
Electronic Notes in Theoretical Computer Science �� ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

On the Semantic Foundations of
Probabilistic Synchronous Reactive Programs

Christel Baier

Fakult�at f�ur Mathematik � Informatik

Universit�at Mannheim� ����� Mannheim� Germany

baier�pi	
informatik
uni�mannheim
de

Edmund M� Clarke and Vasiliki Hartonas�Garmhausen

Department of Computer Science� Carnegie Mellon University

Pittsburgh� PA ��	��� USA

femc�hartonasg�cs
cmu
edu

Abstract

In this paper we consider synchronous parallel programs P that are composed by sequential

randomized processes S�� � � � �Sk which communicate via shared variables� First� we give

an operational semantics for the sequential components Si on the basis of a transition

relation de�ned in the classical SOS�style �a la Plotkin �Plo��	 which we use to specify

the behaviour of P by a Markov chain whose transitions stand for the cumulative e
ect

of the activities of the components S�� � � � Sk within one time step� Second� we provide

a denotational semantics for P that also models P by a Markov chain� It is based on a

�denotational� least �xed point semantics for the sequential components which formalizes

the input
output behaviour of the sequential components within one time step� While the

operational �declarative� semantics might be the one that a designer �who provides the

input for the tool� has in mind� the denotational �procedural� semantics is the one that

a compiler might use� We establish a consistency result stating that the Markov chains

induced by the operational and denotational semantics are bisimilar in the sense of �LS��	�

� Introduction

In the literature� various algorithms for analyzing the quantitative temporal be�

haviour of probabilistic systems described by an abstract model �e�g� Markov chain

or Markov decision process� have been proposed� E�g�� methods that are designed for

Markov chains are presented in �VW���CY���CC	
�HJ	��HMP�	��CY	��BCH�	
��

Such algorithms can serve as basis for a model checking tool �CE���CES��� that takes

as its input a probabilistic program P and its speci�cation � �e�g� a temporal logical

formula� and returns the answer �yes� or �no� depending on whether or not P meets

c����� Published by Elsevier Science B� V�

Baier and Clarke and Hartonas�Garmhausen

its speci�cation� The development of such tools requires an appropriate speci�cation

language for the program P together with a procedure that generates automatically

the semantic model for P �e�g� a Markov chain�� For instance� in the tool Prob�

VERUS �Har	��HCC		�� a model checker for parallel randomized programs against

PCTL formulas �HJ	�� has been implemented where the input program P arises

through the parallel composition of sequential randomized processes S�� � � � �Sk that

communicate via shared variables and are speci�ed in an imparative C�like language�

The parallel composition is lazy synchronous �in the style of �CGL	��Cam	��� which

means that the sequential processes S�� � � � �Sk work independently between the syn�

chronization points� Each step of P is composed from the independent execution

of sequences of activities of the sequential components S�� � � � �Sk and is viewed to

take one time unit� �

In this paper� we consider a speci�cation language� similar to the one used in

�Har	��HCC		�� and present an operational and denotational semantics for the se�

quential processes which yield semantic descriptions of P by Markov chains� We

establish a consistency result stating that the Markov chains obtained by the oper�

ational and denotational semantics are bisimilar�

The operational semantics for the sequential processes Si is based on a formal�

ization of the stepwise behaviour of Si by an operational semantics in the classical

SOS�style �a la Plotkin �Plo��� using probability�labelled transitions of the form

hstmt� �i �ei
q hstmt�� ��i�

Here� stmt� stmt� are statements of the language used for specifying the behaviour of

the sequential components� �� �� are interpretations for the variables that are under

the control of Si and ei is the �environment� in which Si works �i�e� ei gives the values

for the variables that are not under the control of Si�� The value q is a real number

in the interval ��� �� that denotes the probability for the above transition� i�e� the

chance that the execution of the �rst command in stmt changes the values of the

variables that are under the control of Si according to �
� and leads to a �local� state

where stmt� is the statement that Si has to perform next� provided that the current

values of the variables are given by � and ei� Thus� the �rst component stmt of a

local state hstmt� �i can be viewed as a control component for Si� We formalize the

one�time�step behaviour of Si in the environment ei by the probabilities Pei
i �si� ti�

for Si to move from the local state si to the local state ti �where we deal with

the probability measure in the Markov chain induced by the probability�labelled

transition relation�ei�� As we suppose the sequential components S�� � � � �Sk to act

independently between the synchronization points the transition probability P��s� �t�

for P to move from the global state �s to the global state �
t within one time step

is obtained by taking the product of the probabilities Pei
i �si� ti�� Here� the global

states �s � hs�� � � � � ski and �
t � ht�� � � � � tki are composed by the local states si� ti for

� To avoid the typical reader�writer�problems� each program variable v is under the control of

exactly one of the sequential components Si� All other components Sh can only read the current

value of v at each synchronization point� but they do not have writing access to v�

Baier and Clarke and Hartonas�Garmhausen

the sequential processes Si� ei denotes the environment for Si that is given by the

local states sh� h �� i�

The denotational semantics� The operational semantics formalizes the intuition

about the behaviour of a randomized parallel program P� thus� it will be the seman�

tics that a designer �who provides the input for the tool� has in mind when he writes

down the speci�cations for the sequential processes Si� On the other hand� this op�

erational semantics is not adequate for a compiler since it uses statements as control

components� For this reason� we take up the ideas of �CGL	��Cam	��Har	��HCC		�

and provide an alternative semantics that uses integer�valued variables as control

components for the sequential processes and can serve as basis for a compiler that

computes the Markov chain for P� The control components can be viewed as point�

ers to the locations at which the executions of the sequential processes are�

In a �rst step� we modify the statements for the sequential components by intro�

ducing special commands for these control variables� Like the operational semantics

described above� this alternative semantics assigns a Markov chain to P but uses a

denotational semantics Dei for the �modi�ed� statements rather than the transition

probabilities P
ei

i
���� Intuitively� Dei��stmt�� describes the probabilistic input�output

behaviour of stmt within one time step when executed in the �environment� ei and

can be viewed as the probabilistic and timed counterpart to the classical denota�

tional input�output semantics for sequential �non�randomized� untimed� programs

�a la Scott� The de�nition of Dei��stmt�� uses structural induction on the syntax of

stmt which can be translated into a recursive procedure for computing Dei��stmt���

Consistency� At this stage� we have two semantic descriptions for P� the opera�

tional �declarative� semantics that the designer has in mind and that is independent

of any details about the compiler �e�g� the introduction of control variables and

special commands for them into the source code for the sequential processes� and a

denotational �procedural� semantics that a compiler might use to generate a Markov

chain for P� Thus� in the view of the designer� P meets the speci�cation � i� the

Markov chain induced by the operational semantics satis�es � while a tool �whose

compiler uses the denotational semantics� returns the answer �P satis�es �� i� �

is satis�ed by the Markov chain induced by the denotational semantics� In Section

� we establish a consistency result stating the bisimulation equivalence �in the sense

of Larsen � Skou �LS	��� of the Markov chains induced by the operational and de�

notational semantics� This ensures the equivalence of the two Markov chains with

respect to all properties that are expressed in a formalism which does not distinguish

between bisimilar programs �such as PCTL
� �ASB�	���� and thus guarantees that

the view of the designer is �consistent� with the calculations of the tool�

Organization of the paper� In Section
 we brie�y recall some basic notions

concerning our model of fully probabilistic systems� Section � explains the syntax

of parallel randomized programs� Sections � and � present the operational and

denotational semantics respectively while Section � shows the consistency of them�

Concluding remarks are given in Section
�

�

Baier and Clarke and Hartonas�Garmhausen

� Preliminaries� Fully probabilistic systems

In this section we brie�y explain the model for probabilistic process that we use

for the operational and denotational semantics� Our model is based on sequential

discrete�time Markov chains where each state is associated with a distribution that

gives the probabilities for the possible successor states� �For further details about

the background in measure or probability theory see e�g� �Hal���Fel�����

Fully probabilistic systems� A fully probabilistic system is a pair �S�P� consisting

of a set S of states and a transition probability function P � S�S � ��� �� such that�

for each s � S� P�s� t� �� � for at most �nitely many t � S and
P

t�S
P�s� t� � ��

If C � S then we de�ne P�s� C� �
P

t�C
P�s� t�� A state s � S is called terminal

i� P�s� S� � �� A state s � S is called stochastic i� P�s� S� � �� otherwise� s

is called substochastic� �S�P� is called stochastic i� all states are stochastic� Each

fully probabilistic system �S�P� can be �extended� to a stochastic fully probabilistic

system �S � f	g�P�� where 	 �� S� P��s� t� � P�s� t� if s� t � S� and� for s � S�

P��s�	� � �
P�s� S�� P��	�	� � � and P��	� s� � ��

�S � f	g�P�� is called the stochastic extension of �S�P��

Paths can be viewed as execution sequences� they arise by resolving the probabilistic

choices� Formally� a path in a fully probabilistic system �S�P� is a nonempty ��nite

or in�nite� sequence � � s�s�s�� � � � where si are states in the stochastic extension

�S � f	g�P�� and P��si��� si� � �� i � ��
� � � �� The �rst state s� of � is denoted

by �rst���� If � � s�s�s� � � � and sk � S� sk�� � sk�� � � � � � 	 then we de�ne

last��� � sk� If sk � S for all k � � then last��� is unde�ned� ��k� denotes the

k�th state of � �i�e� if ��k� � sk�� Path��s� denotes the set of in�nite paths � with

�rst��� � s� If � is a �nite path then C yl��� denotes the basic cylinder induced by

�� i�e� C yl��� is the set of all in�nite paths � where � is a pre�x of ��

The probability measure on fully probabilistic systems� For s � S� let

��s� be the smallest ���eld on Path��s� which contains the basic cylinders C yl���

where � ranges over all �nite paths starting in s� The probability measure Prob

on ��s� is the unique measure with Prob�C yl���� � P��� where P�s�s� � � � sk� �

P��s�� s�� �P��s�� s�� � � � � �P��sk��� sk��

Labelled fully probabilistic systems� In what follows� AP denotes a �nite set

of atomic propositions� A labelled fully probabilistic system is a tuple �S�P� L�

consisting of a fully probabilistic system �S�P� and a labelling L � S �
AP� For

the stochastic extension� we suppose L�	� � ��

Bisimulation equivalence� We recall the de�nition of bisimulation equivalence

�reformulated for labelled fully probabilistic systems� �a la Larsen � Skou �LS	���

A bisimulation for a labelled fully probabilistic system �S�P� L� is an equivalence

relation R on S such that� if �s� s�� � R then L�s� � L�s�� and P�s� C� � P�s�� C� for

all equivalence classes C � S�R� Two states s� s� are called bisimilar i� �s� s�� � R

for some bisimulation R�

Fully probabilistic processes� A fully probabilistic process denotes a tuple �S�P� s�

consisting of a fully probabilistic system �S�P� and an initial state s � S� Similarly�

�

Baier and Clarke and Hartonas�Garmhausen

a labelled fully probabilistic process denotes a tupleM � �S�P� L� sinit� consisting of

a labelled fully probabilistic system �S�P� L� and an initial state sinit � S� Two fully

probabilistic processesM� � �S��P�� L�� s�� andM� � �S��P�� L�� s�� are said to be

bisimilar �writtenM�
M�� i� the initial states s� and s� are bisimilar in the �com�

posed� system �S� � S��P� L� where � denotes disjoint union� P�s� s�
� � Pi�s� s

�
� if

s� s� � Si� i � ��
� P�s� s�
� � � in all other cases� and L�s� � Li�s� if s � Si�

� A parallel randomized language

In this section we explain the syntax of the speci�cation language which is similar to

the one used in ProbVERUS �Har	��HCC		��
�

In our setting� a program P consists

of sequential randomized components S�� � � � �Sk that are executed in parallel and

that communicate via shared variables where each variable is under the control of

exactly one sequential component Si� The parallel composition is synchronous in a

lazy style� i�e� within each �time� step of P �between the synchronization points�� the

sequential components work independently� Termination of one of the components

Si does not block the other components� The sequential processes Si are speci�

�ed by statements of an imperative �C�like� language with assignment� while�loops�

conditional commands and

� a probabilistic choice operator pselect�p� � stmt�� � � � � pm � stmtm� that assigns

the probability pi to the statement stmti

� the command wait that forces the component to be idle until the other sequential

components are ready for synchronization�

One �time� step of P is composed by the parallel �independent� execution of se�

quences of commands between two wait commands�
�

Types� variables� expressions and conditions� Let T be a �nite set of types

�i�e� �nite sets of certain values� including the type Bool � ftt �� g� For each type

T � T we have a �nite set Op�T � of operators op � T� � � � �� Tr � T where r � �

and T�� � � � � Tr � T � Let Var be a �nite set of variables where each variable v � Var

is associated with a type in T � denoted Type�v�� Expressions of type T are built

from the production system�

expr ��� const j v j op�expr
�
� � � � � expr

r
�

where const � T � v � Var with Type�v� � T � op � T��� � ��Tr � T is a r�ary operator

in Op�T �� expr
i
is an expression of type Ti� Expr�T � denotes the set of expressions

of type T � BExpr � Expr�Bool� the set of boolean expressions or conditions�

Evaluations� environments� Let V � Var be a set of �typed� variables� An

evaluation for V is a function � � V �
S

T�T
T � v �� ��v that is type�consistent�

� The core language is a probabilistic variant of the language used in VERUS �Cam��	 where

the non�deterministic choice operator select
� � �� is replaced by a probabilistic choice operator

pselect
� � ��� For simplicity� the real�time constructs like deadlines� time delays or periodic state�

ments of �Cam��	 are omitted but could be added as well�
� Here� termination is viewed as performing in�nitely many wait
s�

�

Baier and Clarke and Hartonas�Garmhausen

i�e� ��v � Type�v� for all v � V � Eval�V � denotes the set of evaluations for V �

If � is an evaluation� n � �� v�� � � � � vn � Var are pairwise distinct variables and

xi � Type�vi�� i � �� � � � � n then ��v� �� x�� � � � � vn �� xn� denotes the evaluation that

coincides with � for all variables w �� fv�� � � � � vng and returns xi for the variable

vi�
� If �i � Eval�Vi�� i � ��
� with V� � V� � � then ���� ��� denotes the evaluation

for V� � V� with ���� ����v � �i�v if v � Vi� i � ��
� If � � Eval�V �� W � V then

��W denotes the unique evaluation onW with ���W ��w � ��w for all w � W � Given

an expression expr � Expr�T � and an evaluation � for a superset of Var� ��expr�����

denotes the value of the expression expr when evaluated over �� � An environment

for V � Var is an evalution e for a superset of Var n V � Let Env�V � denote the

collection of all environments for V �

Statements� Statements over V are built from the following grammar�

stmt ��� wait

�
�
� skip

�
�
� v �� expr

�
�
� stmt�� stmt�

�
�
�

while cond fstmtg

�
�
� pselect�p� � stmt�� � � � � pm � stmtm�

�
�
�

if cond then stmt� else stmt�

where v � V � expr � Expr�Type�v��� cond � BExpr� m � � is a natural number and

p�� � � � � pm ���� �� with p� � � � pm � �� Stmt�V � denotes the set of statements over

V � Stmt the set of all statements� We de�ne WStmt to be the set of statements that

�start� with a wait command� Formally�WStmt is the smallest subset of Stmt such

that wait � WStmt and� if wstmt � WStmt and stmt � Stmt then wstmt� stmt �

WStmt� We de�ne Stmt� � Stmt � fexitg and WStmt� �WStmt � fexitg where

exit is an auxiliary statement that denotes termination� LetWStmt�V � �WStmt�

Stmt�V � and WStmt��V � �WStmt�V � � fexitg�

Sequential randomized components� A sequential randomized component is a

tuple S � hV�wstmti consisting of a subset V of Var and a statement wstmt �

WStmt�V �� �

Parallel randomized programs� A parallel randomized program is a tuple P �

h���S�� � � � �Ski where �� � Eval�Var� is an initial evaluation and S�� � � � �Sk are se�

quential randomized components such that� if Si � hVi�wstmt�
i
i� i � �� � � � � k then

Vi � Vh � � if � � i � h � k� and Var �
S

��i�k
Vi�

Intuitively� P � h���S�� � � � �Ski stands for the parallel execution of the sequential

processes S�� � � � �Sk between the wait commands� More precisely� each step of P

is composed by the activities of the processes Si between two wait!s� S�� � � � �Sk

synchronize at the wait!s� i�e� Si reads the current values of the variables v � VarnVi�

At each wait� time increases by �� Thus� we may assume that the time that passes

� I�e� ��v� �� x�� � � � � vn �� xn	�w � ��w if w �� fv�� � � � � vng� ��v� �� x�� � � � � vn �� xn	�vi � xi�
� Formally� we de�ne ��expr		 by structural induction� ��const		
�� � const� ��v		
�� � ��v and

��op
expr
�
� � � � � expr

r
�		
�� � op
��expr

�
		
��� � � � � ��expr

r
		
����

� Note that only the values of the variables v � V can be modi�ed by S� the variables v �� V can

only be read by S� The variables w � Var nV might occur in the expression expr of an assignment

or in the condition of a while�loop or conditional command�

�

Baier and Clarke and Hartonas�Garmhausen

between two wait!s is one time step� The initial evaluation �� gives the initial values

of the variables� i�e� for v � Var� ���v � Type�v� is the initial value of v� 	

� Operational semantics� the wait graph

We describe the behaviour of a parallel randomized program P by a Markov chain

�with transition probability function Pwg� that we derive from an operational se�

mantics for the sequential processes S�� � � � �Sk� The transition probabilitiesPwg��s� �t�

assert that� from the global state �s� the global state �t is reached within one time step

with probability Pwg��s� �t�� The resulting graph �whose nodes are the global states

and whose edges are labelled with non�zero probabilities� is called the wait graph of

