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Abstract. In this paper, we present a new tool SReach, which solves
probabilistic bounded reachability problems for two classes of mod-
els of stochastic hybrid systems. The first one is (nonlinear) hybrid
automata with parametric uncertainty. The second one is probabilistic
hybrid automata with additional randomness for both transition prob-
abilities and variable resets. Standard approaches to reachability prob-
lems for linear hybrid systems require numerical solutions for large opti-
mization problems, and become infeasible for systems involving both
nonlinear dynamics over the reals and stochasticity. SReach encodes
stochastic information by using a set of introduced random variables,
and combines d-complete decision procedures and statistical tests to
solve d-reachability problems in a sound manner. Compared to stan-
dard simulation-based methods, it supports non-deterministic branching,
increases the coverage of simulation, and avoids the zero-crossing prob-
lem. We demonstrate SReach’s applicability by discussing three represen-
tative biological models and additional benchmarks for nonlinear hybrid
systems with multiple probabilistic system parameters.

1 Introduction

Stochastic hybrid systems (SHSs) are dynamical systems exhibiting discrete, con-
tinuous, and stochastic dynamics. Due to the generality, they have been widely
used in various areas, including biological systems, financial decision problems,
and cyber-physical systems [2,6]. One elementary question for the quantitative
analysis of SHSs is the probabilistic reachability problem, considering that many
verification problems can be reduced to reachability problems. It is to compute
the probability of reaching a certain set of states. The set may represent certain
unsafe states which should be avoided or visited only with some small proba-
bility, or dually, good states which should be visited frequently. This problem
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is no longer a decision problem, as it generalizes that by asking what is the
probability that the system reaches the target region. For SHSs with both sto-
chastic and non-deterministic behavior, the problem results in general in a range
of probabilities, thereby becoming an optimization problem.

To describe stochastic dynamics, uncertainties have been added to hybrid
systems in various ways. One way expresses random initial values and stochas-
tic dynamical coeflicients using random variables, resulting in hybrid automata
(HAs) [13] with parametric uncertainty. Another approach integrates determin-
istic flows with probabilistic jumps. When state changes forced by continuous
dynamics involve discrete random events, we refer to such systems as proba-
bilistic hybrid automata (PHAs) [20]. When continuous probabilistic events are
also involved, we call them stochastic hybrid automata (SHAs) [9]. Other models
substitute deterministic flows with stochastic ones, such as stochastic differential
equations (SDEs) [1], where the random perturbation affects the dynamics con-
tinuously. When all such modifications have been applied, the resulting models
are called general stochastic hybrid systems (GSHSs) [15]. Among these different
models, of particular interest for this paper are HAs with parametric uncertainty
and PHAs with additional randomness for both transition probabilities and vari-
able resets. Note that, in the following, we use notations - HA,, and PHA,. - for
these two model classes respectively.

When modeling real-world systems, such as biological systems and cyber-
physical systems, using hybrid models, parametric uncertainty arises naturally.
Although its cause is multifaceted, two factors are critical. First, probabilistic
parameters are needed when the physics controlling the system is known, but
some parameters are either not known precisely, are expected to vary because
of individual differences, or may change by the end of the system’s operational
lifetime. Second, system uncertainty may occur when the model is constructed
directly from experimental data. Due to imprecise experimental measurements,
the values of system parameters may have ranges of variation with some associ-
ated likelihood of occurrence. Clearly, the HA,s are suitable models considering
these major causes. Note that, in both cases, we assume that the probability dis-
tributions of probabilistic system parameters are known and remain unchanged
throughout the systems evolution.

