Electronic Notes in Theoretical Computer Science 22 (1999)
URL: http://www.elsevier.nl/locate/entcs/volume22.html 26 pages

On the Semantic Foundations of
Probabilistic Synchronous Reactive Programs

Christel Baier

Fokultat fir Mathematik € Informatik
Universitat Mannheim, 68131 Mannheim, Germany
baier @pi2.informatik.uni-mannheim.de

Edmund M. Clarke and Vasiliki Hartonas-Garmhausen

Department of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213, USA
{emec,hartonas} @cs.cmu.edu

Abstract

In this paper we consider synchronous parallel programs P that are composed by sequential
randomized processes Si,...,S; which communicate via shared variables. First, we give
an operational semantics for the sequential components S; on the basis of a transition
relation defined in the classical SOS-style a la Plotkin [Plo81] which we use to specify
the behaviour of P by a Markov chain whose transitions stand for the cumulative effect
of the activities of the components Si,...S; within one time step. Second, we provide
a denotational semantics for P that also models P by a Markov chain. It is based on a
(denotational) least fixed point semantics for the sequential components which formalizes
the input/output behaviour of the sequential components within one time step. While the
operational (declarative) semantics might be the one that a designer (who provides the
input for the tool) has in mind, the denotational (procedural) semantics is the one that
a compiler might use. We establish a consistency result stating that the Markov chains
induced by the operational and denotational semantics are bisimilar in the sense of [LS91].

1 Introduction

In the literature, various algorithms for analyzing the quantitative temporal be-
haviour of probabilistic systems described by an abstract model (e.g. Markov chain
or Markov decision process) have been proposed. E.g., methods that are designed for
Markov chains are presented in [VW86,CY88,CC92,HJ94, HMP*94 CY95,BCH"97].
Such algorithms can serve as basis for a model checking tool [CE81,CES86] that takes
as its input a probabilistic program P and its specification ® (e.g. a temporal logical
formula) and returns the answer “yes” or “no” depending on whether or not P meets

(©1999 Published by Elsevier Science B. V.

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

its specification. The development of such tools requires an appropriate specification
language for the program P together with a procedure that generates automatically
the semantic model for P (e.g. a Markov chain). For instance, in the tool Prob-
VERUS [Har98 HCC99], a model checker for parallel randomized programs against
PCTL formulas [HJ94] has been implemented where the input program P arises
through the parallel composition of sequential randomized processes Sy, . .., Sk that
communicate via shared variables and are specified in an imparative C-like language.
The parallel composition is lazy synchronous (in the style of [CGL94,Cam96]) which
means that the sequential processes Sy, . .., S, work independently between the syn-
chronization points. Each step of P is composed from the independent execution
of sequences of activities of the sequential components Sy, ..., S, and is viewed to
take one time unit. !

In this paper, we consider a specification language, similar to the one used in
[Har98, HCC99], and present an operational and denotational semantics for the se-
quential processes which yield semantic descriptions of P by Markov chains. We
establish a consistency result stating that the Markov chains obtained by the oper-
ational and denotational semantics are bisimilar.

The operational semantics for the sequential processes S; is based on a formal-
ization of the stepwise behaviour of S; by an operational semantics in the classical
SOS-style a la Plotkin [Plo81] using probability-labelled transitions of the form

(stmt, o) —! (stmt', o).

Here, stmt, stmt’ are statements of the language used for specifying the behaviour of
the sequential components, o, o’ are interpretations for the variables that are under
the control of S; and e; is the “environment” in which S; works (i.e. e; gives the values
for the variables that are not under the control of ;). The value ¢ is a real number
in the interval (0,1] that denotes the probability for the above transition, i.e. the
chance that the execution of the first command in stmt changes the values of the
variables that are under the control of §; according to o’ and leads to a (local) state
where stmt’ is the statement that S; has to perform next; provided that the current
values of the variables are given by ¢ and e;. Thus, the first component stmt of a
local state (stmt, o) can be viewed as a control component for S;. We formalize the
one-time-step behaviour of S; in the environment e; by the probabilities P (s;, ;)
for S; to move from the local state s; to the local state t; (where we deal with
the probability measure in the Markov chain induced by the probability-labelled
transition relation —¢). As we suppose the sequential components Sy, ..., S to act
independently between the synchronization points the transition probability P (s, ?)
for P to move from the global state § to the global state ¢ within one time step
is obtained by taking the product of the probabilities P;(s;,?;). Here, the global
states § = (s1,...,sk) and ¢ = (t1,..., ;) are composed by the local states s;, t; for

! To avoid the typical reader/writer-problems, each program variable v is under the control of
exactly one of the sequential components S;. All other components S;, can only read the current
value of v at each synchronization point; but they do not have writing access to v.

2

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

the sequential processes S;. e; denotes the environment for S; that is given by the
local states sp, h # 1.

The denotational semantics: The operational semantics formalizes the intuition
about the behaviour of a randomized parallel program P; thus, it will be the seman-
tics that a designer (who provides the input for the tool) has in mind when he writes
down the specifications for the sequential processes S;. On the other hand, this op-
erational semantics is not adequate for a compiler since it uses statements as control
components. For this reason, we take up the ideas of [CGL94,Cam96,Har98, HCC99]
and provide an alternative semantics that uses integer-valued variables as control
components for the sequential processes and can serve as basis for a compiler that
computes the Markov chain for P. The control components can be viewed as point-
ers to the locations at which the executions of the sequential processes are.

In a first step, we modify the statements for the sequential components by intro-
ducing special commands for these control variables. Like the operational semantics
described above, this alternative semantics assigns a Markov chain to P but uses a
denotational semantics D¢ for the (modified) statements rather than the transition
probabilities P{(-). Intuitively, D% [stmt] describes the probabilistic input/output
behaviour of stmt within one time step when executed in the “environment” e; and
can be viewed as the probabilistic and timed counterpart to the classical denota-
tional input/output semantics for sequential (non-randomized, untimed) programs
a la Scott. The definition of D¢ [stmt] uses structural induction on the syntax of
stmt which can be translated into a recursive procedure for computing D¢ [stmt].
Consistency: At this stage, we have two semantic descriptions for P: the opera-
tional (declarative) semantics that the designer has in mind and that is independent
of any details about the compiler (e.g. the introduction of control variables and
special commands for them into the source code for the sequential processes) and a
denotational (procedural) semantics that a compiler might use to generate a Markov
chain for P. Thus, in the view of the designer, P meets the specification ® iff the
Markov chain induced by the operational semantics satisfies ® while a tool (whose
compiler uses the denotational semantics) returns the answer “P satisfies ®” iff
is satisfied by the Markov chain induced by the denotational semantics. In Section
6 we establish a consistency result stating the bisimulation equivalence (in the sense
of Larsen & Skou [LS91]) of the Markov chains induced by the operational and de-
notational semantics. This ensures the equivalence of the two Markov chains with
respect to all properties that are expressed in a formalism which does not distinguish
between bisimilar programs (such as PCTL* [ASB"95]), and thus guarantees that
the view of the designer is “consistent” with the calculations of the tool.
Organization of the paper: In Section 2 we briefly recall some basic notions
concerning our model of fully probabilistic systems. Section 3 explains the syntax
of parallel randomized programs. Sections 4 and 5 present the operational and
denotational semantics respectively while Section 6 shows the consistency of them.
Concluding remarks are given in Section 7.

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

2 Preliminaries: Fully probabilistic systems

In this section we briefly explain the model for probabilistic process that we use
for the operational and denotational semantics. Our model is based on sequential
discrete-time Markov chains where each state is associated with a distribution that
gives the probabilities for the possible successor states. (For further details about
the background in measure or probability theory see e.g. [Hal50,Fel68].)

Fully probabilistic systems: A fully probabilistic system is a pair (S, P) consisting
of a set S of states and a transition probability function P : S x S — [0, 1] such that,
for each s € S, P(s,t) # 0 for at most finitely many ¢ € S and ., P(s,t) < 1.
If C C S then we define P(s,C) = > ,. P(s,t). A state s € S is called terminal
iff P(s,S) = 0. A state s € S is called stochastic iff P(s,S) = 1; otherwise, s
is called substochastic. (S,P) is called stochastic iff all states are stochastic. Each
fully probabilistic system (S, P) can be “extended” to a stochastic fully probabilistic
system (SU{L},P,) where L ¢ S, P, (s,t) =P(s,t)if s,t € S, and, for s € S,

Pi(s,1) = 1-P(s,9),P (L,L)=1and P, (L,s) =0.