P because each edge describes a possible behaviour of P between two wait!s�

Let P � h���S�� � � � �Ski be a parallel randomized program� The global states of P

are tuples �s � hs�� � � � � ski consisting of local states si for each of the sequential pro�

cesses Si� The local states of Si are pairs si � hwstmt� �i where wstmt � WStmt��Vi�

is the control component �that denotes the statement that Si has to execute next

when the local state of Si is si� and � is an interpretation for the variables v � Vi

�i�e� � � Eval�Vi��� As S�� � � � �Sk work independently between the synchronization

points �the wait!s�� the transition probabilities Pwg��s� �t� are given by the product

of the probabilities Pi�si� ti� for Si to reach the local state ti from si within one

time step� Since the sequential components communicate via shared variables
 the

probabilities Pi�si� ti� do not only depend on si but also on the local states sh� h �� i

�namely� on the interpretation of the variables w � Vh� h �� i�� Thus� the transition

probabilities for P are of the form

�"� Pwg��s� �t� �
Y

��i�k

P
ei

i
�si� ti�

where ei denotes the environment in which the component Si works when the global

state of P is �s� That is� ei is the interpretation for the variables w � Var n Vi in the

global state �s� i�e� ei � Env�Vi��

��� The one�time�step behaviour of the sequential processes

The transition probabilities Pei

i
�si� ti� in formula �"� describe the one�time�step be�

haviour of Si in the environment ei� In this section� we give a formal de�nition

of these transition probabilities by means of an operational semantics of the state�

ments over a �xed subset V of Var relative to an environment e � Env�V �� More

� The requirement that the statements wstmt�
i
belong to WStmt ensures that the computation of

P starts with a synchronization� The condition Vi � Vh � � avoids the typical writing problems

for parallel processes with shared variables� Each variable can be written by at most one process

while it can be read by all components S�� � � � �Sk� The requirement that all variables v � Var

belong to some Vi ensures that all variables of P are under the control of a sequential component�
	 Recall that in wstmti the variables w � Var n Vi might occur in the expression of an assignment

or in the condition of a while�loop or conditional command�

Baier and Clarke and Hartonas�Garmhausen

precisely� we de�ne values P
e

V
�s� t� that denote the probabilities to reach the local

states t � hwstmt
�
� �

�i from s � hwstmt� �i by executing wstmt until the next wait

command occurs or the execution of wstmt terminates�
�
The transition probabilities

of the sequential processes Si in formula �"� are obtained by P
ei

i
�si� ti� � P

ei

Vi
�si� ti��

In order to formalize the cumulative e�ect of sequences of the commands that are

executed within one time step �between two wait!s�� we �rst describe the stepwise

behaviour of the statements stmt � Stmt�V � �when executed in the environment e

that gives the values for the variables w � Var n V �� For this� we use transitions

of the form hstmt� �i �e

q
hstmt

�
� �

�i that assert that # with probability q # the

execution of the �rst command in stmt �where the current values of the variables

are given by � and e� leads to the intermediate state hstmt
�
� �

�i in which stmt
�
has

to be executed next and where the current value of the variables v � V is given by

�
�
�
��
Formally� we de�ne the transition relation

�e � Stmt�V �� Eval�V ����� ��� Stmt
�
�V �� Eval�V �

by the axioms and rules shown in Figure ��
��
Most of the rules are self�explanatory�

In the rule for pselect we sum up the probabilities pl where stmtl � stmt
�
� This is

necessary because we did not make a syntactic restriction on the statements inside a

probabilistic choice� thus� there might be more than one index l with stmtl � stmt�

For instance� we have the transition hpselect��
�
� skip�

�

�
� skip�� �i �e

� hskip� �i
where the transition probability � is obtained from the sum

�

�

�

�
� The auxiliary

symbol exit is needed to model terminating behaviour
��
and for the handling of

sequential composition�
��

We now use the transition relation�ei to formalize the behaviour of the sequen�

tial processes Si within one time step� Let V � Vi and e � ei� If Si is in the local

state s � hwstmt� �i then the behaviour in the next time step is formalized by a
fully probabilistic process TSB�wstmt� �� e�

��
where

� the states are pairs hstmt� �i with stmt � Stmt�Vi� and � � Eval�Vi��

 For instance� if wstmt is of the form wait� stmt� wait where stmt does not contain any wait

command then the one�time�step behaviour of Si is given by the cumulative e�ect of the commands

in stmt where the initial interpretation of the variables is given by � and ei�
�� Intuitively� the �rst command denotes an �elementary step� such as an idling step
skip or

wait�� a variable assignment� the evaluation of the condition of a while�loop or a conditional

command or resolving a probabilistic choice
�tossing a coin���
��Note that� for all pairs
hstmt� �i� hstmt

�
� �

�i�� there is at most one q where hstmt� �i �e
q

hstmt
�
� �

�i�
�� For instance� the outgoing transitions of hskip� � � �i� hwait� � � �i and hv �� expr� � � �i lead to a

local state of the form hexit� � � �i� Similarly� if cond is a condition that evaluates to false when

interpreted over e and � then the statement while cond fstmtg immediately terminates after the

�rst �elementary step�
i�e� after the evaluation of cond�� thus� with probability �� we get the

transition to the local state hexit� � � �i�
��E�g�� if hstmt�� �i �

ei
q hexit� ��i
i�e� with probability q� stmt� terminates after performing the

�rst command� then hstmt�� stmt�� �i �
e
q hstmt���

�i
i�e� with probability q� the execution of stmt�

starts after the execution of the �rst command of stmt���
��The letters TSB stand for �time step behaviour��

�

Baier and Clarke and Hartonas�Garmhausen

hwait� �i �e

�
hexit� �i hskip� �i �e

�
hexit� �i

hv �� expr� �i �e

�
hexit� ��v �� ��expr���e� ���i

q �
P

l�I
pl where I � f� � l � m � stmtl � stmt

�g

hpselect�p� � stmt�� � � � � pm � stmtm�� �i �e

q
hstmt�� �i

��cond���e� ��

hif cond then stmt� else stmt�� �i �e

� hstmt�� �i

���cond���e� ��

hif cond then stmt� else stmt�� �i �e

� hstmt�� �i

��cond���e� ��

hwhile cond fstmtg� �i �e

� hstmt� while cond fstmtg� �i

���cond���e� ��

hwhile cond fstmtg� �i �e

� hexit� �i

hstmt�� �i �e

q
hstmt�� ��i and stmt

� �� exit

hstmt�� stmt�� �i �e

q
hstmt�� stmt�� ��i

hstmt�� �i �e

q
hexit� ��i

hstmt�� stmt�� �i �e
q
hstmt�� ��i

Fig� �� The stepwise behaviour of the statements in the environment e

� all local states of the form hwstmt�� � � �i with wstmt
� � WStmt�Vi� are viewed as

terminal states� the outgoing transitions of hwstmt�� � � �i with respect to �ei are

ignored �these transitions represent steps that are executed in the next time step��

� the root �initial state� is an auxiliary state sinit � sinit�wstmt� �� ei� whose outgo�

ing edges are given by the transitions from hwstmt� �i�

Formally� we de�ne TSB�wstmt� �� e� � �S�P� sinit� as follows� The state space S

consists of all pairs hstmt�� ��i � Stmt
�
�V ��Eval�V � and an additional state sinit �

sinit�wstmt� �� e�� i�e� S � Stmt
�
�V ��Eval�V ��fsinitg� The transition probability

function P is de�ned as follows� If hstmt�� ��i �e

q
hstmt��� ���i and stmt

�
�� WStmt

�

then P�hstmt�� ��i� hstmt��� ���i� � q� The probabilities for the outgoing transitions

from the initial state are given by

P�sinit� hstmt
�
� �

�i� � q if hwstmt� �i �e

q
hstmt�� ��i�

We put P��� � � in all remaining cases�

Remark� The additional initial state sinit is needed since the state hwstmt� �i is

terminal in TSB�wstmt� �� e�� Recall that the outgoing transitions of hwstmt�� � � �i
where wstmt

� � WStmt�V � with respect to �e
are ignored� On the other hand�

we cannot add the outgoing transitions of such states hwstmt�� � � �i as they describe

	

