Automatic Verification of Sequential Control
Systems Using Temporal Logic

Il Moon and Gary J. Powers
Dept. of Chemical Engineering

Jerry R. Burch and Edmund M. Clarke
Dept. of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213

Clarke et al. (1986) have developed a model-based verification method and have
applied it to validation of VLSI circuits. We have used the method to test auto-
matically the safety and operability of discrete chemical process control systems.
The technique involves: 1) a ‘‘system model’’ describing the process and its software;
2) ““assertions’’ in temporal logic expressing user-supplied questions about the system
behavior with respect to safety and operability; and 3) a ‘‘model checker’’ that
determines if the system model satisfies each of the assertions and provides a coun-
terexample to locate the error if one exists. Temporal logic is used for reasoning
about occurrence of events over time. To reveal discrete event errors, we have applied
the verification method to a simple combustion system and an alarm acknowledge

system.

introduction

As chemical processes increasingly use computers for their
control, avoiding computer control failures becomes more im-
portant. This article describes a verification method that au-
tomatically determines the safety and operability of sequential
discrete chemical process control systems.

Current methods for assessing the safety and reliability of
chemical processes are diverse (Dhillon, 1988). Hazard and
operability studies (HAZOPs) are widely used for identifying
hazards or operability problems. This method involves pre-
paring a list of all possible deviations from normal operating
conditions and how the deviations might occur. The conse-
quences on the process are assessed, and the means available
to detect and correct the deviations are examined. This method
is difficult to apply to complex systems because of the large
number of failure combinations and the many interactions
between components and subsystems. Fault tree analysis (FTA)
overcomes some of the limitations of HAZOP. The critical
difference between the two methods is the direction in which
the analysis is performed. HAZOP involves generation of event
sequences from initiating events to final events, while FTA
begins with the final event and works backward to initiating

Correspondence concerning this article should be addressed to G. J. Powers.

AIChE Journal January 1992

events. In FTA, only event sequences leading to failures of
interest are considered. The fault tree method can be quantified
where data are available on failure probabilities of primal
events. These methods are systematic approaches for deter-
mining if failures or changes in the process equipment or pro-
cedures will result in undesirable process events such as
fatalities, injuries, environmental damage, or unintended proc-
ess shutdown.

Checking interactions between process equipment and com-
puter software using these techniques presents numerous prob-
lems. First, the complexity of the control system hardware,
operating system and application code causes large combi-
natorial search problems for HAZOP and FTA types of risk
assessment. Second, sequential or batch processing systems
introduce additional complexity due to the large number of
possible states that the process and its control system might
attain. Finally, models for predicting software integrity are
commonly restricted to the software code itself without in-
cluding the process or system that is controiled by the code.
Excluding the chemical process in the assessment of the soft-
ware precludes the detection of errors that are caused by the
misapplication of the code or by failures that propagate from
the process through the code. These types of software appli-

Vol. 38, No. 1 67

cation errors often are difficult to detect and can cause large
consequence failures in the processing plant.

This article addresses the use of an automatic formal veri-
fication method for process control systems that involve dis-
crete event dynamics. The objective of the study is to determine
whether a formal verification method would be able to identify
effectively errors in a system that includes both the control
system and the chemical process equipment. The method re-
quires two inputs:

e A state transition model for the system to be verified
including software and process units manipulated by a se-
quential controller such as the programmable logic controller
(PLC).

e A list of questions about the possible behavior of the
system.

Other less formal approaches have been used in several in-
dustries. These techniques normally rely on testing the func-
tionality of the control software at each stage of its
development. Field testing prior to commissioning of the con-
trol system is a critical activity that commonly involves check-
ing the control system while changing one input at a time,
foliowed by larger-scale functional tests with inert material in
the process.

