Compositional Reasoning in Model Checking *

Sergey Berezin' Sérgio Campos? Edmund M. Clarke!

! Carnegie Mellon University — USA
2 Universidade Federal de Minas Gerais — Brasil

Abstract. The main problem in model checking that prevents it from
being used for verification of large systems is the state explosion problem.
This problem often arises from combining parallel processes together.
Many techniques have been proposed to overcome this difficulty and,
thus, increase the size of the systems that model checkers can handle. We
describe several compositional model checkingtechniques used in practice
and show a few examples demonstrating their performance.

1 Introduction

Symbolic model checking is a very successful method for verifying complex finite-
state reactive systems [7]. It models a computer system as a state-transition
graph. Efficient algorithms are used to traverse this graph and determine whether
various properties are satisfied by the model. By using BDDs [5] it is possible to
verify extremely large systems having as many as 10'2° states. Several systems
of industrial complexity have been verified using this technique. These systems
include parts of the Futurebus+ standard [12,19], the PCI local bus [10,20], a
robotics systems [8] and an aircraft controller [9].

In spite of such success, symbolic model checking has its limitations. In some
cases the BDD representation can be exponential in the size of system descrip-
tion. This behavior is called the state explosion problem. The primary cause of
this problem is parallel composition of interacting processes. The problem occurs
because the number of states in the global model is exponential in the number
of component processes. Explicit state verifiers suffer from the state explosion
problem more severely than symbolic verifiers. However, the problem afflicts
symbolic verification systems as well, preventing them from being applied to
larger and more complex examples.

The state explosion can be alleviated using special techniques such as compo-
sittonal reasoning. This method verifies each component of the system in isola-
tion and allows global properties to be inferred about the entire system. Efficient

* This research is sponsored by the the Semiconductor Research Corporation (SRC)
under Contract No. 97-DJ-294, the National Science Foundation (NSF) under Grant
No. CCR-9505472, and the Defense Advanced Research Projects Agency (DARPA)
under Contract No. DABT63-96-C-0071. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of SRC, NSF, DARPA, or the United States Government.

W.-P. de Roever, H. Langmaack, and A. Pnueli (Eds.): COMPOS 97, LNCS 1536, pp. 81-102, 1998.
O Springer-Verlag Berlin Heidelberg 1998

82 S. Berezin, S. Campos, and E.M. Clarke

algorithms for compositional verification can extend the applicability of formal
verification methods to much larger and more interesting examples. In this paper
we describe several approaches to compositional reasoning. Some are automatic
and are almost completely transparent to the user. Others require more user
intervention but can achieve better results. Each is well suited for some applica-
tions while not so efficient for others.

For example, partitioned transition relations [6] and lazy parallel composition
[11,27] are automatic and, therefore, preferred in cases where user intervention
is not desired (for example, when the user is not an expert). These techniques
provide a way to compute the set of successors (or predecessors) of a state set
without constructing the transition relation of the global system. Both use the
transition relations of each component separately during traversal of the state
graph. The individual results are combined later to give the set of states in the
global graph that corresponds to the result of the operation being performed.

Another automatic technique is based on the use of interface processes. This
technique attempts to minimize the global state transition graph by focusing on
the communication among the component processes. The method considers the
set of variables used in the interface between two components and minimizes the
system by eliminating events that do not relate to the communication variables.
In this way, properties that refer to the interface variables are preserved, but the
model becomes smaller.

Assume-guarantee reasoning [17] is a manual technique that verifies each
component separately. The behavior of each component depends on the behavior
of the rest of the system, i.e., its environment. Because of this, the user must
specify properties that the environment has to satisfy in order to guarantee the
correctness of the component. These properties are assumed. If these assumptions
are satisfied, the component will satisfy other properties, called guarantees. By
combining the set of assume/guarantee properties in an appropriate way, it is
possible to demonstrate the correctness of the entire system without constructing
the global state graph.

All of these methods have been used to verify realistic systems. This shows
that compositional reasoning is an effective method for increasing the applica-
bility of model checking tools. Furthermore, it is a necessity for verification of
many complex industrial systems.

The remainder of this paper is organized as follows: Section 2 introduces
the formal model that we use for finite-state systems and the kinds of parallel
composition we consider. Section 3 describes partitioned transition relations, and
Section 4 discusses lazy parallel composition. Interface processes and assume-
guarantee reasoning are described in Sections 5 and 6, respectively. Finally, the
paper concludes in Section 7 with a summary and some directions for future
research.

Compositional Reasoning in Model Checking 83
2 The Model

Given the description of the system to be verified, constructing its model involves
two important steps. The first is constructing the model for the individual com-
ponents. The second is composing these submodels into a global model. We
start by showing how to represent each component symbolically given its state-
transition graph. Then we describe the parallel composition algorithm used to
create the global model.

2.1 Representing a Single Component

Representing a state-transition graph symbolically involves determining its set
of states and deriving the transition relation of the graph that models the com-
ponent. Consider a system with a set of variables V. For a synchronous circuit,
the set V is typically the outputs of all the registers in the circuit together with
the primary inputs. In the case of an asynchronous circuit, V is usually the
set of all nodes. For a protocol or software system, V is the set of variables in
the program. A state can be described by giving values to all the variables in
V. Since the system 1s finite-state we can encode all states by boolean vectors.
Throughout the paper we assume that this encoding has already been done and
that all variables in V' are boolean. Therefore, a state can be described by a
valuation assigning either 0 or 1 to each variable. Given a valuation, we can also
write a boolean expression which is true for exactly that valuation. For example,
given V = {wg, v1, v2} and the valuation {vg < 1,v1 < 1,vs < 0), we derive the
boolean formula vg A v1 A —v9. This boolean formula can then be represented
using a BDD.

In general, however, a boolean formula may be true for many valuations. If
we adopt the convention that a formula represents the set of all valuations that
make it true, then we can describe sets of states by boolean formulas and, hence,
by BDDs. In practice, BDDs are often much more efficient than representing sets
of states explicitly. We denote sets of states with the letter S and we denote the
BDD representing the set S by S(V'), where V is the set of variables that the
BDD may depend on. We also use f, g, ... for arbitrary boolean functions.

In addition to representing sets of states of a system, we must be able to
represent the transitions that the system can make. To do this, we extend the
idea used above. Instead of just representing a set of states using a BDD, we
represent a set of ordered pairs of states. We cannot do this using just a single
copy of the state variables, so we create a second set, of variables /. We think of
the variables in V' as current state variables and the variables in V' as next state
variables. Each variable v in V' has a corresponding next state variable in V’,
which we denote by v/. A valuation for the variables in V' and V' can be viewed
as an ordered pair of states, and we represent sets of these valuations using
BDDs as above. We write a formula that is true iff there is a transition from the
state represented by V' to the state represented by V'. For example, if there is a
transition from state {vg < 1,v1 & 1, v 4 0) to state (vg < 1,v1 + 0,v3 < 1)
we write the formula vy A vy A o3 A vj A =v] A vh. The disjunction of all such

84 S. Berezin, S. Campos, and E.M. Clarke

transitions is the transition relation of the model. If N is a transition relation,
then we write N(V,V’) to denote the BDD that represents it.

2.2 Parallel Composition

The technique above shows how to construct the graph that models one compo-
nent of the system. But usually systems are described by a set of components
that execute concurrently. For synchronous or asynchronous circuits the com-
ponents are the smaller circuits that are connected together to construct the
bigger circuit. For protocols or programs the components are the processes that
execute in parallel.

There are two major ways of composing processes or systems: synchronously
and asynchronously. In synchronous composition all processes execute at the
same time, one step in one process corresponds to exactly one step in all the other
processes. In asynchronous composition, on the other hand, only one process
executes at any point in time. When one process steps all the others remain
unchanged. The choice of which process steps at any time is nondeterministic.
There are different algorithms for composing synchronous and asynchronous

systems.
V2 ?D_

vl

o P

Fig.1. A modulo 8 counter

Synchronous Systems The method for deriving the transition relation of
a synchronous system can be illustrated using a small example. Consider the
circuit of a modulo 8 counter on Fig. 1. Let V = {wg, v1,v2} be the set of state
variables for this circuit, and let V’ = {v{, v}, v4} be another copy of the state
variables. The transitions of the modulo 8 counter are given by

Compositional Reasoning in Model Checking 85

U()I_'UO
/
vy = v D U1

vh = (vo Avy) & va

The above equations can be used to define the relations

No(V, V') = (vg & o)
Nl(V, V/) = (Ull < vy D Ul)
NQ(V, V/) = (U/2 = (Uo A Ul) $ Uz)

which describe the constraints each v} must satisfy in a legal transition. Each
constraint can be seen as a separate component, and their composition generates
the counter. These constraints can be combined by taking their conjunction to
form the transition relation:

N(V, V') = No(V, V') ANL(V, V') A Na(V, V).

In the general case of a synchronous system with n components, we let
{No, -+, No_1} be the set of transition relations for each component. Each tran-
sition relation N; determines the values of a subset of variables in V' in the next
state. Analogous to the modulo 8 counter, the conjunction of these relations
forms the transition relation

NV, V'Y= No(V,VYA - ANp_1(V, V).

Thus, the transition relation for a synchronous system can be expressed as a
conjunction of relations.

Given a BDD for each transition relation N, it is possible to compute the
BDD that represents N. We say that such a transition relation is monolithic
because it is represented by a single BDD. Monolithic transition relations are
the primary bottleneck for verification, because their size can be exponential in
the number of equations used to define it.

Asynchronous Systems As with synchronous systems, the transition relation
for an asynchronous system can be expressed as a conjunction of relations. Al-
ternatively, it can be expressed as a disjunction. To simplify the description of
how such transition relations are obtained, we assume that all the components of
the system have exactly one output and have no internal state variables. In this
case, it is possible to describe completely each component by a function f; (V).
Given values for the present state variables v, the component drives its output to
the value specified by f;(V). For some components, such as C-elements and flip-
flops, the function f;(V) may depend on the current value of the output of the
component, as well as the inputs. Extending the method to handle components
with multiple outputs is straightforward.

86 S. Berezin, S. Campos, and E.M. Clarke

In speed-independent asynchronous systems, there can be an arbitrary de-
lay between when a transition is enabled and when it actually occurs. We can
model this by allowing each component to choose nondeterministically whether
to transition or not. This results in a conjunction of n parts, all of the form

LV, V)= (vie V)V (v &).

This model is similar to the synchronous case discussed above, and allows more
than one variable to transition concurrently.

Normally, we will use an interleaving model for asynchronous composition,
in which only one variable is allowed to transition at a time. First, we apply the
distributive law to the conjunction of the 7;’s, giving a disjunction of 2" terms:

sz v (An=om)

b1,..bn \i=1l

where all b;’s are indices over {0, 1} and

by = filV), ifb=1
gi(v)_{vi, ifb=0.

n
Each of these terms A v} & gf’ (V) corresponds to the simultaneous transi-
i=1

tioning of some subset of the n variables in the model for which b; = 1. Second,
we keep only those terms that correspond to exactly one variable being allowed
to transition (that is, only those disjuncts for which the vector b1, ..., b, contains
exactly one 1). This results in a disjunction of the form

NV, V'Y= No(V, V')V ---V N,_1(V, V),

where
NV, V) = (vh & F(D)) A\ () & vy).
#i
Notice, that using this method asynchronous systems are composed by dis-

juncting their components, while synchronous systems are composed by con-
Jjuncting their components.

3 Partitioned Transition Relations

Computing the image or pre-image of a set of states .S under a transition relation
N is the most important operation in model checking. A state ¢ is a successor of
s under N, if there is a transition from s to ¢ or, in other words, N (s,) holds.
The image of a set of states .S is the set of all successors of S. If the set S and
the transition relation N are given by boolean formulas, then the image of S is
given by the following formula

IV[S(V) ANV, V],

Compositional Reasoning in Model Checking 87

where 3V denotes existential quantification over all variables in V. This formula
defines the set of successors in terms of free variables V. Similarly, a state s is
a predecessor of a state t under N iff N(s,t) is true. The set of predecessors of
a state set S is described by the formula

IV [S(V) ANV, V).

Formulas of this type are called relational products.

While it is possible to implement the relational product with one conjunction
and a series of existential quantifications, in practice this would be fairly slow. In
addition, the OBDD for S(V') A N(V,V’) is often much larger than the OBDD
for the final result, and we would like to avoid constructing it if possible. For
these reasons, we use a special algorithm to compute the OBDD for the relational
product in one step from the OBDDs for S and N. Figure 2 gives this algorithm
for two arbitrary OBDDs f and g¢.

function RelProd(f,g: OBDD, E: set of variables): OBDD
if f=0vg=0

return 0

elseif f=1Ag=1
return 1

else if (f,g, E,r) is in the result cache
return r

else

let # be the top variable of f
let y be the top variable of g
let z be the topmost of # and y
ro := RelProd(f|z«o,9|z<0, E)
r1 := RelProd(f|:c1,9]z¢1, E)
ifzeFE
r:= Or(ro,r1)
/* OBDD for rq V ri x/
else
r:= BDDnode(z,r1,70)
/* OBDD for (z Ari)V (—mzArg) */
endif
insert (f,g, E,r) in the result cache
return r
endif

Fig. 2. Relational product algorithm

Like many OBDD algorithms, RelProd uses a result cache. In this case, entries
in the cache are of the form (f, ¢, F,r), where E is a set of variables that are
quantified out and f, g and r are OBDDs. If such an entry is in the cache, it
means that a previous call to RelProd(f,g, E) returned r as its result.

88 S. Berezin, S. Campos, and E.M. Clarke

Although the above algorithm works well in practice, it has exponential com-
plexity in the worst case. Most of the situations where this complexity is observed
are cases in which the OBDD for the result is exponentially larger than the
OBDDs for the arguments f(¥) and g(¢). In such situations, any method of
computing the relational product must have exponential complexity.

In the previous section we have described how to construct the global tran-
sition relation N from the individual transition relations N; of the component
processes. However, the size of N can be significantly larger than the sum of the
sizes of all N;s. Our goal is to be able to compute relational products without
constructing the global transition relation explicitly.

3.1 Disjunctive Partitioning

The global transition relation of an asynchronous system may be written as
the disjunction of the transition relations for the individual components of the
system. In this case, a relational product will have the form

TV [S(V') A (No(V, V)V -V Ny (V, V)]

In practice computing the value of a large formula with many quantifiers is usu-
ally very expensive. Since the existential quantifier distributes over disjunction
we can shrink the scope of the quantifier to the individual components:

WV [S(V) AN(V, V)] V-V
WV [S(V') A Npa (V, V)]
When this technique 1s used it is possible to compute relational products for
much larger asynchronous systems.
3.2 Conjunctive Partitioning
For synchronous systems, a relational product will have the form
VSV A (No(V, VYA AN, (V, V)]

Unfortunately, existential quantification does not distribute over conjunction, so
we can not directly apply the same transformation as in the asynchronous case.
A simple counterexample 1s

Jal(a V &) A (ma V e)] £ Jafa V 8] A Ja[-a V ¢]

since 1t reduces to:
[bV] £ true.

Nevertheless, we still can apply partitioning because systems often exhibit
locality: most N;s depend only on a small number of variables in V' and V’.

Compositional Reasoning in Model Checking 89

Subformulas can be moved outside of the scope of existential quantification if
they do not depend on any of the variables being quantified:

Ela[(a\/b)/\(b\/c)] EEIa[a\/b] A(bVe)

We can optimize the computation of a relational product by using early variable
elimination for variables in each N;. First, pick an order p for considering the
partitions in the relational product. Then define D; to be the set of variables
process P; depends on, and FE; to be a subset of D; consisting of variables that
no process later in the ordering depends on, i.e.,

n—1
oy = Dpgiy & U Dpry-
k=14+1

We will illustrate this with our example of the modulo 8 counter.

Ny = (v & —g) depends on Dy = {vg}
Ny = (v) © vgd 1) depends on Dy = {vg, v1}
Ny = (vh & (vg Avy) ®v2) depends on Dy = {wg, v1,v2}

If we choose the ordering p = 2,1,0, then Es = {vs}, Ey = {v1} and Ey =
{vo}. We now can transform the relational product to:

Sl(V, V/) = ElvEE,,(u) [S(V) A Np(o)(v, V/)]

So(V,V') = 3uer,) [S1(V, V') A Ny (V, V)]

Sn(V') = 3uer, oy, [Snc1t(V, V) ANy (V, V)]
Or putting it all together,

Wy [+ Vo) [FVi0) [SV) A Nogo) (V, V)] AN,y (V, V] Ao ANy (V, V)]

51

52

Sn

The ordering p has a significant impact on how early in the computation state
variables can be quantified out. This affects the size of the BDDs constructed
and the efficiency of the verification procedure. Thus, it is important to choose
p carefully, just as with the BDD variable ordering. For example, a badly chosen
ordering p = 0, 1,2 for the same modulo 8 counter yields Ey = {}, E1 = {} and
Es = {vg, v1,v2}, which results in no optimization at all.

In practice, we have found it fairly easy to come up with orderings which
give good results. We search for a good ordering p by using a greedy algorithm

90 S. Berezin, S. Campos, and E.M. Clarke

to find a good ordering on the variables v; to be eliminated. For each ordering
on the variables, there is an obvious ordering on the relations N; such that when
this relation ordering is used, the variables can be eliminated in the order given
by the greedy algorithm.

The algorithm on fig. 3 gives our basic greedy technique. We start with the
set of variables V' to be eliminated and a collection C of sets where every D; € C
is the set of variables on which N; depends. We then eliminate the variables one
at a time by always choosing the variable with the least cost and then updating
V' and C appropriately.

while (V # ¢) do
begin
For each v € V' compute the cost of eliminating v;
FEliminate variable with lowest cost by updating C and V;
end;

Fig. 3. Algorithm for variable elimination.

All that remains is to determine the cost metric to use. We will consider
three different cost measures. To simplify our discussion, we will use N, to refer
to the relation created when eliminating variable v by taking the conjunction of
all the N; that depend on v and then quantifying out v. We will use D, to refer
to the set of variables on which this N, depends.

minimum size The cost of eliminating a variable v is simply |D,|. With this
cost function, we always try to insure that the new relation we create depends
on the fewest number of variables.

minimum increase The cost of eliminating variable v is

|Dy| < max |A|+1
AECwEA

which is the difference between the size of D, and the size of the largest D;
containing v. The idea is that if we have a lot of small relations that all share
one variable, then we do not want to eliminate that variable, since this may
result in a big N,. But this is what the previous heuristic would suggest.
Instead, the minimum increase cost will favor eliminating variables that are
shared by a small number of relations, thus, keeping the resulting relation
smaller. In other words, we prefer to make a small increase in the size of an
already large relation than to create a new large relation.
minimum sum The cost of eliminating variable v is

> M
AcCveA

which is simply the sum of the sizes of all the D; containing v. Since the cost
of conjunction depends on the sizes of the arguments, we approximate this
cost by the number of variables on which each of the argument N; depends.

Compositional Reasoning in Model Checking 91

The overall goal is to minimize the size of the largest BDD created during
the elimination process. In our abstraction, this translates to finding an ordering
that minimizes the size of the largest set D, created during the process. Always
making a locally optimal choice does not guarantee an optimal solution and there
are counterexamples for each of the three cost functions. In fact, the problem
of finding an optimal ordering can be shown to be NP-complete. However, the
minimum sum cost function seems to provide the best approximation of the cost
of the actual BDD operations and in practice has the best performance on most
examples.

4 Lazy Parallel Composition

Lazy parallel composition is an alternative method for compositional reasoning
that can be related to partitioned transition relations. As in the case of the par-
titioned transition relations, the global transition relation is never constructed.
However, in contrast to the previous method, a restricted transition relation for
all processes is created. The restricted transition relation agrees with the global
transition relation for ‘important’ states, but 1t may behave in a different way
for other states. The advantage comes from the fact that in many cases it is
possible to construct a restricted transition relation that is significantly smaller
than the global transition relation.

There are many possible ways of constructing a restricted transition relation
that would produce correct results. Given an original global transition relation
N and a state set S, the computation of the set of successors of S can use any
restricted transition relation N’ that satisfies the following condition:

N/|5 :N|5

The formula above means that N and N’ agree on transitions that start from
states in S. It is possible to represent N’ with significantly fewer nodes than
N in some cases by using the constrain operator from [14,27]. For two boolean
formulas f and g, f' = constrain(f, g) is a formula that has the same truth value
as f for variable assignments that satisfy g. If the variable assignment does not
satisfy g, the value of f’ can be arbitrary. In other words:

) = {f(x) if g(2)

don’t care otherwise

In many cases the size of f’ is significantly smaller than the size of f.

The lazy composition algorithm uses the constrain operator to simplify the
transition relation of each process before generating the global restricted transi-
tion relation. When computing the set of successors of a state set S (represented
by a boolean formula) the algorithm computes

N' = /\ constrain(N;, S).

i=0..n

92 S. Berezin, S. Campos, and E.M. Clarke

Each transition N/ = constrain(N;,S) agrees with N; on transitions that
start in S by the definition of the constrain operator. As a consequence, the
transition relation N’ agrees with the global transition relation N on transitions
that start in S as well. Therefore, computing the set of successors of S using N’
produces the same result as using N. The same method can be applied when
computing the set of predecessors of a state set S. Only in this case the constrain
operator has to maintain those transitions in N that end in 5.

4.1 Partitioning vs. Lazy Composition

Lazy parallel composition is less sensitive to the order in which variables are
eliminated than partitioned transition relations. This is because step ¢ in the
partitioned transition relation depends on step ¢ <1, as shown below

Fuy [Fuo[S(V') A No(V, V)] AN (V, V)]

stepl

step2

As a consequence, the final degree of partitioning heavily depends on the order
in which we quantify the variables out. We have already seen an example of such
dependency in section 3.2.

The lazy parallel composition, on the other hand, processes each component
independently, and thus, does not depend on the order in which the constrain
operators are applied:

VSV A (N1 (V, V') s AN2(V, V)]s)].

stepl step2

We have implemented the lazy composition algorithm and obtained signif-
icant gains in both space and time. The verification of one example took 18
seconds and 1 MB of memory when lazy composition was used. The same ex-
ample took about the same amount of time but twice as much memory when
partitioned transition relations were used. If neither method was used, verifica-
tion required more than 40 seconds and 12 MB. A significant part of the savings
in both methods results from not constructing the global transition relation.
However, lazy parallel composition often requires much less memory. The reason
seems to be that partitioned transition relations are heavily influenced by the
order in which partitions are processed, because this order determines which
variables can or cannot be quantified out early. In lazy parallel composition this
does not happen, since all of the variables are quantified out at the same time.
This makes it less susceptible to the order in which partitions are processed, and
more suitable to be used in the cases in which determining the processing order
can be difficult. It also makes the new technique easier to automate.

Compositional Reasoning in Model Checking 93

5 Interface Processes

An important observation leads to another approach to compositional verifi-
cation. The state explosion problem is usually most severe for loosely coupled
processes which communicate using a small number of shared variables.

5.1 Cone of Influence Reduction

Suppose we are given a set of variables o that we are interested in with respect
to the process P. We can simplify the process P using the cone of influence
reduction. Assume that the system is specified by a set of equations:

Define the cone of influence C; of v; for each variable v; as the minimal set of
variables such that

- U; S Cia
— if for some v; € Cj its f; depends on v;, then v; € Cj.

Construct a new (reduced) process P’ from P by removing all the equations
whose left hand side variables do not appear in any of the C;’s for v; € ¢. It can
be easily shown that P | ¢ iff P’ = ¢, whenever ¢ contains only variables from
o.

Again, consider our example of the modulo 8 counter (fig. 1). Tts set of
equations is

Vg = 7o

vy = v P v1
vh = (vo Av1) B va

Clearly, Cy = {wo}, since fo does not depend on any variable other than wvp.
We have Cy = {vg,v1}, since f; depends on both of the variables, but vy & Cy
because no variable in ' depends on v9. And ' is the set of all the variables.

Pland P2
communicate
using these
variables

Assume two processes P; and P. communicate using a set of variables o.
Then P; can only observe the behavior of P, through o. It means that we can
replace P> by any equivalent process A, which is indistinguishable from P, with
respect to o and this will completely preserve the behavior of P;. The idea 1s to
find a smaller process A5 that hides all events irrelevant to o.

94 S. Berezin, S. Campos, and E.M. Clarke

—

The following nterface rule guarantees the correctness of the abstraction A,
with respect to Pi. Let P|, be the restriction of P to the cone of influence of
variables in ¢, and £(o) be the set of all CTL formulas with free variables from
o. The wnterface rule states that if the following conditions are satisfied:

— P2|o' = Az,

- Pif|4: E o,

— ¢ is a CTL formula such that ¢ € £(o),
then ¢ is also true in Py||Pa. In fact, it is sufficient for ¢ to be in L(Xp,) for
this rule to be sound, where Xp, is the set of variables of P;.

In the remainder of this section we describe how this strategy can be made
precise and show how it can be used to reduce the state explosion problem for
loosely coupled processes.

5.2 Soundness of the interface rule

In order for the interface rule to be sound we need to specify some properties
that the process equivalence ‘=’ has to satisfy. For a process P let Xp be the set
of atomic propositions (or state variables) in P, and let £(X) be the language of
temporal formulas over the alphabet X. For any two processes P, and P, with
sets of variables Xp, and Xp,, the following axioms have to be satisfied:

1. Py = P, implies Vp € L(Xp,)[P1 E ¢ & P2 E ¢]

2. If Py = Py then P,]|Q = P2||Q and Q|| Py = Q|| P-

3. (Pl P2)|sr, = Pill(P2lsp,) and (P1]|P2)| s, = (Pilzp,)l| P2
4. If o € L(Xy) and X, C Lp, then P =@ iff Plg, | ¢

Theorem 1 (Soundness). The Interface Rule is sound.

To remind the reader, the interface rule states that
— P2|2P1 = Az,

- Pif|4: E o,
— ¢ is a CTL formula such that ¢ € £(Xp,),

imply Py ||P> |E ¢. Notice, that restricting Ps to X'p, produces the same result
as Psl,, where ¢ = Xp, N Zp,.

Proof. Since Pz|gp1 = Aa, then by 2 Pi||A2 = P1||(P2|2P1). By 3, P1||(P2|2P1) =
(P1||P2)|2P1, hence we also have Pi||4; = (P1||P2)|2P1. And since Pyi||4s ¢
and ¢ € L(Xp,), by 1 we derive (P1||P2)|sp, F ¢, and from 4 we immediately
get P1|| P |= ¢ as required.

Compositional Reasoning in Model Checking 95

5.3 Equivalence of Processes

We define concrete equivalence relations over the processes that fulfil our require-
ments and are the most suitable in our framework. We use bisimulation equiva-
lence and stuttering equivalence with synchronous parallel composition. We also
give an “efficient” polynomial algorithm to determine bisimulation equivalence
between processes and a sketch of the algorithm for stuttering equivalence.

Definition 1. A model is a triple M = (S, N, L), where S is a set of states,
N C S x S is a transition relation and L s a labeling function mapping each
state into a set of atomic propositions that are true in that state.

Bisimulation Equivalence. Consider two models M = (S, N, L) and M’ =
(S', N', L") with the same set of atomic propositions.

Definition 2. A binary relation E C S x S’ is called a bisimulation relation if
forany s € S and s’ € S, E(s,s") implies L(s) = L'(s") and

(()Vr € SN(s,r)= I €S N'(s,7')NE(r,v)
(i) V' € S N'(s',7') = Ir € S : N(s,r) AN E(r, 7).

Definition 3. A bisimulation equivalence is the mazimum bisimulation relation
i the subset inclusion preorder.

Notice that the definition of a bisimulation relation can be viewed as a fix-
point equation. Hence, the bisimulation equivalence 1s just the greatest fixpoint
of that equation. This gives rise to a simple polynomial algorithm for computing
the bisimulation equivalence using the well known iterative procedure. We com-
pute a (decreasing) sequence of relations Fy, E1, . . . until this sequence converges
to a fixpoint at the n-th step. This convergence is guaranteed in finite-state case,
since the subset inclusion preorder is well-founded in both directions. Choosing
an appropriate Fy guarantees that this fixpoint is the greatest fixpoint, therefore
E, 1s the required bisimulation equivalence. The sequence of relations 1s defined
inductively as follows:

1. sEys" iff L(s) = L'(s"),

2. sEpy18"iff L(s) = L'(s') and
— Vs1[N (s, s1) implies 3s|[N'(s', s]) A 51 Epsi]]
— Vs{[N'(s', s]) implies 3s1[N (s, 51) A 51 Epsi]]

The complexity of this algorithm is O(m?), where m in the sum of the sizes
of the transition relations. There are more efficient algorithms for computing
bisimulation equivalence, for example the Paige-Tarjan algorithm [24]. Tt’s com-
plexity is O(mlogn) in time and O(m + n) in space, where n is the sum of the
numbers of states in both models, and m in the sum of the sizes of the transition
relations. However, it is unclear if this algorithm can employ BDDs as well.

96 S. Berezin, S. Campos, and E.M. Clarke

Memory
System

Access Execute
unit unit

Fig.4. A CPU controller.

H\| Access Execute
+/| controller : +/| controller

Stuttering Equivalence. Unlike bisimulation, the stuttering equivalence [4,
16] is usually defined over the computation paths of the models. Intuitively, two
paths = and 7’ are considered stuttering equivalent if they can be partitioned
into finite blocks of repeated, or stuttered states, and corresponding blocks are
equivalent in the two paths relative to the labeling functions I and L’ of the
models. Thus, we do not distinguish between two executions that differ only in
the number of idle cycles between transitions. The stuttering equivalence also
has a definition in terms of the greatest fixpoint.

Definition 4. A binary relation E C S x S is called a stuttering relation «f for
any s € S and s' € 5, s E s implies L(s) = L'(s') and
(i) Vr. N(s,r) = 3sp,...,s,, (n >0).s; =s" and r F s, and
Y0 <i<n. N'(si,si,q)and s I si;

(i8) Yr'. N'(s',7") = Jsg,...,8m (M >0). sp = s and s, £ ' and
VO <i<m. N(s;,si41) and s; E .

Definition 5. A stuttering equivalence s the marimum stuttering relation in
the subset inclusion preorder.

Stuttering equivalence preserves the truth of CTL* formulas that do not in-
volve the next time operator X [4]. As in the case of bisimulation, we define
inductively a sequence of relations Fy, Ey, ... (that also converges in finite state
case) and the stuttering equivalence is the intersection of all the F;’s. However,
instead of computing the direct pre-image at each iteration as we did for bisimu-
lation, we compute the set of states from which there is a path to the current state
along which the current labeling L(s) changes exactly once. This involves com-
puting another least fixpoint. The details of the algorithm are described in [3].
A more efficient algorithm based on the Paige-Tarjan algorithm was found by
Groote and Vaandrager [16] that runs in O(mn) time. It is unknown, however,
if this algorithm can use BDDs as well.

5.4 Interface Processes Example

As a simple example, we consider a model of the CPU controller [13] (fig. 4).
The model comprises two parallel processes P, and P. called the access unit

Compositional Reasoning in Model Checking 97

and the execution unit. The access unit P, fetches instructions and stores them
in an instruction queue and maintains a cache of the top location of the CPU
stack in a special register. The execution unit P, pops out the instructions from
the queue and interprets them. A major part of the temporal logic specification
for CPU’s controller defines correct behavior for the access unit and consists of
formulas on the set of signals which are inputs or outputs of the unit. These
signals constitute X'p . An example of such a formula is the following

AG AF fetch

This formula is a liveness property which states that instructions are fetched
from the access unit to the execution unit infinitely often. Fetch is actually
a propositional formula defined in terms of request and acknowledge signals
between the two units.

The parallel composition of the access unit and the execution unit in our
design has approximately 1100 reachable states. However, by restricting the out-
puts of the execution unit to those in Xp_ , and then minimizing it, we obtain
an interface process Ap, such that P,||Ap, has only 196 reachable states. The
reason for this reduction is that, while the execution unit interprets many differ-
ent instructions, the memory accesses of these instructions fall into a few basic
patterns.

6 Assume/Guarantee Reasoning

Assume-guarantee reasoning is a semi-automatic method that verifies each com-
ponent separately. Ideally, compositional reasoning exploits the natural decom-
position of a complex system into simpler components, handling one component
at a time. In practice, however, when a component is verified it may be neces-
sary to assume that the environment behaves in a certain manner. If the other
components in the system guarantee this behavior, then we can conclude that
the verified properties are true of the entire system. These properties can be
used to deduce additional global properties of the system.

The assume-guarantee paradigm [17,21,23,25] uses this method. Typically,
a formula is a triple (g) M (f) where g and f are temporal formulas and M is a
program. The formulais true if whenever M is part of a system satisfying g, the
system must also satisfy f. A typical proof shows that (g) M (f) and (true)M'{g)
hold and concludes that (true)M || M'{f) is true. This proof strategy can also
be expressed as an inference rule:

(true)M'(g) (g)M{[f)
(true) M || M'{f)

The soundness of this simple assume-guarantee rule is straightforward.

In order to automate this approach, a model checker must be able to check
that a property is true of allsystems which can be built using a given component.
More generally, it must be able to restrict to a given class of environments when

98 S. Berezin, S. Campos, and E.M. Clarke

doing this check. An elegant way to obtain a system with this property is to
provide a preorder < on the finite state models that captures the notion of “more
behaviors” and to use a logic whose semantics is consistent with the preorder.
The order relation should preserve satisfaction of formulas of the logic, i.e. if a
formula is true for a model, it should also be true for any model which is smaller
in the preorder. Additionally, composition should preserve the preorder, and a
system should be smaller in the preorder than its individual components. Finally,
satisfaction of a formula should correspond to being smaller than a particular
model (a tableau for the formula) in the preorder.

Following Grumberg and Long [17], we use synchronous process composition,
the simulation preorder, and the temporal logic ACTL (a subset of CTL without
existential path quantifiers). This choice is motivated by the expressiveness of
ACTL and the existence of a very efficient model checking algorithm for this
logic. The simulation preorder is also a natural choice, since it 1s simple and
intuitive as well as easily automated. We employ tableau construction methods
for converting formulas into processes. Informally, a tableau for a formula ¢ is
the greatest process A, (in the preorder) such that A, | ¢. In the remainder
of this section we will not distinguish formulas and processes and will write, for
example, M < ¢ to mean M < A,.

It can be easily shown that our choice of formalisms meets all the require-
ments [17]. In particular, for all M and M’ we have M||M’ < M, and if M’ < A
then M||M’ < M||A, because synchronous composition can only restrict possible
behaviors. Since M is greater than any system containing M, we can focus on
proving properties of M in isolation. This insures that the same properties hold
for an arbitrary system containing M.

Using the tableau construction we can verify M = ¢ by checking the rela-
tion M < . In practice, however, we use classical model checking for verifying
M = ¢ for a single component M if ¢ is given by a formula, and the simula-
tion preorder if ¢ is an automaton, to increase the efficiency. Assumptions on
the model correspond to composition. That 1s, a model M has the same set of
behaviors under assumptions ¢ as the model M||¢ without any assumptions.
Thus, our triple {(¢)M (¢) corresponds to ¢||M =< . In other words, discharging
assumptions corresponds to checking the preorder. Finally, the rule M < M||M
allows multiple levels of assume-guarantee reasoning.

Earlier we mentioned that the logic must preserve the preorder relation. Now
we formalize and state the properties explicitly.

1. For all M, M" and ¢, it M < M’ and M’ |E ¢, then M = ¢ (removing
behaviors cannot change a formula from true to false). Since M||M' < M,
it is enough to check M |= ¢ to know that any system containing M also
satisfies .

2. For every ¢, there is a structure T, such that M | ¢ if and only if M < T,,.
This allows us to use ¢ as an assumption by composing M with T,,.

3. Every model of ¢ is also a model of ¢ if T,, |= 4

These lemmas are proved rigorously in [17] for synchronous composition of pro-
cesses, the simulation preorder and the logic ACTL.

Compositional Reasoning in Model Checking 99
6.1 Implementation of Assume Guarantee Reasoning

Suppose we want to show that M||M' = «. That is, in terms of triples, we
need to prove (true) M||M'{y). We verify that M satisfies some property ¢ by
model checking. Next, using ¥ as an assumption, we show that M’ satisfies
some other auxiliary property ¢. Finally, we show that M satisfies the required
property ¥ under the assumption . Since this extends to any system containing
M, we are done. If the intermediate formulas (or processes) ¢ and ¥ are much
smaller than M and M’ respectively, then all the transition relations that must
be constructed are significantly smaller than the one for M||M’. This strategy
for proving M||M' |= ¢ can be summarized in the following assume-guarantee
rule:

(trueyM W) ()M'{p) ()M (¥)
(true) M || M'{¢)

In our framework, this corresponds to

M= M =2¢ ¢l|M=24y
M|M" =9

It 1s straightforward to show that this rule is sound by using the properties
of preorder relation stated earlier.

Theorem 2. The assume-guarantee rule is sound.

Proof. Since M =< 9, then M||M' =< 9J||M’. Since J||M’ < ¢, by transitivity
MI||M' = ¢. Composing both sides with M we get M||M'||M = ¢||M. Since
parallel composition is commutative and associative, we can group the left hand
side as M||M||M’. Then using M < M||M and composing both sides with M’
we obtain M||M’ < ¢||M. Finally, from the last assumption ¢||M =< ¥ and
transitivity we draw the conclusion of the rule M||M’ < 4.

So far, we have not discussed fairness. Both the preorder and the semantics
of the logic should include some type of fairness. This is essential for model-
ing systems (hardware or communication protocols) at the appropriate level of
abstraction. Moreover, fairness is necessary for the ACTL tableau construction.

Unfortunately, no efficient technique exists to check or compute fair pre-
order between models. In [17], Grumberg and Long suggest how to check the
fair preorder only for a few trivial cases. Kupferman and Vardi showed that the
general case is PSPACE-hard to compute [22]. Henzinger, Kupferman, and Ra-
jamani [18] have proposed a new type of fair preorder that can be computed in
polynomial time. However, it is not clear that this preorder is appropriate for
compositional reasoning.

Example: The Futurebus+ Protocol. David Long has used this type of
reasoning to verify safety and liveness properties for the Futurebus+ standard
of cache coherence protocol [12,19]. The whole design is divided into parallel

100 S. Berezin, S. Campos, and E.M. Clarke

components that represent single modules like cache, memory, bus, etc. This
example requires several levels of assumptions and guarantees.

The first stage of the verification was to check safety properties, since they
can be verified using only forward reachability analysis and checking at each
iteration that the current set of reachable states satisfies the property. Once a
violation is found, the search is terminated immediately and an error trace is
generated. The ability to terminate the search early was important since the
BDD representing the set of reached states tended to become very large once an
erroneous transition had occurred. As soon as all of the basic safety properties
were satisfied, more complex formulas were checked in the state space restricted
to the set of reachable states. Such a restriction also helped greatly in keeping
the BDD from blowing up in size.

Using this technique he found specifications that were satisfied by a single
bus configuration but not by multiple bus configurations. The details of the
verification can be found in [12].

7 Conclusions

We describe several methods of dealing with the state explosion problem, which
arises frequently due to parallel composition of processes. It 1s clear that compo-
sitional reasoning is critical in formal verification. Such techniques dramatically
reduce the complexity of model checking and permit the verification of signifi-
cantly larger systems. We have used compositional methods extensively to verify
large complex systems such as the Futurebus+ [12] and the PCI bus [10, 20] pro-
tocols.