Baier and Clarke and Hartonas�Garmhausen

wait�

b �� tt �

pselect�
�

�
� wait�

while b � �c f

pselect�
�

�
� b �� � � �

�
� b �� tt��

wait g�

�

�
� skip ��

b �� �b

Fig� �� The statement wstmt

activities of the next time step� E�g�� if ��cond���e� �� is true then� for the statement

wstmt � wait� while cond fwaitg�

we obtain the transition hwstmt� �i �e

�
hwhile cond fwaitg� �i �e

�
hwstmt� �i�

The behaviour of wstmt within one time step

�i�e� the behaviour of wstmt before the sec�

ond wait inside the while�loop is reached� con�

sists of these two steps rather than the loop

shown on the right that describes an in�nite

behaviour�

hwstmt� �i

hwhile cond fwaitg� �i

�

�

�

�

�

�

�

�

�
�

A
AU

A
AK

�
�

Example� Let Var � fb� cg with Type�b� � Type�c� � Bool and V � fbg� We

consider the statement wstmt � WStmt�V � of Figure
� We write �b � x� for the

evaluation � � Eval�V � with ��b � x� Similarly� �c � x� is the environment e for

V with e�c � x� Figure � shows the process TSB�stmt� �b � � �� e� where e is an

pstmt� � pselect�
�

�
� b �� � � �

�
� b �� tt�

whilestmt � while b � �c fpstmt�� waitg

wstmt� � wait�whilestmt

wstmt�� � wstmt�� b �� �b

pstmt � pselect�
�

�
� wstmt�� �

�
� skip�� b �� �b

stmt � b �� tt � pstmt

Fig� �� �Substatements� of wstmt � wait� stmt

arbitrary environment for V and where the �substatements� of wstmt are denoted

��

Baier and Clarke and Hartonas�Garmhausen

as shown in Figure �� Figure � shows the system TSB�wstmt��� �b � tt �� �c � � ���

hwstmt��� �b � tt 	i hskip� b �� �b� �b � tt 	i

hb �� �b� �b � tt 	i

hexit� �b �
 	i

hpstmt� �b � tt 	i

sinit�wstmt� �b �
 	� e�

hstmt� �b �
 	i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
���

H
H
H
HHj

�

�
�
�

Fig� �� The process TSB�wstmt� �b �
 	� e�

Here� the condition b��c of the while�loop is satis�ed� Hence� by the rule for while�

loops� hwhilestmt� �b � tt �i �
�c
� �
� hpstmt�� wait�whilestmt� �b � tt �i� Thus� by the

rule for sequential composition�

hwhilestmt� b �� �b� �b � tt �i �
�c
� �
� hpstmt��wstmt��� �b � tt �i�

Applying the rule for pselect and sequential composition yields

hpstmt��wstmt��� �b � tt �i�
�c
� �
�

�

hb �� x�wstmt��� �b � tt �i

where x � ftt �� g�

The transition probabilities Pe

V
�s� t�� The cumulative e�ect of a statement

wstmt � WStmt�V � within one time step �relative to an environment e � Env�V �

and an initial evaluation � � Eval�V �� is obtained by taking the probabilities for

the initial state sinit of TSB�wstmt� �� e� to reach the terminal states �i�e� the states

of the form hwstmt�� � � �i or hexit� � � �i�� Formally� for V � Var� e � Env�V �� ��

�
� � Eval�V � and wstmt �WStmt�V �� wstmt� �WStmt��V �� we de�ne

��

Pe

V
�hwstmt� �i� hwstmt�� ��i� � Prob f� � Path��sinit� � last��� � hwstmt�� ��ig �

For the special statement exit� we de�nePe

V
�hexit� �i� hexit� �i� � ��Pe

V
�hexit� �i�

hwstmt�� ��i� � � if hwstmt�� ��i �� hexit� �i� For instance� if wstmt� wstmt�� are as

before �see Figure
� � and �� then

��Here� Probf� � �g denotes the probability measure in TSB
wstmt� �� e� and sinit is the initial state

of TSB
wstmt� �� e�
i�e� sinit � sinit
wstmt� �� e���

��

Baier and Clarke and Hartonas�Garmhausen

hwstmt
��
� �b �
 	i

hb ��
 �wstmt
��
� �b � tt 	i hb �� tt �wstmt

��
� �b � tt 	i

hpstmt
��wstmt

��
� �b � tt 	i

hwhilestmt� b �� �b� �b � tt 	i

sinit�wstmt
��
� �b � tt 	� �c �
 	i�

hwstmt
��
� �b � tt 	i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

H
H
H
H
Hj

�
�
�

�
��

�

�
�
�

Fig� �� The process TSB�wstmt
��
� �b � tt 	� �c �
 	�

P
e

V
�hwstmt� �b � � �i� hexit� �b � � �i� � �

�
�

P
e

V
�hwstmt� �b � � �i� hwstmt

��
� �b � tt �i� � �

�
�

P
�c
� �

V
�hwstmt

��
� �b � tt �i� hwstmt

��
� �b � x�i� � �

�
�

P
�c
y�

V
�hwstmt

��
� �b � x�i� hexit� �b � �x�i� � �

where x � f� � ttg� y � ftt � xg� For all V � �� e� Pe

V
�hwait� �i� hexit� �i� � ��

Remark� Note that �

P

wstmt���� P
e

V
�hwstmt� �i� hwstmt

�
� �

�i� is the probability

for divergence� �� For instance� for the statement wait� while b fskipg and � an
evaluation for V � fbg where ��b is true we have

P
e

V
�hwait� while b fskipg� �i� hwstmt

�
� �

�i� � �

for all wstmt
� and �

�� Thus� the probability for divergence is �� This re�ects the fact
that the while�loop never terminates and never reaches a state where the control
component starts with a wait command�

��� The wait graph of a parallel randomized program

Let P � h���S�� � � � �Ski be a parallel randomized program where Si � hVi�wstmt
�
i
i�

We de�ne the wait graph of P to be a labelled fully probabilistic process where
each global state consists of control components wstmti � WStmt

��Vi� for each
sequential process Si and an evaluation for Var � V� � � � � � Vk that is com�
posed by evaluations �i for Vi� The probability Pwg��s� �t� for P to move from
�s � hwstmt�� � � � �wstmtk� ��� � � � � �ki to �

t � hwstmt
�

�� � � � �wstmt
�

k
� �

�

�� � � � � �
�

k
i is the

��Here� divergence means the event of never reaching a terminal state
a �wait state� hwstmt�� � � �i
or an �exit state� hexit� � � �i��

�

Baier and Clarke and Hartonas�Garmhausen

product of the probabilities for wstmti started in �i and executed in the environ�

ment ei � ��h�h �
i to reach hwstmt�i� �
�
ii within one time step �cf� formula �"��� �	

The wait graph� We use atomic propositions of the form av�x where v � Var and

x � Type�v�� I�e� we deal with AP � fav�x � v � Var� x � Type�v�g� The intended

meaning of av�x is that the current value of v is x� Let P � h���S�� � � � �Ski be as

before� The wait graph of P is the labelled fully probabilistic process WG�P� �

�Swg �Pwg � Lwg � �swg� where

Swg �
�
hwstmt�� � � � �wstmtk� ��� � � � � �ki � wstmti � WStmt

�

�Vi�� �i � Eval�Vi�
�

and the initial state is �swg � hwstmt�
�
� � � � �wstmt

�

k� ���V�� � � � � ���Vki� The transition

probability function Pwg is given by�

Pwg �hwstmt�� � � � �wstmtk� ��� � � � � �ki� hwstmt
�
�
� � � � �wstmt

�
k� �

�
�
� � � � � �

�
ki�

�
Y

��i�k

P
ei
Vi
�hwstmti� �ii� hwstmt

�
i� �

�
ii�

where ei is the environment for Vi that is composed by the evaluations �h� h �� i�

i�e� ei�v� � �h�v� if v � Vh� h �� i� The labelling function Lwg is given by�

Lwg�hwstmt�� � � � �wstmtk� ��� � � � � �ki� �
�

��i�k

fav��i�v � v � Vig�

Example� Let Var � fb� cg� Type�b� � Type�c� � Bool� We consider the program

P � h���S��S�i where ���b � � and ���c � � and S� � hV��wstmt
�

�
i where V� � fbg

and wstmt
�

�
� wstmt is as in Figure
� S� � hV��wstmt

�

�
i where V� � fcg and

wstmt
�

�
� wait� c �� b� The wait graph for P is shown in Figure ��

� Denotational semantics� the wait counter graph

For any automatic analysis of the behaviour of a parallel randomized program P
�e�g� model checking against PCTL speci�cations�� the operational semantics �wait

graph� is not adequate since the control components of S�� � � � �Sk are statements�

In this section we give an alternative semantics for P which uses simpler control

components� We follow the idea of �CGL	��Cam	��Har	�� and use wait counters

wc�� � � � �wck for the control components of S�� � � � �Sk� wci is an integer variable

whose current value is j i� the execution of Si has reached the j�th occurrence of

wait in wstmt
�

i � We associate with P the wait counter graph which is a fully proba�

bilistic process whose states are tuples �s � hs�� � � � � ski where si � Eval�Vi � fwcig��
i � �� � � � � k� I�e� in the wait counter graph� the control components are just inter�

pretations of the wait counters� The wait counter graph is de�ned in a �denotational

manner�� using structural induction on the syntax of the statements wstmt�i and a

least �xed point operator for the handling of while�loops� This denotational ap�

proach can be used for an automatic procedure to obtain the wait counter graph of

