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Escher—A Geometrical Layout System for
Recursively Defined Circuits

EDMUND M. CLARKE, Jr., MEMBER, IEEE, AND YULIN FENG

Abstract—An Escher circuit description is a hierarchical structure
composed of cells, wires, connectors between wires, and pins that con-
nect wires to cells. Cells may correspond to primitive circuit elements,
or they may be defined in terms of lower level subcells. Unlike other
geometrical layout systems, a subcell may be an instance of the cell
being defined. When such a recursive cell definition is instantiated, the
recursion is unwound in a manner reminiscent of the procedure call
copy rule in Algol-like programming languages. Cell specifications may
have parameters that are used to control the unwinding of recursive
cells and to provide for cell families with varying numbers of pins and
other internal components. We illustrate how the Escher layout system
might be used with several nontrivial examples, including a parallel
sorting network and a FFT implementation. We also briefly describe
the unwinding algorithm.

I. INTRODUCTION

ANY CIRCUITS such as sorting networks, hard-

ware multipliers, and FFT implementations can be
described by recursive geometrical patterns. Some layout
languages provide support for recursion [2], [6], [7], [10];
however, in all such systems familiar to us the circuit de-
scription is textual rather than geometrical. We believe
that it is more natural to describe complicated circuits ge-
ometrically, rather than by giving a textual description
and requiring that a program figure out the details of the
layout. Some circuit editors have powerful iteration op-
erators that can be viewed as implementing a form of tail
recursion [3], but none allow full recursion. We have im-
plemented a geometrical layout system (called the Escher
system) in which recursive patterns can be specified di-
rectly and then instantiated to obtain layouts for complex
circuits automatically.

An Escher circuit description is a hierarchical structure
in which the basic building blocks are cells, wires, con-
nectors between wires, and pins that connect wires to
cells. Cells may correspond to primitive circuit elements
such as NAND gates and latches, or they may be defined
in terms of lower level subcells, which are defined in terms
of even lower level subcells, etc. By using the Escher sys-
tem, a number of primitive cells can be connected to-
gether in complex geometrical pattern to describe the lay-
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out for a large and intricate circuit. Designers do not need
to worry about the absolute sizes and positions of various
circuit components; only the topological relationships are
important. Moreover, the system is completely interac-
tive. Circuit diagrams are constructed using a pointing de-
vice (‘‘mouse’’) and tablet.

Although many circuit editors provide a set of features
similar to the ones that we have just listed, our system is
unique in that a subcell may, in fact, be an instance of the
cell being defined. When a recursive cell definition is in-
stantiated, the recursion is unwound in a manner reminis-
cent of the procedure call copy rule in Algol-like pro-
gramming languages. Cell specifications may have
nonnegative integer parameters that are used to control
the unwinding of recursive cells and to provide for cell
families with varying numbers of pins and other internal
components. While the notion of parameterized cell spec-
ifications is quite common in textual hardware description
languages, we believe that it has not been previously used
with graphical circuit editors and, therefore, may be of
independent interest.

Our paper is organized as follows: Section II describes
the various notational conventions that the Escher system
uses for specifying recursive circuits. Since recursive cells
are usually parameterized by some integer variable, spe-
cial conventions are needed for describing groups of sub-
cells that depend on the parameter. In Section III we give
two examples of how the Escher system might be used
with recursive circuits that are based on parallel divide
and conquer strategies. We believe that the Escher system
will prove most useful for laying out circuits with this
type of structure. Section IV shows how the Escher sys-
tem might be used for laying out a more complicated ex-
ample, the parallel prefix circuit originally described by
Fisher and Ladner [1]. In Sections V and VI we discuss
how the Escher system works. Section V briefly describes
how various circuit components are represented in the
system. This section also addresses the question of how
much circuit components may be moved around in ob-
taining a layout. The algorithm that unwinds and lays out
a recursive diagram is outlined in Section VI. Since basic
subcells must occupy a fixed area, the algorithm must pro-
ceed bottom up, expanding each higher level cell so that
all of its lower subcells will fit. The paper concludes in
Section VII with a summary and discussion of ways in
which the Escher system might be extended to produce
better layouts.
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II. CONVENTIONS FOR SPECIFYING RECURSIVE CIRCUIT
DiAGRAMS

As an example of how the Escher system might be used,
we consider the problem of laying out the TALLY circuit
described in [8] and also in [9]. This circuit has n inputs
and n + 1 outputs. The kth output will be high and all
other outputs low if exactly k of the inputs are high. Fig.
1 gives the Escher version of a recursive definition for the
TALLY circuit.