As another interesting and more expressive class of models, PHAs extend HAs
with discrete probability distributions. More precisely, for discrete transitions in
a model, instead of making a purely (non)deterministic choice over the set of
currently enabled jumps, a PHA (non)deterministically chooses among the set of
recently enabled discrete probability distributions, each of which is defined over a
set of transitions. Although randomness only influences the discrete dynamics of
the model, PHASs are still very useful and have interesting practical applications
[21]. In this paper, we consider a variation of PHAs, where additional random-
ness for both transition probabilities and resets of system variables are allowed.
In other words, in terms of the additional randomness for jump probabilities,
we mean that the probabilities attached to probabilistic jumps from one mode,
instead of having a discrete distribution with predefined constant probabilities,
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can be expressed by equations involving random variables whose distributions
can be either discrete or continuous. This extension is motivated by the fact
that some transition probabilities can vary due to factors such as individual and
environmental differences in real-world systems. When it comes to the random-
ness of variable resets, we allow that a system variable can be reset to a value
obtained according to a known discrete or continuous distribution, instead of
being assigned a fixed value.

In this paper, we describe our tool SReach which supports probabilistic
bounded J-reachability analysis for the above two model classes. It combines
the recently proposed d§-complete bounded reachability analysis technique [11]
with statistical testing techniques. SReach saves the virtues of the Satisfiabil-
ity Modulo Theories (SMT) based Bounded Model Checking (BMC) for HAs
[7,23], namely the fully symbolic treatment of hybrid state spaces, while advanc-
ing the reasoning power to probabilistic models. Furthermore, by utilizing the
d-complete analysis method, the full non-determinism of models will be consid-
ered. The coverage of simulation will be increased, as the J-complete analysis
method results in an over-approximation of the reachable set, whereas simulation
is only an under-approximation of it. The zero-crossing problem can be avoided
as, if a zero-crossing point exists, it will always return an interval containing
it. By using statistical tests, SReach can place controllable error bounds on the
estimated probabilities. We discuss three biological models - an atrial fibrilla-
tion model, a prostate cancer treatment model, and our synthesized Killerred
biological model - to show that SReach can answer questions including model
validation /falsification, parameter synthesis, and sensitivity analysis. To further
demonstrate its applicability, we also apply it to additional real-world hybrid
systems with parametric uncertainty.

Related Work. Hahn et al. promoted an abstraction-based method where the
given PHA is abstracted into an n-player stochastic game [12], albeit being
limited to linear dynamics. Franzle et al. proposed a Stochastic SMT-based
procedure [10]. But their tool SiSAT supports only discrete random variables.
Ellen et al. [8] proposed a statistical model checking technique for verifying
hybrid systems with continuous non-determinism, thereby expanding the class
of systems analyzable, yet confined dynamics to (non-linear) pre-post conditions
rather than ODEs. SReach supports both discrete and continuous random vari-
ables, and ODEs. ProbReach [19] also uses the d-complete procedures and offers
verified estimated probability interval containing the real probability, yet can
only deal with hybrid systems with initial random variables. While SReach is
able to handle probabilistic transitions as well.

The paper proceeds by introducing two model classes of SHSs under consid-
eration in Sect. 2. Section 3 formally states probabilistic bounded d-reachability
problems and explains how SReach solves these problems by combining
d-complete decision procedures with statistical tests. Case studies and additional
experiments are discussed in Sect. 4. Section 5 concludes the paper.



18 Q. Wang et al.

2 Stochastic Hybrid Models

Before introducing the algorithm implemented by SReach and the problems that
it can handle, we first define two model classes that SReach considers formally.
For HAps, we follow the definition of HAs in [13], and extend it to consider
probabilistic parameters in the following way.

Definition 1 (HA,). A hybrid automaton with parametric uncertainty is a
tuple H, = ((Q, E),V, RV, Init, Flow, Inv, Jump, X}, where

— The vertices Q = {q1," - ,qm} 1S a finite set of discrete modes, and edges in
E are control switches.
-V= {v1,-++ ,v,} denotes a finite set of real-valued system variables. We write

V' to represent the first derivatives of variables during the continuous change,
and write V' to denote values of variables at the conclusion of the discrete
change.

- RV ={ws, - ,wi} is a finite set of independent random variables, where the
distribution of w; is denoted by P;.

— Init, Flow, and Inv are labeling functions over Q. For each mode q € @Q, the
initial condition Init(q) and invariant condition Inv(q) are predicates whose
free variables are from V' U RV, and the flow condition Flow(q) is a predicate
whose free variables are from V UV U RV.

— Jump is a transition labeling function that assigns to each transition e € E a
predicate whose free variables are from VUV’ U RV.

- X is a finite set of events, and an edge labeling function event : £ — X
assigns to each control switch an event.

Another class is PHA,.s, which extend HAs with discrete probability transi-
tions and additional randomness for transition probabilities and variable resets.

Definition 2 (PHA,). A probabilistic hybrid automaton with additional ran-
domness H, consists of Q,FE,V, RV, Init,Flow,Inv, X as in Definition 1, and
Cmds, which is a finite set of probabilistic guarded commands of the form:

g—pr:iur+ -+ Pmt Un,

where g is a predicate representing a transition guard with free variables from
V, p; is the transition probability for the ith probabilistic choice which can be
expressed by an equation involving random variable(s) in RV and the p;’s satisfy
S pi =1, and u; is the corresponding transition updating function for the ith
probabilistic choice, whose free variables are from V UV’ U RV.

To illustrate the additional randomness allowed for transition probabilities and
variable resets, an example probabilistic guarded commandisz > 5 — p; : (¢/ =
sin(z))+(1—p1) : (&' = ps), where x is a system variable, p; has a Uniform distri-
bution U(0.2,0.9), and p, has a Bernoulli distribution B(0.85). This means that,
the probability to choose the first transition is not a fixed value, but a random one

having a Uniform distribution. Also, after taking the second transition, x can be
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assigned to either 1 with probability 0.85, or 0 with 0.15. In general, for an individ-
ual probabilistic guarded command, the transition probabilities can be expressed
by equations of one or more new random variables, as long as values of all transition
probabilities are within [0, 1], and their sum is 1. Currently, all four primary arith-
metic operations are supported. Note that, to preserve the Markov property, only
unused random variables can be used, so that no dependence between the current
probabilistic jump and previous transitions will be introduced.

3 SReach Algorithm

A recently proposed d-complete decision procedure [11] relaxes the reachabil-
ity problem for HAs in a sound manner: it verifies a conservative approxima-
tion of the system behavior, so that bugs will always be detected. The over-
approximation can be tight (tunable by an arbitrarily small rational parame-
ter d), and a false alarm with a small § may indicate that the system is frag-
ile, thereby providing valuable information to the system designer (see [11] for
details). We now define the probabilistic bounded d-reachability problem based
on the bounded d-reachability problem defined in [11].

Definition 3. The probabilistic bounded k step 0-reachability for a HA, H), is to
compute the probability that H,, reaches the target region T in k steps. Given the
set of independent random variables r, Pr(r) a probability measure over r, and
{2 the sample space of r, the reachability probability is fQ Ip(r)dPr(r), where
I (r) is the indicator function which is 1 if H, with r reaches T in k steps.

Definition 4. For a PHA, H,, the probabilistic bounded k step §-reachability
estimated by SReach is the mazximal probability that H, reaches the target region
T in k steps: maxgeEPr’f{mg,T(i), where E is the set of possible executions of
H starting from the initial state i, and o is an execution in the set E.

After encoding uncertainties using random variables, SReach samples them
according to the given distributions. For each sample, a corresponding interme-
diate HA is generated by replacing random variables with their assigned values.
Then, the é-complete analyzer dReach is utilized to analyze each intermediate
HA M;, together with the desired precision § and unfolding depth k. The ana-
lyzer returns either unsat or d-sat for M;. This information is then used by
a chosen statistical testing procedure to decide whether to stop or to repeat
the procedure, and to return the estimated probability. The full procedure is
illustrated in Algorithm 1, where MP is a given stochastic model, and ST indi-
cates which statistical testing method will be used (See the tool website for
various statistical tests that supported by SReach and the way to control the
induced statistical error bounds). Succ and N are used to record the number
of §-sat instances and total samples generated so far respectively, and are then
the inputs of ST. Note that, for a PHA,., sampling and fixing the choices of
all the probabilistic transitions in advance results in an over-approximation of
the original PHA,, where safety properties are preserved. To promise a tight
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Algorithm 1. SReach

1: function SREACH(MP, ST, ¢, k)
2: if MP is a HA, then

3: MP — EncRM;(MP) > encode uncertain system parameters
4: else > otherwise a PHA,.
5: MP — EncRM>(MP) 1 encode probabilistic jumps and extra randomness
6: end if
T Suce, N «— 0 > number of d-sat samples and total samples
8: Assgn > record unique sampling assignments and dReach results
9: RV «— ExtractRV (MP) > get the RVs from the probabilistic model
10: repeat in parallel
11: Si « Sim(RV) > sample the parameters
12: if S; € Assgn.sample then
13: Res — Assgn(S;).res > no need to call dReach
14: else
15: M; — Gen(MP, S;) > generate a dReach model
16: Res — dReach(M;, 4, k) > call dReach to solve k-step d-reachability
17: end if
18: if Res = §-sat then Succ «+ Succ + 1
19: end if
20: N—N+1
21: until ST .done(Succ, N) > perform statistical test

22: return ST.output
23: end function

over-approximation and correctness of estimated probabilities, SReach supports
PHA s with no or subtle non-determinism. That is, in order to offer a reason-
able estimation, for PHA s, SReach is supposed to be used on models with no or
few non-deterministic transitions, or where dynamic interleaving between non-
deterministic and probabilistic choices are not important, such as our KillerRed
biological model. To improve the performance of SReach, each sampled assign-
ment and its corresponding dReach result are recorded for avoiding redundant
calls to dReach. This significantly reduces the total calls for PHA s, as the size
of the sample space involving random variables describing probabilistic jumps
is comparatively small. For the example PHA (as shown in Fig.1), with this
heuristic, the total checking time has been decreased from 11291.31s for 658
samples (17.16s per sample) to 3295.82s (5.01s per sample). Furthermore, a
parallel version of SReach has been implemented using OpenMP, where multiple
samples and corresponding HAs are generated, and passed to dReach simultane-
ously. Using this parallel SReach on a 4-core machine, the running time for the
example PHA has been further decreased to 2119.55s for 660 samples (3.33s per
sample).

Currently, SReach supports a number of hypothesis testing and statistical esti-
mation techniques including: Lai’s test [17], Bayes factor test [16], Bayes factor
test with indifference region [25], Sequential probability ratio test (SPRT) [24],
Chernoff-Hoeffding bound [14], Bayesian Interval Estimation with Beta prior [26],
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(x <= 1000)
(x">=sin(y))
_ (y'<=4ry)
Mode 1 Mode 2
d/dtlx] = x *y; d/dt[x] = x;
(0.1<=x <= 1.4)d/dtly] =3 * X - y; d/dtly] = 3+
iyﬂ)—'invt: invt:
x <= 2); (x <= 200);
(x >= 0); x >=-2.2);
(y <= 7.7); (y <= 85.1);
(y >=-3); (y>=2)

Fig. 1. An example probabilistic hybrid automaton

and Direct Sampling. All methods produce answers that are correct up to a pre-
cision that can be set arbitrarily by the user. See the tool website for more details
about these statistical testing techniques. With these hypothesis testing methods,
SReach can answer qualitative questions, such as “Does the model satisfy a given
reachability property in k steps with probability greater than a certain thresh-
0ld?” With the above statistical estimation techniques, SReach can offer answers to
quantitative problems. For instance, “What is the probability that the model sat-
isfies a given reachability property in k steps?” SReach can also handle additional
types of interesting problems by encoding them as probabilistic bounded reacha-
bility problems. The model validation/falsification problem with prior knowledge
can be encoded as a probabilistic bounded reachability question. After express-
ing prior knowledge about the given model as reachability properties, is there any
number of steps £ in which the model satisfies a given property with a desirable
probability? If none exists, the model is incorrect regarding the given prior knowl-
edge. The parameter synthesis problem can also be encoded as a probabilistic k-
step reachability problem. Does there exist a parameter combination for which the
model reaches the given goal region in k steps with a desirable probability? If so,
this parameter combination is potentially a good estimation for the system para-
meters. The goal here is to find a combination with which all the given goal regions
can be reached in a bounded number of steps. Moreover, sensitivity analysis can be
conducted by a set of probabilistic bounded reachability queries as well: Are the
results of reachability analysis the same for different possible values of a certain
system parameter? If so, the model is insensitive to this parameter with regard to
the given prior knowledge.

4 Experiments

Both sequential and parallel versions of SReach are available on https://github.
com/dreal/SReach (see the tool website for its usage). Experiments for the follow-
ing three biological models were conducted on a server with 2* AMD Opteron(tm)
Processor 6172 and 32 GB RAM (12 cores were used), running on Ubuntu 14.04.1
LTS. In our experiments we used 0.001 as the precision for the §-decision problem,
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Table 1. Results for the 4-mode atrial fibrillation model (k = 3). For each sample gen-
erated, SReach analyzed systems with 62 variables and 24 ODEs in the unfolded SMT
formulae. #RVs = number of random variables in the model, #S_S = number of §-sat
samples, #T_S = total number of samples, Est_P = estimated probability of property,
A_T(s) = average CPU time of each sample in seconds, and T_T(s) = total CPU time
for all samples in seconds. Note that, we use the same notations in the remaining tables.

Model #RVs EPI_TO1 EPI_TO2 #S_S|#T_S|Est_P|A_T(s) | T-T(s)
Cd_tol_s 1 U(6.1e-3, 7e-3) |6 240 240 10.996 |0.270 |64.80
Cd_tol_uns |1 U(5.5e-3, 5.9¢-3) | 6 0 |240 |0.004 0.042 |10.08
Cd_to2_s 1 400 U(0.131, 6) 240 |240 ]0.996 |0.231 |55.36
Cd_to2_uns |1 400 U(0.1, 0.129) 0 |240 |0.004 |0.038 9.15
Cd_tol2s |2 N(400, le-4) N(6, le-4) 240 240 10.996 |0.091 |21.87
Cd_tol2_uns |2 N(5.5e-3, 10e-6) |N(0.11, 10e-5)| 0O [240 |0.004 |0.037 | 8.90

and Bayesian sequential estimation with 0.01 as the estimation error bound, cov-
erage probability 0.99, and a uniform prior (& = 8 = 1). All the details (including
discrete modes, continuous dynamics that described by ODEs, non-determinism,
and stochasticity) of models in the following case studies and additional bench-
marks can be found on the tool website.

Atrial Fibrillation. The minimum resistor model reproduces experimentally
measured characteristics of human ventricular cell dynamics [5]. It reduces the
complexity of existing models by representing channel gates of different ions with
one fast channel and two slow gates. However, due to this reduction, for most model
parameters, it becomes impossible to obtain their values through measurements.
After adding parametric uncertainty into the original hybrid model, we show that
SReach can be adapted to synthesize parameters for this stochastic model, i.e.,
identifying appropriate ranges and distributions for model parameters. We chose
two system parameters - EPI TO1 and EPI TO2, and varied their distributions to
see which ones allow the model to present the desired patterns. Asin Table 1, when
EPITO1 is either close to 400, or between 0.0061 and 0.007, and EPI TO2 is close
to 6, the model can satisfy the given bounded reachability property with a proba-
bility very close to 1.

Prostate Cancer Treatment. This model is a nonlinear hybrid automaton with
parametric uncertainty. We modified the model of the intermittent androgen sup-
pression (IAS) therapy in [22] by adding parametric uncertainty. The IAS ther-
apy switches between treatment-on, and treatment-off with respect to the serum
level thresholds of prostate-specific antigen (PSA), namely 7o and 1. As sug-
gested by the clinical trials [4], an effective IAS therapy highly depends on the
individual patient. Thus, we modified the model by taking parametric variation
caused by personalized differences into account. In detail, according to clinical
data from hundreds of patients [3], we replaced six system parameters with ran-
dom variables having appropriate (continuous) distributions, including a, (the
proliferation rate of androgen-dependent (AD) cells), o, (the proliferation rate
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Table 2. Results for the 2-mode prostate cancer treatment model (k = 2). For each sam-
ple generated, SReach analyzed systems with 41 variables and 10 ODEs in the unfolded
SMT formulae.

Model | #RVs |ro |r1 | Est_P|#S_S|#T_S|A_T(s) | T-T(s)
PCT1 |6 5.0110.0]0.496 | 8226 | 16584 0.596 9892
PCT2 |6 7.0/11.0/0.994 | 335 336 | 54.307 | 18247
PCT3 |6 10.0115.00.996 | 240 240 | 506.5 121560
Model )  w (Mode2 )y ¥ (Mode3 o (Modea ) Modes )  _ (Mode7 o 5 (Modeo )
0% = 1 (g € o & B 0[5 _ E 2 0 [2 -2 [xgenome=0
IPTG=0 g g5 |IPTG=0 % B o [IPTG=0 3 ¢ _|[IPTG=1 £ g |[IPTG=1 £ 2 |IPTG=1 %2; IPTG=0
light=0 - 58 |light=0 5 B |light=0 S = light=0 = £ llight=L 2 2~ |light=0 £ = o light=0
DNA=1 A~ 22 |DNA=1 A~ 2 E|bNA=0 7 T 2 8 |bNA=0 722 g |bNA=0 7 858 |oNA=0 7 SE& §|pNa=0
DNAI=0 o 23 [oNa=0 o g g[DNA=1 5‘ & E |DNAI=1 2252 oNar=1 2 ©'g € [DNA=1 23 g E[DNA=1
MRNA=0 € 58 |mrRNA=0 2§ 2 |mRNA=0 < B [mRNA=? o T [mRNA=? o 3 |mRNA=? gz g |mRNA=a
KRim=0 g 5 |KRim=0 E & [KRim=0 g8 < |KRim=? s 2 |KRim=? 3§ |Krim=? 825 [kRim=b
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KRmdS*=0 KRmdS*=0 KRmdS*=0 KRmdS*=0 KRmds*=? 3 KRmds*=? KRmdS*=e
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SOD=SODinit SOD=SODinit SOD=SODinit SOD=SODinit SOD=? A |sop=i SOD=i
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Fig. 2. A probabilistic hybrid automaton for synthesized phage-based therapy model

of androgen-independent (AI) cells), 8, (the apoptosis rate of AD cells), 5, (the
apoptosis rate of AT cells), m; (the mutation rate from AD to AT cells), and zg
(the normal androgen level). To describe the variations due to individual differ-
ences, we assigned a, to be U(0.0193,0.0214), o, to be U(0.0230, 0.0254), 3, to be
U(0.0072,0.0079), 8, to be U(0.0160,0.0176), m; to be U(0.0000475,0.0000525),
and zg to be N(30.0,0.001). We used SReach to estimate the probabilities of pre-
venting the relapse of prostate cancer with three distinct pairs of treatment thresh-
olds (i.e., combinations of rg and 7). As shown in Table 2, the model with thresh-
olds rop = 10 and r; = 15 has a maximum posterior probability that approaches 1,
indicating that these thresholds may be considered for the general treatment.