��The fact that we multiply the probabilities Pei

Vi

� � �� for the individual moves of the sequential

processes Si re�ects the assumption that S�� � � � �Sk work independently between the wait
s�

��

Baier and Clarke and Hartonas�Garmhausen

hexit� exit� �b � tt 	� �c �
 	i

hwstmt��� exit� �b �
 	� �c �
 	i

hwstmt��� exit� �b � tt 	� �c �
 	i

hwstmt� wait� c �� b� �b �
 	� �c �
 	i

hexit� exit� �b �
 	� �c �
 	i

	

�

�

	

�

�

	

�

�

	

�

�

	

�

�

�
�
�

�
�
��

H
H
H
H
H
Hj

�

�

��

�

�

�

�

�

�

�

� �

�

�
�

� �
�
�I

�
�

� �
�
�I

�

�
�

� �
�
�I

�

Fig� �� The wait graph of P

P where the least point operator for the while�loops is approximated by iteration

�on the basis of Tarski!s �xed point theorem��

The construction of the wait counter graph can be sketched as follows� In each

statement wstmt
�

i � we replace the j�th occurrence of a wait command by waitj� For

these extended statements stmt
�
 � we give a denotational least �xed point semantics

stmt �� De��stmt�� �relative to an environment e� in the classical style �a la Scott

�Section ��
�� De��stmt�� is a function that returns for each pair �s� t� of �local states�

�interpretations of the variables of stmt� including the wait counter� the probability

for stmt to reach t from s within one time step� Then� the one�time�step behaviour

of Si �relative to the environment ei� in the local state s where the control is at the

j�th wait command �i�e� s�wci � j� is given by the function t �� Dei���j�wstmt
�

i ����s� t�

where �j�wstmt
�

i � is the �substatement� of the extension wstmt
�

i of wstmt
�

i that starts

with waitj and that is obtained by unwinding all �relevant� while�loops� �� The

�global� transition probabilitiesPwcg��s� �t� for the wait counter graph are obtained by

multiplying the probabilitiesDei��� � ����si� ti� for the individual moves of the sequential

processes Si within one time step�

	�� Extended statements

The �rst step in the construction of the wait counter graph replaces each wait

command by an indexed wait command� more precisely� the j�th occurrence of wait

in wstmt
�

i is replaced by waitj� The index j is the value of the wait counter wci

for Si when the execution of Si is at the j�th wait in wstmt
�

i � The introduction of

�	The syntax of the extended statements arises from the syntax of the
ordinary� statements where

the wait command is replaced by an indexed wait command waitj � cf� Section ����
�
Here� �relevance� means that we consider those while�loops whose body contains waitj �

��

Baier and Clarke and Hartonas�Garmhausen

wait��

b �� tt �

pselect�
�

�
� wait��

while b � �c f

pselect�
�

�
� b �� � � �

�
� b �� tt��

wait� g�

�

�
� skip ��

b �� �b

Fig� �� The extension ext�wstmt� of wstmt

these indexed wait commands leads to a new type of statements� called extended

statements�

Syntax of extended statements� Let V � Var� Stmt�V � denotes the set of

extended statements built from the following production system

stmt ��� waitj

�
�
� skip

�
�
� v �� expr

�
�
� stmt�� stmt�

�
�
� while cond fstmtg

�
�
�

pselect�p� � stmt�� � � � � pm � stmtm�

�
�
� if cond then stmt� else stmt�

where j� m � � are natural numbers� v � V � expr � Expr�Type�v��� cond � BExpr

and p�� � � � � pm are real numbers in ��� �� with p� � � � pm � �� We de�ne Stmt
�
�V � �

Stmt�V � � fexitg� �� An extended statement stmt � Stmt�V � is called well�formed

i�� for each j � �� the command waitj occurs at most once in stmt� WStmtj�V �

�abbrev� WStmtj� denotes the set of extended statements that �start� with waitj�

Let WStmt� � fexitg� WStmt �
S

j	�WStmtj� WStmt
�
�WStmt � fexitg�

The extended statement ext�stmt�� Given stmt � Stmt
�
�V �� we transform stmt

into a well�formed extended statement ext�stmt� � Stmt
�
�V �� ext�stmt� arises from

stmt by replacing the j�th occurrence of wait in stmt by the indexed wait command

waitj� E�g�� the extension of the statement wstmt of Figure
 is shown in Figure
�

	�� The probabilistic one time step denotations

We �x some subset V of Var and an environment e for V and give a denotational

semantics De
��stmt�� for the extended statements stmt � Stmt

�
�V � relative to an

environment e for V � The basic idea is the use of a wait counter as control component

whose current value is j if the control is at the indexed wait command waitj�

�� Intuitively� the auxiliary symbol exit corresponds to the indexed wait command wait��

��

Baier and Clarke and Hartonas�Garmhausen

The denotational semantics De��stmt��� Let wc be a �fresh� variable that does not
belong to Var� called the wait counter� Let stmt � Stmt

��V �� We de�ne a function

De��stmt�� � Eval�V � fwcg�� Eval�V � fwcg�� ��� ��

where De��stmt���s� s�� returns the probability for stmt to reach s� from s within one
time step� Thus� De��stmt�� describes the input�output�behaviour of stmt within
one time step� given the initial evaluation s �the input�� within one time step� the
execution of stmt leads with probability De��stmt���s� s�� to the local state s� �the
output�� �� We call De��stmt�� the probabilistic one�time step denotation of stmt in
the environment e� For extended statements whose �rst command is not a wait
command �i�e� extended statements stmt �� WStmt�� one time step is the time that
passes until a wait command is reached or stmt terminates� For wstmt � WStmt�
one time step is the time that passes between the �rst wait command �the �rst
command in wstmt� and the next wait command or the termination of wstmt�

Recall that� for s � Eval�V �fwcg�� W � V �fwcg� s�W is the unique evaluation
� � Eval�W � with ��w � s�w for all w � W � Let Exit � ft � Eval�V � fwcg� �
t�wc ��g� We de�ne De��stmt�� by structural induction on the syntax of stmt�

� Skip and the wait command�

De��skip���s� s�wc ����� � De��waitj���s� s�wc ����� � �

and De��skip���s� s�� � De��waitj���s� s
�� � � in all other cases�

� Assignment for variables v � V �

De��v �� expr���s� s�� �

�����
����

� � if s��wc ��� s��v � ��expr���e� s�

and s�w � s��w for all w � V n fvg

� � otherwise�

Clearly� skip� waitj and v �� expr terminate after executing the �rst �elementary
step� �an idling step in the cases skip and waitj� the evaluation of expr and a
variable assignment in the case of v �� expr�� Thus� we have s��wc � � for the
successor state s� of s�

� Probabilistic choice� Let

Al�s� s
�� �

�
����
����

De��stmtl���s� s
�� � if stmtl �� WStmt

� � if stmtl � WStmtj� s
� � s�wc �� j�

� � otherwise�

Then� De��pselect�p� � stmt�� � � � � pm � stmtm����s� s
�� �

P
��l�m

pl �Al�s� s
���

��Thus� the function De can be viewed as the probabilistic and timed counterpart to the classical

denotational semantics �a la Scott that describes the input�output behaviour of sequential
non�

randomized� programs�

��

Baier and Clarke and Hartonas�Garmhausen

� Conditional commands� De��if cond then stmt� else stmt����s� s
��

�

�
����������
����������

D
e��stmt����s� s

�� � if ��cond���e� s� and stmt� �� WStmt

D
e��stmt����s� s

�� � if ���cond���e� s� and stmt� �� WStmt

� � if s� � s�wc �� j� and

either stmt� � WStmtj � ��cond���e� s�

or stmt� � WStmtj � ���cond���e� s�

and De��if � � ����s� s�� � � in all remaining cases�

� While�loops� De��while cond fstmtg�� � lfp�$� where lfp��� denotes the least
�xed point of ��� of the operator $ � �Eval�V � fwcg�� � ��� ��� � �Eval�V �

fwcg�� � ��� ��� which is de�ned as follows� ��

$�f��s� s�� �

�
����������������
����������������

D
e��stmt���s� s��

P
t�Exit

D
e��stmt���s� t� � f�t� s��

� if ��cond���e� s�� stmt �� WStmt and s
�
�wc ���

P
t�Exit

D
e��stmt���s� t� � f�t� s��

� if ��cond���e� s�� stmt �� WStmt and s
�
�wc ��

� � if s�V � s
�
�V and

either ���cond���e� s� � s
�
�wc ��

or ��cond���e� s� � s
�
�wc � j � stmt � WStmtj

and $�f��s� s�� � � in all other cases�

��Note that� for all s� t� s
� � Eval
V � fwcg� there exist constants as�t� bs�s� � � such that