This paper does not cover all of compositional proof techniques. There are a
number of other compositional techniques that can also be successfully used. For
example, partial model checking [1] encodes one of the processes into the formula,
which is being checked, and simplifies the resulting formula. Similar method is
described in [2]. Theorem proving techniques are also used to decompose and
prove (manually) the property for each of the component [15,26].

In general, all of the compositional model checking techniques have their
limitations and much work remains to be done. The most important problem is
the trade-off between efficiency and automation. More powerful methods that
can handle enormous complexity usually require an expert user and significant
manual effort. These techniques usually rely on a powerful theorem prover under
human guidance or careful choice of model checking parameters. On the other
hand, completely automatic techniques frequently cannot handle extremely com-
plex systems. The problem with automatic techniques is that they rely heavily
on heuristics which may or may not work on different types of examples, and
most of the intellectual work still has to be done by the user.

References

1. Henrik R. Andersen. Partial model checking (extended abstract). Technical Re-
port ID-TR: 1994-148, Department of Computer Science, Technical University of

10.

11.

12.

13.

14.

15.

16.

17.

Compositional Reasoning in Model Checking 101

Denmark, October 1994. Accepted for LICS’95.

Henrik R. Andersen, Colin Stirling, and Glynn Winskel. A compositional proof
system for the modal p-calculus. In Proceedings, Ninth Annual IEFE Symposium
on Logic in Computer Science, pages 144-153, Paris, France, 4-7 July 1994. [EEE
Computer Society Press. Also as BRICS Report RS-94-34.

S. Berezin, E. Clarke, S. Jha, and W. Marrero. Model checking algorithms for the
mu-calculus. Technical Report TR CMU-CS-96-180, Carnegie Mellon University,
September 1996.

. M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke struc-

tures in propositional temporal logic. Theoretical Computer Science, 59(1-2), July
1988.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. /EFFE
Transactions on Computers, C-35(8):677-691, August 1986.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transition relations. In VLST 91, Edinburgh, Scotland, 1990.

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, and
David L. Dill. Symbolic model checking for sequential circuit verification. [EFE
Transactions on Computer-Aided Design of Integrated Circuits, 13(4):401-424,
April 1994.

S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus: a tool for quantitative
analysis of finite-state real-time systems. In Workshop on Languages, Compilers
and Tools for Real-Time Systems, 1995.

S. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing quanti-
tative characteristics of finite-state real-time systems. In IEFE Real- Time Systems
Symposium, 1994.

S. Campos, E. Clarke, and M. Minea. Verifying the performance of the PCI local
bus using symbolic techniques. In Proceedings of the IEFE International Confer-
ence on Computer Design, pages 73-79, 1995.

S. V. Campos. A Quantitative Approach to the Formal Verification of Real-Time
System. PhD thesis, SCS, Carnegie Mellon University, 1996.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and
L. A. Ness. Verification of the Futurebus+ cache coherence protocol. In L. Claesen,
editor, Proceedings of the FEleventh International Symposium on Computer Hard-
ware Description Languages and their Applications. North-Holland, April 1993.
E. M. Clarke, D. E. Long, and K. L.. McMillan. Compositional model checking.
In Proceedings of the Fourth Annual Symposium on Logic in Computer Science,
pages 353-362. IEEE Computer Society Press, June 1989.

O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Proceedings of the
1989 International Workshop on Automatic Verification Methods for Finite State
Systems, Grenoble, France, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, June 1989.

M. Dam. Compositional proof systems for model checking infinite state processes.
In Proceedings of CONCUR’95, volume 962 of Lecture Notes in Computer Science,
pages 12-26. Springer-Verlag, 1995.

J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisim-
ulation and stuttering equivalence. In M. Paterson, editor, Proceedings 17"
ICALP, Warwick, volume 443 of Lecture Notes in Computer Science, pages 626—
638. Springer-Verlag, July 1990.

Orna Grumberg and David Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843-871, May 1994.

102

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

S. Berezin, S. Campos, and E.M. Clarke

T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. In Proc. of
the 7th Conference on Concurrency Theory (CONCUR’97), volume 1243 of LNCS,
Warsaw, July 1997.

IEEE Computer Society. IFEE Standard for Futurebus+—Logical Protocol Speci-
fication, 1994. IEEE Standard 896.1, 1994 Edition.

Intel Corporation. PCI Local Bus Specification, 1993.

B. Josko. Verifying the correctness of AADIL-modules using model checking. In
J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of
the REX Workshop on Stepwise Refinement of Distributed Systems, Models, For-
malisms, Correctness, volume 430 of Lecture Notes in Computer Science, pages
386-400. Springer-Verlag, May 1989.

O. Kupferman and M. Y. Vardi. Module checking revisited. In O. Grumberg, edi-
tor, Proc. of the 9th conference on Computer-Aided Verification (CAV’97), volume
1254 of LNCS, pages 36-47, Haifa, June 1997.

J. Misra and K. M. Chandy. Proofs of networks of processes. IEFFE Transactions
on Software Engineering, SE-7(4), July 1981.

R. Paige and R. Tarjan. Three efficient algorithms based on partition refinement.
SIAM Journal on Computing, 16(6), Dec 1987.

A. Pnueli. In transition for global to modular temporal reasoning about programs.
In K. R. Apt, editor, Logics and Models of Concurrent Systems, volume 13 of NATO
ASI series. Series F, Computer and system sciences. Springer-Verlag, 1984.

C. Stirling. Modal logics for communicating systems. Theoretical Computer Sci-
ence, 49:311-348, July 1987.

H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit state enumeration of finite state machines using bdd’s. In IEEFE Int.
Conf. Computer-Aided Design, pages 130-133, 1990.