Synthesized KillerRed Model. Due to the widespread misuse and overuse
of antibiotics, drug resistant bacteria now pose significant risks to health,
agriculture and the environment. An alternative to conventional antibiotics is
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Table 3. Results for the 11-mode killerred model.

k|EstP|#SS|#TS|AT(s) | T-T(s) k | EstP|#S.S|#TS|A_T(s)| T-T(s)
510.544 | 8951 | 16452 |0.074 1219.38 || 8/0.004 |0 240 |0.004 |0.88
610.247 | 3045 | 12336 |0.969 |11957.12|| 9/0.004 |0 240 0.012 |2.97
710.096 | 559 | 5808 |5.470 |31770.36| 10 0.004 |0 240 |0.013 |3.18
Table 4. Formal analysis results for our KillerRed hybrid model
tiignion (.. 1 2 3 4 5 6 |7 8 |9 10
tiotar (t.00.) 16 172 |18.5 |20 [21.3{22.723.5|24.1 |25 |30
tiightorr, (t.u.) 1 2 3 4 5 6 7 8 9 10
Killed bacteria cells | Failed | Failed | Failed | Succ | Succ | Succ | Succ | Succ | Succ | Suce
trmipTGs (t.0) 1 2 3 4 5 6 7 8 9 10
Killed bacteria cells|Succ |Succ |Succ |Succ| Succ|Succ|Succ|Succ|Succ|Suce
SOXihres (M) le-4 |2e-4 |3e-4 |4e-4 5e-4 |6e-4 |Te-4 |8e-4 |9e-4 |1le-3
tiotal (t.10.) 5.1 5.2 5.4 17 |19 48 |61 |71 |36 |42

phage-based therapy. One approach to antibiotic resistance is to engineer a tem-
perate phage A\ with light-activated production of superoxide (SOX). The incor-
porated Killerred protein is phototoxic and provides another level of controlled
bacteria killing [18]. A PHA, with subtle non-determinism for this synthesized
Killerred model (as shown in Fig.2) has been constructed. Considering individ-
ual differences of bacterial cells and distinct experimental environments, addi-
tional randomness on transition probabilities have been considered. SReach was
used to validate this model by estimating the probabilities of killing bacter-
ial cells with different ks (see Table3). We noticed that the probabilities of
paths going through mode 6 to mode 11 are close to 0. This remains even after
increasing the probability of entering mode 6, indicating that it is impossible for
this model to enter mode 6. SReach was also used to find out (a) the relation
between the time to turn on the light after adding the molecular biology reagent
IPTG and the total time to kill bacterial cells with probability larger than 0.5
(see the first two rows of Table4), (b) that the lower bound for the duration of
exposure to light is 3 for successful bacterial killing with probability larger than
0.5 (see row 3—4 of Table4), (c) that the time to remove IPTG is insensitive con-
sidering whether bacterial cells will be killed with probability larger than 0.5 (see
row 56 of Table 4), and (d) that the upper bound of the necessary concentration
of SOX to kill bacterial cells, with probability larger than 0.5, is 0.6667 (see from
row 7-8 of Table 4). All these findings have been reported to biologists for further
checking.

Additional Benchmarks. To further demonstrate SReach’s applicability, we
also applied it to additional benchmarks including HA,s, PHAs, and PHA,s
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Table 5. #Ms = number of modes, K indicates the unfolding steps, #ODEs = number
of ODEs in the unfolded formulae, #Vs = number of total variables in the unfolded for-
mulae, #RVs = number of random variables in the model, § = precision used in dReach.