(SU{L},P,) is called the stochastic extension of (S, P).
Paths can be viewed as execution sequences; they arise by resolving the probabilistic
choices. Formally, a path in a fully probabilistic system (S, P) is a nonempty (finite

or infinite) sequence m = s¢s159, ... where s; are states in the stochastic extension
(SU{L},Py) and P, (s;_1,s;) > 0,7 =1,2,.... The first state sy of 7 is denoted
by first(m). If @ = s9s182... and s € S, Sg41 = Sgr2 = ... = L then we define

last(r) = sg. If sp € S for all £ > 0 then last(n) is undefined. (k) denotes the
k-th state of 7 (i.e. if w(k) = si). Path,(s) denotes the set of infinite paths = with
first(m) = s. If o is a finite path then C'yl(o) denotes the basic cylinder induced by
o, i.e. Cyl(o) is the set of all infinite paths © where o is a prefix of 7.

The probability measure on fully probabilistic systems: For s € S, let
¥(s) be the smallest o-field on Path,(s) which contains the basic cylinders Cyl(o)
where o ranges over all finite paths starting in s. The probability measure Prob
on X(s) is the unique measure with Prob(Cyl(c)) = P(o) where P(s¢sy...s;) =
P (s0,81) - Pi(s1,82) ... Pr(sp_1, Sk)-

Labelled fully probabilistic systems: In what follows, AP denotes a finite set
of atomic propositions. A labelled fully probabilistic system is a tuple (S, P, L)
consisting of a fully probabilistic system (S,P) and a labelling L : S — 24P por
the stochastic extension, we suppose L(L) = 0.

Bisimulation equivalence: We recall the definition of bisimulation equivalence
(reformulated for labelled fully probabilistic systems) a la Larsen & Skou [LS91].
A bisimulation for a labelled fully probabilistic system (S, P, L) is an equivalence
relation R on S such that, if (s, s’') € R then L(s) = L(s') and P(s,C) = P(s', C) for
all equivalence classes C' € S/R. Two states s, s" are called bisimilar iff (s,s") € R
for some bisimulation R.

Fully probabilistic processes: A fully probabilistic process denotes a tuple (S, P, s)
consisting of a fully probabilistic system (S, P) and an initial state s € S. Similarly,

4

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

a labelled fully probabilistic process denotes a tuple M = (S, P, L, s;,;;) consisting of
a labelled fully probabilistic system (S, P, L) and an initial state s;,;; € S. Two fully
probabilistic processes M = (S, Py, L1, s1) and My = (Sa, Py, Lo, $3) are said to be
bisimilar (written My ~ M) iff the initial states s; and s, are bisimilar in the “com-
posed” system (S; W Sy, P, L) where & denotes disjoint union, P(s,s') = P;(s, s') if
s, s € S;,1=1,2, P(s,s') =0 in all other cases, and L(s) = L;(s) if s € S;.

3 A parallel randomized language

In this section we explain the syntax of the specification language which is similar to
the one used in ProbVERUS [Har98 HCC99].2 In our setting, a program P consists
of sequential randomized components Si,...,S; that are executed in parallel and
that communicate via shared variables where each variable is under the control of
exactly one sequential component S;. The parallel composition is synchronous in a
lazy style, i.e. within each (time) step of P (between the synchronization points), the
sequential components work independently. Termination of one of the components
S; does not block the other components. The sequential processes S; are speci-
fied by statements of an imperative (C-like) language with assignment, while-loops,
conditional commands and
e a probabilistic choice operator pselect(p; : stmty,...,py, : stmt,,) that assigns
the probability p; to the statement stmt;
e the command wait that forces the component to be idle until the other sequential
components are ready for synchronization.
One (time) step of P is composed by the parallel (independent) execution of se-
quences of commands between two wait commands.
Types, variables, expressions and conditions: Let 7 be a finite set of types
(i.e. finite sets of certain values) including the type Bool = {tt, ff}. For each type
T € T we have a finite set Op(T) of operators op : T} x ... x T, — T where r > 1
and TY,...,T, € T. Let Var be a finite set of variables where each variable v € Var
is associated with a type in T, denoted Type(v). Ezpressions of type T are built
from the production system:

expr == const | v | op(expry,...,expr,)

where const € T, v € Var with Type(v) =T, op: Ty x...xT, — T is a r-ary operator
in Op(T), expr; is an expression of type T;. Ezpr(T) denotes the set of expressions
of type T', BExpr = Expr(Bool) the set of boolean expressions or conditions.

Evaluations, environments: Let V' C Var be a set of (typed) variables. An
evaluation for V' is a function o : V' — (Jpo7 T, v = o.v that is type-consistent,

2 The core language is a probabilistic variant of the language used in VERUS [Cam96] where
the non-deterministic choice operator select(...) is replaced by a probabilistic choice operator
pselect(...). For simplicity, the real-time constructs like deadlines, time delays or periodic state-
ments of [Cam96] are omitted but could be added as well.

3 Here, termination is viewed as performing infinitely many wait’s.

5

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

i.e. o.v € Type(v) for all v € V. Ewval(V) denotes the set of evaluations for V.

If o is an evaluation, n > 1, vy,...,v, € Var are pairwise distinct variables and
x; € Type(v;), i =1,...,n then ofvy := xq, ..., v, :=] denotes the evaluation that
coincides with o for all variables w ¢ {vy,...,v,} and returns xz; for the variable

vi.* If 0; € Eval(V;), i = 1,2, with V; NV, = () then (0, 09) denotes the evaluation
for V1 UV, with (01,09).v = oyvifv €V, i =1,2. If 0 € Eval(V), W C V then
o.W denotes the unique evaluation on W with (0.W).w = o.w for all w € W. Given
an expression ezpr € Ezpr(T) and an evaluation o for a superset of Var, [expr](o)
denotes the value of the expression ezpr when evaluated over ¢.% An environment
for V' C Var is an evalution e for a superset of Var\ V. Let Env(V) denote the
collection of all environments for V.

Statements: Statements over V' are built from the following grammar.

stmt = wait ‘ skip | v := expr | stmiy; stmiy

while cond {stmt} ‘ pselect(py : stmty,...,pm & stmty,)

if cond then stmt; else stmity

where v € V', expr € Expr(Type(v)), cond € BExzpr, m > 1 is a natural number and
Py Pm €]0,1] with py +. ..+ py, = 1. Stmit(V) denotes the set of statements over
V', Stmt the set of all statements. We define WStmt to be the set of statements that
“start” with a wait command. Formally, WStmt is the smallest subset of Stmt such
that wait € WStmt and, if wstmt € WStmt and stmt € Stmt then wstmt; stmt €
WStmt. We define Stmtt = Stmt U {exit} and WStmtt = WStmt U {exit} where
exit is an auxiliary statement that denotes termination. Let WStmt(V') = WStmitN
Stmt(V) and WStmt*t (V) = WStmt(V) U {exit}.

Sequential randomized components: A sequential randomized component is a
tuple & = (V, wstmt) consisting of a subset V' of Var and a statement wstmt €
WStmt(V).°

Parallel randomized programs: A parallel randomized program is a tuple P =
(6,81,...,8) where 6 € Eval(Var) is an initial evaluation and Sy, ..., Sy are se-
quential randomized components such that, if §; = (V;, wstmt)), i = 1,...,k then
VinV,=0if1 <i<h <k, and Var=,,, Vi.

Intuitively, P = (7, Sy, ..., Sk) stands for the parallel execution of the sequential
processes Si,...,S; between the wait commands. More precisely, each step of P
is composed by the activities of the processes S; between two wait’s. Si,..., Sk
synchronize at the wait’s, i.e. S; reads the current values of the variables v € Var\V;.
At each wait, time increases by 1. Thus, we may assume that the time that passes

Y Te.ofvr == a1, .. v = wp)w = ow ifw ¢ {vr,...,00}, ofvr =1, v = xp] 0 = T

> Formally, we define [ezpr] by structural induction: [const](c) = const, [v](c) = o.v and
[op(eapry, .- ., expr,)l(o) = op (lexpry[(o), - -, [ezpr,](0))-

6 Note that only the values of the variables v € V can be modified by S; the variables v ¢ V can
only be read by S. The variables w € Var\ V might occur in the expression ezpr of an assignment
or in the condition of a while-loop or conditional command.

6

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

between two wait’s is one time step. The initial evaluation & gives the initial values
of the variables, i.e. for v € Var, 6.v € Type(v) is the initial value of v.7

4 Operational semantics: the wait graph

We describe the behaviour of a parallel randomized program P by a Markov chain
(with transition probability function P,,) that we derive from an operational se-
mantics for the sequential processes Sy, . .., S;. The transition probabilities P (5, t)
assert that, from the global state 5, the global state t is reached within one time step
with probability P, (5,%). The resulting graph (whose nodes are the global states
and whose edges are labelled with non-zero probabilities) is called the wait graph of
P because each edge describes a possible behaviour of P between two wait’s.

Let P = (7,81, ...,Sk) be a parallel randomized program. The global states of P
are tuples § = (sq, ..., sx) consisting of local states s; for each of the sequential pro-
cesses S;. The local states of S; are pairs s; = (wstmt, o) where wstmt € WStmt"(V;)
is the control component (that denotes the statement that S; has to execute next
when the local state of S; is s;) and o is an interpretation for the variables v € V;
(i.e. 0 € Eval(V;)). As Sy,..., S, work independently between the synchronization
points (the wait’s), the transition probabilities P,,(5,?) are given by the product
of the probabilities P;(s;,t;) for S; to reach the local state ¢; from s; within one
time step. Since the sequential components communicate via shared variables® the
probabilities P;(s;, ;) do not only depend on s; but also on the local states s, h # i
(namely, on the interpretation of the variables w € V},, h # i). Thus, the transition
probabilities for P are of the form

() Py (5,0 = [] Pi(sit)

1<i<k

where e; denotes the environment in which the component S; works when the global
state of P is 5. That is, e; is the interpretation for the variables w € Var\V; in the
global state 3, i.e. e; € Enu(V;).

4.1 The one-time-step behaviour of the sequential processes

The transition probabilities P (s;,¢;) in formula (*) describe the one-time-step be-
haviour of §; in the environment e;. In this section, we give a formal definition
of these transition probabilities by means of an operational semantics of the state-
ments over a fixed subset V' of Var relative to an environment e € Env(V'). More

T The requirement that the statements wstmt) belong to WStmt ensures that the computation of
P starts with a synchronization. The condition V; NV}, = () avoids the typical writing problems
for parallel processes with shared variables. Each variable can be written by at most one process
while it can be read by all components Sy, ...,Sg. The requirement that all variables v € Var
belong to some V; ensures that all variables of P are under the control of a sequential component.
8 Recall that in wstmt; the variables w € Var\ V; might occur in the expression of an assignment
or in the condition of a while-loop or conditional command.

7

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

precisely, we define values P¢ (s, ¢) that denote the probabilities to reach the local
states t = (wstmt',o’) from s = (wstmt, o) by executing wstmt until the next wait
command occurs or the execution of wstmt terminates.? The transition probabilities
of the sequential processes S; in formula (*) are obtained by P§*(s;, t;) = Py; (s, ;).

In order to formalize the cumulative effect of sequences of the commands that are
executed within one time step (between two wait’s), we first describe the stepwise
behaviour of the statements stmt € Stmt(V') (when executed in the environment e
that gives the values for the variables w € Var\ V). For this, we use transitions
of the form (stmt,o) —¢ (stmt,0') that assert that — with probability ¢ — the
execution of the first command in stmt (where the current values of the variables
are given by o and e) leads to the intermediate state (stmt',o’) in which stmt has
to be executed next and where the current value of the variables v € V' is given by
o'. 1% Formally, we define the transition relation

—¢ C Stmt(V) x Eval(V)x]0,1] x Stmt" (V) x Eval(V)

by the axioms and rules shown in Figure 1. Most of the rules are self-explanatory.
In the rule for pselect we sum up the probabilities p; where stmt;, = stmt’. This is
necessary because we did not make a syntactic restriction on the statements inside a
probabilistic choice; thus, there might be more than one index [with stmt, = stmdt.
For instance, we have the transition (pselect(s : skip, 3 : skip),o) —¢ (skip,o0)
where the transition probability 1 is obtained from the sum 3 + %. The auxiliary
symbol exit is needed to model terminating behaviour !? and for the handling of
sequential composition. '3

We now use the transition relation —“ to formalize the behaviour of the sequen-
tial processes S; within one time step. Let V =V, and e = ¢;. If §; is in the local
state s = (wstmt, o) then the behaviour in the next time step is formalized by a
fully probabilistic process TSB(wstmt, o,e) ! where

e the states are pairs (stmt, o) with stmt € Stmt(V;) and o € Eval(V;),

9 For instance, if wstmt is of the form wait; stmt; wait where stmt does not contain any wait
command then the one-time-step behaviour of S; is given by the cumulative effect of the commands
in stmt where the initial interpretation of the variables is given by o and e;.

10 Intuitively, the first command denotes an “elementary step” such as an idling step (skip or
wait), a variable assignment, the evaluation of the condition of a while-loop or a conditional
command or resolving a probabilistic choice (“tossing a coin”).

' Note that, for all pairs ({stmt,c),(stmt, c')), there is at most one g where (stmt,oc) —
(stmt', o).

12 For instance, the outgoing transitions of (skip,...), (wait,...) and (v := expr,...) lead to a
local state of the form (exit,...). Similarly, if cond is a condition that evaluates to false when
interpreted over e and o then the statement while cond {stmt} immediately terminates after the
first “elementary step” (i.e. after the evaluation of cond); thus, with probability 1, we get the
transition to the local state (exit,...).

3E.g., if (stmty, o) —g (exit,o') (i.e. with probability ¢, stm#; terminates after performing the
first command) then (stmt; stmty, o) —¢ (stmty;0’) (i.e. with probability ¢, the execution of stmt,
starts after the execution of the first command of stmt;).

14 The letters T'SB stand for “time step behaviour”.

8

e
q

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

(wait,o) — (exit,o) (skip,o) —f (exit,o)
(v:=expr,o) —¢ (exit,olv:= [expr](e,0)])

q = Y e; pwhere I = {1 <1< m: stmt; = stmt'}
(pselect(py : stmty,...,pm @ stmty,),0) —& (stmt, o)
[cond](e, o)

(if cond then stmt; else stmty,0) —¢ (stmty, o)
—[cond](e, o)

(if cond then stmt; else stmty, o) —$ (stmity, o)

[cond](e, o)
(while cond {stmt},o) —¢ (stmt;while cond {stmt},o)
—[cond](e, o)
(while cond {stmt},o) —¢ (exit,o)

(stmtr,0) —¢ (stmt’,0') and stmt’ # exit

(stmty; stmty, o) —¢ (stmt'; stmty, 0”)

stmt;, 0y —¢ (exit,o’
q

(stmty; stmty, o) —& (stmiy, 0')

Fig. 1. The stepwise behaviour of the statements in the environment e

e all local states of the form (wstmt',...) with wstmt’ € WStmt(V;) are viewed as
terminal states; the outgoing transitions of (wstmt’,...) with respect to —¢ are
ignored (these transitions represent steps that are executed in the nezt time step),

e the root (initial state) is an auxiliary state sy = Sini(wstmt, o, e;) whose outgo-
ing edges are given by the transitions from (wstmt, o).

Formally, we define TSB(wstmt,o,e) = (S, P, sinit) as follows. The state space S

consists of all pairs (stmt’, o’y € Stmt* (V) x Eval(V) and an additional state s;,;; =

Sinit(wstmt, o, e), i.e. S = StmtT (V) x Eval(V) U {ssnit}. The transition probability

function P is defined as follows. If (stmt',o’) —¢ (stmt”,0") and stmt’ ¢ WStmt*

then P((stmt, o'}, (stmt’ ")) = q. The probabilities for the outgoing transitions
from the initial state are given by

P (sinit, (stmt', 0')) = q if (wstmt, o) —¢ (stmt’,0").

We put P(-) = 0 in all remaining cases.

Remark: The additional initial state s;,;; is needed since the state (wstmt, o) is
terminal in TSB(wstmt, 0,e). Recall that the outgoing transitions of (wstmt,...)
where wstmt’ € WStmt(V') with respect to —¢ are ignored. On the other hand,
we cannot add the outgoing transitions of such states (wstmt’,...) as they describe

9

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

wait;
b= tt;
pselect(3 : wait;
while b A —c {
pselect (3 :b:=ff,3 :b:= it);
wait },
2 : skip);

b:=-b

Fig. 2. The statement wstmt

activities of the next time step. E.g., if [cond](e, o) is true then, for the statement
wstmt = wait;while cond {wait},

we obtain the transition (wstmt, o) —¢ (while cond {wait},o) —¢ (wstmt, o).
The behaviour of wstmt within one time step

(i.e. the behaviour of wstmt before the sec- (wstmt, o)

ond wait inside the while-loop is reached) con-
sists of these two steps rather than the loop
shown on the right that describes an infinite - -
behaviour. m ((Whlle cond {Walt},0>>
Example: Let Var = {b,c} with Type(b) = Type(c) = Bool and V = {b}. We
consider the statement wstmt € WStmt(V') of Figure 2. We write [b = x] for the
evaluation o € FEval(V') with 0.b = . Similarly, [¢ =] is the environment e for
V with e.c = x. Figure 4 shows the process TSB(stmt,[b = [f],e) where e is an

pstmt = pselect(3 :b:=ff,5:b:=it)
whilestmt = while b A —c {pstmt’;wait}

wstmt’ = wait; whilestmt

wstmt” = wstmt'; b := b

pstmt = pselect(% : wstmt’,% : skip); b := —b
stmt = b := tt; pstmt

Fig. 3. “Substatements” of wstmt = wait; stmt

arbitrary environment for V' and where the “substatements” of wstmt are denoted

10

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

as shown in Figure 3. Figure 5 shows the system TSB(wstmt’,[b = tt], [c = ff]).

(Sinatuwstnt, b = 1,))

(stmt, [b = [f])

(pstmt, [b = tt])

((wstmt”, b= tt])) ({skip; b:=—b,[b= tt]))
'
Gb =-b,[b= tt]D

W=
wino

Fig. 4. The process TSB(wstmt,[b = ff],e)

Here, the condition b A —c of the while-loop is satisfied. Hence, by the rule for while-
loops, (whilestmt,[b = tt]) _>[lc:ﬁ} (pstmt';wait; whilestmt, [b = tt]). Thus, by the
rule for sequential composition:

(whilestmt; b := —b, [b = tt]) == (pstmdt’; wstmt”, [b = tt]).

Applying the rule for pselect and sequential composition yields
(pstmt’; wstmt", [b = tt]) =57 (b = z; wstm?”, [b = tt])
2

where z € {tt,ff}. m

The transition probabilities P¢ (s,t): The cumulative effect of a statement
wstmt € WStmt(V) within one time step (relative to an environment e € Env(V)
and an initial evaluation o € Fval(V')) is obtained by taking the probabilities for
the initial state s;,;; of TSB(wstmt, o,e) to reach the terminal states (i.e. the states
of the form (wstmt,...) or (exit,...)). Formally, for V' C Var, e € Env(V), o,
o' € Eval(V) and wstmt € WStmt(V'), wstmt' € WStmt*(V'), we define '°

P{ ((wstmt, o), (wstmt',0')) = Prob{m € Path,(sini) : last(r) = (wstmt', o)} .

For the special statement exit, we define P¢, ((exit, o), (exit, o)) = 1, P, ((exit, o),
(wstmt',0")) = 0 if (wstmt';o') # (exit,o). For instance, if wstmt, wstmt’ are as
before (see Figure 2, 3 and 5) then

15 Here, Prob{...} denotes the probability measure in T'SB(wstmt, o, e) and s;,;; is the initial state
of TSB(wstmt,o,e) (i-e. Sinit = Sinit(wstmt, o,¢€)).

11

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

(simaluwstmt”, o=). lc = 7))
}

((whilestmt; b:=—b,[b = it] D
!

Gpstmt’; wstmt", [b = tt]D

1 1
2 2

(b:= ff; wstmt",[b = tt]D Qb = tt; wstmt”, [b = tt]D

' !
Qwstmt", [b= ﬁ]D Gwstmt", b= tt]D

Fig. 5. The process TSB(wstmt",[b = tt],[c = [f])

P{ ((wstmt, [b = ff]), (exit, [b = ff])) = 3,
P¢ ((wstmt, [b = [f]), (wstmd", [b = 11])) =

P (wstmt”, [b = 1)), (wstmt”, [b =])) =

P ((wstmt”, [b = x]), (exit, [b = —a])) = 1
where z € {ff,tt}, y € {tt,z}. Forall V, o, ¢, P$, ((wait, o), (exit, o)) = 1.
Remark: Note that 1 — 37 . . . P{.((wstmt, o), (wstmt',0')) is the probability

for divergence.'® For instance, for the statement wait;while b {skip} and o an
evaluation for V' = {b} where 0.b is true we have

P{ ((wait;while b {skip}, o), (wstmt,o")) =0

for all wstmt' and o’. Thus, the probability for divergence is 1. This reflects the fact
that the while-loop never terminates and never reaches a state where the control
component starts with a wait command. m

4.2 The wait graph of a parallel randomized program

Let P = (5,8i,...,Sk) be a parallel randomized program where S; = (V;, wstmt)).
We define the wait graph of P to be a labelled fully probabilistic process where
each global state consists of control components wstmt; € WStmt"(V;) for each

sequential process S; and an evaluation for Var = V3 U ... UV, that is com-
posed by evaluations o; for V;. The probability P,,(s,t) for P to move from
s = (wstmty, ..., wstmtg,01,...,0k) to t = (wstmty, ..., wstmt,,o1,...,0.) is the

16 Here, divergence means the event of never reaching a terminal state (a “wait state” (wstmt,...)
or an “exit state” (exit,...)).

12

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

product of the probabilities for wstmt; started in o; and executed in the environ-
ment e; = (0,)n2i to reach (wstmt], o) within one time step (cf. formula (*¥)).!7
The wait graph: We use atomic propositions of the form a,, where v € Var and
z € Type(v). Le. we deal with AP = {a,, : v € Var,z € Type(v)}. The intended
meaning of a,, is that the current value of v is . Let P = (7,S,...,Sk) be as
before. The wait graph of P is the labelled fully probabilistic process WG(P) =
(Swg> Pug, Lug, Swg) where

Suwg = {(wstmtl, oo wstmiy, o, ..., o) 2 wstmt; € WStmtT (V;), 0; € Eval(\/;)}

and the initial state is 5,, = (wstmt), ..., wstmt),5.V1,...,5.Vy). The transition
probability function P, is given by:
P, ((wstmty, ..., wstmty, 01, ..., 0%), (wstmt, ..., wstmty, oy, ...,0))
= H Py ((wstmt;,), (wstmt;, 07))
1<i<k

where e; is the environment for V; that is composed by the evaluations oy, h # 1,
i.e. e;(v) = on(v) if v € V},, h # 4. The labelling function L,, is given by:

Ly, ((wstmty, ..., wstmty, 01,...,0%)) = U {apo;0 v €V}
1<i<k

Example: Let Var = {b,c}, Type(b) = Type(c) = Bool. We consider the program
P = (5,81,S;) where 6.b = ff and o.c = ff and §; = (Vi, wstmt)) where V; = {b}
and wstmt] = wstmt is as in Figure 2, S = (Va, wstmt)) where Vo = {c} and
wstmty = wait;c:=b. The wait graph for P is shown in Figure 6. m

5 Denotational semantics: the wait counter graph

For any automatic analysis of the behaviour of a parallel randomized program P
(e.g. model checking against PCTL specifications), the operational semantics (wait
graph) is not adequate since the control components of Si, ..., S are statements.
In this section we give an alternative semantics for P which uses simpler control
components. We follow the idea of [CGL94,Cam96,Har98| and use wait counters
WCy,...,wc for the control components of Si,...,Sk. wc; is an integer variable
whose current value is j iff the execution of S; has reached the j-th occurrence of
wait in wstmt). We associate with P the wait counter graph which is a fully proba-
bilistic process whose states are tuples § = (sy,..., sg) where s; € Eval(V; U {wc;}),
1 =1,...,k. Le. in the wait counter graph, the control components are just inter-
pretations of the wait counters. The wait counter graph is defined in a “denotational
manner”, using structural induction on the syntax of the statements wstmt) and a
least fixed point operator for the handling of while-loops. This denotational ap-
proach can be used for an automatic procedure to obtain the wait counter graph of

17 The fact that we multiply the probabilities P%, (...) for the individual moves of the sequential
processes S; reflects the assumption that &1, ..., S, work independently between the wait’s.

13

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

(wstmt wait;c:=b,| ﬁD
Qwstmt” exit, [b = tt],[c-ﬁ) (e}ut exit, [b= ff],[c Zﬁ]D

@stmt’ exit, [b = ff],[c ﬁ)

1
Y

((exit, exit, [b = tt],[c = ﬁ]))
O

Fig. 6. The wait graph of P

NO[—=

P where the least point operator for the while-loops is approximated by iteration
(on the basis of Tarski’s fixed point theorem).

The construction of the wait counter graph can be sketched as follows. In each
statement wstmt), we replace the j-th occurrence of a wait command by wait;. For
these extended statements stmt '8 | we give a denotational least fixed point semantics
stmt — D¢[stmt] (relative to an environment e) in the classical style a la Scott
(Section 5.2). D¢[stmt] is a function that returns for each pair (s, t) of “local states”
(interpretations of the variables of stmt, including the wait counter) the probability
for stmt to reach ¢ from s within one time step. Then, the one-time-step behaviour
of §; (relative to the environment e;) in the local state s where the control is at the
j-th wait command (i.e. s.wc; = j) is given by the function ¢ — D% [r; (wstmt))](s, t)
where 7; (wstmt?) is the “substatement” of the extension wstmt? of wstmt) that starts
with wait; and that is obtained by unwinding all “relevant” while-loops.'® The
(global) transition probabilities P, (5,?) for the wait counter graph are obtained by
multiplying the probabilities D¢[. . .](s;, ;) for the individual moves of the sequential
processes S; within one time step.

5.1 Extended statements

The first step in the construction of the wait counter graph replaces each wait
command by an indexed wait command; more precisely, the j-th occurrence of wait
in wstmt] is replaced by wait;. The index j is the value of the wait counter wc;
for S; when the execution of S; is at the j-th wait in wstmt). The introduction of

18 The syntax of the extended statements arises from the syntax of the (ordinary) statements where
the wait command is replaced by an indexed wait command wait;, cf. Section 5.1.
19 Here, “relevance” means that we consider those while-loops whose body contains wait;.

14

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

wait;
b .= tt;
pselect(3 : waity;
while b A —c {
pselect(} : b:=ff,1:b:= it);
wait; },
2 : skip);

b:=-b

Fig. 7. The extension ext(wstmt) of wstmt

these indexed wait commands leads to a new type of statements, called eztended
statements.

Syntax of extended statements: Let V' C Var. Stmt(V) denotes the set of
extended statements built from the following production system

while cond {stmt}

stmt ::= wait; ‘ skip ‘ V= erpr ‘ stmty; stmt,

pselect(py : stmty, ..., py @ stmty,) ‘ if cond then stmt; else stmt,

where j, m > 1 are natural numbers, v € V| expr € Ezpr(Type(v)), cond € BEzpr
and py, . .., Py, are real numbers in |0, 1] with p;+. . .4+p,, = 1. We define Stmt™ (V) =
Stmt(V) U {exit}.?" An extended statement stmt € Stmt(V) is called well-formed
iff, for each j > 1, the command wait; occurs at most once in stmt. WStmt; (V)
(abbrev. WStmt;) denotes the set of extended statements that “start” with wait;.
Let WStmty, = {exit}, WStmt = (J,., WStmt;, WStmt* = WStmt U {exit}.

The extended statement ext(stmt): Given stmt € Stmt" (V), we transform stmt
into a well-formed extended statement ext(stmt) € Stmt* (V). ext(stmt) arises from
stmt by replacing the j-th occurrence of wait in stmt by the indexed wait command
wait;. E.g., the extension of the statement wstmt of Figure 2 is shown in Figure 7.

5.2 The probabilistic one time step denotations

We fix some subset V' of Var and an environment e for V' and give a denotational
semantics D¢[stmt] for the extended statements stmt € Stmt™ (V) relative to an
environment e for V. The basic idea is the use of a wait counter as control component
whose current value is j if the control is at the indexed wait command wait;.

20 Intuitively, the auxiliary symbol exit corresponds to the indexed wait command waite.

15

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

The denotational semantics D¢[stmt]: Let wc be a “fresh” variable that does not
belong to Var, called the wait counter. Let stmt € Stmt™ (V). We define a function

De[stmt] : Eval(V U {wc}) x Eval(V U {wc}) — [0, 1]

where D¢[stmt](s, s") returns the probability for stmt to reach s’ from s within one
time step. Thus, D¢[stmt] describes the input/output-behaviour of stmt within
one time step: given the initial evaluation s (the input), within one time step, the
execution of stmt leads with probability D¢[stmt](s,s’) to the local state s’ (the
output).? We call D¢[stmt] the probabilistic one-time step denotation of stmt in
the environment e. For extended statements whose first command is not a wait
command (i.e. extended statements stmt ¢ WStmt), one time step is the time that
passes until a wait command is reached or stmt terminates. For wstmt € WStmt,
one time step is the time that passes between the first wait command (the first
command in wstmt) and the next wait command or the termination of wstmt.

Recall that, for s € Fval(V U{wc}), W C VU{wc}, s.W is the unique evaluation
o € Eval(W) with o.w = s.w for all w € W. Let Erit = {t € Eval(V U {wc}) :
t.wc = oo}. We define D¢[stmt] by structural induction on the syntax of stmt.

e Skip and the wait command:
D*[skip](s, sjwc := 00]) = D[wait;](s, sjwc :=o0]) = 1
and D°[skip](s, s’) = D¢[wait;](s, s’) = 0 in all other cases.
e Assignment for variables v € V:
1:if '.we = o0, §".v = [expr](e, s)
Dv := expr](s,s’) = and s.w = s'.w for allw € V' \ {v}

0 : otherwise.

Clearly, skip, wait; and v := ezpr terminate after executing the first “elementary
step” (an idling step in the cases skip and wait;; the evaluation of ezpr and a
variable assignment in the case of v := ezpr). Thus, we have s'.wc = oo for the

successor state s’ of s.
e Probabilistic choice: Let

De[stmt;](s, s') : if stmt; ¢ WStmt
As,s') = 1 . if stmt; € WStmt;, s' = s[wc := j]

0 : otherwise.

Then, D¢[pselect(p; : stmty, ..., py : stmty)[(s,s) = >, pi- Ails,).

21 Thus, the function D¢ can be viewed as the probabilistic and timed counterpart to the classical
denotational semantics & la Scott that describes the input/output behaviour of sequential (non-
randomized) programs.

16

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

e Conditional commands: D¢[if cond then stmt; else stmty](s, s')

;

De[stmty|(s, s') : if [cond](e, s) and stmt; ¢ WStmt
De[stmty](s, s') : if =[cond](e, s) and stmty ¢ WStmt
=91 :if ¢ = sjwe := j| and

either stmt; € WStmt; A [cond](e, s)

or stmty € WStmt; A =[cond](e, s)

and De[if ...J(s,s') = 0 in all remaining cases.

e While-loops: D¢[while cond {stmt}] = Ifp(Q2) where [fp(-) denotes the least
fixed point of (-) of the operator Q : (Eval(V U {wc})? — [0,1]) — (Eval(V U
{wc})? — [0, 1]) which is defined as follows. 22

Destmt](s,s") + D ,cpp DCIstmt](s, 1) - f(t,s")

: if [eond](e, s), stmt ¢ WStmt and s'.wc # oo
> tepaie DE[stmt] (s, 1) - £(2, 5')
Q(f)(s,8) = < . if [cond](e, s), stmt ¢ WStmt and s'.wc = oo
1 cif 5.V =V and

either =[cond](e,s) A s'.wc = oo

or [cond](e,s) N s'wc=j A stmt € WStmt;

and Q(f)(s,s") = 0 in all other cases.

22 Note that, for all s, t, s’ € Eval(V U {wc}) there exist constants as;, bss > 0 such that
Q(f)(s,8") = > as-f(t,s") + b, o Here, t ranges over all evaluations for V' U{wc}. For instance,
as: = De[stmt](s,t) if [cond](e,s) and stmt ¢ WStmt, a5 = 0 and b, » = 1 if =[cond](e, s) and
s'.wc = oco. This yields the continuity of with respect to the elementwise ordering f < f’ iff
f(s,8") < f'(s,8") for all s, s' € Eval(V U {wc}) on the function space Eval(V U {wc})? — [0,1].
Tarski’s fixed point theorem yields the existence of a least fixed point.

17

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

e Sequential composition: D¢[stmt;;stmty](s, s’)

;

De[stmt,](s,s’) + D¢[stmt,](s, s'|wc := 00])
: if stmt, € WStmt; and s'.wec = j
De[stmt;](s, s') : if stmty € WStmt; and s’.wc # j
= § De[stmt;](s,5") + D2, prir D°[stmti] (s, 1) - De[stmt,](Z, s)
: if stmty ¢ WStmt and s’.wc # oo
Y repai DE[stmty] (s, t) - De[stmty] (¢, s')
: if stmty ¢ WStmt and s".wc = oo

\

and D¢[stmty; stmtz](s, s’) = 0 in all remaining cases.

We give an informal explanation for the definition of D°[...] for the probabilistic
choice operator and while-loops. The arguments for conditional commands and
sequential composition are similar and omitted here. In some cases we refer to the
transition relation ~¢ which describes the effect of the first commands (“elementary
steps”) of the extended statements. The exact definition of ~»¢ (which can be given
in the SOS-style as in Figure 1) is omitted here.

Probabilistic choice: If pselect(...) is a substatement of some well-formed ex-
tended statement then there is at most one index [where wait; occurs in stmt;. If
there is no index [where waity ,,c occurs in stmt; then D¢[pselect(...)](s,s’) =0
(because s’ cannot be reached from s). Now suppose that s'.wc = j and that
wait; occurs in stmt; but not in any other of the extended statements stmt;. (Thus,
A;(s,s") =01if i # [.) If wait; is the first command of stmt; then

e

(pselect(...,p : waitj;stmt,...),0) ~p

(wait;; stmt, o).

and D¢[pselect(...)](s, sjwc := j]) = p;. If stmt; does not start with a wait com-
mand (i.e. stmt; ¢ WStmt, A4,(s, s') = D¢[stmt;](s, s’)) then the probability for s to
reach s’ with one time step when executing pselect(...) is the same as for reaching
s’ from s when executing stmt; under the condition that the outcome of resolving
the probabilistic choice is stmt;.

While-loops: If [cond](e, s) is wrong then the while-loop immediately terminates,
i.e. (while cond {stmt},s.V) ~»{ (exit,s.V) which is reflected in the definition

. 1:if s" = sfwe := o]
Df[while ...](s,s") =
0 : otherwise.

Next we assume that [cond](e, s) is true. Then, we have the transition

(while cond {stmt},s.V) ~»{ (stmt;while cond {stmt},s.V).
18

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

If stmt starts with the wait command wait; (i.e. stmt € WStmt;) then we get

. 1 :if §" = s[we := j]
D¢[while ...]J(s,s') =
0 : otherwise

Now we assume that the first command of stmt is not a wait command (i.e. stmt ¢
WStmt). Let t.wc = oo (i.e. t € Exit). Then, D¢[stmt](s, t) is the probability for s
to terminate in ¢ within one time step when executing stmt. Hence,

> D[stmt](s, t) - D*[while ...](t)

teExit

denotes the probability for s to reach s’ within one time step where the body stmt
of the while-loop is executed at least once without passing any wait command.

First, let s.wc = co. The while-loop only terminates in s’ when [cond](e,) is
wrong. Thus, each execution of while ... that starts in s and terminates in state s’
passes a state ¢t € Ezit such that the execution of the while-loop, when (re-)started
in ¢, terminates in s'. Thus, if [cond](e, s), stmt ¢ WStmt and s'.wc = oc:

D[while .. [(s,s') = Y D°[stmt](s,t) - D[while ..](t,s")

te Exit

Now we assume that s’.wc = j # oo. There are two possible cases for the while-loop
to reach s’ from s within one time step: either the first execution of stmt leads to
s without passing any wait command (with probability D¢[stmt](s, s')) or the first
execution of stmt leads to a state ¢t € Ezit without passing any wait command (with
probability D¢[stmt](s,t)) and the execution of the while-loop when (re-)started in
t leads to s’ within one time step (with probability D¢[while ...J(¢,s")). Thus, if
[cond](e, s), stmt ¢ WStmt and s’.wc # oo then

Df[while ...J(s,s") = D°[stmt](s,s’) + Z De[stmt](s,t)-D°[while ...](t,s").

te Exit

Remark: D¢[stmt](s,s’) does not depend on the value of the wait counter in s.
Le. D¢[stmt](s, s') = D¢[stmt](¢, s') for all s, ¢ where s.V =t.V.% m

5.3 The wait counter graph for parallel randomized programs

We now define the wait counter graph of P (where P = (7,S51,...,8), S =
(Vi, wstmt)) are as before). The states are tuples 5§ = (s,...,s;) where s; is the
local state of S;, © = 1,...,k. Let wc; denote the wait counter for S;. The local
states s; are evaluations for V;U{wc;}, i.e. they consist of a control component s;.wc;
and an interpretation s;.V; of the variables that are under the control of S;. Then,

23 In the computation of the wait counter graph, the probabilities D¢[stmt](s, s') are only needed
for those s and stmt where s.wc = j and stmt € WStmt;.

19

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

ext(wstmt)) € WStmt(V;) and s;.we; € Type(we;) = {1,...,n;} U {oo} where n; is
the number of wait’s in wstmt).

In the local state s; where s;.wc; := j, the sequential component &; has to

perform the (statement that coincides to the) extended “substatement” wstmt; ; of
ext(wstmt) that starts with wait;. Thus, the (one time step) transition probabilities
for S; in the global state § are given by D¢ [wstmt; s, wc,] (si, ti)-
The statements 7;(stmt): For stmt to be a well-formed extended statement that
contains the wait command wait;, we define an extended statement m;(stmt) that
represents the “logical” substatement of stmt whose first command is wait; and
that arises by unwinding the while-loops whose body contains the command wait;.
Let stmt be a well-formed extended statement that contains the command wait;.
m;(stmt) is defined by structural induction.

o 7i(wait;) = wait,

o mj(pselect(p; :stmty,..., Py, : stmt,,) = mj(stmt;) if wait; occurs in stmt;

7;(stmty); stmty : if wait; occurs in stmt;
o mj(stmty;stmty) =

7, (stmty) : otherwise.
o 7;(if cond then stmt; else stmty) = 7;(stmt;) if wait; occurs in stmt,
e 7j(while cond {stmt}) = m;(stmt); while cond {stmt}
Moreover, we define 7, (stmt) = exit.?* For example, consider the statement

ext(wstmt) of Figure 7. The extended statements my(ext(wstmt)) and 73 (ext(wstmt))
are shown in Figure 8.

waity; waits;

while b A —¢ { while b A —¢ {
pselect(s : b:=ff, : b:= tt); pselect(s : b:=ff, 1 :b:= tt);
waits }; waity };

b:=—b b:=—b

Fig. 8. The “unfoldings” my(ext(wstmt)) and s (ext(wstmt))

The wait counter graph: Let P = (7,85, ...,Sk) be as before. The wait counter
graph for P is the labelled fully probabilistic process

WOG(P) = (chga chg; Lwcg; gwcg)

24 Note that we require stmt to be well-formed. Thus, the command wait; occurs exactly once in
stmt. Clearly, if wstmt € WStmt then m (ext(wstmt)) = ext(wstmt). In general, 7;(stmt) is not
well-formed as it might contain more than one occurrence of wait;.

20

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

(wcl = l,WCQ = 1,17:]7,0:]7)

1 2
3 3

(wcl = 2,wca = 00,b = tt,c:ﬁ‘) chl = 00, WC2 :oo,b:ﬁ,c:ﬁ)
1 1 ()

3 \5‘ 1
(Wcl :3,WC2 :OO,b:ﬁ,C:ﬁ)<1—CWC1 :3,WC2 :OO,b: tt,C:‘[f)

2

1 2
A 4
chl = 00,WC2 = 00,b = tt,c:ﬁ)

)

Fig. 9. The wait counter graph of P

where Sy = Eval(VarU {wcy, ..., wc,}) and

Py (51, 86, (810 sk)) = [Dl Tovome, (ext(wstmt)) I(si, 7).

1<i<k

Here, e; is the environment for V;U{wc;} that is composed by the evaluations s;,.V},
h # i, ie. e.v = sp.v for all v € V), h # 7. The initial state 5, is given by
Sweg = (s%,...,8)) where s?.v = g.v for all v € V; and s).wc; = 1. The labelling
function L, is given by Ly ((s1,...,5%)) = Ujcici{@vsiv:v € Vi)

Example: Let P = (5,8, Ss) be as in Figure 6. Le. we deal with two boolean vari-
ables b (under the control of ;) and ¢ (under the control of S;) and the statements
wstmt) = wstmt as in Figure 2 for S;, wstmt) = wait;c := b for S;. The wait
counter graph for P is shown in Figure 9 where we assume the initial interpretation
o.b = ff and 5.c = ff. We briefly explain the outgoing transitions of the initial state
(wey = 1,wey = 1,b = ff, ¢ = ff) which stands short for the state 5§ = (sq, so) where
S1.WC1 = S9.WCy = 1, 51.b = sg.c = ff. We have to consider the environments e;, e,
where e;.b = ey.c = ff and the evaluations o, 09 where 01.b = 09.c = ff. For the
extended statement 7, (ext(wstmt?)) = ext(wstmt) (see Figure 7), we have:

1/3 :if &' = s[we :=2,b := t1]
2/3 1 if s' = s|wc := 00, b := ff]

Dle=ext(wstmt)](s,s') =

We have 7 (ext(wstmtd)) = ext(wstmt3) = wait; := 1;¢:=b. Thus,
D= [ext(wstmtd)] (sa, s2[c := ff,wey 1= o0]) = 1.

For the initial state 5,q = (we; = 1,wey = 1,0 = ff,c = ff) we obtain

1/3 :if t = (we; = 2,wey = 00,b = tt, ¢ = ff)

2/3 :if t = {wc; = oo, wee = 00,0 = ff,c = [f)
21

chg (Ewcga f) =

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

and P e (Speg, t) = 0 in all other cases. m

6 Consistency

In the previous section we gave a denotational semantics (the wait counter graph)
of a parallel randomized program. Using iteration to approximate the least fixed
operator used for while-loops, the definition of the wait counter graph can be used as
an algorithm to compute the (denotational) semantics. The question arises in what
way the operational semantics (the wait graph) and the denotational semantics (the
wait counter graph) are related. In this section, we establish the consistency result
for the operational and denotational semantics stating that the wait graph and the
wait counter graph are bisimilar. 2

To show that the wait graph and the wait counter graph are bisimilar we have
to establish a bisimulation that relates the states of the wait graph and the states
of the wait counter graph. First we observe that in general the wait graph and wait
counter graph contains are not isomorphic (cf. Figure 6 and 9); more precisely, the
wait graph might contain more states. This is due to the fact that there might be
more than one extended statement that stem from the same statement.?® We show
that the relation that identifies the global state (wstmt, ..., wstmty, oq,...,0%) of
the wait graph with all states (si,...,sx) of the wait counter graph where wstmt;
“corresponds” to s, we, (ext(wstmit))) and s;.V; = 0;, 1 = 1,...,k, is a bisimulation.
The statements ¢(stmt): Let stmt € Stmt™ (V) be well-formed. We retransform
stmt into a statement ¢(stmt) € Stmt" (V) by replacing all indexed wait commands
wait; by wait. Clearly, ¢(ext(wstmt)) = wstmt. Let wstmt, wstmt’ € WStmt* (V)
and o' € Fval(V'). We define

States(wstmt, wstmt', o”)

= {s € Eval(V U {wc}) : ¢ (msnc(ext(wstmt))) = wstmt',s.V =o'} . %"
Example: For the extension ext(wstmt) of wstmt of Figure 2 (see also Figure 8),
we have: ¢(mq(ext(wstmt))) = ¢(m3(ext(wstmt))) = wstmt” and

States(wstmt, wstmt", [b = [f]) = {sa, s3}

where the statement wstmt” is as in Figure 3 and where sy, s3 € Eval({wc, b}) with
s;iwec=71and s;.b =ff. m

25 For the notion “consistency” see [BMC97].

26 By dropping the indices for the wait commands, two extended statements might lead to the
same statement. For instance, mo(ext(wstmt)) and w3 (ext(wstmt)) (where wstmt is as in Figure 2)
correspond to the same statement wstmt”’. Thus, the state (wstmt”, exit, [b = tt],[c = ff]) of the
wait graph in Figure 6 is “represented” in the wait counter graph (see Figure 9) by the two states
(wep =2,wee = 00,b=tt,c = ff) and (wc; = 3, wee = 00,b = tt,c = ff).

2T Note that States(wstmt, exit,o’) = {s € Eval(V U {wc}) : s.wc = 00,s.V =o'}

22

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN
Theorem 6.1 Let wstmt € WStmt* (V). Then, for all s € Eval(V U {wc}):

P{ ((p(ms.wc (ext(wstmt))), s.V), (wstmt ,0")) = Z D[ms we(ext(wstmt))](s, s")

s'es’
where S = States(wstmt, wstmt', o').

Proof (Sketch): Let e € Env(V'). Using similar axioms and rules as in Figure 1, we
define a transition relation ~+¢ C Stmt(V') x Eval(V)x]0, 1] x Stmt™ (V) x Eval(V')
for the extended statements over V' that formalizes the stepwise baheviour. Let
stmt € Stmt(V'). We define a fully probabilistic process TSB(stmt, o, ¢) = (S, P, s;nit)
as follows. S = Stmt™ (V) x Eval(V') U {sini(stmt, o,)} where s;pi; = sini(stmt, 0, €)
is the initial state. The transition probability matrix P is given by:

P((stmt’,0"), (stmt”, 0")) = ¢ iff (stmt’,0") ~¢ (stmt”,0”) and stmt’ ¢ WStmt™,
P(sinit, (stmt’, 0")) = ¢ iff (stmt,0) ~¢ (stmt’,0’) and P(-) = 0 in all other cases.
Then,

D¢[stmt] : Eval(V) — (WStmt™ (V) x Eval(V') — [0,1])
is given by by D¢[stmt](c)(s) = Prob{m € Pathy(sinit(stmt,o,¢e)) : last(m) = s}.
Here, Prob{...} denotes the probability measure on TSB(stmt,o,e). Moreover, we
put D[exit](o)((exit,o)) = 1 and D°[exit](c)(s) = 0 if s # (exit, o). It can be
shown that, if s, s’ € Eval(V U {wc}) then
(I) De[stmt](s,s') = D°[stmt](s.V)({ms wc(stmt), s".V)).

TSB(-) and TSB(-) are viewed as labelled fully probabilistic processes with labels
in AP = AP U Stmt" (V). Here, the labelling L of TSB(wstmt,o,e) is given by
L((stmt',0")) = {aveo : v € V} U {stmt'} and L(s;pi(wstmt,o,€)) = {apon :
v € V} U {wstmt}. Similarly, we define the labelling L of TSB(wstmt,o,e) by
L((stmt’,0")) = {avorn : v € V} U {p(stmt’)} and L(sipi(wstmt,o,€)) = {ap oo :
v e V}IU{¢p(wstmt)}. Now we assume that ¢(wstmt) = wstmt. It is easy to see that
TSB(wstmt, o, e) and TSB(wstmt, 0, e) are bisimilar. From this, we get

(I1) PS5 ((wstmt, o), (wstmt', ")) = Z D¢[wstmt] (o) ({wstmt’, o'}).
wstmt'ep-1(wstmt')

Let J = {j : ¢(mj(wstmt)) = wstmt'}. By (II):
P ((¢(Ts.mc(wstmt)), s.V), (wstmt', o')) = ZDe[[ﬂs,wc(stmt)]](s.V)((Trj(stmt),a'>).
JET
Let state(j,0') be those evaluation s’ € Eval(V U{wc}) with s".wc = j and .V = ¢'.
Then, States(stmt, wstmt',o') = {state(j,o’) : j € J}. Thus, by (I):
P{ ((¢(msmc(stmt)), s.V), (wstmt', "))

=) D[momc(stmt)[(s.V) (g we(stmt), ' V) = 3 D[m,me(stmt)](s, s').

s'esS’! s'es’
This yields the claim. m
Example: Let wstmt = wait;pselect(% : wait,% :wait). Then,

23

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

ext(wstmt) = wait;; pselect(s : waity, 2 : waity).