Several recent studies have given guidelines for the safety
and reliability of computer-based process control systems. The
Pharmaceutical Manufacturers Association’s Computer Sys-
tem Validation Committee has addressed several factors to be
considered for validating automated process controls in bulk
pharmaceutical operations (Chapman, 1989). Shaw (1991) has
given a checklist to reduce human errors in distributed control
systems. The Institute of Electrical and Electronics Engineers
has provided manual guidelines for software quality assurance
plans (IEEE, 1984) and software unit testing (IEEE, 1987).
The methods in these guidelines are mostly manual and suffer
from combinatorial search problems and a potential lack of
completeness. Verification and validation methods through the
software life cycle were summarized by Wallace (1989). These
methods have been used for software testing in aerospace ap-
plications and computer system development. These pioneering
efforts have indicated that organized search for software and
control system errors can greatly improve system integrity,
although it is time-consuming. In this work, some formal ver-
ification techniques are combined with chemical engineering
models for processing systems to verify discrete event chemical

processes.
Engineers use discrete event control systems widely for on/

off sequential control of batch systems, alarms, interlocks,
and startup and shutdown procedures. The search for safety
errors in discrete chemical process control systems depends on
models of the systems. Ho (1989) classified the models of
discrete event dynamic systems by logical, algebraic and sto-
chastic models for both timed and untimed systems. Yamalidou
(1990) examined the behavior of discrete chemical processing
plants using Petri nets (untimed logical model), Minimax al-
gebra (timed algebraic model), and temporal logic (timed log-
ical model). Simulation, using these discrete models, is one
way of investigating the behavior of a sequential chemical
process. We could use repeated simulations to detect possible
errors in the control system. While effective for small prob-
lems, these simulation approaches commonly have combina-
torial problems when applied to complex systems. We use a

68 January 1992

finite state machine model and temporal logic for reasoning
about occurrence of events over time.

Model checking using temporal logic has the potential for
reducing the growth rate of the search space. The application
to the verification of VLSI circuit designs and communication
protocols containing up to 10® states has shown the power of
this method (Burch, 1990). We have combined state transition
models of chemical process equipment with similar models of
the control system and its software, and developed a search
method using temporal logic for finding errors in the control
system.

The method identifies errors by comparing a question about
system behavior with the model of the system. The question
is given as a series of temporal logic statements. For example,
an informal question in furnace operation, *‘Is there any future
situation in which fuel flows without being burned?’’ may be
expressed using temporal logic as “EF (fuel AND (NOT
flame))’* where EF(p) is a temporal logic formula meaning
“sthere Exists a state in the Future where p holds.”’ The next
step is to determine whether the model of the system satisfies
each question.

We applied the model checking method of Clarke et al.
(1986) to test chemical process control systems. The two case
studies used are: a combustion system involving an air/fuel
burner, a flame detector, and shutdown and startup proce-
dures, and an alarm system using PLC software.

The results of these studies indicate that the model checking
approach can identify errors in discrete chemical process con-
trol systems. The main advantages of this method for testing
discrete event systems are:

e Process models are included so that the interactions be-
tween software and process hardware are tested.

e An algorithmic search is used to make the verification
process more complete.

o Alternate designs can be compared by testing them with
the same set of assertions.

e The search method is automated and has the potential for
testing complex systems.

Model Checking Verification

An overview of the verification method is shown in Figure
1, where the system description and the assertions are inputs
to the model checker. The system description is a state tran-
sition model of the system to be tested. The model is derived
from the process flow diagram, control software, and piping
and instrumenting diagram (P&ID). Assertions are questions
associated with safety and operability coming from industrial
standard checklists, process design specifications, or other
methods like HAZOP or fault tree analysis. Assertions are

TRUE, FALSE or
Modei Checker

Figure 1. Overview of the model checking verification
method.

Vol. 38, No. 1 AIChE Journal

Si

>m
)
N —U a—

Figure 2. State transition graph.

expressed in temporal logic. The model checker searches the
state space of the system and determines the truth of the as-
sertions.

The next section describes the modeling of sequential systems
and is followed by the model checking aigorithm and a de-
scription of how to express assertions.

System Modeling

The behavior of the process equipment, the operating pro-
cedures and the process control software in the form of a PLC
ladder diagram is converted into a labeled state transition graph.
Figure 2 shows an example of a state transition graph, where
a circle indicates a state, s;, and an arrow denotes a state
transition. The state variables (called atomic propositions) of
the system can take the values of TRUE or FALSE, which
represent the discrete state values of on-off valves, pumps,
relays, tank levels, switches, and so on. Only the variables that
have the value TRUE in a given state appear in the circle
representing that state. The arrows in the state transition graph
represent the transition of the system from one state to another.
The immediate successors of a state s are the states that can
be reached from s in one step. More formally, a state transition
structure M= (S, R, P) includes three components where

¢ S is a finite set of states.

e R is a binary relation on S which gives the possible tran-
sitions between states.

e P(s) is the set of TRUE atomic propositions in state s,
where an atomic proposition is the state variable that denotes
the property of interest and has either a TRUE or FALSE
value.