�
f�
s� s�� �
P

t
as�t �f
t� s

�� � bs�s� � Here� t ranges over all evaluations for V �fwcg� For instance�

as�t � De��stmt		
s� t� if ��cond		
e� s� and stmt �� WStmt� as�t � � and bs�s� � � if ���cond		
e� s� and

s
�
�wc � 	� This yields the continuity of � with respect to the elementwise ordering f
 f

� i�

f
s� s��
 f
�
s� s�� for all s� s� � Eval
V � fwcg� on the function space Eval
V � fwcg�� � ��� �	�

Tarski
s �xed point theorem yields the existence of a least �xed point�

�

Baier and Clarke and Hartonas�Garmhausen

� Sequential composition� De��stmt�� stmt����s� s
��

�

�
����������������
����������������

D
e��stmt����s� s

�� D
e��stmt����s� s

��wc �����

� if stmt� � WStmtj and s
�
�wc � j

D
e��stmt����s� s

�� � if stmt� � WStmtj and s
�
�wc �� j

D
e��stmt����s� s

��
P

t�ExitD
e��stmt����s� t� � D

e��stmt����t� s
��

� if stmt� �� WStmt and s
�
�wc ���

P
t�Exit

D
e��stmt����s� t� � D

e��stmt����t� s
��

� if stmt� �� WStmt and s
�
�wc ��

and De��stmt�� stmt����s� s
�� � � in all remaining cases�

We give an informal explanation for the de�nition of De��� � ��� for the probabilistic
choice operator and while�loops� The arguments for conditional commands and
sequential composition are similar and omitted here� In some cases we refer to the
transition relation�e which describes the e�ect of the �rst commands ��elementary
steps�� of the extended statements� The exact de�nition of �e �which can be given
in the SOS�style as in Figure �� is omitted here�

Probabilistic choice� If pselect�� � �� is a substatement of some well�formed ex�
tended statement then there is at most one index l where waitj occurs in stmtl� If
there is no index l where waits��wc occurs in stmtl then D

e��pselect�� � �����s� s�� � �
�because s

� cannot be reached from s�� Now suppose that s
�
�wc � j and that

waitj occurs in stmtl but not in any other of the extended statements stmti� �Thus�
Ai�s� s

�� � � if i �� l�� If waitj is the �rst command of stmtl then

hpselect�� � � � pl � waitj� stmt� � � ��� �i �
e

pl
hwaitj� stmt� �i�

and D
e��pselect�� � �����s� s�wc �� j�� � pl� If stmtl does not start with a wait com�

mand �i�e� stmtl �� WStmt� Al�s� s
�� � D

e��stmtl���s� s
��� then the probability for s to

reach s
� with one time step when executing pselect�� � �� is the same as for reaching

s
� from s when executing stmtl under the condition that the outcome of resolving
the probabilistic choice is stmtl�

While�loops� If ��cond���e� s� is wrong then the while�loop immediately terminates�
i�e� hwhile cond fstmtg� s�V i �

e

�
hexit� s�V i which is re�ected in the de�nition

D
e��while � � ����s� s�� �

��
�
� � if s� � s�wc ����

� � otherwise�

Next we assume that ��cond���e� s� is true� Then� we have the transition

hwhile cond fstmtg� s�V i �
e

�
hstmt� while cond fstmtg� s�V i�

��

Baier and Clarke and Hartonas�Garmhausen

If stmt starts with the wait command waitj �i�e� stmt � WStmtj� then we get

D
e��while � � ����s� s�� �

�
�
�
� � if s� � s�wc �� j�

� � otherwise

Now we assume that the �rst command of stmt is not a wait command �i�e� stmt ��

WStmt�� Let t�wc � � �i�e� t � Exit�� Then� De��stmt���s� t� is the probability for s

to terminate in t within one time step when executing stmt� Hence�

X
t�Exit

D
e��stmt���s� t� � De��while � � ����t� s��

denotes the probability for s to reach s
� within one time step where the body stmt

of the while�loop is executed at least once without passing any wait command�

First� let s
�
�wc � �� The while�loop only terminates in s

� when ��cond���e� s�� is

wrong� Thus� each execution of while � � � that starts in s and terminates in state s
�

passes a state t � Exit such that the execution of the while�loop� when �re��started

in t� terminates in s
�� Thus� if ��cond���e� s�� stmt �� WStmt and s

�
�wc ���

D
e��while � � ����s� s�� �

X
t�Exit

D
e��stmt���s� t� � De��while � � ����t� s��

Now we assume that s��wc � j ���� There are two possible cases for the while�loop

to reach s
� from s within one time step� either the �rst execution of stmt leads to

s
� without passing any wait command �with probability De��stmt���s� s��� or the �rst

execution of stmt leads to a state t � Exit without passing any wait command �with

probability De��stmt���s� t�� and the execution of the while�loop when �re��started in

t leads to s
� within one time step �with probability De��while � � ����t� s���� Thus� if

��cond���e� s�� stmt �� WStmt and s
�
�wc ��� then

D
e��while � � ����s� s�� � D

e��stmt���s� s��
X

t�Exit

D
e��stmt���s� t� �De��while � � ����t� s���

Remark� De��stmt���s� s�� does not depend on the value of the wait counter in s�

I�e� De��stmt���s� s�� � De��stmt���t� s�� for all s� t where s�V � t�V � ��

	�
 The wait counter graph for parallel randomized programs

We now de�ne the wait counter graph of P �where P � h���S�� � � � �Ski� Si �

hVi�wstmt�i i are as before�� The states are tuples �s � hs�� � � � � ski where si is the

local state of Si� i � �� � � � � k� Let wci denote the wait counter for Si� The local

states si are evaluations for Vi�fwcig� i�e� they consist of a control component si�wci
and an interpretation si�Vi of the variables that are under the control of Si� Then�

�� In the computation of the wait counter graph� the probabilities De��stmt		
s� s�� are only needed

for those s and stmt where s�wc � j and stmt �WStmtj �

�	

Baier and Clarke and Hartonas�Garmhausen

ext�wstmt�i � � WStmt�Vi� and si�wci � Type�wci� � f�� � � � � nig � f�g where ni is
the number of wait!s in wstmt

�

i �

In the local state si where si�wci �� j� the sequential component Si has to
perform the �statement that coincides to the� extended �substatement� wstmti�j of
ext�wstmt�i � that starts with waitj� Thus� the �one time step� transition probabilities
for Si in the global state �s are given by Dei��wstmti�si�wci ���si� ti��

The statements �j�stmt�� For stmt to be a well�formed extended statement that
contains the wait command waitj� we de�ne an extended statement �j�stmt� that
represents the �logical� substatement of stmt whose �rst command is waitj and
that arises by unwinding the while�loops whose body contains the command waitj�
Let stmt be a well�formed extended statement that contains the command waitj�
�j�stmt� is de�ned by structural induction�

� �j�waitj� � waitj

� �j�pselect�p� � stmt�� � � � � pm � stmtm� � �j�stmtl� if waitj occurs in stmtl

� �j�stmt�� stmt�� �

�
�
�

�j�stmt��� stmt� � if waitj occurs in stmt�

�j�stmt�� � otherwise�

� �j�if cond then stmt� else stmt�� � �j�stmtl� if waitj occurs in stmtl

� �j�while cond fstmtg� � �j�stmt�� while cond fstmtg

Moreover� we de�ne ���stmt� � exit� �� For example� consider the statement
ext�wstmt� of Figure
� The extended statements ���ext�wstmt�� and ���ext�wstmt��
are shown in Figure ��

wait��

while b � �c f

pselect��
�
� b �� � � �

�
� b �� tt��

wait� g�

b �� �b

wait��

while b � �c f

pselect��
�
� b �� � � �

�
� b �� tt��

wait� g�

b �� �b

Fig� �� The �unfoldings� ���ext�wstmt�� and ���ext�wstmt��

The wait counter graph� Let P � h���S�� � � � �Ski be as before� The wait counter
graph for P is the labelled fully probabilistic process

