
Abstract

Ensuring the correctness of computer systems used in life-
critical applications is very difficult. The most commonly
used verification methods, simulation and testing, are not
exhaustive and can miss errors. This work describes an
alternative verification technique based on symbolic
model checking that can automatically and exhaustively
search the state space of the system and verify if properties
are satisfied or not. The method also provides useful quan-
titative timing information about the behavior of the sys-
tem. We have applied this technique using the Verus tool to
a complex safety-critical system designed to control
medium and large-size railway stations. We have identified
some anomalous behaviors in the model with serious
potential consequences in the actual implementation. The
fact that errors can be identified before a safety-critical
system is deployed in the field not only eliminates sources
of very serious problems, but also makes it significantly
less expensive to debug the system.

1. INTRODUCTION

Ensuring the correctness of computer systems is a
complex task of paramount importance, especially when
such systems control and monitor life-critical operations.
The verification of industrial computer systems is
particularly difficult due to their size and complexity. The
most frequently used methods, simulation and testing, are
not exhaustive and can miss important errors. While the
use of both methods can increase the reliability of the
application, they cannot fulfill the verification needs of
modern complex safety-critical systems. Formal methods
are an additional methodology to tackle this problem.
Formal verification tools allow an exhaustive search to be
automatically performed on the state space of the system,
avoiding the shortcomings of both simulation and testing.

In this paper we describe a case study in formal
verification based on a real industrial system. We verified
the safety logic of ACC (“Apparato Centrale a
Calcolatore”)[12], a complex real-world safety-critical
system developed by Ansaldo Transporti for the control of
medium and large-size railway stations.

The verification was performed using Verus[3,4], a
formal verification tool, which combines symbolic model
checking and quantitative timing analysis. Verus allows for
the formalization of systems in an imperative language
with a syntax similar to C. This language includes special

† This research is sponsored by the Semiconductor Research
Corporation (SRC) under Contract No. 97-DJ-294, the National
Science Foundation (NSF) under Grant No. CCR-9505472, and the
Defense Advanced Research Projects Agency (DARPA) under
Contract No. DABT63-96-C-0071. Any opinions, findings and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of SRC, NSF,
DARPA, or the United States Government.

Verification of a Safety-Critical Railway Interlocking System with
Real-time Constraints

Vicky Hartonas-Garmhausen
Carnegie Mellon University
Pittsburgh, PA 15213, USA

hartonas@cs.cmu.edu

Sergio Campos
Federal University of Minas

Gerais, Brasil
scampos@dcc.umfg.br

Alessandro Cimatti
Istituto per la Ricerca Scientifica e
Tecnologica (IRST), Trento, Italy

cimatti@irst.itc.it

Edmund Clarke
Carnegie Mellon University
Pittsburgh, PA 15213, USA

emc@cs.cmu.edu

Fausto Giunchiglia
DISA, Universita' di Trento

Istituto per la Ricerca Scientifica e
Tecnologica (IRST), Trento, Italy

fausto@irst.itc.it

constructs for the straightforward expression of timing
properties, simplifying the description of real-time and
safety-critical systems. The language is compiled into
state-transition graphs, to which powerful symbolic model
checking and quantitative algorithms can be applied.
Symbolic model checking algorithms search the state
space exhaustively to determine whether the model
satisfies its specifications. The method has proven to be
very successful in finding design errors in several
industrial systems and protocols [2, 5, 7, 9]. Moreover,
Verus extends the power of model checking by allowing
the determination of quantitative timing information such
as response time to events, schedulability of a set of tasks,
and performance measures.

In this work a formal model of the interlocking
system has been produced in the input language of Verus.
A set of qualitative (e.g. safety, liveness) and quantitative
(e.g. response times) properties have been automatically
analyzed. Despite the complexity of the system (the model
has about 1027 states) the analysis has been performed
within minutes. A subtle and anomalous behavior leading
to a deadlock of the system has been discovered by Verus.
The anomalous behavior was pinpointed by an
automatically generated counterexample trace, showing
precisely the behavior leading to the violating state. The
same behavior had blocked the entire operation during a
field test of an earlier design of the system.

The same system has been verified inSPIN [10].
The present work has provided insight into the ACC
design by means of verifying CTL formulas and
computing quantitative timing information, which cannot
be performed inSPIN. Furthermore, in order to scale up
the verification for larger configurations, the use of BDD-
based symbolic methods implemented in Verus is more
powerful compared to the explicit state search used in
SPIN.

This paper is structured as follows. In section 2 we
present the Interlocking system. In section 3 we describe
the formal model and in section 4 behavior we describe the
formal verification of the safety logic. In section 5 we
draw some conclusions.

2. THE APPLICATION

We focused on a complex real-world safety critical
application developed by Ansaldo Transporti, called ACC
(“Apparato Centrale a Calcolatore”), a highly
programmable and scalable computer interlocking system
for the control of railway stations, implemented as a vital
architecture based on redundancy. The system is
composed of a central nucleus connected to peripheral
posts for the control of physical devices (e.g. level
crossings, track circuits, signals and switches). The

nucleus of the system is based on three independent
computers, connected in parallel to create a “2-out-of-3”
majority logic. Each of these sections runs (independently
developed versions of) the same application program.
When one of the sections disagrees, it is automatically
excluded by vital hardware. The peripheral posts are also
based on a redundancy architecture, with a “2-out-of-2”
configuration of processors.

Two intrinsic sources of complexity make the
verification of this system an important work. The first is
the large size of the controlled physical plants. Large
railway stations may include as many as 2000 physical
devices. The second source of complexity is due to
nondeterminism. Although the software is completely
deterministic, and the possible external events (e.g. task
requests, response and even faults of peripheral devices)
have been exhaustively classified, the system does not
know when the next resource will be requested, or when a
peripheral device may fail. Furthermore, the system is
subject to timing constraints, as it is important to ensure
bounds to response time.

The “Safety Logic” of the ACC is a software
subsystem that implements the logical functions requested
by the external operator. A high level picture of the Safety
Logic of the ACC, together with its environment, is shown
in Figure 1. The Safety Logic (SL), which is connected to
the peripheral devices of the station and to an external
operator, can be thought of as a deterministic reactive
controller embedded in a nondeterministic environment.
The inputs to the system include manual commands from
the external operator and sensor readings from the
peripheral devices. The external operator may issue the
following commands: “Open level crossing 1”, or “Set
route from track 2 to track 5”. Physical device sensors may
report “Level crossing 1 is open”, or “Switch 2 is in
normal position”. The outputs of the Safety Logic are the
controls of the physical devices, such as “Move switch 12
to normal position”, “Close level crossing 3”.This is
achieved by means of a logical architecture based on a
Scheduler controlling the activation of application-
dependent processes. The Scheduler is a cyclic program,
which activates, suspends, and terminates processes
according to the process execution status. One Scheduler
is used across all configurations.

The specifications define the behavior of processes,
i.e. how the process communicates with other processes,
accesses and modifies variables, reacts to exceptions, and
so on. Each process is associated with a set of state
variables, which depend on the particular physical
configuration. State variables are distinguished into logical
variables, which represent the status of the process
computation, and control variables, which represent the
status of the peripheral devices as they are read by the

sensors. A process can modify the value of a logical
variable during the execution of the corresponding
operations, but it can not modify the value of a control
variable. The control variables are set at the beginning of
each cycle and do not change until the next cycle.
Processes may issue physical device commands and
automatic commands, which are commands from one
process to another. Processes are often organized in a
hierarchical fashion: a process, which sets routes, may
control a lower process, which controls a physical device.
The Safety Logic performs single-thread computation, i.e.
at most one process is active at any one instant. Processes
are activated in a master-slave way: the Scheduler passes
control to the Process and suspends its own execution until
the Process returns control. Global variables keep track of
the status of the computation and control the execution of
the processes.

The system behavior is defined by operations, i.e.
collections of basic actions to be performed by the
process. Operations include testing the value of variables,
assigning values to logical variables, sending commands
to the peripheral devices, and sending automatic
commands to other processes. An activation table
associates an operation to each event determining the
activation of the process. Operations are characterized by
the event that causes their activation: manual operations
correspond to manual commands, state operations to
process states, and automatic operations to automatic
commands. The actions above are conditioned to tests.
Operations consist of statements which are interpreted
sequentially following the schema shown in Figure 2. The
VERIFY tests are executed first. If one of the tests fails, the

correspondingEXCEPTION action is executed, and the
operation ends. If the preliminary tests are satisfied,
commands are issued during theSENDpart and variables
are set during theASSIGN part.

The Scheduler executes operations of different types
(e.g. manual, automatic, state) in different phases of the
cycle. The specifications also determine what the process
should do after the execution of an operation. A process
can terminate the activation and go in a resting state,
continue the current activity by executing another
operation, and suspend its execution to the next cycle. In
the last case, the Scheduler will reactivate the process at
next cycle. Two queues are used by the Scheduler to store
the processes to be reactivated at current and next cycle.

3. A FORMAL MODEL OF THE SAFETY
LOGIC

We verified a two process configuration of the Safety
Logic. The system, which controls the safe operation of a
level crossing, is composed of the Scheduler and two
processes,LC andSHUNT, with over 17 operations and 18
different configurations of the physical level crossing. The
specifications, which were defined in a confidential
technical report during a technology transfer project
involving IRST and Ansaldo, were considered to be of
significant complexity due to the intrinsic complexity of
the actual Scheduler software design, which we modeled,
and the large state space of the system. In this section we
describe how the SL together with its environment were
modelled in Verus. In the next section we show how the

Figure 1 The ACC Safety Logic

SCHEDULER
Physical Device
Status

Commands to
Peripherals

Inputs from the
External Operator
(Central Office)

Process 1 Process N....

properties and timing requirements were modelled and
verified in Verus avoiding a state explosion.

A formal model of the actual SL was produced in the
Verus language. The imperative C-like language provided
by Verus made it straightforward to express the Safety
Logic of the ACC. The Verus model preserves the cyclic
structure of the SL, which repeatedly acquires inputs from
the external environments, evaluates the logic, and
activates processes. The main loop of the SL is
implemented by means of a never-endingwhile

construct. Figure 3 shows a segment of the Verus program
which implements the manual operation in SL
corresponding to the manual commandCLOSE_GATE:

...
if (MAN_cmd == CLOSE_GATE) {

if (CMD_state != MANUAL){
CMD_state = MANUAL;
LC_state = REQUESTED-CLOSING;

}
}
wait(1);
...

Figure 3 Example of Verus code

Language constructs have been kept simple in order
to make the compilation into a state-transition graph as
efficient as possible. Simple constructs allow the precise
expression of the desired features, since complex
constructs sometimes force unnecessary details into the
specification. Time passes only onwait statements. This
feature allows a more accurate control of time, generates
smaller models, since contiguous statements are collapsed
into one transition, and eliminates the possibility of
implicit delays influencing verification results. Smaller
representations can then be generated, which is critical to
the efficiency of the verification and permits larger

Figure 2 The Schema of Operations

OPERATION
I - VERIFY
a. “VARIABLE1” with “VALUE2”
b. “VARIABLE23” with value other than “VALUE1”
c....
II - SEND
a. the PD command “COMMAND1”
b. to “PROCESS2” the automatic command “COMMAND2”
III - ASSIGN
a.to “VARIABLE5” the value “VALUE3”
only if:
1. “VARIABLE2” has the value “VALUE4”
b. to...
IV -AFTER THE OPERATION OF THE PROCESS
a.terminates
only if:
1. “VARIABLE3” has value other than “VALUE5”
b.does not terminate;
only if:
1. “VARIABLE3” has the value “VALUE5”
c. continues
only if:
1. “VARIABLE3” has the value “VALUE5”
EXCEPTIONS:
[a]
LOST COMMAND
ACTIONS:---
[b]
WAITING
ACTIONS:---
[c]
WAITING
ACTIONS:---

examples to be handled. Details about the Verus language
can be found in [3, 6].

Verus supports nondeterminism, which allows partial
specifications to be described. For example, we have used
this feature, which is implemented with theselect

statement, to assign the manual command at the start of
each cycle:
MAN_cmd=select{NO_CMD,CLOSE_GATE,OPEN_GATE,
RESTORE_AUTO,ACTIVATE_SHUNT, KILL_SHUNT};

The activation of processes is defined by means of
queues and the priority mechanism. Verus allows an
elegant formalization of queues based on dynamic
scheduling. We created the request variablesreq1 and
req2 (for the current-cycle-processes) andnreq1 and
nreq2 (for the next-cycle-processes) to be integers with
values corresponding to the priority level at which each
process is requesting execution.The Scheduler chooses the
process with the highest requested priority. At the
beginning of each cycle we copy the list of next-cycle-
processes to the current-cycle-processes and re-initialize
the next-cycle-process list to the empty list:

req1 = nreq1; nreq1 = 0;
req2 = nreq2; nreq2 = 0;

The request variables are updated depending on the type of
transition (manual, state, or automatic) and whether the
process terminates or continues its execution. For example
in the manual phase, if processSHUNTdoes not terminate
and does not continue, we schedule its execution for the
next cycle with priority higher than the priority of process
LC:
if(nreq2 == 0&& req2 == 0) nreq2 = nreq1 +1;

The Scheduler checks whether there are state processes to
run in the current cycle

while (req1 != 0 || req2 != 0) {
and then activates processLC if and process
SHUNT if .

The Verus exception handling mechanism provides a
general way to signal that a certain condition is not
verified. This feature has been exploited to gain confidence
in the model by expressing a number of simple properties.
For instance, we checked the valid range of variables and
the reachability of certain control points.

Process instantiation in Verus follows a synchronous
model. All processes execute in lock step, with one step in
any process corresponding to one step in the other
processes. Asynchronous behavior can be modeled by
using stuttering, which introduces nondeterministic
transitions and effectively models the desired behavior.
This technique is described in detail in [3].

4. FORMAL VERIFICATION OF THE
SAFETY LOGIC

The ACC SL has been verified using algorithms
derived from symbolic model checking because these
algorithms are amenable to efficient implementations
using symbolic techniques [2]. The transition relation is
represented by boolean formulas, and implemented by
binary decision diagrams [1]. This usually results in a
much smaller representation for the transition relation,
allowing the verification of models several orders of
magnitude larger than those verified using traditional
implementations. We have used the Verus verification tool,
which implements these techniques.

Verus allows the verification of untimed properties
expressed as CTL formulas [8] and of timed properties
expressed as real-time CTL, RTCTL, formulas [11]. CTL
formulas allow the verification of properties such “p will
eventually occur”, or “p will never be asserted”. However,
it is not possible to express bounded properties such as “p
will occur in less than 10ms” directly. RTCTL model
checking overcomes this restriction by introducing time
bounds on all CTL operators. For example, the formula
AG(req → AF0..10ack) specifies that requests will always
be acknowledged in 10 time units or less. We represented
the following safety properties as invariants in CTL:
1. The processSHUNTdoes not issueCLEAR-SIG-

NAL if the Level Crossing is not closed.

2. If the low signal was issuedCLEAR-SIGNAL, the
loss of the closed control of the Level Crossing
implies the stop of issue ofCLEAR-SIGNAL.

3. The Safety Logic never issues contradictory
commands during a cycle or the same com-
mand twice in a cycle.

These properties, which were verified within seconds,
are true. Next, we checked for the absence of deadlocks
and the termination of cycles. We had to ensure that the
recursion, which may happen when a process finishes
executing an operation and continues with another
operation during the same cycle, must terminate. This
requirement was modelled as a property of the form
AF(end of cycle). During this analysis a deadlock was
found. Verus produced a counterexample, pointing to the
loop which happens when theRESTINGstate of a process
is activated while that process is running in the state phase.
The specifications did not include state operations
corresponding to theRESTING state. The loop occurred
after a long execution sequence of events. The
counterexample is 58-steps deep pointing to complex
interactions among various elements of the system. It is
unlikely that simulation or other verification methods can

req1 req2≥
req 2 req 1≥

generate similar information. A similar problem, which
blocked the operation of the system, was reported during a
field test on an early version of the Safety Logic. The
problem was fixed by defining a null operation associated
with the resting state, which simply terminates.

Verus implements algorithms that determine the
minimum and maximum length of all paths leading from a
set of starting states to a set of final states. It also has
algorithms that calculate the minimum and the maximum
number of times a specified condition can hold on a path
from a set of starting states to a set of final states. For
example, by choosing as starting states those in which a
process requests execution, and as final states those in
which the process completes execution we can compute
the response time for that process. If we specify as third
condition for the same intervals the execution of lower
priority processes we can compute the amount of priority
inversion time that can affect the process.