Let s € Eval(V U {wc}), s.wc = 1. Then, ¢(mswc(ext(wstmt))) = wstmt and

1/3 :if ' = s[wc := 2]
Delext(wstmt)](s,s") = { 2/3:if s’ = sjwc := 3]

0 : otherwise
Then, S’ el States(wstmt, wait, s.V)) = {sa, s3} where s;.wc = j, s;.V = s.V. Thus,

P¢ ((wstmt, s. V), (wait,s.V)) = 1 = % + %

= D°[ext(wstmt)](s, s2) + D[ext(wstmt)](s, s3).

Note that, in the transformation of the above statement wstmt into an extended
statement, the wait’s in the two alternatives in the pselect(:) command get dif-
ferent indices. Thus, when we use wait counters as control components then the
state that is reached after resolving the probabilistic choice depends on whether we
choose the left or right alternative. On the other hand, when we use statements as
control components then from state (wstmt, s.V) we move to the state (wait,s.V')
independent on whether we choose the left or right alternative. m

Theorem 6.2 For each parallel randomized program P, WG(P) ~ WCG(P).

Proof: Let P = (7,S51,...,8k) be as before. Using Theorem 6.1, we get that
{({wstmty, ..., wstmtg, o1,...,0%),(S1,..,5k)) : $; € States(wstmt), wstmt;, o;)} is a
bisimulation. m

Example: We consider the wait graph (Figure 6) and wait counter counter graph
(Figure 9) for the program P = (7,81,8s). Let R be the smallest equivalence
relation on the states of the wait graph of P and the wait counter graph of P that
relates the states as shown in Figure 10. Then, (as shown in the proof of Theorem

WG(P) WCG(P)
(wstmt,wait;c:=b,[b = ff],[c = ff]) | (we; =1,wey =1,b=ff,c=ff)
(wstmt”, exit, [b = tt], [c = ff])

wcp = 2,wey = 00, b = tt, ¢ = [ff)
wcy = 3,wey = 00, b = tt, ¢ = ff)
c; = 3,wce = 00,0 = ff,c = ff)

WC] = 00, WCy = 00, b = tt, ¢ = ff)

(wstmt", exit, [b = ff], [c = [f])
(exit,exit, [b = tt], [c = ff])
(exit,exit, [b = ff],[c = f])

2

(
(
(
(
(
(

wC] = 00, Wey = 00,b = ff,c = ff)

Fig. 10. The bisimulation equivalence relation R

6.2) R is a bisimulation. m
24

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

7 Conclusion

In this paper, we considered a specification language for parallel randomized pro-
grams P whose sequential components &, ..., S, are described in an imperative
C-like language with while-loops, conditional commands and probabilistic choice.
We described two semantic models for P that both yield a Markov chain for P
and are based on an operational resp. denotational semantics for S;. Because of its
declarative nature, the wait graph (the Markov chain obtained by the operational
semantics) might be one that a designer has in mind. The denotational semantics is
defined inductively and can easily be translated into a recursive procedure that can
be implemented with multi-terminal BDDs [CFM 93 BEG*93]. Thus, the denota-
tional semantics yields the theoretical foundations of a symbolic model checking tool
like [Har98] that generates the wait counter graph for P. In Theorem 6.2, we have
established the bisimulation equivalence of the wait graph and wait counter graph.
This guarantees that the calculations of a model checking tool (that works with
the wait counter graph) are consistent with the view of the designer, provided that
the underlying specification formalism is insensitive with respect to bisimulation
equivalence (e.g. PCTL* [ASBT95]).

It should be noted that the probabilistic one time step denotations could also
be defined for (proper) statements rather than extended statements and used for
the construction of a third Markov chain for a parallel randomized program P. The
resulting Markov chain would be isomorphic to the wait graph. Although the number
of states in the wait graph (obtained by an operational or denotational semantics)
is smaller than the number of states in the wait counter graph, its construction is
not adequate for a verification tool since it uses statements as control components
for the local states. 28

References

[ASB*95] A. Aziz, V. Singhal, F. Balarin, R. Brayton, A. Sangiovanni-Vincentelli: It
usually works: The Temporal Logic of Stochastic Systems, Proc. CAV’95,
LNCS, Vol. 939, pp 155-165, 1995.

[BFG193] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Padro, F. Somenzi:
Algebraic Decision Diagrams and their Applications, Proc. ICCAD, pp 188-
191, 1993.

[BCHT97] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, M. Ryan:
Symbolic Model Checking for Probabilistic Processes, Proc. ICALP’97,
Lecture Notes in Computer Science 1256, pp 430-440, 1997.

28 The construction of the wait graph requires the representation of the global states
(wstmty, . . ., wstmiy, . ..) where the first k& components range over certain (in general quite long)
fragments of the source code for the sequential processes. Thus, the space needed for the wait
graph is (in general) much more than the space complexity for the wait counter graph. Moreover,
the cases where a global state of the wait graph is duplicated in the wait counter graph are rare.

25

BAIER AND CLARKE AND HARTONAS-GARMHAUSEN

[BMC97] C. Baier, M. Majster-Cederbaum: How to Interpret and Establish Consistency
Results for Semantics of Concurrent Programming Languages, Fundamenta
Informaticae, Vol. 29, No. 3, pp 225-256, 1997.

[Cam96] S. Campos: A Quantitative Approach to the Formal Verification of Real-Time
Systems, Ph.D.Thesis, Carnegie Mellon University, 1996.

[CCI2] L. Christoff, I. Christoff: Reasoning about Safety and Liveness Properties for
Probabilistic Processes, Proc. 12th Conference on Foundations of Software
Technology and Theoretical Computer Science, LNCS, Vol. 652, pp 342-355,
1992.

[CE81] E. Clarke, E.A. Emerson: Design and Synthesis of Synchronization Skeletons
from Branching Time Temporal Logic, Proc. Workshop on Logics of Programs,
LNCS, Vol. 131, pp 52-71, 1981.

[CES86] E. Clarke, A. Emerson, P. Sistla: Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications, ACM Trans.
Programming Languages and Systems, 1(2), 1986.

[CEFM 193] E. Clarke, M. Fujita, P. McGeer, J. Yang, X. Zhao: Multi-Terminal Binary
Decision Diagrams: An Efficient Data Structure for Matrix Representation,
In IWLS’93: International Workshop on Logic Synthesis, Tahoe City, 1993.

[CGLY94] E. Clarke, O. Grumberg, D. Long: Model Checking and Abstraction, ACM
Transactions on Programming Languages and Systems, Vol. 16, pp 1512-1542,
1994.

[CY88] C. Courcoubetis, M. Yannakakis: Verifying Temporal Properties of Finite-
State Probabilistic Programs, Proc. FOCS’88, pp 338-345, 1988.

[CY95] C. Courcoubetis, M. Yannakakis: The Complexity of Probabilistic Verification,
J. ACM, 42 (4), pp 857-907, 1995.

[Fel68] W. Feller: An Introduction to Probability Theory and its Applications, Wiley,
Ney York, 1968.

[HMP194] G. Hachtel, E. Macii, A. Padro, F. Somenzi: Probabilistic Analysis of Large
Finite State Machines, Proc. ACM/IEEE DAC’%4, pp 270-275, 1994.

[Hal50] P. Halmos: Measure Theory, Springer-Verlag, 1950.

[HJ94] H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Probability,
Formal Aspects of Computing, Vol. 6, pp 512-535, 1994.

[Har98] V. Hartonas-Garmhausen: Probabilistic Symbolic Model Checking with
Engineering Models and Applications, Ph.D.Thesis, Carnegie Mellon
University, 1998.

[HCC99] V. Hartonas-Garmhausen, S. Campos, E. Clarke: ProbVerus: Probabilistic
Symbolic Model Checking, Proc. ARTS’99, LNCS 1601, pp 96-110, 1999.

[LS91] K. Larsen, A. Skou: Bisimulation through Probabilistic Testing, Information
and Computation, Vol. 94, pp 1-28, 1991.

[Plo81] G. Plotkin: A Structural Approach to Operational Semantics, Report DAIMI
FN-19, Aarhus University, September 1981.

[VW86] M. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic
Program Verification, Proc. LICS’86, pp 332-344, 1986.

26

