U} 7 {V}.

Q.E.D!
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8. Expressing Total Correctness

Once we have established that there is a sound and relatively complete axiom
system for partial-correctness assertions for L4 programs, it is natural to ask whether
there can be a ‘“‘good” axiom system for deducing all the formulas of the full logic that
are true in an interpretation, where the full logic contains partial correctness assertions,
nesting of arbitrary formulas with —, and quantification over environment variables.
We answer this question in the negative by showing that it is possible to express total
correctness in the full logic. Consider the formula

v (UF) — ({x=Vv} m(X) {~V(X)} — False)),

where v is a list of environment variables, X is a list of program variables, and 7 is a
program. In the above formula, the subformula U(v) is an abbreviation for the pca
{True} x := x {U(¥)}, which is satisfied by the same values of v that satisfy the first-
order formula U. The above formula is true in I iff for all domain values v satisfying
U(¥v), there is a computation of 7 starting in the state Xx=V that halts in a state such
that V(X) is true. Thus if 7 is deterministic, the formula expresses total correctness. It
is well known that there cannot be a sound and relatively complete axiom system based
on a first-order oracle for total correctness assertions [Ap81]. Thus there cannot be a
sound and relatively complete axiom system based on a first-order oracle for the full
logic.

Moreover, it is shown in [Gr85| that there cannot be an axiom system that is sound
and relatively complete for total correctness even if the axiom system is required to be
sound only for expressive interpretations. This result requires a much deeper analysis
than the one in [Ap81]. We simply note that the result of [Gr85] implies there cannot
be a relatively complete axiom system for our full logic, even with soundness restricted
to expressive interpretations.

9. Possible Extensions Beyond L4

It appears that the construction of S* can be extended to work for programs for
which there is a bound on the number of variables that can be accessed by any
statement. Here is a brief sketch of how this might be done. Suppose that no
statement in 7 can access more than k variables, for some k. Each of the procedures in
n* will have, in addition to the formal parameters given in the translation of L4
programs, a list of k new ground parameters. These parameters will be used to pass
along variables that can be accessed as global variables by procedures in the original
program. Closures would be extended to include an encoding of the correspondence
between the global variables that can be accessed by the procedure of the original
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program, and the list of k new variables in the simulation. It would be necessary to
generalize Lemma 1 to show that a finite encoding could still be used in this case.
These ideas suggest the possibility of finding a sound and relatively complete axiom
system for a language with restricted, but useful, access and update of global variables.
The assertion language would need to have a more general way of referring to the
values of global variables. For instance, locations are used for this purpose in [THMS3,
HMT84].

10. Conclusions

Although the sublanguage L4 of Algol has been extensively studied, the results of
this paper are the first to demonstrate that a syntactic axiom system for L4 is sound
and relative complete in the sense of Cook. One essential property of a ‘‘syntactic
axiom system’’ is that it should allow assertions about a compound statement to be
deduced from assertions about the component statements. Intuitively, this is difficult in
L4 because of the infinite range problem. Although the completeness proof contains
much technical detail, the axiom system itself is very simple and natural to use. The
use of the axioms was illustrated with an example.

Compared to previous axiom systems for languages with finite range, such as those
in [Co78, Go75, ClI79], the main new elements of our axiom system for infinite range are
the arbitrary nesting of formulas with —, quantification over procedures and ground
variables, and the recursion rule for higher-typed procedures. What has not changed in
comparison with the earlier axiom systems is the style of reasoning: proofs in our axiom
system have a very simple, direct relationship to the syntax of the programs. Such
simplicity is a key to the practical usefulness of axiom systems in the style of Hoare.
Because the axioms are closely related to the syntax of programs, they provide direct
intuition into the meaning of programming language constructs, and can be used for
teaching programming. Two other important advartages of this transparent style of
reasoning are that it facilitates the development of programs together with their proofs,
and that programmers can carry out proofs with less than full formality by focussing on
the most important assertions.

Our approach allows nondeterminism to be handled easily; one axiom is needed for
nondeterminism, and our approach to proving relative completeness handles
nondeterminism with no difficulty.

It is appropriate to comment on some of the technical difficulties present in the
completeness proof, and prospects for their removal. We originally studied the relative
completeness of the axioms in expressive, Herbrand definable interpretations [GCHS83].
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Using the property of Herbrand definability, one can write a program that, in one
execution, enumerates all the values in the domezin of the interpretation. This
enumeration can be used to construct a simulation of L4 programs that has cleaner
semantics than the simulation used here.

First, we can use a simpler mapping between domain elements and natural
numbers. Bounded Herbrand definable interpretations are finite; for such
interpretations we can use a bijection between domain elements and an initial segment
of the natural numbers. In unbounded Herbrand definable interpretations, the order in
which an enumeration program lists the domain elements gives a bijection between the
domain elements and the natural numbers. In contrast, in the non-Herbrand case, it is
necessary to add the input parameter b to start the enumeration, and only a subset of
k-tuples of domain elements can be used to represent natural numbers. In the
Herbrand case, using the cleaner simulation, the formula corresponding to the strongest
postcondition of a statement S with respect to a precondition P is simply SP[S*; PJ;
for the general case, we must use 3b SP [S*; P A W(r*)].

It may be possible to formulate the proof in a way that partly suppresses this
change. For instance, one could define SP*[S; PJ] to be 3b SP[S*; P A W(r*)].
Then one would prove that SP* has such properties as SP* [(S1; S2); P] = SP*[S2;
SP*[S1; PJ]1. It is here that one would appeal to technical facts such as that S* does
not change the values of r*, and the property of the variable b given in Lemma 8. A
potential problem with this approach is that some of the axioms have restrictions on the
variables that can appear free in formulas. Recall that we often work with formulas in
which only some subset of the r* variables appear free and that is important to keep
track of these subsets because of restrictions on the axioms. In our completeness proof,
we have been careful to show that all the necessary restrictions are observed. However,
changing to the SP* notation may tend to obscure which of the F* variables appear free
in a given formula, and thus may hide details of the proof. Our feeling is that for
understanding the proof, it is better to keep such details in plain view.

A separate, and more serious, source of technical difficulty is that we must reason
about procedure declarations that contain free procedure names. We saw in the
example of Section 5 that this does not add complexity when reasoning about a
particular program in our axiom system. However, in order to handle the general case
for the completeness proof, we have to consider the general pattern of chains of

procedure references. This leads to notational problems such as the need for Ff , T +f ,

_*g

and r We feel that the technical details related to this are inherent in proving the

completeness of an axiom system that reasons about L4 programs according to their
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syntax.

A final area of difficulty is specializing a general assertion about a procedure p(r, X)
in order to reason about a particular call p(q, ¥), with actual parameters. Here, much
of the difficulty comes because g can refer to declared procedures having free procedure
names in their declarations. This implies that in the general case we must deal again
with chains of procedure references. Again we feel that much of this difficulty is
inherent in the language L4, although perhaps with further study one could find
different methods of presentation.

The idea of proving relative completeness using interpreter programs and a
simulation may be applicable to other programming languages. It may also be useful
for showing true relative completeness of other axioms systems for the language L4.

Although our relative completeness proof uses some techniques from previous papers
on characterizing languages that can have sound and relative complete axiom systems
[Li77, CGH83|, the main results of those papers are of a quite different kind: They do
not give syntactic axiom systems in which assertions for a complex program are deduced
from assertions about its components. The notion of a programming language used in
[Li77, CGHS83|, called an acceptable programming language, is too abstract to give
syntactic reasoning systems. In particular, the notion of an acceptable programming
language does not specify that the semantics of a compound prdgra.m is related to the
semantics of its parts. The relative completeness result of [Gr84/86] is also based on
acceptable programming languages, and so the same comments apply.

A final conclusion is that the kind of analysis of the semantics of a programming
language that we carried out in Part 1 is of interest icdependently from the main result,
because it gives valuable insight into the power of language features and the effect of
restrictions. This kind of detailed knowledge about semantics can be useful for
suggesting other languages that may also be axiomatizable and in the design of new
languages.
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Appendix 1. Removing Aliasing from L4 Programs

In this appendix, we briefly sketch a method for removing aliasing from L4
programs. The basic idea is to replace each procedure declaration with a set of new
declarations, where there is one new declaration corresponding to each case of aliasing.
All procedure calls are modified to use one of the new procedures. The resulting
procedure calls have no aliasing.

Consider a declaration p(r, X) « b and a partition IT of the variables in X.
Intuitively, we will declare a new procedure pyy to handle calls of p with the pattern of
aliasing given by II. Let X’ be a list of variables containing one variable from each
equivalence class of II. For convenience, let us assume that the variables in X' are listed
in the same order that they appear in X, so that X’ is formed by deleting variables-from
X. Moreover, let the representative element of each equivalence class be the variable in
the equivalence class that appears leftmost in X.

We will use X’ as the list of formal ground parameters of P Intuitively, the body
of py is formed by copying the body of p under a substitution that maps each formal
ground variable to its representative in the li§t X'. So let substn be a substitution
mapping each variable in X to its representative in X’. When we copy simple statements
such as an assignment statement, we simply apply substn Thus if p contains the
statement X := e, the corresponding statement in ppp Will be x(substyy) 1= e(substp).
(We may assume, without loss of generality, that the local variables in the body of p are
distinct from X, so that substy; leaves them unchanged.)

To copy the procedure calls in the body of p involves a bit more than just a
substitution. If a call p’(S, ¥) appears in the body of p, then we translate it into a call
P'p(S's ¥'). Here P’y is a procedure that handles calls to p’ under the equivalence class
II'. The equivalence class IT for this call depends on both IT and ¥; that is, we form
S'r(substn), and then IT' is the partition of the formal ground parameters of p’ that
matches it. Next, the list ¥ is formed in the obvious way: we take ?(substn) and then
delete repetitions from this list. (To be precise, since we defined the representative
element of each equivalence class to be the variable appearing earliest in the formal list,
we will form ¥ by keeping the first appearance of each variable in ¥(substy) and
deleting later appearances.)

Next we will explain how the list of procedure parameters s’ is formed. We have
replaced each declared procedure by a set of new procedures that handle the various
cases of aliasing; we also make an analogous change in the formal procedures, replacing
each formal procedure name by a list of new formal procedure names to handle aliasing
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in calls of formal procedures. The details of this are straightforward, if tedious. As an
example, consider a procedure p in the original program, whose type is 7 = (rl, var®),

where 7, = (var™). By the previous discussion, we replace each procedure of type 7, by
a set of procedures for the various partitions of m ground parameters; these procedures
have types ranging from (varl) to (var™). Now, for each partition I there will be a
procedure ppy. These procedures will have, in place of a single formal procedure name
of type 7, a list of formal procedure names, with one new name for each case of aliasing
of a procedure of type 7;. It is straightforward to see, by induction on the structure of
procedure types, that this construction assigns a new procedure type to each type used
in the original program. Thus, returning to the trarslation of p/(3, ¥) into P8, ¥),
the list S’ is formed from S by replacing each procedure name by a list of all the

procedures needed to handle cases of aliasing of that procedure.

This completes our sketch of the essential ideas of the translation to remove
aliasing.
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