
Using Combinatorial Optimization Methods for
Quantification Scheduling�

P. Chauhan1, E. Clarke1, S. Jha2, J. Kukula3, H. Veith4, and D. Wang1

1 Carnegie Mellon University
2 University of Wisconsin - Madison

3 Synopsys Inc.
4 TU Vienna, Austria

Abstract. Model checking is the process of verifying whether a model of
a concurrent system satisfies a specified temporal property. Symbolic al-
gorithms based on Binary Decision Diagrams (BDDs) have significantly
increased the size of the models that can be verified. The main prob-
lem in symbolic model checking is the image computation problem, i.e.,
efficiently computing the successors or predecessors of a set of states.
This paper is an in-depth study of the image computation problem. We
analyze and evaluate several new heuristics, metrics, and algorithms for
this problem. The algorithms use combinatorial optimization techniques
such as hill climbing, simulated annealing, and ordering by recursive par-
titioning to obtain better results than was previously the case. Theoret-
ical analysis and systematic experimentation are used to evaluate the
algorithms.

1 Introduction

Model Checking and State Explosion. In model checking [CGP00], the system
to be verified is represented as a finite Kripke structure or labelled transition
system. A Kripke structure over a set of atomic propositions AP is a tuple
K = (S,R,L, I) where S is the set of states, R ⊆ S ×S is the set of transitions,
I ⊆ S is the non-empty set of initial states, and L : S → 2AP labels each state
by a set of atomic propositions.

Given a Kripke structure K = (S,R, I, L) and a specification φ in a temporal
logic such as CTL, the model checking problem is the problem of finding all
states s such that K, s |= φ and checking if the initial states are among these.
Model checking algorithms usually exploit the fact that temporal operators can

� This research is sponsored by the Semiconductor Research Corporation (SRC), the
Gigascale Research Center (GSRC), the National Science Foundation (NSF) under
Grant No. CCR-9505472, and the Max Kade Foundation. One of the authors is
also supported by Austrian Science Fund Project N Z29-INF. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of GSRC, NSF, or the United States
Government.

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 293–309, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

294 P. Chauhan et al.

be characterized as µ−calculus terms. For example, the set of states where the
CTL formula EFφ holds, is given by

EFφ ≡ µS.φ ∨EXS.

Recall that EFφ expresses reachability, i.e., the existence of a path where φ
eventually holds. Such fixpoint translations directly correspond to iterative al-
gorithms.

Symbolic Verification. In practice, the systems to be verified are described by
programs in finite state languages such as SMV or VERILOG. These programs
are then compiled into equivalent Kripke structures. The main practical problem
in model checking is the state explosion problem: the size of the state space of the
system is exponential in the size of its description. Therefore, even for systems
of relatively modest size, it is often impossible to compute their state space
explicitly.

In symbolic verification, the transition relation of the Kripke structure is not
explicitly constructed, but instead a Boolean function representing the transition
relation is computed. Sets of states are also represented as Boolean functions.
Then, the fixpoint algorithms are applied to the formulas rather than to the
Kripke structure. Since the Boolean formula is usually exponentially smaller than
an explicit representation, symbolic verification is often able to alleviate the state
explosion problem in these situations. Binary Decision Diagrams (BDDs) have
been a particularly useful data structure for representing Boolean functions; in
addition to their relative succinctness they provide a canonical representation for
Boolean functions. As a result, equality of two Boolean functions can be easily
checked in this representation.

At the core of all symbolic algorithms is image computation,1 i.e., the task
of computing the set of successors Img(S) of a set of states S, where

Img(S) := {s′ : ∃s.R(s, s′) ∧ s ∈ S}.

Image computation is one of the major bottlenecks in verification. Often it is
impossible to construct a single BDD for the transition relation R. Instead, R is
represented as a partitioned transition relation, i.e., as the conjunction of several
BDDs, each representing a piece of R. The problem is how to compute Img(S)
without actually computing R.

As the above definition of Img indicates, the process of image computation
involves quantifying state variables. In the BDD representation, this amounts to
quantifying over several Boolean state variables. Early quantification [BCL91b,
TSL+90] is a technique which attempts to reorder the conjuncts so that the
scope of each quantifier is minimized. The effect of early quantification is that
the evaluation of single quantifiers can be done over relatively small intermediate
BDDs. An exact definition of early quantification will be given in Sect. 2. The
1 The techniques in this paper also apply to preimage computation. For ease of expo-
sition, we restrict ourselves to image computation.

Using Combinatorial Optimization Methods for Quantification Scheduling 295

success of early quantification hinges heavily upon the derivation and ordering
of sub-relations. Significant effort has been directed over the last decade to this
problem. Since the problem is known to be NP-hard, various heuristics have
been proposed for the problem.

In this paper, we propose and analyze several new techniques for efficient
image computation using the partitioned representation. The main contributions
of the paper are the following:
• We extend and analyze image computation techniques previously developed
by Moon et al. [MKRS00]. These techniques are based on the dependence matrix
of the partitioned transition relation. We explore various lifetime metrics related
to this representation and argue their importance in predicting costs of image
computation. Moreover, we provide effective heuristic techniques to optimize
these metrics.
• We show that the problem of minimizing the lifetime metric of [MKRS00] is
NP complete. More importantly, the reduction used to prove this result explains
the close connection between efficient image computation and the well studied
problem of computing the optimal linear arrangement for an undirected graph.
• We model the interaction between various sub-relations in the partitioned
transition relation as a weighted graph, and introduce a new class of heuristics
called ordering by recursive partitioning.
• We have performed extensive experiments which indicate the effectiveness of
our techniques. By implementing these techniques, we have also contributed to
the code base of the symbolic model checker NuSMV [CCGR99].