In the specification there are two kinds of cells: basic
cells that cannot be refined further (like the two input mul-
tiplexers) and composite cells that contain other cells,
wires, and connectors (like the recursive occurrence of
TALLY (n ~ 1)). The cells that are directly contained
within a composite cell are its subcells. Sometimes sev-
eral subcells Sy, S,, - -+, §, are instances of the same
cell C. In this case we say that C is the source of each of
the S;’s.

Since the specification is parameterized by n, some ab-
breviations are needed to represent groups of lines and
subcells that depend on n. When a definite value is pro-
vided for n, each such abbreviation in the specification
may be evaluated.

Groups in Escher are somewhat like one-dimensional
arrays in programming languages. A group is a horizontal
or vertical array of identical cells with the appropriate in-
terconnecting wires. The subcells of a group may be either
basic cells or composite cells. They are distinguished from
one another by an integer index, which increases from left
to right in the case of a horizontal array or from top to
bottom in the case of a vertical array. The initial and final
values of the index may depend on a parameter of the cell
containing the group; however, the increment must be a
fixed positive integer. A group whose length depends on
an undetermined parameter is represented by three sub-
cells, one for the first subcell, one for the last subcell, and
one in the middle with index * to represent all of the re-
maining subcells. Thus, the * serves exactly the same
function in our formal specification that the ellipsis <“. . .”’
serves in an informal specification. A number appearing
after the * represents an index increment; when the * ap-
pears alone, the default value for the increment is 1. In
the TALLY example (Fig. 1) there are a total of (n+1)
multiplexers, the MUX [n] and MUX’s with indices from
Oton — 1ina group. When a group of subcells is spec-
ified, it is only necessary to give the position of the first
and the last subcell of the group with respect to some other
part of the circuit. When the containing cell is instantiated
and all of the parameters of the group are fixed, this in-
formation is sufficient to determine the position of each
of the subcells of the group.

Finally, Escher uses a short diagonal mark on a wire to
represent a group of wires. An expression associated with
the mark indicates how many lines are in the group. We
call such groups of wire buses and the associated expres-
sion the bus width. In Fig. 1 there are two buses, and each
represents n — 1 wires. We also use the convention that
a wire connected to a subcell with index * actually rep-
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Fig. 1. Recursive pattern for TALLY (n).
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Fig. 2. TALLY (1), base case for TALLY recursive specification,

resents the same number of wires as the number of omit-
ted subcells.

The circuit for the base case, TALLY (1), is shown in
Fig. 2.

Examination of the recursive specification for the
TALLY circuit immediately shows how it works. Each
multiplexer has three inputs, labeled a, b, ¢, and one out-
put, labeled 4. If b is high, the output d selects the value
¢; otherwise, it selects the value a. It is easy to see that
the base case is correct. We assume that TALLY (n—-1)
is correct and that & of the first n — 1 inputs are high. By
the induction hypothesis, the kth output of TALLY (n —
1) is high. If the nth input is also high, then all of the
selector inputs of the multiplexers will be high, so each
MUX with index in the range from 0 to n — 1 will select
as its output the value of its ¢ input, while the output of
MUX[n] will be low. Thus, the (k + 1)th output (count-
ing from bottom to top) of TALLY (n) will be high and
the other outputs will be low. A similar discussion can be
used for the case in which the nth input of TALLY (n) is
low.

After we instantiate the TALLY circuit with a given
value, for example, n = 6, the Escher system will auto-
matically unwind the recursive specification into the cir-
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c__op=tout

command: eval tally n=6 ESCMHER

Fig. 3. Instantiation for TALLY (6).

cuit diagram shown in Fig. 3. A final phase (that has not
been completed) will compact the circuit diagram pro-
duced by the Escher system in accordance with a set of
design rules appropriate to the transistor technology used
to fabricate the chip.