Benchmark |#Ms|K |#ODEs | #Vs|#RVs|d§ Est_P | #S_S|#T-S|A_T(s) |T-T(s)
BBK1 1 1 2 14 |3 0.001{0.754 |5372 | 7126 0.086 612.836
BBK5 1 5 38 |3 0.001{0.059 | 209 | 3628 0.253 917.884
BBwDv1 2 2 4 20 |4 0.001{0.208 |2206 | 10919 0.080 873.522
BBwDv2K2| 2 2 4 20 |3 0.001{0.845 |7330 | 8669 0.209 1811.821
BBwDv2KS8| 2 8 4 56 |3 0.001{0.207 |2259 | 10901 0.858 9353.058
TIld 2 7 2 33 |4 0.001{0.996 | 227 227 0.213 48.351
Ted 2 7 4 50 |4 0.001{0.996 | 227 227| 12.839 2914.448
DTIdK3 2 3 4 26 |2 0.001{0.996 | 227 227 0.382 86.714
DTIdK5 2 5 4 38 |2 0.001{0.161 |1442 | 8961 0.280 2509.078
W4mv1 4 3 8 26 |6 0.001{0.381 [5953 | 15639 0.238 3722.082
W4mv2K3 4 3 8 26 |6 0.001/0.996 | 227 227 0.673 152.771
W4mv2K7 4 7 8 50 |6 0.001{0.004 0 227 0.120 27.240
DWK1 2 1 4 14 |5 0.001{0.996 | 227 227 0.171 38.817
DWK3 2 3 4 26 |5 0.001{0.996 | 227 227 0.215 48.806
DWK9 2 9 4 62 |5 0.001/0.996 | 227 227 5.144 1167.688
Que 3 2 3 13 |4 0.001|0.228 [2662 | 11677 0.095 1109.315
3dOsc 3 2| 18 48 |2 0.001{0.996 | 227 227 8.273 1877.969
QuadC 1 0| 14 44 16 0.001{0.996 | 227 2271825.641 |187420.507
exPHAO1 2 2 4 20 |2 0.001/0.524 | 345 658 5.01 3295.82
exPHA02 2 3 2 17 |1 0.001{0.900 |5361 | 5953 0.0004 2.35
KRk5 6 5| 84 194 |2 0.001{0.544 | 8946 | 16457 0.122 2015.64
KRk6 8 6112 224 |6 0.001{0.246 [2032 | 8263 1.385 11444.22
KRk7 10 71150 271 |6 0.001{0.096 | 558 | 5795| 16.275 94311.18
KRk8 7 81105 303 |6 0.001{0.004 0 227 0.003 0.58
KRk9 9 9135 335 |6 0.001{0.004 0 227 0.015 3.43
KRk10 11 101|165 367 |6 0.001{0.004 0 227 0.026 5.92

with subtle non-determinism. Table5 shows the results of these experiments.
These experiments were conducted with the sequential version of SReach on a
machine with 2.9 GHz Intel Core i7 processor and 8 GB RAM, running OS X
10.9.2. In our experiments we used 0.001 as the precision for the J-decision prob-
lem; and Bayesian sequential estimation with 0.01 half-interval width, cover-
age probability 0.99, and uniform prior (¢ = § = 1). In the following table,
BB refers to the bouncing ball models, Tld the thermostat model with linear
temperature decrease, Ted the thermostat model with exponential decrease, DT
the dual thermostat models, W the watertank models, DW the dual watertank
models, Que the model for queuing system which has both nonlinear functions
and nondeterministic jumps, 3dOsc the model for 3d oscillator, and QuadC the
model for quadcopter stabilization control. Following these hybrid systems with
parametric uncertainty, we also consider two example PHAs - exPHAO1 and
exPHAO02, and PHA, s with trivial non-determinism - KR (our killerred models).
Moreover, the detailed description of some of additional benchmarks and above



26 Q. Wang et al.

case studies can be found on the tool website. The full descriptions of all the mod-
els that mentioned in this paper can be found on the tool website.

5 Conclusions and Future Work

We have presented a tool that combines d-decision procedures and statistical tests.
It supports probabilistic bounded J-reachability analysis for HA,s and PHA,s
with no or subtle non-determinism. This tool has been used to analyze three rep-
resentative examples - a prostate cancer treatment model, a cardiac model, and a
synthesized Killerred model - and other benchmarks, which are currently out of the
reach of other formal tools. In the near future, we plan to extend support for more
general stochastic hybrid models that include probabilistic jumps with continuous
distributions, and stochastic differential equations.
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