The main conclusion to be drawn from our analysis is the following: For
complicated industrial designs, the effort initially spent on ordering algorithms
is clearly amortized during image computation. In other words, the benefits of
good orderings outweigh the cost of slow combinatorial optimization algorithms.

The remainder of this paper is organized as follows: in Sect. 2, we introduce
notations and definitions used throughout the paper. Section 3 reviews the state
of the art for this problem. Section 4 discusses various algorithms that facili-
tate early quantification. Section 5 describes experimental results. Finally, we
conclude in Sect. 6 with some directions for future research.

2 Preliminaries

Notation: Every state is represented as a vector b1 . . . bn ∈ {0, 1}n of Boolean val-
ues. The transition relation R is represented by a Boolean function T (x1, . . . , xn,
x′
1, . . . , x

′
n). Variables X = x1, x2, . . . , xn and X ′ = x′

1, x
′
2, . . . , x

′
n are called cur-

rent state and next state variables respectively. T (X,X ′) is an abbreviation for
T (x1, . . . , xn, x

′
1, . . . , x

′
n). Similarly, functions of the form S(X) = S(x1, . . . , xn)

describe sets of states. We will occasionally refer to S as the set, and to T
as the transition relation. For simplicity we will use X to denote both the set
{x1, . . . , xn} and the vector 〈x1, . . . , xn〉. Then the set of variables on which f
depends is denoted by Supp(f).

296 P. Chauhan et al.

Example 1. [3 bit counter. (Running Example)] Consider a 3-bit counter
with bits x1, x2 and x3. x1 is the least significant and x3 the most significant bit.
The state variables are X = x1, x2, x3, X ′ = x′

1, x
′
2, x

′
3. The transition relation

of the counter can be expressed as

T (X,X ′) = (x′
1 ↔ ¬x1) ∧ (x′

2 ↔ x1 ⊕ x2) ∧ (x′
3 ↔ (x1 ∧ x2) ⊕ x3).

In later examples, we will compute the image Img(S) of the set S(X) = ¬x1.
Note that S(X) contains those states where the counter is even.

Partitioned BDDs: For most realistic designs it is impossible to build a single
BDD for the entire transition relation. Therefore, it is common to represent the
transition relation as a conjunction of smaller BDDs T1(X,X ′), T2(X,X ′), . . . ,
Tl(X,X ′), i.e.,

T (X,X ′) =
∧

1≤i≤l

Ti(X,X ′),

where each Ti is represented as a BDD. The sequence T1, . . . , Tl is called a
partitioned transition relation. Note that T is not actually computed, but only
the Ti’s are kept in memory.

Example 2. [3 bit counter, ctd.] For the 3 bit counter, a very simple parti-
tioned transition relation is given by the functions T1 = (x′

1 ↔ ¬x1), T2 = (x′
2 ↔

x1 ⊕ x2) and T3 = (x′
3 ↔ (x1 ∧ x2) ⊕ x3).

Partitioned transition relations appear naturally in hardware circuits where
each latch (i.e., state variable) has a separate transition function. However, a par-
titioned transition relation of this form typically leads to a very large number
of conjuncts. A large partitioned transition relation is similar to a CNF rep-
resentation. So as the number of conjuncts increases, the advantages of BDDs
are gradually lost. Therefore, starting with a very fine partition T1, . . . , Tl ob-
tained from the bit relations, the conjuncts Ti are grouped together into clusters
C1, . . . , Cr, r < l such that each Ci is a BDD representing the conjunction of
several Ti’s. The image Img(S) of S is given by the following expression.

Img(S(X)) = ∃X · (T (X,X ′) ∧ S(X)) (1)

= ∃X · (
∧

1≤i≤l

Ti(X,X ′) ∧ S(X)) (2)

= ∃X · (
∧

1≤i≤r

Ci(X,X ′) ∧ S(X)) (3)

Note that in general ∃x(α∧β) is not equivalent to (∃xα)∧ (∃xβ). Consequently,
to compute Img(S(X)), formula 3 instructs us to compute first a BDD for∧
1≤i≤r Ci(X,X ′)∧S(X). As argued above, partitioned transition relations have

been introduced to avoid computing this potentially large BDD.

Using Combinatorial Optimization Methods for Quantification Scheduling 297

Early Quantification: Under certain circumstances, existential quantification can
be distributed over conjunction using early quantification [BCL91b,TSL+90].
Early quantification is based on the following observation: if we know that α
does not contain x, then ∃x(α ∧ β) is equivalent to α ∧ (∃xβ). In general, we
have l conjuncts and n variables to be quantified. Since loosely speaking, clusters
correspond to semantic entities of the design to be verified, it is expected that
not all variables appear in all clusters. Therefore, some of the quantifications
may be shifted over several Ci’s. For a given sequence C1, . . . , Cr of clusters, we
obtain

Img(S(X)) = ∃X1 · (C1(X,X ′) ∧ ∃X2 · (C2(X,X ′) . . .
∃Xr · (Cr(X,X ′) ∧ S(X)))) (4)

where Xi is the set of variables which do not appear in Supp(C1) ∪ . . . ∪
Supp(Ci−1) and each Xi is disjoint from each other. Existentially quantifying
out a variable from a formula f reduces |Supp(f)| which usually corresponds to
a reduced BDD size. The success of early quantification strongly depends on the
order of the conjuncts C1, . . . , Cr.

Quantification Scheduling. The size of the intermediate BDDs in image compu-
tation can be reduced by addressing the following two questions:

Clustering: How to derive the clusters C1, . . . , Cr from the bit-relations
T1, . . . , Tl?

Ordering: How to order the clusters so as to minimize the size of the interme-
diate BDDs?

These two questions are not independent. In particular, a bad clustering results
in a bad ordering. Moon and Somenzi [MS00] refer to this combined problem as
the quantification scheduling problem. The ordering of clusters is known as the
conjunction schedule.

Our algorithms are based on the concepts of dependence matrices (introduced
in [MKRS00,MS00]) and sharing graphs.

Definition 1 (Moon et al). The dependence matrix of an ordered set of
functions {f1, f2, . . . , fm} depending on variables x1, . . . , xn is a matrix D with
m rows and n columns such that dij = 1 if function fi depends on variable xj,
and dij = 0 otherwise.

Thus, each row corresponds to a formula, and each column to a variable.
For image computation, we will associate the rows with the conjuncts of the
partitioned transition relation, and the columns with the state variables. For
example, fm = S(X), fm−1 = Cr, Thus, different choices for fi, 1 ≤ i ≤ m
correspond to different orderings.

We will assume that the conjunction is taken in the order fm, fm−1, . . . , f2, f1,
i.e., we consider an expression of the form ∃X (f1 ∧ (f2 ∧ . . . ∧ (fm−1 ∧ fm))). If
a variable occurs only in fm, we can quantify it early by pushing it to the right
just before fm.

298 P. Chauhan et al.

Example 3. [3 bit counter, ctd.] For f4 = S(X), f3 = T3, f2 = T2, f1 = T1
the dependency matrix for our running example looks as follows:

v1 v2 v3 v′
1 v′

2 v′
3

f1 = T1 1 0 0 1 0 0
f2 = T2 1 1 0 0 1 0
f3 = T3 1 1 1 0 0 1

f4 = S(X) 1 0 0 0 0 0

In general, for a variable xj , let lj denote the smallest index i in column j
such that dij = 1. Analogously, hj denotes the largest index. We can quantify
away the variable xj as soon as the conjunct corresponding to the row lj has
been considered. The variable does not appear in any conjuncts after hj . Hence,
hj − lj can be viewed as the lifetime of a variable. Moon, Kukula, Ravi and
Somenzi [MKRS00] define the following metric and use it extensively in their
algorithms.

Definition 2 (Moon, Kukula, Ravi, Somenzi). The normalized average
lifetime of the variables in a dependence matrix Dm×n is given by

λ =

∑
1≤j≤n(hj − lj + 1)

m · n
Note that the definition of λ assumes that S(X) is given. Therefore, since

λ depends on S(X), the ordering has to be recomputed in each step of the
fixpoint computation. We are considering static ordering techniques here, which
are computed independently of any particular S(X), so it is necessary to make
assumptions about the structure of S(X). We obtain two lifetime metrics λU

and λL depending on whether we assume Supp(S) = X or Supp(S) = ∅. It is
easy to see that λL ≤ λ ≤ λU . The terms average active lifetime and total active
lifetime are also used to denote λL and λU respectively. Moon and Somenzi argue
in favour of using λL. We will evaluate the effectiveness of each of these metrics
to predict image computation costs.

3 Related Work

The importance of the clustering and ordering problem was first recognized
by Burch et al. [BCL91a] and Touati et al. [TSL+90]. Geist and Beer [GB94]
proposed a simple heuristic algorithm, in which they ordered conjuncts in the
increasing order of the number of support variables. All these techniques are
static techniques. Subsequently, the same clusters and ordering are used for
all the image computations during symbolic analysis. Since the clustering and
ordering problems are not independent, these techniques typically begin by first
ordering the conjuncts and then clustering them and finally ordering the clusters
again using the same heuristics. The first successful heuristic (commonly known
as IWLS95) for this problem is due to Ranjan et al. [RAP+95]. They have an
elaborate heuristic procedure for ordering the initial conjuncts and the clusters.

Using Combinatorial Optimization Methods for Quantification Scheduling 299

The ordering procedure maintains a set Q of conjuncts that are already ordered
and a set R of conjuncts that are yet to be ordered. Note that we have used
the word conjunct here to mean both the conjuncts before clustering and the
clusters in the final ordering phase. The next conjunct in the order is chosen
from R using a heuristic score. The score is computed by using four factors: the
maximum BDD index of a variable that can be quantified, the number of next
state variables that would be introduced, the number of support variables, and
the number of variables that will be quantified away. After the ordering phase,
the clusters are derived by repeatedly conjoining the conjuncts until the BDD
of the cluster grows larger than some partition size limit, at which point a new
cluster is started. Bwolen Yang proposed a similar technique in his thesis [Yan99].
However, he introduces a pre-merging phase where conjuncts are initially merged
pairwise based on the sharing of support variables and the maximum BDD size
constraint. His ordering heuristic is based on six factors which are similar to
those used by Ranjan et al. [RAP+95]. However, he also takes into account the
relative growth in BDD sizes. The clustering algorithm Yang uses is the same as
the one used in IWLS95. A recent paper by Moon and Somenzi [MS00] presents
an ordering algorithm (henceforth referred to as FMCAD00) based on computing
the Bordered Block Triangular form of the dependence matrix. Their clustering
algorithm is based on the sharing of support variables (affinity). They report
large performance gains with respect to the IWLS95 technique.

4 Algorithms for Ordering Clusters

The algorithms we propose also follow the order-cluster-order strategy. The or-
dering algorithms that we present in this section are used before and after cluster-
ing. Our clustering strategy is as in IWLS95. For the sake of clarity of notation,
let us assume that the clusters C1, C2, . . . , Cr have been constructed and we are
ordering them. But the discussion applies equally well to ordering the initial
conjuncts T1, . . . , Tn.

We present two classes of algorithms. The first one is based on dependence
matrix and the other one on sharing graphs.

In Sect. 2 we defined a dependence matrix D corresponding to the set of
clusters C1, · · · , Cr. As already pointed out, the number of support variables
provides a good estimate of the size of a BDD. Therefore, we seek a schedule
in which the lifetime of variables is low. Moon and Somenzi [MS00] provide a
method to convert a dependence matrix into bordered block triangular form
with the goal of reducing λL.

4.1 Minimizing λ is NP-Complete

The main result of this subsection (Theorem 1) motivates the use of various
combinatorial optimization methods.

Let λ-OPT be the following decision problem: given a dependence matrix
D and a number r, does there exist a permutation σ of the rows of D such

300 P. Chauhan et al.

that λ < r? The following theorem shows that λ − OPT is NP-complete. The
reduction is from the optimal linear arrangement problem (OLA) [GJ79, page
200]. Due to space limitations the proof is given in the appendix.

Theorem 1. λ-OPT is NP-complete.

The complexity of this problem was not explored by Moon and
Somenzi [MS00]. There exists a variety of heuristics for solving the optimal lin-
ear arrangement problem and related problems in combinatorial optimization.
Some of these heuristics are based on hill climbing and simulated annealing.
There are two important characteristics of this class of algorithms. First of all,
they all try to minimize an underlying cost function. Second, these heuristics use
a finite set of primitive transformations, which allows them to move from one
solution to another. In our case, the set of swaps of the rows of the dependence
matrix constitutes the set of moves and the cost function can be chosen to be
either λL or λU . Our experimental results (Sect. 5) confirm that λL correlates
with image computation costs much better than λU does, in accordance with
the claim of [MS00]. Simulated annealing is a more general and flexible strategy
than hill climbing.

4.2 Hill Climbing

Hill climbing is the simplest greedy strategy in which at each point, the solution
is improved by choosing two rows to be swapped in such a manner as to achieve
best improvement in the cost function. This process is repeated until no further
move improves the solution. Since the best move is chosen at each point, this
strategy is also called steepest descent hill climbing. However, this algorithm can
easily get stuck in local optima. Randomization is used to alleviate this problem
as follows: The best move that improves the solution is accepted only with some
probability p, and with probability 1−p, a random move is accepted. This allows
the algorithms to get out of local optima. Note that with p = 1.0, we get the
steepest descent hill climbing. The algorithm can be run multiple number of
times, each time beginning with a random permutation, and the best solution
that is achieved is accepted.

Figure 1 describes the algorithm in exact terms. The hill climbing procedure
is repeated NumStarts times. In the algorithm, σ denotes a permutation of
the rows of the dependency matrix. Hill climbing is performed until no further
improvement in λ is possible.

4.3 Simulated Annealing

The physical process of annealing involves heating a piece of metal and letting
it cool down slowly to relieve stresses in the metal. The simulated annealing
algorithm (introduced by Metropolis et al. [MRR+53]) mimicks this process to
solve large combinatorial optimization problems [KJV83]. Drawing analogy from
the physical process of annealing, the algorithm begins at a high “temperature”,

Using Combinatorial Optimization Methods for Quantification Scheduling 301

HillClimbOrder(D)
1 λbest = 2 // any number greater than 1 will do, since λ is always less than 1
2 for i = 1 to NumStarts

3 let σ′ be a random permutation of conjuncts.
4 while there exists a swap in σ′ to reduce λ
5 make the best swap with probability p,
6 or make a random swap with probability 1− p to update σ′.
7 if λ′ < λbest

8 λbest = λ′

9 σbest = σ

10 endif
11 endfor

Fig. 1. Hill climbing algorithm for minimizing λ

where the set of moves is essentially random. This allows larger jumps from
local to global optima. Gradually, the temperature is decreased and the moves
become less random favoring greedy moves over random moves for achieving a
global optimum. Finally, the algorithm terminates at “freezing” temperatures
where no further moves are possible. At each stage, the temperature is kept
constant until “thermal quasi-equilibrium” is reached. While random moves help
in the beginning, when the algorithm has a greater tendency to get stuck in local
optima, the greedy moves help to achieve a global optimum once the solution is
in the proximity of one. In practice, simulated annealing has been successfully
used to solve optimization problems from several domains.

The probability of making a move that increases the cost function is related
to the temperature ti at the i-th iteration, and is given by e−∆λ/ti . Thus at higher
temperatures, the probability of accepting random moves is high. The gradual
decrease of temperature is called the cooling schedule. If the temperature is
decreased by a fraction r in each stage, we get an exponential cooling schedule.
Thus beginning with an initial temperature of t0, the temperature in the i-
th iteration is t0r

i. It has been shown that a logarithmic cooling schedule is
guaranteed to achieve an optimal solution with high probability [B’e92,Haj85].
However, this is an extremely slow cooling schedule and simple cooling schedules
like exponential schedules perform well for many problems. Figure 2 describes
our algorithm. The parameter NumStarts controls the number of times the
temperature is decreased. The parameter NumStarts2 controls the number of
iterations at a fixed temperature ti.

4.4 Sharing Graphs and Separators

We build sharing graphs as defined below to model interaction between clusters.

302 P. Chauhan et al.

SimAnnealOrder(D)
for i = 1 to NumStarts

1 ti ← t0r
i

2 for j = 1 to NumStarts2
3 permute two random rows of D to get Di

4 if (λi < λ) // greedy move
5 λ← λi;D ← Di

6 else // random move

7 with probability e
−(λi−λ)

ti , set λ← λi;D ← Di

8 endif
9 endfor
10 endfor

Fig. 2. Simulated annealing algorithm to minimize λ

Definition 3. A sharing graph corresponding to a set of Boolean functions
{f1, f2, . . . , fm} is a weighted graph G(V,E,we), where V = {f1, f2, . . . , fm},
E = V × V and we : E → � is a real-valued weight function.

We shall use heuristic weight functions to express interaction between clus-
ters. Intuitively, the stronger the interaction between two clusters, the closer
they should be in the ordering. IWLS95 and Bwolen Yang’s heuristics order the
conjuncts based on this type of interaction between conjuncts. We propose to
use graph algorithms on sharing graphs to order the conjuncts. We define the
weight w(Ti, Tj) of an edge (Ti, Tj) in the sharing graph as

w(Ti, Tj) = W1 · Supp(Ti) ∩ Supp(Tj)
|Supp(Ti)| + |Supp(Tj)| + W2 · BddSize(Ti ∧ Tj)

BddSize(Ti) + BddSize(Tj)

The first factor (W1 ≥ 0) denotes the relative weight of sharing of support
between two conjuncts, while the second factor (W2 ≤ 0) denotes the weight of
the relative growth in the sizes of BDDs if these two conjuncts are conjoined.
Therefore, a higher edge weight between two conjuncts indicates a higher degree
of interaction and consequently these conjuncts should appear “close” in the
ordering.

A separator partitions the vertices of a weighted undirected graph into two
sets such that the total weight of the edges between two partitions is “small”.
Formally, an edge separator is defined as follows:

Definition 4. Given a weighted undirected graph G(V,E) with two weight func-
tions we : E → � and wv : V → �, and a positive constant γ < 0.5, an edge
separator is a collection of edges Es such that removing Es from G partitions G

into two disconnected subgraphs V1 and V2, and
|
∑

v∈V 1
wv(v)−

∑
v∈V 2

wv(v)|∑
v∈V

wv(v)
< γ.

Using Combinatorial Optimization Methods for Quantification Scheduling 303

Usually, γ is chosen very close to zero so that the size of the two sets is ap-
proximately the same. The weight of the edge separator Es is simply the sum of
the weight of the edges in Es. It has been shown that finding an edge separator
of minimum weight is NP-complete [GJ79, pp. 209], in fact finding an approxi-
mation is NP-hard, too [BJ92]. The problem of finding a good separator occurs
in many different contexts and a wide range of application areas. A large number
of heuristics have been proposed for the problem. One of the most important
heuristics is due to Kernighan and Lin [KL70]. Variations of this heuristic [FM82]
have been found to work very well in practice.

By finding a good edge separator of the sharing graph, we obtain two sets of
vertices with a low level of interaction between them. Thus the vertices of these
two sets can be put apart in the ordering. A complete ordering is achieved by
recursively invoking the algorithm on the two halves. Since this ordering respects
the interaction strengths between conjuncts, we expect to achieve smaller BDD
sizes.

We use the Kernighan-Lin algorithm for finding a good edge separator Es.
This produces two sets of vertices L and R. A vertex v ∈ L that has an edge
of non-zero weight to a vertex in R is called an interface vertex. LI denotes the
set of interface vertices in L. Similarly, RI denotes the set of interface vertices
in R. We invoke the algorithm to recursively order L \ LI , LI , RI , and R \ RI .
Finally, the order on the vertices is given by the order on L \LI followed by the
order on LI , followed by the order on RI , and followed by the order on R \ RI .
Figure 3 describes the complete algorithm.

KLinOrder(G(V,E),W)
1 Find a separator Es using

Kernighan-Lin heuristic
2 Let L and R be two partitions of

vertices induced by Es.
3 Li ← Interface(L).
4 Ri ← Interface(R).
5 Recursively call the procedure on

the subgraphs induced by L \ Li, Li,
Ri and R \Ri.

6 Order the vertices as
KLinOrder(L \ Li) ≺ KLinOrder(Li) ≺
KLinOrder(Ri) ≺ KLinOrder(R \Ri).

Fig. 3. An ordering algorithm based on graph
separators

RL
Li Ri

Fig. 4. Kernighan-Lin partition

304 P. Chauhan et al.

5 Experimental Results

In order to evaluate the effectiveness of our algorithms, we ran reachability and
model checking experiments on circuits obtained from the public domain and
industry. The “S” series of circuits are ISCAS’93 benchmarks, and the “IU” series
of circuits are various abstractions of an interface control circuit from Synopsys.
For a fair comparison, we implemented all the techniques in the NuSMV model
checker. All experiments were done on a 200MHz quad Pentium Pro processor
machine running the Linux operating system with 1GB of main memory. We
restricted the memory usage to 900MB, but did not set a time limit. The two
performance metrics we measured are running time and peak number of live
BDD nodes. We provided a prior ordering to the model checker and turned off
the dynamic variable reordering option. This was done so that the effects of BDD
variable reordering do not “pollute” the result. We also recorded the fraction of
time spent in the clustering and ordering phases. The cost of these phases is
amortized over several image computations performed during model checking
and reachability analysis.

In the techniques that we have described, several parameters have to be
chosen. For example, the cooling schedule in the case of simulated annealing
needs to be determined. We ran extensive “tuning experiments” to find the best
value for these parameters. Due to space constraints, we do not describe all those
experiments. However, the choice of lifetime metric to optimize is a crucial one
and hence in our first set of experiments, we evaluate the effectiveness of these
metrics for predicting image computation costs.

Our algorithms for combinatorial optimization of lifetime metrics can choose
to work with either upper or lower approximations of lifetimes. We ran the
following experiment to estimate the correlation between the performance, and
λL and λL respectively. We generate various conjunction schedules for a number
of benchmarks by different ordering methods and by varying various parameters
of the optimization methods. Each schedule gives us different values for lifetime
metrics. We measure the running time and the peak number of live BDD nodes
used for the model checking or reachability phase. For each circuit, this gives
us four scatter plots for running time vs lifetime metric and space vs lifetime
metric. A statistical correlation coefficient between runtime/space and lifetime
metric indicates the effectiveness of a metric for predicting the runtime/space
requirement. The following Table 1 concisely summarizes the correlation results.

It is clear from this data that the active lifetime (λL) is a much more accurate
predictor of image computation costs than total lifetime (λU). Hence, simulated
annealing and hill climbing techniques optimize λL.

In the following set of experiments (Table 2), we compare our techniques
against the FMCAD00 strategy [MS00]. The first column indicates the total
running time of the benchmark (including ordering/clustering and model check-
ing/reachability phases), the second column indicates the peak number of live
BDD nodes in thousands during the whole computation, the third column in-
dicates time used by ordering phase, the next two columns indicate λL and λU

achieved. From hill climbing and simulated annealing, we only report the results

Using Combinatorial Optimization Methods for Quantification Scheduling 305

Table 1. Correlation between various lifetime metrics and runtime/space for a repre-
sentative sample of benchmarks

Circuit Runtime Space
λL λU λL λU

IU40 0.560 0.303 0.610 0.227
IU70 0.603 0.336 0.644 0.263
TCAS 0.587 0.366 0.628 0.240
S1269 0.536 0.402 0.559 0.345
S3271 0.572 0.350 0.602 0.297

of simulated annealing, as both of them belong to the same class of algorithms.
Moreover, we found out that in general, simulated annealing achieves better
performance than hill climbing.

The algorithm KLin based on edge separators achieves lower peak live node
count for several circuits than FMCAD00. For the 15 large benchmarks for which
FMCAD’00 takes more than 100 secs to finish, KLin wins 10 cases in terms of
Peak live BDD nodes, and 7 cases in terms of running time. In some cases, the
savings in space is 40%.

The result for the simulated annealing algorithm that minimizes λ is shown in
Table 2. Again, in comparison to FMCAD00, for the 15 non-trivial benchmarks,
simulated annealing wins 14 cases and ties for the other in space, and wins 11
cases in time. In some cases, the savings in space is 55%. The simulated annealing
algorithm can also complete 16 reachability steps for the S1423 circuit, which to
our knowledge has not be achieved by other techniques. Comparing KLin and
simulated annealing, simulated annealing achieves the better results for all the
nontrivial benchmarks.

The improvements in execution times are less than the improvements in
space, especially for smaller circuits. This is because separator based algorithms
spend more time in the ordering phase itself. However, for larger circuits, this
cost gets amortized by the smaller BDDs achieved during analysis. An important
observation that can be made is that in general, our algorithms spend more time
in the initial ordering phase as compared to FMCAD00. This is to be expected
since both KLin and simulated annealing are optimization methods.

The last two columns in Table 2 indeed demonstrate that our algorithms
improve various λs with respect to FMCAD’00. The main objective of our algo-
rithms was to improve λL, though we can see that they also result in better λU s
in general.

6 Conclusions and Future Work

We have given convincing evidence that variable lifetimes have a crucial impact
on the performance of image computation algorithms. We have also presented
new algorithms for conjunction scheduling based on hill climbing, simulated
annealing, and graph separators and shown the effectiveness of them. The per-

306
P
.
C
hauhan

et
al.

Table 2. Comparing FMCAD00(I), Kernighan-Lin separator (II) and Simulated annealing (III) algorithms. The times are reported in
seconds. The peak space is reported by the peak number of live BDD nodes in thousands. (MOut)–Out of memory, (†)–SFEISTEL,
(*)–8 reachability steps, (**)–14 reachability steps, (#)–13 reachability steps. The lifetimes reported are after the final ordering phase.

Circuit #FF #inp. log2 of Total Time Peak space Ordering time λL λU

#reach I II III I II III I II III I II III I II III
IDLE 73 0 14.63 159 161 182 289 276 223 2 20 29 0.329 0.293 0.200 0.421 0.515 0.487
GUID 91 0 47.58 14 20 24 137 106 138 4 15 19 0.346 0.220 0.165 0.394 0.452 0.294
S953 29 16 8.98 1 2 3 15 13 15 1 1 3 0.290 0.290 0.271 0.507 0.485 0.410
IU30 30 138 18.07 28 104 63 290 563 290 3 24 34 0.360 0.368 0.324 0.459 0.522 0.634
IU35 35 183 22.49 13 29 11 257 366 202 4 24 6 0.364 0.373 0.304 0.573 0.360 0.308
IU40 40 159 25.85 13 37 14 353 384 232 5 21 5 0.326 0.336 0.302 0.508 0.326 0.334
IU45 45 183 29.82 MOut 11256 165 MOut 3952 483 10 32 39 0.360 0.353 0.300 0.465 0.663 0.569
IU50 50 615 31.57 476 522 540 1627 1599 1602 16 52 77 0.319 0.418 0.133 0.459 0.654 0.403
IU55 55 625 33.94 982 891 870 4683 3358 3298 14 90 84 0.384 0.386 0.324 0.583 0.432 0.515
IU65 65 632 39.32 MOut 1260 1083 MOut 7048 6793 18 81 100 0.389 0.353 0.353 0.659 0.448 0.423
IU70 70 635 42.07 5398 3033 2855 17355 9099 9964 38 95 129 0.303 0.296 0.286 0.424 0.393 0.486
IU75 75 322 46.59 5367 4218 3822 16538 12193 9404 45 115 140 0.398 0.371 0.349 0.731 0.692 0.526
IU80 80 350 49.80 MOut 6586 4824 MOut 22234 17993 49 127 136 0.372 0.335 0.322 0.570 0.628 0.345
IU85 85 362 52.14 MOut MOut 6933 MOut MOut 25661 59 141 154 0.332 0.303 0.287 0.623 0.597 0.591
TCAS 139 0 106.87 5058 5285 4598 11931 12376 9140 27 173 165 0.173 0.182 0.227 0.299 0.306 0.261
S1269 37 18 30.07 2109 2466 1875 1440 1736 893 10 19 24 0.584 0.622 0.449 0.659 0.929 0.589
S1512 57 29 40.59 799 1794 651 159 190 135 15 24 30 0.412 0.394 0.386 0.521 0.619 0.714
S5378 179 35 57.71* 18036 MOut 10168 1632 MOut 1279 42 49 67 0.124 0.114 0.099 0.219 0.164 0.152
S4863 104 49 72.35 3565 3109 3013 1124 947 910 38 45 56 0.102 0.103 0.086 0.251 0.109 0.179
S3271 116 26 79.83 4234 3286 3399 8635 6240 6203 33 30 30 0.224 0.185 0.184 0.366 0.306 0.226
S3330 132 40 86.64 23659 19533 24563 12837 9866 11381 69 123 150 0.214 0.217 0.227 0.299 0.335 0.378
SFE† 293 69 218.77 863 916 762 147 146 130 14 84 76 0.383 0.354 0.344 0.554 0.624 0.531
S1423 74 17 37.41** 23325 19265# 35876 65215 27653# 48366 10 17 35 0.486 0.501 0.301 0.622 0.622 0.460

Using Combinatorial Optimization Methods for Quantification Scheduling 307

formance of these algorithms was comparable to that of the current best known
methods. Our experiments clearly demonstrate that for large circuits, we can
achieve savings in memory in the range of 50-60%. Since fine-tuned image com-
putation algorithms are obviously most important for large circuits, we believe
that our results are a significant contribution to model checking and reachability
analysis. On the implementation side, we have contributed several new image
computation algorithms to the NuSMV model checker, and believe that it will
be a valuable research tool.

There are some interesting research directions to pursue. First of all, we
need to understand the behavior of our algorithms on broader class of systems.
The examples were mostly chosen from the circuit domain, and we would like
to see the effectiveness of these algorithms on other class of circuits. Secondly,
techniques which switch between different conjunction schedules depending on
intermediate state sets in the fixpoint computation seem to be promising. We also
plan to study in greater depth the effect of various parameters of our methods
and automatic ways to tune them.

References

[BCL91a] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more
efficiently in Symbolic Model Checking. In 28th ACM/IEEE Design Au-
tomation Conference, 1991.

[BCL91b] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Checking
with partitioned transition relations. In A. Halaas and P. B. Denyer, edi-
tors, Proceedings of the International Conference on Very Large Scale Int
egration, Edinburgh, Scotland, August 1991.

[B’e92] C. J. P. B’elisle. Convergence theorems for a class of simulated annealing
algorithms. Journal of Applied Probability, 29:885–892, 1992.

[BJ92] T. N. Bui and C. Jones. Finding good approximate vertex and edge parti-
tions is NP-hard. Information Processing Letters, 42:153–159, 1992.

[CCGR99] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A
new Symbolic Model Verifier. In N. Halbwachs and D. Peled, editors,
Proceedings of International Conference on Computer-Aided Verification
(CAV’99), number 1633 in Lecture Notes in Computer Science, pages 495–
499. Springer, July 1999.

[CGP00] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[FM82] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for improving
network partitions. In 19th ACM/IEEE Design Automation Conference,
pages 175–181, 1982.

[GB94] D. Geist and I. Beer. Efficient Model Checking by automated ordering
of transition relation partitions. In D. L. Dill, editor, Sixth Conference
on Computer Aided Verification (CAV’94), volume 818 of LNCS, pages
299–310, Stanford, CA, USA, 1994. Springer-Verlag.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[Haj85] B. Hajek. A tutorial survey of theory and applications of simulated an-
nealing. In Proc. 24th IEEE Conf. Decision and Control, pages 755–760,
1985.

308 P. Chauhan et al.

[KJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220:671–679, 1983.

[KL70] Brian Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. The Bell System Technical Journal, pages 291–307, February
1970.

[MKRS00] In-Ho Moon, James H. Kukula, Kavita Ravi, and Fabio Somenzi. To split
or to conjoin: The question in image computation. In Proceedings of the
37th Design Automation Conference (DAC’00), pages 26–28, Los Angeles,
June 2000.

[MRR+53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines. Jour-
nal of Chemical Phyics, 21(6):1087–1092, 1953.

[MS00] In-Ho Moon and Fabio Somenzi. Border-block triangular form and conjunc-
tion schedule in image computation. In Warren A. Hunt Jr. and Steven D.
Johnson, editors, Proceedings of the Formal Methods in Computer Aided
Design (FMCAD’00), volume 1954 of LNCS, pages 73–90, November 2000.

[RAP+95] R.K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R.K. Brayton. Efficient
BDD algorithms for FSM synthesis and verification. In IEEE/ACM Inter-
national Workshop on Logic Synthesis, Lake Tahoe, 1995. IEEE/ACM.

[TSL+90] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Implicit enumeration of finite state machines using BDDs. In Proceedings of
the IEEE international Conference on Computer Aided Design (ICCAD),
pages 130–133, November 1990.

[Yan99] Bwolen Yang. Optimizing Model Checking Based on BDD Characterization.
PhD thesis, Carnegie Mellon University, Computer Science Department,
May 1999.

Appendix A

It is easy to see that for a given permutation σ of rows, we can compute λ in polynomial
time (O(n ·m)) and check if λ ≤ r.

To show that λ−OPT is NP-hard, we reduce a known NP-complete problem called
optimal linear arrangement (OLA) [GJ79, page 200] to λ−OPT . An instance of OLA
consists of a graph G(V,E) and a positive integer K. The question is whether there
exists a permutation f of V such that

∑
(u,v)∈E

|f(u) − f(v)| ≤ K. The reduction
consists of constructing a dependence matrix D and a number r such that (V,E),K
is a solution of OLA iff D, r is a solution to λ − OPT . An example of a reduction is
given in figure 5.

Formally, D has |V | rows corresponding to the vertices of G(V,E), and |E| columns
corresponding to the edges of G(V,E). For any edge ek = (vi, vj), set dik = djk = 1 and
set all other dij ’s to 0. Thus, in each column there are two occurences of the symbol
1. We set r = K+n

n·m . Trivially we obtain the following equivalence:
∑

1≤j≤n
(hj − lj + 1)

n ·m ≤ r

⇔
∑

1≤j≤n

(hj − lj + 1) ≤ r · (n ·m)

⇔
∑

1≤j≤n

(hj − lj + 1) ≤ K + n

Using Combinatorial Optimization Methods for Quantification Scheduling 309

❦

❦ ❦

❦❦

�
�� ❅

❅❅

v1

e6

e4
v3

e3

v5

v2

e5

v4

e1 e2

K = 9
(a)

1 2 3 4 5 6
1 1 1 0 0 0 0
2 1 0 0 1 1 0
3 0 1 1 1 0 0
4 0 0 1 0 0 1
5 0 0 0 0 1 1

(b)
r = K+n

n·m = 1/2

Fig. 5. (a) An instance of Optimal Linear Arrangement, (b) its reduction to λ−OPT .
The permutation v1, v2, v3, v5, v4 is a solution to both.

Let σ be a permutation of the vertices of V . Note that σ simultaneously is a permutation
of the rows of D. We have to show that σ is a solution of G(V,E),K iff σ is a solution
of D, r.

The important observation is that because of the construction of D, the only non-
zero entries in each column j correspond to the two vertices of the edge ej = (u, v).
Therefore, we conlude that hj − lj = |σ(u)− σ(v)|. Continuing the above equivalence
we obtain

∑

1≤j≤n

|σ(u)− σ(v)|+ n ≤ K + n

⇔
∑

(u,v)∈E

|f(u)− f(v)| ≤ K

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Algorithms for Ordering Clusters
	4.1 Minimizing λ is NP-Complete
	4.2 Hill Climbing
	4.3 Simulated Annealing
	4.4 Sharing Graphs and Separators

	5 Experimental Results
	6 Conclusions and Future Work
	Appendix A