Using a library of models of process equipment, operating
procedures and the PLC software, a sequential system is mod-
eled as a state transition structure. The following section il-
lustrates how to express and check assertions in this method.

Computation Tree Logic

Computation tree logic (CTL) formulas are used to express
assertions about the system being verified. These assertions
can be provided by the system analyst, standard system spec-
ifications, or error types discovered in previous designs, and
are used to detect operability, reliability and safety features.

AIChE Journal January 1992

Figure 3. Corresponding computation tree to Figure 2
with initial state s,

The CTL model checker program automatically tests whether
the assertions are TRUE of the system model.

The truth of a CTL formula is relative to a state transition
graph. To understand how the truth of a formula depends on
a state transition graph, it is helpful to think of unwinding the
graph into an infinite tree with the initial state as the root.
The tree obtained in this manner is called a computation tree.
Paths in the tree represent possible behaviors of the system
modeled by the state transition graph. For example, Figure 3
presents the tree corresponding to Figure 2 with the initial state
So. One of the paths in the tree is o, 51, So, 52, and 50 on.

The simplest CTL formulas consist of just an atomic prop-
osition. If p is an atomic proposition, then the formula p is
TRUE of a state s if and only if (iff) p labels s: that is, p is
an element of P(s). Formulas can be built up using the standard
operators of negation (written ~), and (written &), or (written
1), and imply (written —). CTL is distinguished from elemen-
tary propositional logic by the modal operators AX, EX, AU
and EU, where A (for all computation paths) and E (for some
computation path) are path quantifiers, and X (next time) and
U (until) are state quantifiers. With these operators, it is pos-
sible to construct formulas whose truth in a state s depends
on the labeling of states other than s. Thus, one can construct
formulas that assert restrictions on the kinds of behaviors that
can start in a given state.

For example, EX (f) is TRUE of a state s iff f is TRUE of
some immediate successor of s; AX (f) is TRUE iff fis TRUE
of all immediate successors. The formula E [f1 U f2] is TRUE
of a state s iff there exists a path starting at s with the following
property: there exists an initial prefix of the path such that f2
holds at the last state of the prefix, and f1 holds at all other
states along the prefix. The formula A [f1 U f2] makes the
analogous assertion about all of the paths starting with state
s.

In summary, the formal syntax for CTL is such that

+ Every atomic proposition p € AP is a CTL formula.

e If f1 and f2 are CTL formulas, then so are ~f1, f1&/2,
AX(f2), EX(f1), ALf1 U f2) and E[f1 U f2].

The following abbreviations are used in writing CTL formulas:

EF(f)=E[TRUE U f] means that there is some path from
s, that leads to f: that is, f holds porentially.

Vol. 38, No. 1 69

@ (b)

(© @

Figure 4. CTL operators.

e =p, o= ~p (a) EF(p): p potentially holds (b) AF(p): p is
inevitable (c) EG(p): p holds at every state in some path (d)
AG(p): p is invariant.

AF(f)=A[TRUE U f] means that f holds in the future
along every path from the initial state s,: that is, f'is inevitable.

EG(f)= ~ AF(~f) means that there is some path from s,
on which f holds at every state.

AG(f)= ~EF(~f) means that f holds at every state on
every path from s,: that is, f holds globally.

Figure 4 shows how simple correctness properties can be
represented using these operators, where the black circle and
the white circle indicate that the atomic proposition p is TRUE
and FALSE, respectively, in the corresponding states. More
complex formulas can be represented by combining the CTL
operators. For example, AG AF (f) means that for all states
s, all paths starting from s contain at least one state where f
is TRUE. This is the same as saying that f is TRUE infinitely
often on all paths starting from the initial state. The expression
EF EG (f) means that at some state in the future there exists
a path along which fis TRUE at every state.