WCG�P� � �Swcg �Pwcg � Lwcg � swcg�

��Note that we require stmt to be well�formed� Thus� the command waitj occurs exactly once in

stmt� Clearly� if wstmt � WStmt then ��
ext
wstmt�� � ext
wstmt�� In general� �j
stmt� is not

well�formed as it might contain more than one occurrence of waitj �

�

Baier and Clarke and Hartonas�Garmhausen

wc�
��wc�
�� b
 tt � c
 �

wc�
 ��wc�
�� b
 tt � c
 �wc�
 ��wc�
�� b
 � � c
 �

wc�
 ��wc�
�� b
 tt � c
 �

wc�
 ��wc�
 �� b
 � � c
 �

wc�
��wc�
�� b
 � � c
 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
��

�
�
�R

�
�
��

�
�
�R

�� ��I
� �

�

�� ��I
� �

�� ��I
� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Fig� �� The wait counter graph of P

where Swcg � Eval�Var � fwc�� � � � �wckg� and

Pwcg�hs�� � � � � ski� hs
�

�
� � � � � s�

k
i� �

Y

��i�k

Dei�� �
si�wci

�ext�wstmt�
i
�� ���s

i
� s�

i
��

Here� e
i
is the environment for V

i
�fwc

i
g that is composed by the evaluations s

h
�V

h
�

h �� i� i�e� e
i
�v � s

h
�v for all v � V

h
� h �� i� The initial state swcg is given by

swcg � hs�
�
� � � � � s�

k
i where s�

i
�v � ���v for all v � V

i
and s�

i
�wc

i
� �� The labelling

function Lwcg is given by Lwcg�hs�� � � � � ski� �
S

��i�k

fa
v�si�v

� v � V
i
g�

Example� Let P � h���S��S�i be as in Figure �� I�e� we deal with two boolean vari�

ables b �under the control of S�� and c �under the control of S�� and the statements

wstmt�
�
� wstmt as in Figure
 for S�� wstmt�

�
� wait� c �� b for S�� The wait

counter graph for P is shown in Figure 	 where we assume the initial interpretation

���b � � and ���c � � � We brie�y explain the outgoing transitions of the initial state

hwc� � ��wc� � �� b � � � c � � i which stands short for the state �s � hs�� s�i where

s��wc� � s��wc� � �� s��b � s��c � � � We have to consider the environments e�� e�
where e��b � e��c � � and the evaluations ��� �� where ���b � ���c � � � For the

extended statement ���ext�wstmt�
�
�� � ext�wstmt� �see Figure
�� we have�

D�c
� ���ext�wstmt����s� s�� �

��
�

��� � if s� � s�wc ��
� b �� tt �

�� � if s� � s�wc ���� b �� � �

We have ���ext�wstmt�
�
�� � ext�wstmt�

�
� � wait� �� �� c �� b� Thus�

D�b
� ���ext�wstmt�
�
����s�� s��c �� � �wc� ����� � ��

For the initial state swcg � hwc� � ��wc� � �� b � � � c � � i we obtain

Pwcg�swcg � t� �

�
�
�

��� � if t � hwc� �
�wc� ��� b � tt � c � � i

�� � if t � hwc� � ��wc� � �� b � � � c � � i

�

Baier and Clarke and Hartonas�Garmhausen

and Pwcg�swcg � t� � � in all other cases�

� Consistency

In the previous section we gave a denotational semantics �the wait counter graph�

of a parallel randomized program� Using iteration to approximate the least �xed

operator used for while�loops� the de�nition of the wait counter graph can be used as

an algorithm to compute the �denotational� semantics� The question arises in what

way the operational semantics �the wait graph� and the denotational semantics �the

wait counter graph� are related� In this section� we establish the consistency result

for the operational and denotational semantics stating that the wait graph and the

wait counter graph are bisimilar�
��

To show that the wait graph and the wait counter graph are bisimilar we have

to establish a bisimulation that relates the states of the wait graph and the states

of the wait counter graph� First we observe that in general the wait graph and wait

counter graph contains are not isomorphic �cf� Figure � and 	�� more precisely� the

wait graph might contain more states� This is due to the fact that there might be

more than one extended statement that stem from the same statement�
��

We show

that the relation that identi�es the global state hwstmt�� � � � �wstmtk� ��� � � � � �ki of

the wait graph with all states hs�� � � � � ski of the wait counter graph where wstmti

�corresponds� to �si�wci�ext�wstmt
�
i �� and si�Vi � �i� i � �� � � � � k� is a bisimulation�

The statements ��stmt�� Let stmt � Stmt
�
�V � be well�formed� We retransform

stmt into a statement ��stmt� � Stmt
�
�V � by replacing all indexed wait commands

waitj by wait� Clearly� ��ext�wstmt�� � wstmt� Let wstmt� wstmt
� � WStmt

�
�V �

and �
� � Eval�V �� We de�ne

States�wstmt�wstmt
�
� �

�
�

� fs � Eval�V � fwcg� � � ��s�wc�ext�wstmt��� � wstmt
�
� s�V � �

�g � �	

Example� For the extension ext�wstmt� of wstmt of Figure
 �see also Figure ���

we have� �����ext�wstmt��� � �����ext�wstmt��� � wstmt
��
and

States�wstmt�wstmt
��
� �b � � �� � fs�� s�g

where the statement wstmt
��
is as in Figure � and where s�� s� � Eval�fwc� bg� with

si�wc � i and si�b � � �

�� For the notion �consistency� see �BMC��	�
��By dropping the indices for the wait commands� two extended statements might lead to the

same statement� For instance� ��
ext
wstmt�� and ��
ext
wstmt��
where wstmt is as in Figure ��

correspond to the same statement wstmt
��� Thus� the state hwstmt

��
� exit� �b � tt 	� �c � � 	i of the

wait graph in Figure � is �represented� in the wait counter graph
see Figure �� by the two states

hwc� � ��wc� �	� b � tt � c � � i and hwc� � ��wc� �	� b � tt � c � � i�
��Note that States
wstmt� exit� �

�� � fs � Eval
V � fwcg� � s�wc � 	� s�V � �
�g�

Baier and Clarke and Hartonas�Garmhausen

Theorem ��� Let wstmt �WStmt��V �� Then� for all s � Eval�V � fwcg��

Pe

V
�h���s�wc�ext�wstmt���� s�V i� hwstmt�� ��

i� �
X

s��S�

D
e���s�wc�ext�wstmt�����s� s��

where S � � States�wstmt�wstmt�� ����

Proof �Sketch�� Let e � Env�V �� Using similar axioms and rules as in Figure �� we
de�ne a transition relation�e � Stmt�V �� Eval�V ����� ��� Stmt

��V �� Eval�V �
for the extended statements over V that formalizes the stepwise baheviour� Let
stmt � Stmt�V �� We de�ne a fully probabilistic process TSB�stmt� �� e� � �S�P� sinit�
as follows� S � Stmt

��V ��Eval�V � � fsinit�stmt� �� e�g where sinit � sinit�stmt� �� e�
is the initial state� The transition probability matrix P is given by�

P�hstmt�� ��i� hstmt��� ���i� � q i� hstmt�� ��i �e

q
hstmt��� ���i and stmt� �� WStmt

��

P�sinit� hstmt
�� ��i� � q i� hstmt� �i �e

q
hstmt�� ��i and P��� � � in all other cases�

Then�
D

e��stmt�� � Eval�V ��
	
WStmt

��V �� Eval�V �� ��� ��

is given by by D
e��stmt������s� � Prob f� � Path��sinit�stmt� �� e�� � last��� � sg �

Here� Probf� � �g denotes the probability measure on TSB�stmt� �� e�� Moreover� we
put De��exit������hexit� �i� � � and De��exit������s� � � if s �� hexit� �i� It can be
shown that� if s� s� � Eval�V � fwcg� then

�I� De��stmt���s� s�� � D
e��stmt���s�V ��h�s��wc�stmt�� s

��V i��

TSB��� and TSB��� are viewed as labelled fully probabilistic processes with labels
in AP� � AP � Stmt��V �� Here� the labelling L of TSB�wstmt� �� e� is given by
L�hstmt�� ��i� � fav����v � v � V g � fstmt�g and L�sinit�wstmt� �� e�� � fav���v �
v � V g � fwstmtg� Similarly� we de�ne the labelling L of TSB�wstmt� �� e� by
L�hstmt�� ��i� � fav��� �v � v � V g � f��stmt��g and L�sinit�wstmt� �� e�� � fav���v �
v � V g�f��wstmt�g� Now we assume that ��wstmt� � wstmt� It is easy to see that
TSB�wstmt� �� e� and TSB�wstmt� �� e� are bisimilar� From this� we get

�II� Pe

V
�hwstmt� �i� hwstmt�� ��i� �

X

wstmt
�

�����wstmt��

D
e��wstmt������hwstmt�� ��i��

Let J � fj � ���j�wstmt�� � wstmt�g� By �II��

Pe

V
�h���s�wc�wstmt��� s�V i� hwstmt�� ��i� �

X

j�J

D
e���s�wc�stmt����s�V ��h�j�stmt�� �

�
i��

Let state�j� ��� be those evaluation s� � Eval�V �fwcg� with s��wc � j and s��V � ���
Then� States�stmt�wstmt�� ��� � fstate�j� ��� � j � J g� Thus� by �I��

Pe

V
�h���s�wc�stmt��� s�V i� hwstmt�� ��i�

�
X

s��S�

D
e���s�wc�stmt����s�V ��h�s��wc�stmt�� s

��V i� �
X

s��S�

D
e���s�wc�stmt����s� s

���

This yields the claim�

Example� Let wstmt � wait� pselect��
�
� wait� �

�
� wait�� Then�

�

Baier and Clarke and Hartonas�Garmhausen

ext�wstmt� � wait�� pselect�
�

�
� wait��

�

�
� wait���

Let s � Eval�V � fwcg�� s�wc � �� Then� ���s�wc�ext�wstmt��� � wstmt and

D
e��ext�wstmt����s� s�� �

�����
����

��� � if s� � s�wc ��
�

�� � if s� � s�wc �� ��

� � otherwise

Then� S �
def
� States�wstmt� wait� s�V � � fs�� s�g where sj�wc � j� sj�V � s�V � Thus�

P
e

V
�hwstmt� s�V i� hwait� s�V i� � � � �

�
 �

�

� De��ext�wstmt����s� s�� De��ext�wstmt����s� s���

Note that� in the transformation of the above statement wstmt into an extended
statement� the wait!s in the two alternatives in the pselect��� command get dif�
ferent indices� Thus� when we use wait counters as control components then the
state that is reached after resolving the probabilistic choice depends on whether we
choose the left or right alternative� On the other hand� when we use statements as
control components then from state hwstmt� s�V i we move to the state hwait� s�V i
independent on whether we choose the left or right alternative�

Theorem ��	 For each parallel randomized program P� WG�P�
WCG�P��

Proof� Let P � h���S�� � � � �Ski be as before� Using Theorem ���� we get that
f�hwstmt�� � � � �wstmtk� ��� � � � � �ki� hs�� � � � � ski� � si � States�wstmt

�

i
�wstmti� �i�g is a

bisimulation�

Example� We consider the wait graph �Figure �� and wait counter counter graph
�Figure 	� for the program P � h���S��S�i� Let R be the smallest equivalence
relation on the states of the wait graph of P and the wait counter graph of P that
relates the states as shown in Figure ��� Then� �as shown in the proof of Theorem

WG�P� WCG�P�

hwstmt� wait� c �� b� �b � � �� �c � � �i hwc� � ��wc� � �� b � � � c � � i

hwstmt
��
� exit� �b � tt �� �c � � �i hwc� �
�wc� ��� b � tt � c � � i

hwc� � ��wc� ��� b � tt � c � � i

hwstmt
��
� exit� �b � � �� �c � � �i hwc� � ��wc� ��� b � � � c � � i

hexit� exit� �b � tt �� �c � � �i hwc� ���wc� ��� b � tt � c � � i

hexit� exit� �b � � �� �c � � �i hwc� ���wc� ��� b � � � c � � i

Fig� ��� The bisimulation equivalence relation R

��
� R is a bisimulation�

�

Baier and Clarke and Hartonas�Garmhausen

� Conclusion

In this paper� we considered a speci�cation language for parallel randomized pro�

grams P whose sequential components S�� � � � �Sk are described in an imperative

C�like language with while�loops� conditional commands and probabilistic choice�

We described two semantic models for P that both yield a Markov chain for P

and are based on an operational resp� denotational semantics for Si� Because of its

declarative nature� the wait graph �the Markov chain obtained by the operational

semantics� might be one that a designer has in mind� The denotational semantics is

de�ned inductively and can easily be translated into a recursive procedure that can

be implemented with multi�terminal BDDs �CFM�	��BFG�	��� Thus� the denota�

tional semantics yields the theoretical foundations of a symbolic model checking tool

like �Har	�� that generates the wait counter graph for P� In Theorem ��
� we have

established the bisimulation equivalence of the wait graph and wait counter graph�

This guarantees that the calculations of a model checking tool �that works with

the wait counter graph� are consistent with the view of the designer� provided that

the underlying speci�cation formalism is insensitive with respect to bisimulation

equivalence �e�g� PCTL� �ASB�	����

It should be noted that the probabilistic one time step denotations could also

be de�ned for �proper� statements rather than extended statements and used for

the construction of a third Markov chain for a parallel randomized program P� The

resulting Markov chain would be isomorphic to the wait graph� Although the number

of states in the wait graph �obtained by an operational or denotational semantics�

is smaller than the number of states in the wait counter graph� its construction is

not adequate for a veri�cation tool since it uses statements as control components

for the local states� �

References

�ASB���	 A� Aziz� V� Singhal� F� Balarin� R� Brayton� A� Sangiovanni�Vincentelli� It
usually works� The Temporal Logic of Stochastic Systems� Proc� CAV����
LNCS� Vol� ���� pp �������� �����

�BFG���	 I� Bahar� E� Frohm� C� Gaona� G� Hachtel� E� Macii� A� Padro� F� Somenzi�
Algebraic Decision Diagrams and their Applications� Proc� ICCAD� pp ����
���� �����

�BCH���	 C� Baier� E� Clarke� V� Hartonas�Garmhausen� M� Kwiatkowska� M� Ryan�
Symbolic Model Checking for Probabilistic Processes� Proc� ICALP����
Lecture Notes in Computer Science ����� pp �������� �����

�	The construction of the wait graph requires the representation of the global states

hwstmt�� � � � �wstmtk� � � �i where the �rst k components range over certain
in general quite long�

fragments of the source code for the sequential processes� Thus� the space needed for the wait

graph is
in general� much more than the space complexity for the wait counter graph� Moreover�

the cases where a global state of the wait graph is duplicated in the wait counter graph are rare�

�

Baier and Clarke and Hartonas�Garmhausen

�BMC��	 C� Baier� M� Majster�Cederbaum� How to Interpret and Establish Consistency
Results for Semantics of Concurrent Programming Languages� Fundamenta
Informaticae� Vol� ��� No� �� pp �������� �����

�Cam��	 S� Campos� A Quantitative Approach to the Formal Veri�cation of Real�Time
Systems� Ph�D�Thesis� Carnegie Mellon University� �����

�CC��	 L� Christo
� I� Christo
� Reasoning about Safety and Liveness Properties for
Probabilistic Processes� Proc� ��th Conference on Foundations of Software
Technology and Theoretical Computer Science� LNCS� Vol� ���� pp ��������
�����

�CE��	 E� Clarke� E�A� Emerson� Design and Synthesis of Synchronization Skeletons
from Branching Time Temporal Logic� Proc� Workshop on Logics of Programs�
LNCS� Vol� ���� pp ������ �����

�CES��	 E� Clarke� A� Emerson� P� Sistla� Automatic Veri�cation of Finite�State
Concurrent Systems using Temporal Logic Speci�cations� ACM Trans�
Programming Languages and Systems� ����� �����

�CFM���	 E� Clarke� M� Fujita� P� McGeer� J� Yang� X� Zhao� Multi�Terminal Binary
Decision Diagrams� An E�cient Data Structure for Matrix Representation�
In IWLS���� International Workshop on Logic Synthesis� Tahoe City� �����

�CGL��	 E� Clarke� O� Grumberg� D� Long� Model Checking and Abstraction� ACM
Transactions on Programming Languages and Systems� Vol� ��� pp ����������
�����

�CY��	 C� Courcoubetis� M� Yannakakis� Verifying Temporal Properties of Finite�
State Probabilistic Programs� Proc� FOCS���� pp �������� �����

�CY��	 C� Courcoubetis� M� Yannakakis� The Complexity of Probabilistic Veri�cation�
J� ACM� �� ���� pp �������� �����

�Fel��	 W� Feller� An Introduction to Probability Theory and its Applications� Wiley�
Ney York� �����

�HMP���	 G� Hachtel� E� Macii� A� Padro� F� Somenzi� Probabilistic Analysis of Large
Finite State Machines� Proc� ACM
IEEE DAC���� pp �������� �����

�Hal��	 P� Halmos� Measure Theory� Springer�Verlag� �����

�HJ��	 H� Hansson� B� Jonsson� A Logic for Reasoning about Time and Probability�
Formal Aspects of Computing� Vol� �� pp �������� �����

�Har��	 V� Hartonas�Garmhausen� Probabilistic Symbolic Model Checking with
Engineering Models and Applications� Ph�D�Thesis� Carnegie Mellon
University� �����

�HCC��	 V� Hartonas�Garmhausen� S� Campos� E� Clarke� ProbVerus� Probabilistic
Symbolic Model Checking� Proc� ARTS���� LNCS ����� pp ������� �����

�LS��	 K� Larsen� A� Skou� Bisimulation through Probabilistic Testing� Information
and Computation� Vol� ��� pp ����� �����

�Plo��	 G� Plotkin� A Structural Approach to Operational Semantics� Report DAIMI
FN���� Aarhus University� September �����

�VW��	 M� Vardi� P� Wolper� An Automata�Theoretic Approach to Automatic
Program Veri�cation� Proc� LICS���� pp �������� �����

�

