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1. INTRODUCTION

Temporal logics were first developed by philosophers for reasoning about
the ordering of events in time without introducing time explicitly (Hughes
& Creswell 1977). Although a number of different temporal logics have
been studied, most have an operator like G(f) that is true in the present
if f is always true in the future (i.e. if f is globally true). To assert that
two events e, and e, never occur at the same time, one would write
G(—1 e, v 71 e,). Temporal logics are often classified according to whether
time is assumed to have a linear or a branching structure. This classification
may occasionally be misleading since some temporal logics combine both
linear-time and branching-time operators. We adopt here the approach
used by Emerson & Halpern (1983) which permits both types of logics to
be treated within a single semantic framework. In this paper the meaning
of a temporal logic formula will always be determined with respect to a
labeled state transition graph; for historical reasons such structures are
called Kripke models (Hughes & Creswell 1977).

Pnueli was apparently the first person to use temporal logic for specifying
and verifying concurrent programs (Pnueli 1977). His approach involved
proving desired properties of the program under consideration from a set
of program axioms that described the behavior of the individual statements
in the program. Proofs were usually constructed by hand, and this task
was in general tedious. Since many concurrent programs can be viewed as
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270 CLARKE & GRUMBERG

communicating finite-state machines, there was a strong possibility that at
least some of these programs could be automatically verified. The first
verification technique to exploit this observation was the CTL model
checking procedure developed by Clarke & Emerson (1981). Their algor-
ithm was polynomial both in the size of the model determined by the
program under consideration and in the length of its specification in
temporal logic. They also showed how fairness (Gabbay et al 1980) could
be handled without changing the complexity of their algorithm. Handling
fairness was an important step since the correctness of many concurrent
algorithms depends critically on some assumption of this type; for example,
absence of starvation in a mutual exclusion algorithm may depend on the
assumption that each process makes progress infinitely often.

At roughly the same time Quielle & Sifakis (1981) produced a model-
checking algorithm for a similar branching-time logic, but they did not
analyze its complexity or show how to handle an interesting notion of
fairness. Later Clarke, Emerson, and Sistla (Clarke et al 1986a) devised
an improved algorithm that was linear in the product of the length of the
formula and in the size of the global state graph. Sistla & Clarke (1986)
analyzed the model-checking problem for a variety of other temporal
logics and showed, in particular, that for linear temporal logic the problem
was PSPACE compilete.

A number of papers have shown how the temporal logic model-checking
procedure can be used for verifying network protocols and sequential
circuits (Clarke et al 1986a; Mishra & Clarke 1985; Browne et al 1986a,b;
Dill & Clarke 1986; Browne et al 1985; Browne & Clarke 1986). In the
case of sequential circuits, two approaches have been developed for obtain-
ing state-transition graphs to analyze. The first approach extracts a state
graph directly from the circuit under an appropriate timing model of
circuit behavior. The second approach obtains a state-transition graph by
compilation from a high-level representation of the circuit in a Pascal-like
programming language. In practice the model-checking procedure is able
to check state-transition graphs at a rate of 100 states per second for
formulas of reasonable length. It has been used successfully to find pre-
viously unknown errors in published designs of asynchronous circuits.

Alternative approaches have been proposed by a number of other
researchers. The approach used by Kurshan (1986) involves checking
inclusion between two automata on infinite tapes. The first machine rep-
resents the system that is being verified; the second represents its speci-
fication. Automata on infinite tapes are used in order to handle fairness.
Lichtenstein & Pnueli (1985) reanalyzed the complexity of checking linear-
time formulas and discovered that although the complexity appears expon-
ential in the length of the formula, it is linear in the size of the global state
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graph. Based on this observation, they argued that the high complexity of
linear-time model checking might still be acceptable for short formulas.
Emerson & Lei (1985) extended their result to show that formulas of
the logic CTL*, which combines both branching-time and linear-time
operators, could be checked with essentially the same complexity as for-
mulas of linear temporal logic. Vardi & Wolper (1986) have recently shown
how the model-checking problem can be formulated in terms of automata,
thus relating the model-checking approach to the work of Kurshan.

Although the model-checking procedure discussed in this paper has
already been used to discover some surprising errors in nontrivial
programs, more work remains to be done. Certainly the most serious
problem is the state explosion problem. In analyzing a system of N
processes, the number of states in the global state graph may grow expo-
nentially with N. Recent research indicates, however, that it may be
possible to avoid this problem in some important cases. For instance,
techniques developed by Clarke et al (1986b) may reduce the size of the
state graph that needs to be searched when many of the processes are
identical. It may also be possible to exploit the hierarchical structure of a
complex concurrent program in order to reduce the number of states that
need to be considered at any one level of abstraction (Mishra & Clarke
1985).

This survey is organized as follows: Section 2 describes the syntax and
semantics of the temporal logics used in this paper. In Section 3 we state
the model-checking problem and give an efficient algorithm for checking
simple branching-time formulas. In Section 4 we discuss the issue of
fairness and show how the algorithm of Section 3 can be extended to
include fairness constraints. Section 5 demonstrates how the model-check-
ing algorithm can be used to debug a simple mutual exclusion program.
In Section 6 we describe some alternative approaches for verifying systems
of finite-state concurrent processes. We analyze the complexity of checking
linear temporal logic formulas and outline the techniques of Lichtenstein
& Pnueli (1985) and Vardi & Wolper (1986). Additional applications to
circuit and protocol verification are discussed in Section 7. The paper
concludes in Section 8 with a discussion of some of the important remain-
ing research problems like the szate explosion problem.

2. COMPUTATION TREE LOGICS

In this paper finite-state programs are modeled by labeled state-transition
graphs, called Kripke structures (Hughes & Creswell 1977). If some state
is designated as the initial state, then the Kripke structure can be unwound
into an infinite tree with that state as the root. Since paths in the tree
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represent possible computations of the program, we will refer to the infinite
tree obtained in this manner as the computation tree of the program.
Temporal logics may differ according to how they handle branching in
the underlying computation tree. In linear temporal logic, operators are
provided for describing events along a single computation path. In a
branching-time logic the temporal operators quantify over the paths that
are possible from a given state. The computation tree logic CTL* (Emerson
& Clarke 1981; Emerson & Halpern 1983; Clarke et al 1986a) combines
both branching-time and linear-time operators; a path quantifier, either A
(“for all computation paths”) or E (“for some computation path”) can
prefix an assertion composed of arbitrary combinations of the usual linear-
time operators G (“always”), F (“sometimes”), X (‘“nexttime”), and U
(“‘until”’). The remainder of this section gives a precise description of the
syntax and semantics of these logics.

There are two types of formulas in CTL*: state formulas (which are
true in a specific state) and path formulas (which are true along a specific
path). Let AP be the set of atomic proposition names. A state formula is
cither:

* 4,if Ac AP
® If f and g are state formulas, then 1 fand f v g are state formulas.
® If 1 is a path formula, then E(f) is a state formula.

A path formula is either:

® A state formula
® [f f and g are path formulas, then = f, f v g, Xf, and fUg are
path formulas.

CTL* is the set of state formulas generated by the above rules.

CTL (Ben-Ari et al 1983; Clarke & Emerson 1981) is a restricted subset
of CTL* that permits only branching-time operators—each path quan-
tifier must be immediately followed by exactly one of the operators G, F,
X, or U. More precisely, CTL is the subset of CTL* that is obtained if the
path formulas are restricted as follows:

® If f and g are state formulas, then Xf and fUg are path formulas.
® If f is a path formula, then so is =1 f.

Linear temporal logic (LTL), on the other hand, will consist of formulas
that have the form Af where f is a path formula in which the only state
subformulas permitted are atomic propositions. More formally, a path
formula is cither:

®* An atomic proposition
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® If f and g are path formulas, then = f, f v g, Xf, and fUg are
path formulas.

We define the semantics of CTL* with respect to a structure
M ={S,R,L), where S is a set of states; R< § x S is the transition
relation, which must be total (we write s, — s, to indicate that (s, 5,) € R);
and L: S — P(AP) is a function that labels each state with a set of atomic
propositions true in that state. Unless otherwise stated, all of our results
apply only to finite Kripke structures.

We define a path in M to be a sequence of states, © = sy, 5, . . . such that
for every i > 0, 5; > s;,.,. We use ' to denote the suffix of 7 starting at s;.

We use the standard notation to indicate that a state formula f holds
in a structure: M,sF/f means that f holds at state s in structure M.
Similarly, if f is a path formula, M, = Ff means that f holds along path
7 in structure M. The relation F is defined inductively as follows (assuming
that f; and £, are state formulas and g, and g, are path formulas):

skA <= Ae L(s).

sET T <=sHfL

sEfivf, <sk orsEf,.

sEE(g,) < there exists a path = starting with s such that nF g,.

nEf, <> s is the first state of = and sF f).

kg, <unHg.

nkg,vg,<nEg,ornkg,

nEXg, <en'Fg.

nkg,Ug, <>thereexistsa k > 0 such that 7* F g, and for all
0<j<k n'Eg,.

We use the following abbrevations in writing CTL* (CTL and LTL)
formulas:

* fag=—1(mfv g ® Ff = true Uf

s A(f)="1E(—S) ¢ Gf=—Ff.

Lamport (1980) and Emerson & Halpern (1983) have shown that the
three logics discussed in this section have different expressive powers. For
example, there is no CTL formula that is equivalent to the LTL formula
A(FGp). Likewise, there is no LTL formula that is equivalent to the CTL
formula AG(EFp). The disjunction of these two formulas A(FGp) v
AG(EFp) is a CTL* formula that is not expressible in either CTL or LTL.

e e Al o

3. THE CTL MODEL-CHECKING ALGORITHM

Let M = (S, R, L) be a finite Kripke structure. Assume that we want to
determine which states in S satisfy the CTL formula f,. We will design
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our algorithm to operate in stages: The first stage processes all subformulas
of f, of length 1, the second stage processes all subformulas of length 2,
and so on. At the end of the ith stage, each state will be labeled with the
set of all subformulas of length less than or equal to i that are true in the
state. We let the expression label(s) denote this set for state s. When the
algorithm terminates at the end of stage n = length(f,), we see that for all
states and for all subformulas f of f,, M, sk fiff felabel(s).

Observe that AX can be expressed in terms of EX and that AU can be
expressed in terms of EU and EG:

AXf, = 7 EX1 f)
AL/ U] = 1 (ED LU i A 2 )] v EG( f2).

Thus, for the stage-i algorithm it is sufficient to be able to handle six cases,
depending on whether f is atomic or has one of the following forms: =1 f,
f1 v o EXfy, E[/1Uf3], or EGS.

We only consider the last two cases, since the others are straightforward.

To handle formulas of the form f'= E[ f,Uf,] we first find all states that
are labeled with f,. We then work backwards using the converse of the
transition relation R and find all states that can be reached by a path in
which each state is labeled with f}. All such states should be labeled with
/. This step requires time O(| S+ R}).

The case in which /= EGf is slightly more complicated and depends
on the following observation.

LEMMA 1: Let M’ be obtained from M by deleting from S all of those states
at which f, does not hold and restricting R and L accordingly. Thus,
M =(S,R,L) where S ={seSIM,skf}, R =R|sxs, and
L' = L|g. Then M, s k EGY, iff the following two conditions are satisfied:

1. se8§’
2. there exists a path in S’ that leads from s to some node t in a nontrivial
strongly connected component® of the graph (S’, R’).

Proor: Assume that M, s F EGf,. Clearly s S’. Let # be an infinite path
starting at s such that f, holds at each state on n. Since M is finite, it must
be possible to write © as & = ®,m, where 7, is a finite initial segment and
7, is an infinite suffix of = with the property that each state on =, occurs
infinitely often. Obviously =, is contained in S”. Let C be the set of states
in m,. C is a nontrivial strongly connected component of S’. To see this,
let s, and s, be states in C. Pick some instance of s, on ;. By the way in

2 A strongly connected component C is nontrivial iff either |C| > 1 or C = {c¢} and ¢ has
a self loop—i.e. (¢,c)e R’.
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which n, was selected, we know that there is an instance of s, further along
7,. The segment from s, or s, lies entirely within C and hence within S”.
This segment is a finite path from s, to s, in S’. Thus, both condition (1)
and condition (2) are satisfied.

Next, assume that conditions (1) and (2) are satisfied. Let 7, be the path
from s to . Let 7, be a finite path of length at least 1 that leads from ¢
back to . The existence of x, is guaranteed since C is a nontrivial strongly
connected component. All of the states on the infinite path = = 7;a% satisfy
fi. Since = is also a possible path starting at s in M, we see that
M,s tEGf,. W

The algorithm for the case of /= EGf follows directly from the lemma.
We construct the restricted Kripke structure M’ = (S’, R’, L") as described
in the statement of the lemma. We partition the graph (S’, R”) into strongly
connected components and find those states that belong to nontrivial
components. We then work backwards using the converse of R and find
all of those states that can be reached by a path in which each state is
labeled with f,. This step also requires time O(|.S|+|R|).

In order to handle an arbitrary CTL formula f;, we successively apply
the state-labeling algorithm to the subformulas of f;, starting with the
shortest, most deeply nested, and work outward to include all of f,. Since
each pass takes time O(]S|+|R}) and since f, has length(f,) different
subformulas, the entire algorithm requires O(length( fy)* (|.S|+|R|)).

THEOREM 2: There is an algorithm for determining whether a CTL formula
fo is true in state s of the structure M = (S,R,L) that runs in time
O(length(fo)* (| S|+|RI)).

4. FAIRNESS CONSTRAINTS

In verifying concurrent systems, we are occasionally interested only in
correctness along fair execution sequences. For example, with a system of
concurrent processes we may wish to consider only those computation
sequences in which each process is executed infinitely often. When dealing
with network protocols where processes communicate over an imperfect
(or lossy) channel we may also wish to restrict the set of computation
sequences; in this case the unfair execution sequences are those in which a
sender process continuously transmits messages without any reaching the
receiver owing to erratic behavior by the channel.

Roughly speaking, a fairness condition asserts that requests for service
are granted “sufficiently often.” Different concepts of what constitutes a
“request” and what “sufficiently often” should mean give rise to a variety
of notions of fairness. Indeed, many different types of fairness and
approaches to dealing with them have been proposed in the literature; we
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refer the reader to Gabbay et al (1980), Lamport (1980), Quielle & Sifakis
(1982), and Lehmann et al (1981) for more extensive treatments. The text
by Francez (1986) also gives an excellent survey of the various types of
fairness.

In this section we show how to extend the CTL model-checking algor-
ithm to handle a simple but fundamental type of fairness in which certain
predicates must hold infinitely often along every fair path. [Clarke et al
(1986a) show how to handle a richer class of fairness constraints.] In this
case it follows from work by Emerson & Halpern (1983) that correctness
of fair executions cannot be expressed in CTL.

In order to handle fairness and still obtain an efficient model-checking
algorithm we modify the semantics of CTL. The new logic, which we call
CTLF, has the same syntax as CTL. But a structure is now a 4-tuple
M = (S, R, L, F) where S, R, L have the same meaning as in the case of
CTL, and F is a collection of predicates on S, F < 25 A path & is F-fair
iff the following condition holds: For each G € F, there are infinitely many
states on  which satisfy predicate G. CTL" has exactly the same semantics
as CTL except that all path quantifiers range over fair paths. The first step
in checking CTL’ formulas is to determine the fair strongly connected
components of the graph of M. A strongly connected component is
fair if it contains at least one state from each set in F. Formally, let
F={G,,...,G.} be a collection of subsets of S. A strongly connected
component C of the graph of M is fair iff for each G, in F, there is a state
t,e(CnG)Y.

LemMa 3: Given any finite structure M = (S, R, L, F) where F is a set of
fairness constraints and a state so€ S, the following two conditions are
equivalent:

1. There exists an F-fair path in M starting at s,.
2. There exists a fair strongly connected component C of (the graph of)
M such that there is a finite path from s, to a state te C.

The proof is straightforward and is given by Clarke et al (1986a). We
next extend our model-checking algorithm to CTL. We introduce an
additional proposition Q, which is true at a state iff there is a fair path
starting from that state. This can easily be done, by obtaining the strongly
connected components of the graph associated with the structure and
marking a component as fair if it contains at least one state from each G;
in F. By the above lemma every state in a fair strongly connected com-
ponent is the start of an infinite fair path. Thus, we label a state with Q iff
there is a path from that state to some node of a fair strongly connected
component. As usual we design the algorithm so that after it terminates
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each state will be labeled with the subformulas of f; true in that state. We
consider the two interesting cases where f is a subformula of f; and either
f=E[f\Uf,] or f=EGf,. We assume that the states have already been
labeled with the immediate subformulas of f by an earlier stage of the
algorithm.

1. f= E[fiUf;): f is true in a state iff the CTL formula E{ f;U(f, A Q)]
is true in that state, and this can be determined using the CTL model
checker. Again, state s is labeled with f iff 1" is true in that state.

2. f=EG(f)): To determine if skEG(f,) we use the procedure
described in Section 3 to check s F EG(f; A Q) in the structure with
the additional proposition Q.

It is easy to see that the above algorithm runs in time O(length(f,)-
(ISI+|RD* | F)).

THEOREM 4: There is an algorithm for determining whether a CTLF formula
fo is true in state s of the structure M = (S, R, L, F) with F as the set of
fairness constraints that runs in time O(length(fo) - (|S1+|R]) " | F]).

5. AN EXAMPLE

In this section we illustrate how the model checker can be used to verify
a simple, but not entirely trivial, concurrent program. The example is a
two-process mutual exclusion program that was manually proved correct
using linear temporal logic by Owicki & Lamport (1982). The program,
expressed in a variant of the CSP programming language (Hoare 1978), is
shown in Figure 1. In this version of CSP, processes may have global
variables (e.g. p/ and p2), and assignments to such variables are assumed
to be atomic. Since our verification technique can only be used to analyze
finite-state concurrent systems, we require that all variables be Boolean
and that all messages between processes be signals. Labels (e.g. NCI and
NC2) are used to indicate that flow of control has reached a particular
point in some process. In our example there are two processes SI and S2,
and each process has three code regions: a noncritical region NCi in which
the process computes some data values that it wishes to share with the
other process, a trying region Ti in which the process executes a protocol
to obtain entry into the critical section, and a critical section CSi in which
the process updates shared variables. To prevent a race condition that
might result in unpredictable values being assigned to the shared variables,
only one process is allowed to be in its critical section at any given time.
Note that the two processes are different; hence this is not a symmetric
solution to the mutual exclusion problem. When the CSP program is
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s [
p1, p2: bool;
NC1,NC2,T1,T2,T2a, CS1, CS2: label;
[
S$1,S2: process;

S1:: [
p1 := false;
I
true —
«NC1>» skip; —nongritical section 1
p1:= true;
«T1>» *[p2—>skip];
«CS1» skip; —critical section 1
p1 .= false
1
]
Il
S2:: [
p2 := false;
[
true -
«NC2> skip; —noncritical section 2
p2 ;= true;
«T2>» *[pl-—>
p2 := false;
«T2a>» *[p1 — skip];
p2 := true
I
«C82>» skip; —critical section 2
p2 := false
]

]
]

Figure 1 A two-process mutual-exclusion program.

compiled a state graph with 77 states is obtained. Although this is not an
extremely large state machine, it would nevertheless be tedious for a human
to debug.

We initially run the verifier without any fairness constraints (see Figure
2). We first check to see if both processes are ever in their critical regions
at the same time. This property is succinctly expressed by the CTL formula
EF(CS1 A CS2). The verifier rapidly determines that the formula is false—
hence, the program does guarantee mutual exclusion. Time is measured
in 1/60 of a second. The first component measures user cpu time. The
second component measures system cpu time. We next check for absence
of deadlock. This is expressed by the formula AG(EF(CS1 v CS2)). The
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CTL MODEL CHECKER (C version 2.5)
E EF(CS1 & C82).
The equation is FALSE.
time: (24)
F AG(EF(CS1{CS2)).
time: (42)
E AG(T!1 - AF CS1).
The equation is FALSE.
time: (1712)

Figure 2 Transcript of model-checker execution (without fairness constraint).

verifier determines that this formula is satisfied; thus, from any state
reachable from the initial state it is always possible to get to either CS1 or
CS2.

Absence of starvation for process 1 is expressed by the formula
AG(T1 — AFCS1). This property is not satisfied without a fairness con-
straint. The reason is simple. When we build the global state graph for the
program we do not make any assumptions about the relative speeds of the
two processes. Thus, the second process can make any number of steps
between steps of the first process. In fact, the second process can even run
forever, thereby preventing the first process from ever making another
step. We can rule out the second type of behavior by means of fairness
constraints which require that each process be given a chance to execute
infinitely often. In Figure 3 we restart the verifier with several fairness

Fairness constraint: ~NC1.
Fairness constraint: ~NC2.
Fairness constraint: ~CSI.
Fairness constraint: ~CS2.
Fairness constraint: ~T1|p2.
Fairness constraint: ~T2|pl.

Fairness constraint: ~T2|~pl|T2a.
Fairness constraint: .

FAG(T1 - AF CS1).
The equation is TRUE.

time: (100)

FAG(T2 - AFCS2).
The equation is FALSE.

time: (299)

FAG(CSI — A[CS1 U(~CS1 & A[~CS1UCS2)))).
The equation is FALSE.

time: (38 17)

Figure 3 Transcript of model-checker execution (with fairness constraint).
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constraints that prevent either process from remaining forever at the same
statement while enabled to make a step. Under these assumptions the first
process will never starve. However, the possibility of starvation still exists
for the second process.

A good solution to the mutual exclusion problem should not require
that processes alternate entry into their critical regions: CS1, CS2, CS1,
CS2,. ... In order to test that the algorithm in Figure 1 does not require
strict alternation, we check the formula

AG(CS1 - A[CSTU( CS1 A A[11 CSTUCS2)))).

This formula asserts that if process 1 enters its critical section and sub-
sequently leaves it, then it cannot enter it again until process 2 has entered
its critical section. The verifier determines that the formula is false in less
than a second. This example shows how the basic temporal operators,
particularly the “until” operators, can be nested to express complicated
timing properties.

Finally, the verifier has a counterexample feature (not shown in the
transcripts). When this feature is enabled and the model checker determines
that a formula is false, it will attempt to find a path in the state graph
which demonstrates that the negation of the formula is true. For example,
if the formula has the form AG(f), our system will produce a path to a
state in which — f holds. For instance, when the verifier determines that
the last formula above is false, it prints out an execution of the mutual
exclusion program in which process 1 enters its critical region, leaves, and
reenters without process 2 entering its critical section in the meantime.
This feature is useful in debugging.

6. OTHER APPROACHES

Several papers have considered the model-checking problem for linear
temporal logic formulas. Let M = (S, R, L) be a Kripke structure with
so€ S, and let Af be a linear temporal logic formula. Thus, f is a restricted
path formula in which the only state subformulas are atomic propositions.
We wish to determine if M, s, F Af. Notice that M, sEAf iff M,sF 7 E 1 f.
Consequently, it is sufficient to be able to check the truth of formulas of
the form Ef where f is a restricted path formula. In general, this problem
is PSPACE complete (Sistla & Clarke 1986). Although the proof of this
PSPACE-completeness result is beyond the scope of our survey, it is easy
to see that the model-checking problem is NP hard for formulas of the
form Ef where f is a restricted path formula. We show that the direct
Hamiltonian path problem is reducible to the problem of determining
whether M, s E f where
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® M is a finite structure,
® sisastatein M and
® fis the assertion (using atomic propositions py, ..., p,}:

E[Fp, A A Fp, A G(p, = XG™1p) A+ A G(p, > XG™1 )]

Consider an arbitrary directed graph G = (V, A) where V = {v,,..., Val-
We obtain a structure from G by making proposition p; hold at node v;
and false at all other nodes (for 1 < i < n), and by adding a source node
u, from which all v, are accessible (but not vice versa) and a sink node u,
that is accessible from all v; (but not vice versa). Formally, let the structure
M = (U, B, L) consist of

U=Vul{u,u,} where u,u¢V;
B =AU {(u,v)|vieV} U {(vsudivie Vo {(upuy)}; and
L is an assignment of propositions to states such that

® piistrueinv;forl <i<n
e pisfalseinv,forl <i,j<ni#j
¢ pisfalseinu,u,for1 <i<n.

It is easy to see that M,u, Ff iff there is a directed infinite path in M
starting at u, that goes through all v;e ¥ exactly once and ends in the self
loop though u,. Note that the formula f in the above construction has
essentially the same size as the graph G. Suppose that the length of the
formula to be checked were known to be much smaller than the size of the
Kripke structure under consideration. Would the complexity still be high
in this case? A careful analysis by Lichtenstein & Pnueli (1985) showed
that although the complexity is apparently exponential in the length of the
formula, it is linear in the size of the global state graph. We briefly describe
their results below.

Let f be a restricted path formula. The closure of f, CL(f), is the
smallest set of formulas containing f and satisfying:

=1 f1e CL() T f1e CL(f)

if fi v f26 CL([), then f,, f2€ CL(f)
if Xf,e CL(f), then f,e CL(f)

if 1 Xf,€ CL(f), then X1 f1e CL(f)

if £,Uf>€ CL({), then f,, fo, X[fiUf2]€ CL().

It can be shown that the size of CL(f) is 5+ length(f).
An atom is a pair A = (s, F,) with s,e S and F, < CL(f)v AP such
that:

® for each proposition Qe AP, Qe F,iff Qe L(s,)
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¢ forevery f1e CL(f), fie F4ifft 01 fi¢F,

® forevery f1, /o€ CL(f), f1 Vv foe F iff f,or f,eF,

¢ forevery 1 Xf,e CL(f), 7 XfieF,iff X fieF,

* for every fi, f,€ CL(f), fiUf,e F,iff f,eF ot f1,X[fiUf,]€ F.

Now, a graph G is constructed with the set of atoms as the set of vertices.
(A, B) is an edge of G iff (s, s3) € R and for every formula f,, if Xf, e F,,
then f| e Fp. An eventuality sequence is an infinite path = in G such that if
f1Uf,e F, for some atom A on 7, then there exists an atom B, reachable
from A along n, such that f,€ Fj.

LemMA 5: M, sk Ef iff there exists an eventuality sequence starting at an
atom (s, F) such that fe F.

A nontrivial strongly connected component C of the graph G is said to
be self-fulfilling iff for every atom A in C and for every fUf,e F, there
exists an atom B in C such that f,e Fj.

LEMMA 6: M, sk Ef iff there exists an atom A = (s, F) in G such that fe F
and there exists a path in G from A to a self-fulfilling strongly connected
component.

Lemma 6 can be used as the basis for a linear temporal logic model-
checking algorithm. This algorithm has the time complexity O((|S|+|R/)"
25 length(f)y  Lichtenstein & Pnueli further showed how this basic algor-
ithm could be extended to handle a number of different notions of fairness
with essentially the same complexity.

The alternative approach of Vardi & Wolper (1986) exploits the close
relationship between linear temporal logic formulas and Biichi automata.
A Biichi automaton is a tuple 4 = (Z, S, p, Sy, F), where

® Y is an alphabet.

® Sis a set of states.

® 5:S x T — 2%is a nondeterministic transition function.
® S, < Sis a set of initial states.

® Fc Sis a set of designated states.

A run of A on an infinite word w = a,a,... is a sequence s¢5, ... where
S0€S, and s;€ p(s;_ 1, a), for all i > 1. A run s¢s, . .. is accepting if there is
some designated state that repeats infinitely often—i.e. for some s € F there
are infinitely many i’s such that s, = s. The infinite word w is accepted by
A if there is an accepting run of 4 over w. The set of infinite words accepted
by A is denoted £ (A). The following theorem is proved by Vardi & Wolper
(1986).

LEMMA 7: For every linear temporal formula Af, a Biichi automaton A; can
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be constructed, where X = 24* and | S| < 2™ such that ¥(A;) is exactly
the set of computations satisfying the formula f.

A Kripke structure M = (S,R,L) with initial state so€S can be
viewed as a Biichi automaton 4, = (Z, S, {s}, p, S) where = = 2*/ and
s'€ p(s,a) iff (s,s’)eR and a = L(s). Note that any infinite run of this
automaton is accepting. .#(A4,,) is the set of computations of 4,,. Thus,
in order to determine whether M, sk Af it is sufficient to check whether
L(Ay) N Z(A4 ) is empty. This can be determined by an automaton-
theoretic construction with essentially the same time complexity as the
Pnueli-Lichtenstein algorithm.

One of the expected advantages of using linear temporal logic is that
fairness constraints can be handled directly. However, if fairness con-
straints are included as part of the specifications, the formulas that must
be checked will in general be large. For instance, consider a fairness
constraint which requires that progress be made from any state in the
program. The formula that expresses this property is

A[/& =1 G(at s) — {rest of speciﬁcation)],

which has size O(|S|). This problem was realized by Lichtenstein & Pnueli
and by Vardi & Wolper. They in fact handle fairness by means of fairness
constraints in a manner similar to that of Clarke et al (1986a). Another
problem with using linear temporal logic is that in general it is impossible
to handle specifications that involve existential path quantifiers. Although
it is possible to check simple formulas of the form Ef where fisa restricted
path formula, it is not possible to check formulas like AG(EF(), which is
used to express absence of deadlock in the example in Section 5. Moreover,
model checking for full logic CTL* is no more difficult than for linear
temporal logic, as was shown by Emerson & Lei (1985).

THEOREM 8: If we are given an algorithm AL, 1, to solve the model checking
problem for linear temporal logic, then we can construct an algorithm
ALy~ for the full logic CTL* that has the same order of complexity as
AL gy

7. APPLICATIONS

Sequential circuit verification is a natural application for the type of verifier
discussed here. Bochmann (1982) was probably the first to realize the
usefulness of temporal logic for describing the behavior of circuits. He
verified an implementation of a self-timed arbiter using linear temporal
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logic and what he called “reachability analysis.” The work of Malachi &
Owicki (1981) identified additional temporal operators required to express
interesting properties of circuits and also gave specifications for a large
class of modules used in self-timed circuits. Although these researchers
contributed significantly toward developing an adequate notation for
expressing the correctness of sequential circuits, the problem of mech-
anically verifying a circuit remained unsolved.

Clarke & Mishra (1985) showed how the EMC algorithm could be
used to verify various temporal properties of asynchronous circuits. They
developed a technique for extracting a state graph directly from a wire-list
description of the circuit (i.e. from a description of the circuit in terms of
its components and their interconnections). The model checker was then
used to show that the state graph satisfied various specifications expressed
in temporal logic. In this way they were able to determine that a self-timed
queue element described by Seitz (1980) did not satisfy its specifications.
Their work was later extended by Brown et al (1986a), who showed in
general how a mixed gate and switch level circuit simulator could be used
to extract a state graph from a structural description of a sequential circuit.
The basic simulation algorithm is shown in Figure 4. Circuits are usually
designed under the assumption that certain input sequences and com-

{The procedure below uses a hash table that maps node
value assignments to states. To construct the state machine,
call this procedure on a node_value_assignment for the
initial state.}

procedure BuildGraph(Node_value_assignment) return a state
begin
if there is a state for the node_value_assignment
already in the table then return the state;
else
Create a new state;
Label state with nodes that have 1 values;
Store state and node values together in hash table;
for each possible input assignment do
Combine current values for internal nodes and input
assignment into a new node_value_assignment;
Simulate one step to find a new node assignment;
Call BuildGraph recursively on new node assignment;
Add value returned by previous line to successors of
current state;
end
end
end

Figure 4 An algorithm for constructing a Kripke structure from a circuit.
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binations will not occur. Their program exploits its observation to prevent
a combinatorial explosion in the number of states that are generated, by
allowing the user to specify a set of conditions under which the inputs can
change.

The circuit simulator suggested by Browne et al (1986a) used a unit-
delay timing model in which the switching delays of all the transistors and
gates are assumed to be equal. While a unit-delay model is satisfactory for
synchronous circuits, it may not be appropriate for asynchronous ones.
Dill & Clarke (1986) showed how Kripke structures could be extracted
from a gate-level description of a circuit under a model of circuit behavior
that permitted arbitrary nonzero delays to be associated with the outputs
of the gates. The basic idea behind their approach is simple. Consider an
AND gate with two inputs, x and y, and a single output z. Assume that
the gate is in an unstable configuration with x low, y high, and z high.
The Kripke structure for the circuit containing this gate will have a state
corresponding to the unstable configuration as shown in Figure 5. The
state will have a self loop and a transition to another state representing a
stable configuration in which the output is low. Fairness constraints, as
described in Section 4, are used to ensure that the system doesn’t remain
in an unstable configuration forever. In the case of the AND gate, it is
sufficient to require that infinitely often z = x A y.

In practice, the arbitrary-delay model is much too conservative. Many
circuits are “almost speed independent”’: They do not appear to be correct
under a pure arbitrary-delay model but would work given reasonable
assumptions about the relationships between the delays. When the circuit
designer has a great deal of control over the magnitudes of circuit delays,
exploiting more detailed knowledge of circuit timing can result in smaller
and faster circuits. In fact, actual circuits often rely on such assumptions.

Figure 5 A Kripke structure for unstable configuration of an AND gate.
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Browne et al (1985) and Dill (1986) describe a method for adding such
assumptions to a circuit description and incorporating them into the state-
graph construction. Possible timing constraints include constant upper
and lower bounds on individual delays, and bounds on the differences
between delays. Using constraints of this form, one can say for example:
“the delay of the first AND gate is between 5 and 10 nanoseconds” or
*“the delay of the first AND gate is greater than the delay of the second
AND gate.” The state graph constructed with respect to a particular set
of delay assumptions rules out some circuit executions that would be
allowed under an arbitrary delay model. Hence, formulas in CTL that
might not have been true in an arbitrary delay model may be true with
respect to particular delay assumptions (because all the counterexample
paths are ruled out by the delay assumptions). This technique was applied
to a patented asychronous queue cell by Browne et al (1985). The authors
determined that the circuit did not meet its specifications under the arbi-
trary element delay model. However, under the assumption that the input
was slower than two of the circuit gates, they showed that the circuit met
its temporal logic specifications.

An alternative approach obtains the state diagram by compilation from
a specification of the original (synchronous) circuit in a simple pro-
gramming language-like notation. Browne and Clarke (Browne et al 1986;
Browne & Clarke 1986) use a Pascal-like state machine description lan-
guage called SML for this purpose. The language includes the standard
control structures if, while, and loop/exit. A cobegin statement is also
provided for simultaneous execution of statements in lock-step. Since SML
programs will ultimately be implemented in hardware, the only data types
permitted are Boolean and (bounded) integer. The output of the SML
compiler is a deterministic Moore Machine that can be automatically
implemented as a PLA, PAL, or a ROM. The output can also be analyzed
for correctness using the EMC algorithm. Browne (1986) describes a
specialized version of the EMC algorithm that can check Moore machines
much more rapidly than the original algorithm.

Another potential area of application is the verification of network
communication protocols. The alternating bit protocol (Bartlet et al 1969)
for reliable transmission of messages by a noisy communication channel
is a simple example of such an algorithm. By using the CTL model-
checking procedure it is possible to determine in a few seconds whether this
protocol meets its specifications (Clarke et al 1986a). Sifakis at Grenoble
(Quicelle & Sifakis 1981) and Kurshan at Bell Labs (Kurshan 1986) have
also considered applications involving network protocols. The delay
assumptions mentioned above may be useful for describing the real-time
behavior of such protocols.
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8. CONCLUSION

Although the verification technique described in this paper has already
been used to find some nontrivial errors in circuit designs and com-
munications protocols, more research needs to be done before it will
become a truly practical debugging tool for use by system designers. One
problem is the expressibility of the underlying temporal logic. For circuit
specification timing diagrams may be more natural to use than temporal
logic formulas. Of course, temporal logic is more general since there is no
analog of negation, disjunction, or conjunction for timing diagrams. It
may be possible either to translate timing diagrams systematically into
temporal logic formulas or to check them directly using an algorithm
similar to the one used by the model checker. If so, this would simplify
the task of specifying a complicated circuit and also allow the designer to
be more confident that specifications actually mean what he thinks they
mean.

The most important problem, however, is the state explosion problem.
There are several different strategies for handling this problem. In verifying
asynchronous circuits, for example, buggy circuits sometimes result in
much larger state graphs than correct circuits. This happens because the
activity in the circuit is much more disordered after an error has occurred.
One possible solution in this case is to run the program which builds the
state graph and the model checker as co-routines, creating states only as
they need to be referenced by the model checker. Dill (1986) calls this
technique lazy state generation, by analogy to lazy evaluation in pro-
gramming language implementations. By using this method, an error could
be discovered and reported after constructing only a small part of the
entire state graph; this would not only speed up the verification process,
it would also make it possible to verify some circuits that could not be
verified if the entire graph had to be constructed.

Another approach to the state explosion problem is to exploit the hier-
archical structural of complex finite-state concurrent systems. If an appro-
priate subset of CTL is used (Mishra & Clarke 1985; Clarke et al 1986b),
then lower-level subcircuits can be simplified by “hiding” some of their
internal nodes (more precisely, making it illegal to use them in temporal
logic formulas) and merging groups of states that become indistinguishable
into single state. Preliminary rescarch (Mishra & Clarke 1985) indicates
that by using this technique it may be possible to cut down dramatically
on the number of states that need to be examined.

Finally, special techniques may be appropriate for concurrent systems
that are composed of many identical processes. Consider, for example, a
distributed mutual-exclusion algorithm for processes arranged in a ring
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network in which mutual exclusion is guaranteed by means of a token that
is passed around the ring (Dijkstra 1985; Kurshan 1985; Martin 1985). A
strategy that is often used for debugging such systems is to consider first
a reduced system with one or two processes. If it is possible to show that
the reduced system is correct, and if the individual processes are really
identical, then one is tempted to conclude that the entire system will be
correct. Clarke et al (1986b) attempt to provide a solid theoretical basis
that will prevent fallacious conclusions in arguments of this type. The
authors describe a temporal logic called Indexed CTL*, or ICTL* for
specifying networks of identical processes. The logic includes all of CTL*
with the exception of the nexttime operator; in addition, it permits formulas
of the form A ;f(i) and V , where f(i) is a formula in which all of the
atomic propositions are subscripted by i. A Kripke structure for a family
of N identical processes may be obtained as a product of the state graphs
of the individual processes. Instances of the same atomic proposition in
different processes are distinguished by using the number of the process
as a subscript; thus, 4 represents the instance of atomic proposition 4
associated with process 5.

Since a closed formula of the new logic cannot contain any atomic
propositions with constant index values, it is impossible to refer to a
specific process by writing such a formula. Hence, changing the number
of processes in a family of identical processes should not affect the truth
of a formula in the logic. This intuitive idea is made precise by introducing
a new notion of bisimulation (Milner 1979) between two Kripke structures
with the same set of indexed propositions but different sets of index values.
It 1s possible to prove that if two structures correspond in this manner, a
closed formula of Indexed CTL* will be true in the initial state of one iff
it is true in the initial state of the other.

These ideas are illustrated by Clarke et al (1986b), who consider the
distributed mutual exclusion algorithm mentioned above. The atomic
proposition ¢; is true when the i-th process is in its critical region, and the
atomic proposition d; is true when the i-th process is delayed waiting to
enter its critical region. A typical requirement for such a system is that a
process waiting to enter its critical region will eventually do so. This
condition is easily expressed in ICTL* by the formula A;AG(d;= AFc).
The results of Clarke et al (1986b) can be used to show that exactly the
same ICTL* formulas hold in a network with 1000 processes as hold in a
network with two processes. The EMC algorithm can be used to check
automatically that the above formula holds in networks of size 2 and
conclude that it will also hold in networks of size 1000. At present
this methodology has only been automated partially, however. The bi-
simulation must be established by hand, and this generally requires some
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representation of the larger Kripke structure. Several researchers are
attempting to find a way of automating this phase in a manner that avoids
building the larger Kripke structure.

Other techniques for avoiding the state explosion problem are being
investigated by Kurshan and Wolper. In Kurshan’s system (Kurshan 1985)
this problem is handled by using a homomorphism to collapse a large state
machine into a much smaller one while preserving those properties that
are important for verification. Since Kurshan does not use temporal logic
formulas for specification, he has no analog of the indexed formulas or of
the bisimulation theorem used by Clarke et al (1986b). Wolper (1986)
considers a logic somewhat like that of ICTL* for reasoning about pro-
grams that are data independent; however, his indexed variables range
over data elements, not over processes. Also, there is no notion of cor-
respondence between structures in his work. Some ultimate limitations on

this type of reasoning are discussed in Apt & Kozen (1986).
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