The model checker automatically tests whether an assertion
is satisfied in the system model. The algorithm processes a
formula bottom up, checking the shortest subformulas before
the subformulas that contain them. For each CTL operator,
there is an algorithm for determining the truth of a formula
constructed with the operator, given that the truth of the
subformulas has already been determined. The model checker
is the combination of these algorithms, together with an al-
gorithm for producing a counterexample trace in response to

_ . —~~—| controller

\
\

\
[o

Lo-
O w

Figure 5. Combustion system.

air

'

70 January 1992 Vol. 38, No. 1

. Start with initial condition

. Open the air valve (vi=1)

. Open the fuel vaive (v2=1)

. Tumn on the ignitor (ig1=1)

. Tum off the ignitor (Ig1=0)

. If there exists flame (d1=1),
then go to step 7
else go to step 4

. If shutdown button is on or flame disappears,
then stop
else go to step 7

ODNHEWN =

~

Figure 6. Operating sequence No. 1 for a combustion
system.

a FALSE formula. The counterexample trace is a sequence of
states that demonstrates why the formula is FALSE. This fea-
ture is quite useful for locating the cause of errors in the system
being verified. A more thorough description of the model
checker program is given by Clarke et al. (1986, 1987).

The following two examples illustrate the method, and dem-
onstrate its usefulness in the verification of discrete chemical
process control systems. The first is a combustion system at
the design level, and the second is an alarm acknowledge system
at the detailed software level.

Case Studies
A combustion system

This example illustrates the model checking verification
method by testing a chemical process using a state transition
graph and CTL assertions. Figure 5 shows a combustion sys-
temn, where v1 and v2 are normally closed solenoid vaives, d'1
is a flame detector, and Ig 1 is an ignitor. Assume that a designer
has proposed one operating sequence as shown in Figure 6.
The goal of this analysis is to detect a safety error in the
operating sequence before the designer implements the cor-
responding control system. A combined mode! of the valves,
the detector, the ignitor and the operating sequence is presented
by the state transition graph shown in Figure 7. This graph is
the input to the model checker as the system description.

A trace of the CTL model checker applied to the system
description is shown in Figure 8, where lines in bold face
represent inputs from the user. The first test assertion is:

EF(air & fuel & flame)

in other words, *‘Is it TRUE that there exists a state in the
future where air, fuel, and flame coexist?’’ as shown in line
4. This test determines whether a situation arises where air,
fuel, and flame are present at the same time in the model. The
answer is TRUE as shown in line 5: that is, such a situation
can occur, so that the burner works in at least one case as
specified by the assertion.

Now let us check if a steady, unsafe state exists in which
fuel flows without flame. The assertion for testing this con-
dition is:

EF EG (fuel & ~ flame)
in other words, ‘‘Is there any state that begins a path where

AIChE Journal

=

s5

air, fuel

s6

air, fuel

s7

/

air, fuel, flame

s8 air, fuei, flame, shut

/
510))O

1. Start with initial condition
2. Open the air valve (vi=1)
3. Turn on the ignitor (Igi=1)
4. Open the fuel valve (v2=1)
5. if there exists flame (d1=1),
then go to step 6
else turn off the ignitor (Ig1=0) and
close the fuel valve (v2=0) and
go to step 3
6. Tum off the ignitor (Ig1=0)
7. i shutdown button is on or flame disappears,
then stop
else go to step 7

Figure 7. State transition graph for the operating se-
quence No. 1.

fuel exists and flame does not exist all along the path?’’ The
negation of this assertion is used to get a counterexample as
shown in line 7 of Figure 8. The answer to this test is FALSE
because a potentially unsafe infinite loop exists at states 4, 5,

CTL MODEL CHECKER
Taking input from high_op1.emc...

|= EF (air & fuel & flame).
The assertion is TRUE.

= ~EF EG (fuel & -~flame).
The assertion is FALSE.

OO~NOW0N PN -

10 EF EG (fue! & ~flame)

11 is true in state 1 because of the path:
12 State 1:

13 State 2: air

14 State 3: air fuel

15

16 AF ~(fuel & ~flame)

17 is false in state 3 because
18 EG ~~(fuel & ~flame)

19 is true in state 3.

20 An example of such a path is:
21 State 3: air fuel

22 State 4: air fuel ig

23 State 5: air fuel

24 State 6: air fuel

25 State 4: air fuel ig

26

Figure 8. CTL model checker execution for the oper-
ating sequence No. 1.

AIChE Journal

Figure 9. Operating sequence No. 2 for a combustion
system.

6, 4, S, 6, and so on. The location of the loop is determined
automatically by the model checker and displayed in lines 21
through 26. The method for locating the loop is based on
proposing the counterexample given in line 10. The contin-
uation of the counterexample development for line 10 is given
in lines 16 through 19. Hence, the CTL model checker shows
that the operating sequence No. 1 implies a potentially unsafe
condition. This path is for the condition where the fuel will
not ignite and operating sequence No. 1 continues to turn on
the ignitor in an attempt to achieve ignition. The location of
the unsafe condition might suggest process or software changes.
The current methods do not automatically revise the system
design.

Let us consider another design proposal, operating sequence
No. 2 as shown in Figure 9. This procedure uses a different
sequence based on detecting the flame to control the ignition
of the fuel. The corresponding state transition graph is shown

s4 air, ig, fuel

Y

s5 air, ig, fuel, flame

il

s6 air, ig, fuel

s7 air, fuel, flame

/ s8 air, fuel, fiame, shut

/
V

Figure 10. State transition graph for the operating se-
quence No. 2.

January 1992 Vol. 38, No. 1 n

CTL MODEL CHECKER
Taking input from high_op2.emc...

|= EF (air & fuel & flame).
The assertion is TRUE.

|= ~EF EG (fuel & -~flame).
The assertion is TRUE.

O~NONSH WD~

Figure 11. CTL model checker execution for the oper-
ating sequence No. 2.

in Figure 10. The answer to the safety question ~ EF EG (fuel
& ~ flame) for this sequence is TRUE as shown in the execution
file, Figure 11 in lines 7 and 8. The unsafe path found in
operating sequence No. 1 is not present in the revised system
No. 2.

This combustion system example illustrates that once a state
transition graph (system description) and assertions are de-
fined, then the CTL model checker can be used to automatically
determine the truth of the assertions in the model. Other as-
sertions about system operability and reliability could be tested
in the same manner. The next example includes another ap-
plication of this verification method to test the correctness of
software used in a process control alarm system.

An alarm acknowledge system

This example uses a programmable logic controller (PLC)
to demonstrate an application of the verification method at
the software level. PLCs are used extensively in chemical in-
dustry in a wide variety of applications. Programming lan-
guages for PLCs include ladder diagrams, Boolean expres-
sions, and Grafcet. Among these languages, the ladder diagram
is the most popular. Laduzinsky (1990) indicated that 70% of
the PLC programmers preferred this language.

Consider the alarm system shown in Figure 12, where the
high-level and the high-temperature alarms of a storage tank
are activated by a PLC, and the horn is acknowledged by an
operator. A ladder diagram used for the PLC is shown in
Figure 13. The vertical rails of the diagram indicate the power
source and sink, while the horizontal lines, called rungs, in-

-

w077

Figure 12. Alarm acknowledge system.

n January 1992 Vol. 38, No. 1

Rung 1 } ()_
HiL L1
Rung2 [— | O._.
HiT L2
Rung 3 { | 4 O—
L Ack horn
—
L2 A" : Normaily
Closed
I Contact
hom
Rung 4 °o o O—
P8 Ack
{ |
Ack
Power Rail Ground Rail

Figure 13. Ladder diagram for the alarm acknowledge
system.

dicate the possible current (or signal) flow. Various symbois
for buttons, contacts, and coils can be placed on the rungs of
the ladder. If the appropriate contacts are activated, a coil is
energized and its associate relays are closed if they are normally
open relays. For example, closing the high-level contact (HiL)
in rung 1 activates the relay coil L1 in rung 1 and causes closing
of the relay L1 in rung 3.

The ladder diagram in Figure 13 includes one pushbutton
(PB), one horn, and two sensors (high level and high temper-
ature). The horn and the acknowledge relay (Ack) are latched
in rung 3 and rung 4, respectively: that is, once a value is
changed, the value is retained. The contact Ack in rung 3 is
normally closed, and other contacts are normally open. The

s1

S HLPB
37 L1ack
Y
HT
y
HILHIT.PB HT
30 |4 L2.Ack 1 yAck 312 10 ack
Y
PB HT HiL
y
HLHIT
513 1240k

Figure 14. State transition graph for the alarm acknowl-
edge system.

AIChE Journal

CTL MODEL CHECKER
Taking input from alarmi.emc...

1

2

3

4 |= AG(HIL -> AF horn).
5 The assertion is FALSE.
6

7

8

9

EF ~(Hil. -> AF horn)
is true in state 1 because of the path:
State 1:
10 State 2: HiL L1 hom
11 State 7: HiL L1 PB Ack

12

13 HiL -> AF hom

14 is false in state 7 if:

15 1) ~HiL

16 is talse in state 7, AND
17 2) AF homn

i8 is false in state 7.