Several types of information can be produced by this
method. Response time to events is computed by making
the set of starting states correspond to the event, and the
set of final states correspond to the response:

MIN(init_cycle, end_of_cycle);
MAX(init_cycle, end_of_cycle);

Schedulability analysis can be done by computing the
response time of each process in the system, and
comparing it to the process deadline. A performance
analysis was carried out by exploiting the timing
primitives and the quantitative algorithms of Verus. We
modeled performance of operations by generating
different models of the SL. We first used a unit weight for
each operation, and then we specified different weights
taking into account the number of basic actions (e.g. tests,
assignments).The quantitative analysis provided detailed
insight into the system behavior, which can be used to
optimize the performance and improve the reliability of
the system.

5. CONCLUSIONS

In this paper we have described the verification of a
safety critical railway interlocking system called ACC.
The system has been modelled and analyzed with the
Verus tool, which uses efficient symbolic algorithms for
the verification of complex systems. Verus uses a language
especially designed to allow a natural representation of
real-time software systems. It also combines symbolic
model checking and quantitative analysis techniques to
determine system correctness and to provide useful
information about its behavior.

The ACC is a very complex system designed to
control medium to large railway stations. Because of this it
has been necessary to take advantage of several features of

Verus in order to complete the verification. The use of a
procedural 'C-like' language has made it possible to model
the system in a straightforward manner. The efficiency of
BDD-based algorithms has been vital to verify a model
that has more than 1027 states. Two other features have
been very important in understanding how the model
behaves: quantitative analysis has determined the
performance of the system and the counterexamples
generated have assisted in understanding what the results
mean.

This case study shows how formal methods can be
used to ensure the correctness of safety-critical systems of
industrial complexity. It also shows that the Verus tool is a
viable alternative in the verification of such systems.
Based on these results we believe that not only can formal
methods be used in current industrial systems but also that
they can provide results that cannot be obtained by other
means.

6. REFERENCES

[1] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8), 1986.
[2] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and
L.J. Hwang.Symbolic Model Checking: 1020 States and Beyond.
Information and Computation, Vol. 98, No. 2, June 1992.
[3] S. Campos. A Quantitative Approach to the Formal
Verification of Real-Time Systems. Ph.D. Thesis, SCS, Carnegie
Mellon University, 1996.
[4] S. Campos, E. Clarke, M. Minea.The Verus tool: a
quantitative approach to the formal verification of real-time
systems. In Conference on Computer Aided Verification, 1997.
[5] S. Campos, E. Clarke, W. Marrero and M. Minea.Verifying
the performance of the PCI local bus using symbolic techniques.
In: International Conference on Computer Design, 1995.

[6] S. Campos and E. Clarke.The Verus language:
representing time efficiently with BDDs. In: Fourth AMAST
Workshop on Real-Time Systems, Concurrent and Distributed
Software, 1997.
[7] S. Campos, E. Clarke, W. Marrero and M. Minea.Verus: a
tool for quantitative analysis of finite-state real-time systems. In:
ACM SIGPLAN, vol. 30, no. 11, Nov. 1995.
[8] E. M. Clarke, E. A. Emerson, and A.P. Sistla.Automatic
verification of finite-state concurrent systems using temporal
logic specifications. ACM TOPLAS, 8(2):244-263, 1986.
[9] E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long,
K.McMillan, L. Ness Verification of the Futurebus+ cache
coherence protocol. In Proceedings of the 11th CHDL, 1993.
[10] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F.
Torielli, P. Traverso.Model Checking Safety Critical Software
with SPIN: an Application to a Railway Interlocking System.
Proceedings of the Third SPIN Workshop, Twente University,
Enschede, The Netherlands. April 1997.
[11] E. Emerson, A. Mok, A. Sistla and J. Srinivasan.
Quantitative temporal reasoning. In: Lecture Notes in Computer
Science, Computer Aided Verification, Springer-Verlag, 1990.
[12] G. Mongardi.Dependable Computing for Railway Control
Systems. In Proceedings of the Working Conference on
Dependable Computing for Critical Applications, pages 255-
273. IFIP Working Group, 1992.