III. DivibE AND CONQUER CIRCUITS

The simplest recursive circuits have only a single re-
cursive subcircuit. This case is somewhat like tail recur-
sion in programming languages and is relatively easy to
implement. The TALLY circuit in Fig. 1 is an example
of such a recursion. Unfortunately, not all recursive cir-
cuits have such a simple structure. Many ' interesting cir-
cuits are based on a divide and conquer strategy, in which
a complicated task is realized by a number of subcircuits
each of which is a recursive instance of the circuit being
defined. Adders, multipliers, sorters, FFT circuits, etc.,
can all be structured in this manner. Figuring out by hand
an appropriate layout for an instance of such a circuit can
be quite tricky. Once the recursive structure of the circuit
has been determined, the Escher system may be used to
unwind a particular instance of the circuit. We illustrate
below how Escher might be used with two well-known
examples of recursive divide and conquer circuits.

Example 1: Parallel Sorting

Our first example is a network for sorting a sequence
of n k-bit numbers into increasing order, where n is as-
sumed a power of 2 [5]. The standard divide and conquer
approach is to sort the first half and the second half in
parallel and then merge the two sorted sequences. The

sort(n/2) sort(n/2)

merge(n/2)

command: defcell sort(n)

ESCHER

Fig. 4. Recursive pattern for SORT (n).

Escher specification for such a circuit is shown in Fig. 4.
Note that every bus width number here means the number
of k-bit wires.

The MERGE cell can also be defined recursively. To
merge two sequences ‘‘a’’ and ‘‘b’’, we merge the even-
indexed elements of ‘‘a’ with the odd-indexed elements
of ““b,”” and the odd-indexed elements of ‘‘a’’ with the
even-indexed elements of ‘“b.”” The outputs of the two
half-size merging circuits are sent through an array of
comparators. Bach comparator ‘‘CMP’’ sorts two k-bit
numbers in order. Fig. 5 gives the recursive definition of
MERGE (n). PASS(n), shown in Fig. 6, contains only
wires and is used to separate the even-indexed inputs and
the odd-indexed inputs.

If we instantiate the recursive specification shown in
Fig. 4 with n = 16, our system automatically generates
the pattern shown in Fig. 7.

Example 2: Fast Fourier Transform
The second example is a circuit for computing the fast
Fourier transform [4], [11]. Let w = ¢>™/*. The fast Fou-
rier transform (FFT) of x(0), » - - , x(n — 1) is defined
fork=0,1,2,---,n— 1by
n—1

y(k) = m§0 w™x(m).

This equation can be *‘folded’’ to obtain, forj = 0, 1, 2,

-,n/2 -1,
nj2-1
y(2j) = go W (x(k) + x(k + n/2))
n/2~1
y(2j + 1) = kgo wzjk(wk(x(k) — x(k + n/2))).
Fork=10,1,2, -+ ,n/2 —1,let

v(k) = x(k) + x(k + n/2)
v(k + n/2) = o*(x(k) — x(k + n/2)).
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command: defcell merge(n)

Fig. 5. Recursive pattern for MERGE (n).
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Fig. 6. Recursive pattern for connections PASS (n).

If we express y in terms of v, we obtain

n/2—-1 "
y2i) = 2 (@) vik)
n/2-1 )
Y@+ 1) = Z (@ ok +n/2)

forj=0,1,2,---,n/2 — 1. This series of equations
can be expressed in matrix form as in Fig. 8.
Examination of the block diagonal matrix suggests a
recursive circuit for computing the FFT. First, we use a
group of multiplier-adder cells MAC[0], MAC[1],
-+, MAC[n/2 - 1] to transform x[0], x[1], - - - ,
x[n — 1]into v[0], v[1], - - -, v[n — 1]. Each mul-
tiplier-adder cell will have two inputs and two outputs.
In the case of cell MAC[] the two inputs are x[k] and
x[k + n/2], and the two outputs are v[k] and vik +
n/2]. In general, the behavior of each MAC [k] cell will
depend on the value of k; each must be provided with a
register holding its particular value of w*. For simplicity,

o

“rp

=m0

command: eval sort n=16 ESCMHER

Fig. 7. Instantiation for SORT (16).
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Fig. 8. Block diagonal matrix for computing FFT.

however, we will neglect this difference, and assume that
MAC is their common source.

We eventually obtain two half-size FFT problems: one
onv[0], -+ - ,v[n/2 — 1] and one on v[n/2], - - - ,
v[n — 1]. The Escher specification of the FFT circuit
will contain two recursive instances of FFT (n /2) as
shown in Fig. 9. The cell labeled RPS is just the reverse
of the cell PASS, defined in the previous example. It takes
two sets of n/2 inputs and merges them into n outputs,
so that the first set of inputs corresponds to the even-in-
dexed outputs and the second set of inputs to the odd-
indexed outputs.

If we instantiate the circuit with n = 16, Escher gen-
erates the network shown in Fig. 10. The eight MAC’s in
the first row have registers holding «°, w', &%, - -+ , &’
in sequence from left to right; the eight MAC’s in the
second row are divided into two groups, the left four in
one group and the right four in another. In each group of
four, the registers hold «°, w?, w*, and &®, respectively.
The eight MAC’s in the third row are divided into four
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fre(n/2) ffe(ns2)

(n/2 /2

rps(n)

command: defcell fft(n) ESCHER

L1 C

command: eval fft n=16

CSHCHER

Fig. 9. Recursive pattern for FFT (n).

Fig. 10. Instantiation for FFT(16).

pra(n/2)

Fig. 11. Parallel prefix circuit.

groups, each of which contains two MAC’s, one storing
the value »” and one storing the value w*. Each MAC in
the last row has « in its register. Although we will not
address the problem of initializing the registers, it is not
difficult to solve.

IV. A MoRE COMPLICATED EXAMPLE

In this section we show how to lay out the parallel pre-
fix circuit described by Fischer and Ladner in [1]. We
assume ® is an associative binary operator that is imple-
mented by a cell named OP with two inputs and one out-
put. The parallel prefix circuit has n inputs and n outputs.

The n outputs are the successive partial products obtained
using ® to combine the inputs. Thus, if the inputs are x;,
X3, *°* , X,, then the outputs are x;, (x; ® x;), *
(((x;, ® ) ® --+) ® x,). Fig. 11 shows the clever
recursive circuit suggested by Fischer and Ladner for
computing the partial products in parallel.

How do we specify the parallel prefix circuit with the
Escher system? It is convenient to split the circuit into five
parts as shown by the dotted lines in Fig. 11. Each of
these parts will correspond to an Escher cell that can eas-
ily be defined recursively (see Fig. 12).

DPASS(n) and UPASS(n) contain only connection
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Fig. 12. Recursive specification for parallel prefix circuit.
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Fig. 14. Recursive definition of subcell UPASS (n).

Ln/z n/2
dleft(n/2) dright(n/2)

b

n/2 n/2

Fig. 15. Recursive definition of subcell DPART (n).

wires and are defined in Figs. 13 and 14, respectively.
DPART (n) can be split again into two parts, a left part
DLEFT and a right part DRIGHT. Each of these parts
can, in turn, be defined recursively (see Figs. 15-17). The
definition of UPART is similar to that of DPART and will
be omitted.

If we instantiate PFX (n) with n = 16, Escher will un-

Fig. 18. PFX(16).

wind the recursive specification and compact the un-
wound layout to produce the circuit shown in Fig. 18.

V. REPRESENTATION OF CIRCUIT COMPONENTS AND
STRUCTURAL ELASTICITY

A cell is represented in the Escher system by a record
consisting of three fields, the AttributeList, the PointNet,
and the SubCellList. The AttributeList contains the name
of the cell, its parameter list, and its position (Topy,
BottomY, RightX, LeftX ) with respect to a fixed coordi-
nate system. The PointNet is used to keep track of the
different kinds of points (pins, bends, connectors, vias,
transistors, etc.) and their locations. Each point is repre-
sented by a record structure that specifies its type, its co-
ordinates PosX and PosY, and how it is connected to the
other components of the cell. All of the points in a cell
are linked together in an undirected graph structure called
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the PointNet. From each point in the cell it is possible to
find the next connected point in a vertical or horizontal
direction by following the appropriate link in the
PointNet. The SubCellList contains a descriptor for each
component subcell. A subcell descriptor has a pointer to
the source of the subcell, an assignment of symbolic
expressions for any parameters of the source cell, and in-
formation on the position and orientation of the subcell
(i.e., whether it has been flipped or rotated). Subcells in
a group are linked together in a circular list. Some infor-
mation in the AttributeList of the source cell, like the cell
name, is also duplicated to prevent unnecessary search-
ing. :

Only the relative sizes and positions of the various cell
components are important. Cells may be expanded or
shrunk, points may be moved around, and wires may be
lengthened or shortened, provided that the underlying to-
pological structure of the circuit does not change. This
structural elasticity is exploited by the Escher system to
obtain a good layout and is discussed in more detail be-
Jow. For simplicity, we initially assume that all subcells,
points, and wires are at the same level.

We say that subcell SCL1 is Above another subcell
SCL2, if SCL1.BottomY = SCL2.TOPY. Similarly, we
define the Below, Rightof, and Leftof relations between
pairs of subcells. If two subcells are not related by either
the Above relation or the Below relation, they are Beside
one another. We say SCL1 precedes SCL2 in position or-
der if and only if

(SCL1 Above SCL2) Or ((SCLI Beside SCL2) And
(SCLI Lefiof SCL2)).

In the TALLY example in Fig. 1, each of the subcells
MUX[0] . MUX[n — 1] is Rightof the subcell
TALLY (n — 1) and Above the subcell MUX[n]. Similar
definitions may be given to describe the relative ordering
of pins. In this case, however, the corresponding partial
order relations only hold between pins on the same side
of a cell.

So far, we have only defined the position order relation
between circuit components at the same level. We can
extend the relation to apply to components at different lev-
els by requiring that if subcell SCL1 precedes SCL2 in
position order, then each subcell of SCL1 must precede
each subcell of SCL2, etc.

A recursive circuit specification may be unwound into
a tree structure in which nodes correspond to cells, and
one node is a son of another if the cell corresponding to
the first node is a subcell of the cell corresponding to the
second. Thus, a cell will appear at level i in the tree if it
is a subcell of a cell that appears at level i — 1. A layout
is generated from the tree in a bottom-up fashion in which
layouts are determined for all of the sons of a node before
laying out the node itself. To accomplish this task it may
be necessary to move various circuit components in order
to make room for components generated at lower levels.
The algorithms that Escher uses for this purpose are dis-

cussed in detail in the next section. To ensure correctness
we must guarantee that as the program transforms a geo-
metrical pattern, the hierarchical position order among
components remains unchanged, even though the absolute
size and position of the components may change fre-
quently. We give below some basic rules for deciding
when points and subcells may be moved.

e Subcells of a cell may be moved provided that their
relative position order remains invariant.

* Each pin on a basic subcell has a fixed position rel-
ative to the subcell and cannot be moved.

e Pins on some sides of a composite subcell may be
moved as long as they remain on the same side and
their relative order does not change.

e Any nonpin point (i.e., a bend or connector) may be
moved, provided all the points whose positions de-
pend on that point are moved accordingly and the
move does not violate one of the first three rules.

VI. How To UNWIND A RECURSIVE CIRCUIT
SPECIFICATION

We begin by describing algorithms for expanding and
shrinking cells. There are two instances when this may be
necessary. The first occurs when the omitted subcells of
a group are filled in. The second instance occurs when a
subcell is replaced by a copy of its source. For simplicity,
our algorithms for these two cases are only given for the
vertical direction. The horizontal direction can be ob-
tained by rotation and need not be given here. When ex-
panding in the vertical direction some parts of the cell
must be moved upward, while other parts must be moved
downward. However, as long as the guidelines in the pre-
vious section are followed, we do not have to worry about
changing the behavior of the circuit.

Let CI(N ) be a parameterized cell. Suppose that CI(V')
is the cell obtained from CI(N ) by replacing each expres-
sion with its value at N = V. Suppose also that Sc/[ V1],
Scl[*11, ScI[V2] is a subcell group in CI(V). In order
to make room for all of subcells represented by Sc/{*I],
we must expand (or shrink) CI(V) as shown in Fig. 19.

Vdist is the vertical distance that must be allocated for
each subcell in the group, including the space between
consecutive subcells. K is the total number of subcells in
the group; if K is greater than 3, we must enlarge the
space allocated to the group by (K — 3) * Vdist units in
the vertical direction. Each object in the cell will be
moved either up or down according to whether it is above
or below the vertical midpoint of the region occupied by
the subcell group. (K — 2) new subcells must be created
to fill out the group. Points and wires will be added so
that each of these subcells has the same set of attachments
as Scl[*1].

During the unwinding phase we replace each recursive
subcell by an instance of its source cell. For example,
when unwinding the TALLY circuit in Fig. 1 with N =
6 we must first replace the recursive subcell TALLY (5)
by a copy of the source cell. When we unwind
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before expansion after expansion

Fig. 19. Expanding a group.
procedure ExpandingGroup:
K := [(V2-V1) giv 1] + 1
vdist = (ScI[V1].TopY - ScI[V2].TopY) div 2:
if X>3 then Voff := [(XK-3)*vdist] div 2 else Voff := 0.
OrigY := (ScI[V1].TopY + Sci{V2].BottomY) div 2:

Record all wires and points associated with ScI1[°I]. then delete
811 of them along with the subcell for Sci{*I]:
if Voff>0 then

move the part of CY(V) that is above OrigY up by Voff:

move the part of C1(V) that is below OrigY down by Voff;
engif;
create (K-2) new subcells that are copies of Sci[®I]: align the
subcells in the space allocated for the group, making sure that
the top of successive subcells are separated by Vdist units in
the vertical direction;

Connect up the points and wires associated with the individual
subcells so that each 15 a copy ScI[*I] in the original diagram:

endproc;

Fig. 20. Algorithm for expanding a group.

TALLY(5), we need to replace subcell TALLY (4) by
another copy of the source cell. This process continues
until a base case is reached.

When we replace a subcell with the body of its source
cell, it may be necessary to expand (or shrink) the subcell
so that it is the same size as its source. Suppose that C! is
a cell, that Scl is one of its subcells, and that C/1 is the
source of Scl. Let Voff be half the difference in size in the
vertical direction between Sc/ and its source C/1. When
Voff < 0, Scl must be bigger than CI1, so Scl should be
shrunk. If Voff > 0, then Scl is smaller than CI1, so Sc/
should be expanded. When the expansion is made, every
object in CI that is above Scl in position order must be
moved up by Voff. Likewise, every object in CI that is
below Scl must be moved down by Voff. The positions of
objects that are beside Scl do not need to be changed (see
Fig. 21).

Once Scl and its source cell C/1 have the same size, we
must connect up the pins of Scl. Although corresponding
sides of CI1 and Sc/ will have exactly the same number
of pins, corresponding pins on the same side will, in gen-
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Fig. 21. Expanding a subcell.

procedure ExpandingSubcell;

Voff := (C11.Height - SC1.Height) div 2:
if Voff<0 then
for each pin P on Scl's North side,
for each pin P on Sc)'s South side,
andif;

P.PosY := P_PosY-Voff;
P.PosY .= P.PosY+Voff;

if Voff>0 then

C1.TopY := C1.TopY - Voff;
C1.Bottomy := Cl.BottomY + Voff;

for each point P,
if P.PosY<=5c).TopY then P.PasY := P.PosY - Voff:

1f P.PosY>=Sc1.BottomY then P.PosY := P.PosY + Voff;
engfor

for each subcell Scii,
if (Scll.TopY<=Scl.TopY) and (Scll.BottomY>=Scl.8ottomY) then
C11.TopY := Scl1.TopY - Voff;
Sc11.BottomY := Scll.BottomY + Voff:
else
if S¢11.TopY<=Scl.TopY then
Scl1.TapY := Sclt.TopY - Voff;
Sc11.BottomY := Scil.BottomY - Voff:
endif:
if Scl11.BottomY>=Scl.BottomY then
Sc11.TopY := Sc11.TopY + Voff;
Scll.BottomY := Scll.BottomY + Voff;
endif;
engif;
endfor:
endif;

endproc;

Fig. 22. Algorithm for expanding a subcell.

eral, have different offsets with respect to the center of the
side. Let P be a pin on Sc/, and let P! be the corresponding
pin on CI1. We assume without loss of generality that
both pins are on the south side of their respective cells.
Let P2 be the point on the south side of Sc/ that has the
same position with respect to the center of the side that P/
has with respect to the center of the corresponding side of
Cl1. In general, P and P2 will not coincide and it will be
necessary to introduce a jog (P, P2) in order to connect
them. Frequently, this type of jog can be eliminated by
moving some pins or subcells. This problem is addressed
by the rext algorithm. In order to explain how the algo-
rithm works, we consider two cases as illustrated in Fig.
23. We say that a point U is rigidly connected to pin V if
U is connected to ¥ by a path consisting of horizontal and
vertical wire segments.

In the first case, all of the points rigidly connected with
P (i.e., points O and R in Fig. 23) are movable, so we
move all of them right by distance D so that P and P2
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SCL SCL
[ 3 P P2
Q
R
case 1 case 2

Fig. 23. Eliminating jogs (two cases).

procedure Eliminatadogs
for every pin P on the South sidge of Scl.
find the corresponding pin P1 on C11:

let C,Cl be the centers for Scl and C11:
NewX := C.PosX + (P1,PosX - Cl.PosX):
NewY := P PosY:

add new point P2 at (NewX NewY):

0 := NewX - P.PosX:

Jet Pout be the sat of all points rigidly connected to P:

if every point in Pout is movable, then
for each P3 in Pout, P3.PosX := P3.PosX+D
else
for every subcell Scll connected to P,
1et SclOut be the sat of all points rigidly connected to Scll;
if every point in SclOut is movable, then
for each P3 in SclOut. P3.PosX := P3.PosX+0:

Sc11.RightX := Scll.Rightx + 0:
Scll.LeftX := Sclt.Leftx + O
endif:
endfor:
endif;
endfor
endproc:

Fig. 24. Algorithm for eliminating jogs.

coincide. We must be careful not to change the position
order among pins on the south side of Sc/ when we move
R. In the second case, it appears that some point Q, rig-
idly connected with P, is not movable, because it is a pin
on the boundary of another subcell Sc/1. However, sub-
cell Sci1 and all of the points rigidly connected with its
pins are movable. Thus, we can move Sc/1 and all of the
points rigidly connected to it right by distance D so that
P coincides with P2.

Finally, we show how to put the previous algorithms
together and actually do the unwinding. Our major con-
cern at this point in the algorithm is efficiency. When we
unwind a recursive Escher specification, we obtain a tree
in which the nodes represent subcells, and a directed arc
exists between two nodes when the head is a subcell of
the tail. We must be careful not to duplicate steps if we
encounter the same cell more than once when we traverse
the tree. For example, when we instantiate SORT with 7
= 4, we obtain the tree structure shown in Fig. 25.

In this case there are several duplicates among the eight
nodes and four nonterminal nodes. In order to unwind
SORT (4), we have to unwind SORT(2) twice and
MERGE (2) once; when we unwind MERGE(2), we
must unwind PASS(2) twice, MERGE(1) twice, and
CMP twice. In fact, if this representation is used, it is
possible to create examples in which the number of du-

SORT(4)

/7\

SORT(2) SORT(2) MERGE(2)

\\\\\_\

cHp e MERGE(1)  MERGE(1) (MP WP  PASS(2) PASS(2)

CNP CMP

Fig. 25. Traversal tree for SORT(4).

SORT(4)

SORT(2) MFRGE(2)

>

merge(1) PASS(2)

e
Fig. 26. Directed acyclic graph for SORT (4).

plicated steps will be exponential in the size of the orig-
inal Escher specification.

Instead, Escher uses a directed acyclic graph structure
to represent the nesting of subcells. We call this data
structure the subcell nesting graph, or SNG. Since each
subcell corresponds to at most one node in the SNG, it
is only necessary to unwind a given subcell once. The
graph for SORT (4) is shown in Fig. 26. Note that each
of the subcells SORT (4), SORT (2), CMP, MERGE(2),
MERGE((1), and PASS(2) is represented uniquely this
time.

The unwinding algorithm consists of two phases. In the
first phase we evaluate all of those expressions that de-
pend on the parameters of the cell and create the SNG.
Expressions may appear in the specifications of groups
and buses, and they may be used as parameters of lower
level subcells. After we have figured out the exact number
of subcells in a subcell group, we use the algorithm in
Fig. 20 to obtain enough space for the omitted subcells in
the group; then we copy the subcells into the cell. After
a cell has been evaluated, it will be linked to its source
cell in the SNG. The SNG for cell CL(V) will not be
complete until all of its descendant subcells have been
processed in this manner.

The second phase in the unwinding process is a depth-
first traversal of the SNG. When all of the subcells of a
cell in the SNG have been unwound, we replace each sub-
cell with its source body and mark the cell as unwound.
The algorithm in Fig. 22 is used to obtain enough space
for filling in the subcell bodies. The algorithm in Fig. 24
is used for eliminating jogs in wires that result from these
substitutions.

Finally, some simple compaction algorithms are used
to shorten wires and move subcells closer together. It
should be noted that these algorithms may violate the po-
sition order relation among subcells that is described in
Section V. For example, the compaction algorithms were
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procedure Eval(C1,0rigCl, N, V);
name N:

if C1(V) is already in the SNG then return
elseif C1 is a basyc cell then add a C1-node into SNG
else

evaluate all of the expressions in CI(N). replacing N by its
value V;
expand all subcell groups usting the algorithm in Figure 6-2;
replace each bus by a numbar of wires equal to the bus width:
for sach subcell Sclt do
let the source of Scl1l be C11(V1):
Eval(C11.C1.N,V1):
endfor;
add a Cl(v)-node into SNG;
endif:
set link from OrigC) to CI(V):
endproc:

Fig. 27. Algorithm for constructing subcell nesting graph.

procedure Unwind(C1{v)):
for sach descendant Cii(v1l) of CI({v) do
if C11(vl) is not unwound then Unwind(CI1{v1l)):
endfor;
for each subcell Sc! of Cl(v).
expand Scl to be the same size as its source;
map the pins of C11 onto Scl and minimize the number of jogs using
the procedure described in Figure 6-6:
copy Cii(v1l) into Scl:
endfor;
mark Cl1{v) as unwound:
endproc:

Fig. 28. Algorithm for unwinding recursive cell specifications.

used to obtain Fig. 18. The position order among subcell
OP’s is not the same as that given in the original specifi-
cation of the parallel prefix circuit.

VII. CONCLUSION AND DIRECTIONS FOR FUTURE
RESEARCH

We believe that ultimately recursion will play much the
same role in hardware design that it has in software de-
sign. Although recursion has always been an indispens-
able tool for theoretical investigations in algorithm de-
sign, only in the last few years has it become respectable
to write application programs that use recursive proce-
dures. The acceptance of recursion is a result of two fac-
tors. First, many software designers have come to realize
that it is natural to express certain algorithms recur-
sively—particularly those that access recursive data struc-
tures. Second, advances in computer architecture, like
hardware stacks and displays, have decreased the over-
head associated with recursive procedure calls. We be-
lieve that an analogous process will occur in hardware
design. When design environments routinely provide sup-
port for recursion, designers will begin to find elegant re-
cursive solutions for problems that they currently must
solve in an awkward manner using iteration alone. Since
recursive hardware designs are implemented by unwind-
ing the recursion, the overhead in efficiency that is asso-
ciated with the use of recursion in software will not be a
problem. We further believe that our use of parameterized
subcell and group specifications will be of practical im-
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portance in any completely general graphical design sys-
tem, even if full recursion is not supported.

Finally, we list below some of the problems with the
current system that we hope to address in a future version.

¢ Multiple parameters: As currently implemented,
the Escher system only permits cell specifications
with a single recursive parameter. A number of in-
teresting examples can be specified most naturally by
using multiple recursive parameters. It should be
fairly easy to modify the current implementation so
that multiple parameters are permitted.

e Compaction and optimization: The layouts pro-
duced by our system frequently contain long wires
and have area that grows more rapidly with the re-
cursion depth than necessary. Although we have im-
plemented some simple compaction algorithms, we
believe that this problem requires much more
thought. It may be possible to design compaction al-
gorithms that take advantage of the hierarchical
structure of Escher specifications. However, the sim-
ple algorithms that have already been implemented
do not make use of this information.

¢ Combined textual and geometric description: For
certain applications, such as simulation, a textual cir-
cuit description may be quite useful. We envision a
VLSI design system with multiple windows which
would permit both textual and geometric descriptions
of circuit components. One window would contain a
geometrical representation of the circuit like the one
described in this paper. Another window would con-
tain a representation of the circuit in an appropriate
(textual) hardware description language. The textual
description could be used directly for simulation,
verification, etc. A change in the geometrical de-
scription would be automatically reflected by a cor-
responding change in the HDL representation. The
dual representation would provide access to the best
features of both types of design systems.
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