19

20 ~HiL

21 is talse in state 7 because the following propositions are true:
22 Hil

23

24 AF hom

25 is false in state 7 because
26 EG ~hom

27 is true in state 7.

28 An example of such a path is:
29 State 4: PB Ack
30 State 7: HiL L1 PB Ack

33 |= AG(HIL & ~Ack -> AF horn).
34 The assertion is TRUE.

36 |= AG(HIT & ~Ack -> AF horn).
37 The assertion is TRUE.

39 = AG (horn -> AX (hom | ~horn & PB)).
40 The assertion is TRUE.

42 |= AG(PB ->» AF(Ack & ~hom)).
43 The assertion is TRUE.

45 |= EF(hom & EF(~hom & EF horn)).
46 The assertion is FALSE.

48 There is no counterexample for EF (horn & EF (~horn & EF horn))

50 |= AG{~horn -» EF horn).
51 The assertion is FALSE.

53 EF ~(~hom -> EF hom)

54 is true in state 1 because of the path:
55 State 1:

56 State 3: homn HIT L2

§7 State 8: HiT L2 PB Ack

59 ~horn -> EF hom
60 is faise in state 8 if:

61 1) ~~hom

62 is talse in state 8, AND

63 2) EF hom

64 is false in state 8.

65

66 ~~horn

67 is false in state 8 because the following propositions are true:

68 ~horn

69

;0 There is no counterexample for EF horn
1

72 |= AG(~HIL & ~HIT & ~PB -> AF ~Ack).
73 The assertion is FALSE.

75 EF ~(~HiL & ~HiT & ~PB -> AF ~Ack)

76 is true in state 1 because of the path:
77 State 1:

78 State 3: homn HIT L2

79 State 8: HIT L2 PB Ack

80 State 12: HIT L2 Ack

81 State 9: Ack

82

83 ~HiL & ~HiT & ~PB -> AF ~Ack
84 is false in state 9 if:

85 1) ~(~HiL & ~HiT & ~PB)

86 is false in state 9, AND
87 2) AF ~Ack

88 is faise in state 9.

89

90 ~(~HiL & ~HiT & ~PB)

91 is false in state 9 because the following propositions are true:
92 ~HiL ~HiT ~PB

93

94 AF ~Ack

95 is false in state 9 because
96 EG ~~Ack

97 is true in state 9.

98 An exampie of such a path is:
29 State 11: HiL L1 Ack
100 State 9: Ack

101

Figure 15. CTL model checker execution for the alarm acknowledge system.

initial condition of the circuit is that all variables are FALSE:
that is, normally open contacts are open and normally closed
contacts are closed. If the high-level sensor is activated, relay
L1 actuates in rung 1 and the horn in rung 3 sounds. If the
pushbutton is pressed, the Ack relay is closed in rung 4, and
the horn is turned off in rung 3. Many possible states can be
reached in this system. The possible paths associated with a
process model are expressed by the state transition graph as
shown in Figure 14. Two rules are used to convert the ladder
diagram into the state transition graph: 1) variables that cause
branching in the graph are the independent inputs in the ladder
diagram, and the change of the independent variable (HiL,
HiT or PB) between two states is shown on the arrow of the
graph; 2) after each independent variable is changed, the ladder
diagram and process models are used to update all the depen-
dent variables. A simple process model of the operator’s be-
havior for pressing the acknowledge pushbutton is ‘‘press the
button once only after the horn is turned on.” With those
rules and the process model, the state transition graph is made
and then converted into a Lisp-like input file as a system
description for the CTL model checker.

AIChE Journal

One of the many possible desired operating sequences in the
system is:

1) Once high level or high temperature is detected, then the
horn is turned on.

2) Once the horn sounds, then the operator presses the ac-
knowledge button.

3) Once the button is pressed, then the system is acknowl-
edged and the horn goes off.

4) Repeat the above.
The system can be tested for this sequence by asking appro-
priate questions to the model checker. Figure 15 shows a partial
trace of the model checker execution which tests the operability
of the system.

The verification of the first operating sequence is described
below. The CTL expression, shown in line 4 of Figure 15,

AG(HiIiL — AF horn)

checks all possible states in the system. It examines whether
the horn sounds whenever the high level is detected. The result

January 1992 Vol. 38, No. 1 73

of this test as performed by the CTL model checker is FALSE
as shown in lines 5 through 31. The counterexample shows
that while the system is acknowledged, the horn is not turned
on even if the high level is detected. This situation is normal.
The above assertion is too strong. To exclude this case and to
continue verifying the first operating sequence, the following
assertion is used in line 33.

AG(HIL & ~ Ack — AF horn)

This examines whether the horn sounds whenever the high
level is detected (HiL) and the system is not acknowledged.
The answer is TRUE as shown in line 34. This means that
under the condition, the high-level detector and the horn be-
have correctly as a user required. Lines 36 and 37,

AG(HIT & ~Ack — AF horn)

show that if the temperature inside the storage tank is high
under the condition, the horn sounds. By testing the above
two assertions (lines 33-37), the first operating sequence is
tested and the result is that the system behaves correctly as
specified.

The second operating sequence is verified in line 39.

AG(horn — AX(horn| ~horn & PB))

which means that after the horn sounds, either it stays on or
it is turned off only if the pushbutton is pressed. The result,
TRUE, means that the horn goes off only under the specified
condition.

The third operating sequence, ‘‘once the operator presses
the acknowledge button, the system is acknowledged and the
horn goes off,”” is verified as shown in lines 42 and 43.

AG(PB — AF(Ack & ~horn))

The result shows that the pushbutton always is able to return
the system to the acknowledged state, and to silence the horn.

The next several assertions (lines 45-end) demonstrate ex-
amples of the system not following a user’s requirement (the
fourth operating sequence). The assertion in line 45,

EF(horn & EF(~horn & EF horn))

tests whether the horn works for sequences of inputs. The
result shows that once the horn is turned on and off, then the
system does not recover to the initial state. This is clearly a
problem for the integrity of this system because if a high-level

_tLo——-o‘L 0

reset PB Ack

Figure 16. Revised fourth rung.

74 January 1992 Vol. 38, No. 1

4
HLPB - T PR © reset
37 1Ak / 2 12Ac
) PB B il :
HT HT
y
HiL HT PB HiL HT
310 45 12.Ack 1 LAk $12 1280k
[
PB HIT HiL
Y
HILHT
$13 |1 12.Ak

Figure 17. State transition graph for the revised alarm
acknowledge system.

alarm comes in after the high-temperature alarm is acknowl-
edged, the horn does not sound. Lines 50 through 101 are used
to locate the cause of this failure. Line 50,

AG(~horn - EF horn)

checks all states to detect if it is possible for the horn to sound
later. The result of the test shows that there is no such path.
As shown in lines 53 through 70, after the horn operates once
(states 1, 3, 8) there is no path in which the horn is turned on
again. The assertion in line 72,

AG(~HiL & ~HiT & ~PB — AF ~Ack)

asks if the high-level and the high-temperature sensors are
reading normal and the pushbutton is not pressed, then even-
tually the acknowledge function should be returned to the
initial condition (reset). The result shows that the system does
not reset because of the infinite loop (states 1, 3, 8, 12, 9, 11,
9, ..).

For the horn to work properly for this situation, the ladder
diagram should be revised. Figure 16 illustrates a possible
solution by adding a normally closed reset button in the fourth
rung of the ladder diagram. Figure 17 shows the corresponding
state transition graph for the revised ladder diagram. A simple
operator model for controlling the reset button is used:

reset=Ack & ~HiL & ~HiT & ~PB

which means that if the alarm has been acknowledged, all the
alarm causing variables (HiL, HiT) are FALSE, and the ac-
knowledge pushbutton is not pressed, then the operator should
press the reset button; otherwise, do not press the reset button.
This model is included in the new state transition graph.

AIChE Journal

CTL MODEL CHECKER
Taking input from alarm2.emc...

|= AG((HIL | HIT) & ~Ack -> AF hom).
The assertion is TRUE.

|= AG (horn -> AX (horn | ~horn & PB)).
The assertion is TRUE.

10 |= AG(PB -> AF(Ack & ~horn)).

11 The assertion is TRUE.

12

13 |= EF(horn & EF(~hom & EF hom)).
14 The assertion is TRUE.

15

16 |= AG({~horn -> EF horn).

17 The assertion is TRUE.

18

19 |= AG(~HiL & ~HIT & ~PB -> AF ~Ack).
20 The assertion is TRUE.

OB NOUNHLWN -

Figure 18. CTL model checker execution for the revised
alarm acknowledge system.

The same assertions are used to check the revised alarm
system as shown in Figure 18. The two assertions in lines 33
and 36 of Figure 15 are combined and simplified as shown in
line 4 of Figure 18. The execution of the CTL model checker
with the same assertions in lines 4 to 20 indicates that the
revised system does not have the reset error. This revised system
has been tested for the other previous assertions and found to
be satisfactory. This series of tests and revisions is one strategy
for verifying and improving the integrity of sequential process
control systems.

Conciusion

The integrity of chemical processing systems depends in part
on the correctness of automatic control systems used in their
operation. In the traditional approach to the verification of
control systems, a series of manual tests is used to find errors
in the system. Our work describes an automatic verification
method that combines process models and the model checking
method to identify errors in sequential chemical process control
systems. This method consists of three components: Process
models that describe systems; assertions that represent ques-
tions about the system; and a model checker that automatically
determines whether the system operates as specified by asser-
tions. The method has been used to verify an operating pro-
cedure in a combustion system and a ladder diagram in an
alarm acknowledge system. These examples demonstrate that
the method is able to express chemical engineering specifica-
tions and model the interactions between process equipment
and the control software. The current method is limited to the
verification of discrete event systems and depends on the de-
velopment of process models. In addition, the generation of
appropriate CTL assertions to assure system integrity depends
on the user’s interpretation of the system and has not been
automated in this research.

Applications to industrially relevant problems will require:

o A more extensive library of state transition process models
that include timers, delays, and counters.

AIChE Journal January 1992

e A more complete list of temporal logic assertions for the
general testing of discrete chemical process control system safety
and operability.

¢ A high-level language for stating assertions.

o A strategy for identifying the source of errors so that
appropriate design changes could be proposed and evaluated.

Acknowledgment

Financial support from the National Science Foundation (Grants
DMC-8616889 and CCR-8722633) is gratefully acknowiedged.

Notation

all paths (CTL operator)

the set of atomic proposition

there exists a path (or some paths) (CTL operator)
CTL formula

globally (CTL operator)

state transition structure

atomic proposition

set of TRUE atomic propositions in state s
transition relation

set of states

state §

until (CTL operator)

next time (CTL operator)

NOT

AND

OR

element x is a member of set S

a
SO mox

2

-l XL und

=
m

Subscript
i = state number i

Literature Cited

Burch, J. R., E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang,
Symbolic Model Checking: 10® states and beyond,’ Proc. Symp.
on Logic in Comput. Sci. (June, 1990).

Chapman, K. G., and J. R. Harris, ‘‘Computer System Validation—
Staying Current: Introduction,”” Biopharm, 30 (May, 1989).

Clarke, E. M., E. A. Emerson, and A. P. Sistla, ‘‘Automatic Veri-
fication of Finite-State Concurrent Systems Using Temporal Logic
Specifications,”” ACM Trans. on Programming Lang. and Sys., 8(2),
244 (Apr., 1986).

Clarke, E. M., and O. Grumberg, *“Research on Automatic Verifi-
cation of Finite State Concurrent Systems,”” Ann. Rev. Comput.
Sci., 2, 269 (1987).

Dhillon, B. S., and S. N. Rayapati, “‘Chemical-System Reliability: a
Review,” IEEE Trans. on Reliability, 31(2), 199 (June, 1988).

Ho, Y. C., ““Dynamics of Discrete Event Systems,"’ Proc. of the IEEE,
T1(1), 3 (Jan., 1989).

1EEE Std 730-1984, “‘IEEE Standard for Software Quality Assurance
Plans,” IEEE, New York (1984).

IEEE Std 1008-1987, “IEEE Standard for Software Unit Testing,"
IEEE, New York (1987).

Laduzinsky, A. J., “PLCs Develop New Hardware and Software
Personalities,”” Control Eng., 53 (Feb., 1990).

Shaw, J. A., “Design your DCS to reduce Operator Error,” Chem.
Eng. Prog., 87(2), 61 (Feb., 1991).

Wallace, D. R., and R. U. Fujii, “‘Software Verification and Vali-
dation: an Overview,”’ IEEE Software, 6(3), 10 (1989).

Yamalidou, E. C., E. P. Patsidou, and J. C. Kaator, “Modeling
Discrete-Event Dynamical Systems for Chemical Process Control,”
Comput. & Chem. Eng., 14(3), 281 (1990).

Manuscript received Dec. 4, 1990, and revision received Nov. 21, 1991,

Vol. 38, No. 1]

